1 /* Target-dependent code for the HP PA-RISC architecture. 2 3 Copyright (C) 1986-2023 Free Software Foundation, Inc. 4 5 Contributed by the Center for Software Science at the 6 University of Utah (pa-gdb-bugs@cs.utah.edu). 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 #include "defs.h" 24 #include "bfd.h" 25 #include "inferior.h" 26 #include "regcache.h" 27 #include "completer.h" 28 #include "osabi.h" 29 #include "arch-utils.h" 30 /* For argument passing to the inferior. */ 31 #include "symtab.h" 32 #include "dis-asm.h" 33 #include "trad-frame.h" 34 #include "frame-unwind.h" 35 #include "frame-base.h" 36 37 #include "gdbcore.h" 38 #include "gdbcmd.h" 39 #include "gdbtypes.h" 40 #include "objfiles.h" 41 #include "hppa-tdep.h" 42 #include <algorithm> 43 44 static bool hppa_debug = false; 45 46 /* Some local constants. */ 47 static const int hppa32_num_regs = 128; 48 static const int hppa64_num_regs = 96; 49 50 /* We use the objfile->obj_private pointer for two things: 51 * 1. An unwind table; 52 * 53 * 2. A pointer to any associated shared library object. 54 * 55 * #defines are used to help refer to these objects. 56 */ 57 58 /* Info about the unwind table associated with an object file. 59 * This is hung off of the "objfile->obj_private" pointer, and 60 * is allocated in the objfile's psymbol obstack. This allows 61 * us to have unique unwind info for each executable and shared 62 * library that we are debugging. 63 */ 64 struct hppa_unwind_info 65 { 66 struct unwind_table_entry *table; /* Pointer to unwind info */ 67 struct unwind_table_entry *cache; /* Pointer to last entry we found */ 68 int last; /* Index of last entry */ 69 }; 70 71 struct hppa_objfile_private 72 { 73 struct hppa_unwind_info *unwind_info = nullptr; /* a pointer */ 74 struct so_list *so_info = nullptr; /* a pointer */ 75 CORE_ADDR dp = 0; 76 77 int dummy_call_sequence_reg = 0; 78 CORE_ADDR dummy_call_sequence_addr = 0; 79 }; 80 81 /* hppa-specific object data -- unwind and solib info. 82 TODO/maybe: think about splitting this into two parts; the unwind data is 83 common to all hppa targets, but is only used in this file; we can register 84 that separately and make this static. The solib data is probably hpux- 85 specific, so we can create a separate extern objfile_data that is registered 86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ 87 static const registry<objfile>::key<hppa_objfile_private> 88 hppa_objfile_priv_data; 89 90 /* Get at various relevant fields of an instruction word. */ 91 #define MASK_5 0x1f 92 #define MASK_11 0x7ff 93 #define MASK_14 0x3fff 94 #define MASK_21 0x1fffff 95 96 /* Sizes (in bytes) of the native unwind entries. */ 97 #define UNWIND_ENTRY_SIZE 16 98 #define STUB_UNWIND_ENTRY_SIZE 8 99 100 /* Routines to extract various sized constants out of hppa 101 instructions. */ 102 103 /* This assumes that no garbage lies outside of the lower bits of 104 value. */ 105 106 static int 107 hppa_sign_extend (unsigned val, unsigned bits) 108 { 109 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val); 110 } 111 112 /* For many immediate values the sign bit is the low bit! */ 113 114 static int 115 hppa_low_hppa_sign_extend (unsigned val, unsigned bits) 116 { 117 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1); 118 } 119 120 /* Extract the bits at positions between FROM and TO, using HP's numbering 121 (MSB = 0). */ 122 123 int 124 hppa_get_field (unsigned word, int from, int to) 125 { 126 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); 127 } 128 129 /* Extract the immediate field from a ld{bhw}s instruction. */ 130 131 int 132 hppa_extract_5_load (unsigned word) 133 { 134 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); 135 } 136 137 /* Extract the immediate field from a break instruction. */ 138 139 unsigned 140 hppa_extract_5r_store (unsigned word) 141 { 142 return (word & MASK_5); 143 } 144 145 /* Extract the immediate field from a {sr}sm instruction. */ 146 147 unsigned 148 hppa_extract_5R_store (unsigned word) 149 { 150 return (word >> 16 & MASK_5); 151 } 152 153 /* Extract a 14 bit immediate field. */ 154 155 int 156 hppa_extract_14 (unsigned word) 157 { 158 return hppa_low_hppa_sign_extend (word & MASK_14, 14); 159 } 160 161 /* Extract a 21 bit constant. */ 162 163 int 164 hppa_extract_21 (unsigned word) 165 { 166 int val; 167 168 word &= MASK_21; 169 word <<= 11; 170 val = hppa_get_field (word, 20, 20); 171 val <<= 11; 172 val |= hppa_get_field (word, 9, 19); 173 val <<= 2; 174 val |= hppa_get_field (word, 5, 6); 175 val <<= 5; 176 val |= hppa_get_field (word, 0, 4); 177 val <<= 2; 178 val |= hppa_get_field (word, 7, 8); 179 return hppa_sign_extend (val, 21) << 11; 180 } 181 182 /* extract a 17 bit constant from branch instructions, returning the 183 19 bit signed value. */ 184 185 int 186 hppa_extract_17 (unsigned word) 187 { 188 return hppa_sign_extend (hppa_get_field (word, 19, 28) | 189 hppa_get_field (word, 29, 29) << 10 | 190 hppa_get_field (word, 11, 15) << 11 | 191 (word & 0x1) << 16, 17) << 2; 192 } 193 194 CORE_ADDR 195 hppa_symbol_address(const char *sym) 196 { 197 struct bound_minimal_symbol minsym; 198 199 minsym = lookup_minimal_symbol (sym, NULL, NULL); 200 if (minsym.minsym) 201 return minsym.value_address (); 202 else 203 return (CORE_ADDR)-1; 204 } 205 206 207 208 /* Compare the start address for two unwind entries returning 1 if 209 the first address is larger than the second, -1 if the second is 210 larger than the first, and zero if they are equal. */ 211 212 static int 213 compare_unwind_entries (const void *arg1, const void *arg2) 214 { 215 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1; 216 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2; 217 218 if (a->region_start > b->region_start) 219 return 1; 220 else if (a->region_start < b->region_start) 221 return -1; 222 else 223 return 0; 224 } 225 226 static void 227 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) 228 { 229 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 230 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 231 { 232 bfd_vma value = section->vma - section->filepos; 233 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; 234 235 if (value < *low_text_segment_address) 236 *low_text_segment_address = value; 237 } 238 } 239 240 static void 241 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, 242 asection *section, unsigned int entries, 243 size_t size, CORE_ADDR text_offset) 244 { 245 /* We will read the unwind entries into temporary memory, then 246 fill in the actual unwind table. */ 247 248 if (size > 0) 249 { 250 struct gdbarch *gdbarch = objfile->arch (); 251 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch); 252 unsigned long tmp; 253 unsigned i; 254 char *buf = (char *) alloca (size); 255 CORE_ADDR low_text_segment_address; 256 257 /* For ELF targets, then unwinds are supposed to 258 be segment relative offsets instead of absolute addresses. 259 260 Note that when loading a shared library (text_offset != 0) the 261 unwinds are already relative to the text_offset that will be 262 passed in. */ 263 if (tdep->is_elf && text_offset == 0) 264 { 265 low_text_segment_address = -1; 266 267 bfd_map_over_sections (objfile->obfd.get (), 268 record_text_segment_lowaddr, 269 &low_text_segment_address); 270 271 text_offset = low_text_segment_address; 272 } 273 else if (tdep->solib_get_text_base) 274 { 275 text_offset = tdep->solib_get_text_base (objfile); 276 } 277 278 bfd_get_section_contents (objfile->obfd.get (), section, buf, 0, size); 279 280 /* Now internalize the information being careful to handle host/target 281 endian issues. */ 282 for (i = 0; i < entries; i++) 283 { 284 table[i].region_start = bfd_get_32 (objfile->obfd, 285 (bfd_byte *) buf); 286 table[i].region_start += text_offset; 287 buf += 4; 288 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); 289 table[i].region_end += text_offset; 290 buf += 4; 291 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); 292 buf += 4; 293 table[i].Cannot_unwind = (tmp >> 31) & 0x1; 294 table[i].Millicode = (tmp >> 30) & 0x1; 295 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; 296 table[i].Region_description = (tmp >> 27) & 0x3; 297 table[i].reserved = (tmp >> 26) & 0x1; 298 table[i].Entry_SR = (tmp >> 25) & 0x1; 299 table[i].Entry_FR = (tmp >> 21) & 0xf; 300 table[i].Entry_GR = (tmp >> 16) & 0x1f; 301 table[i].Args_stored = (tmp >> 15) & 0x1; 302 table[i].Variable_Frame = (tmp >> 14) & 0x1; 303 table[i].Separate_Package_Body = (tmp >> 13) & 0x1; 304 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; 305 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; 306 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; 307 table[i].sr4export = (tmp >> 9) & 0x1; 308 table[i].cxx_info = (tmp >> 8) & 0x1; 309 table[i].cxx_try_catch = (tmp >> 7) & 0x1; 310 table[i].sched_entry_seq = (tmp >> 6) & 0x1; 311 table[i].reserved1 = (tmp >> 5) & 0x1; 312 table[i].Save_SP = (tmp >> 4) & 0x1; 313 table[i].Save_RP = (tmp >> 3) & 0x1; 314 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; 315 table[i].save_r19 = (tmp >> 1) & 0x1; 316 table[i].Cleanup_defined = tmp & 0x1; 317 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); 318 buf += 4; 319 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; 320 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; 321 table[i].Large_frame = (tmp >> 29) & 0x1; 322 table[i].alloca_frame = (tmp >> 28) & 0x1; 323 table[i].reserved2 = (tmp >> 27) & 0x1; 324 table[i].Total_frame_size = tmp & 0x7ffffff; 325 326 /* Stub unwinds are handled elsewhere. */ 327 table[i].stub_unwind.stub_type = 0; 328 table[i].stub_unwind.padding = 0; 329 } 330 } 331 } 332 333 /* Read in the backtrace information stored in the `$UNWIND_START$' section of 334 the object file. This info is used mainly by find_unwind_entry() to find 335 out the stack frame size and frame pointer used by procedures. We put 336 everything on the psymbol obstack in the objfile so that it automatically 337 gets freed when the objfile is destroyed. */ 338 339 static void 340 read_unwind_info (struct objfile *objfile) 341 { 342 asection *unwind_sec, *stub_unwind_sec; 343 size_t unwind_size, stub_unwind_size, total_size; 344 unsigned index, unwind_entries; 345 unsigned stub_entries, total_entries; 346 CORE_ADDR text_offset; 347 struct hppa_unwind_info *ui; 348 struct hppa_objfile_private *obj_private; 349 350 text_offset = objfile->text_section_offset (); 351 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, 352 sizeof (struct hppa_unwind_info)); 353 354 ui->table = NULL; 355 ui->cache = NULL; 356 ui->last = -1; 357 358 /* For reasons unknown the HP PA64 tools generate multiple unwinder 359 sections in a single executable. So we just iterate over every 360 section in the BFD looking for unwinder sections instead of trying 361 to do a lookup with bfd_get_section_by_name. 362 363 First determine the total size of the unwind tables so that we 364 can allocate memory in a nice big hunk. */ 365 total_entries = 0; 366 for (unwind_sec = objfile->obfd->sections; 367 unwind_sec; 368 unwind_sec = unwind_sec->next) 369 { 370 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 371 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) 372 { 373 unwind_size = bfd_section_size (unwind_sec); 374 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; 375 376 total_entries += unwind_entries; 377 } 378 } 379 380 /* Now compute the size of the stub unwinds. Note the ELF tools do not 381 use stub unwinds at the current time. */ 382 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd.get (), 383 "$UNWIND_END$"); 384 385 if (stub_unwind_sec) 386 { 387 stub_unwind_size = bfd_section_size (stub_unwind_sec); 388 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; 389 } 390 else 391 { 392 stub_unwind_size = 0; 393 stub_entries = 0; 394 } 395 396 /* Compute total number of unwind entries and their total size. */ 397 total_entries += stub_entries; 398 total_size = total_entries * sizeof (struct unwind_table_entry); 399 400 /* Allocate memory for the unwind table. */ 401 ui->table = (struct unwind_table_entry *) 402 obstack_alloc (&objfile->objfile_obstack, total_size); 403 ui->last = total_entries - 1; 404 405 /* Now read in each unwind section and internalize the standard unwind 406 entries. */ 407 index = 0; 408 for (unwind_sec = objfile->obfd->sections; 409 unwind_sec; 410 unwind_sec = unwind_sec->next) 411 { 412 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 413 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) 414 { 415 unwind_size = bfd_section_size (unwind_sec); 416 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; 417 418 internalize_unwinds (objfile, &ui->table[index], unwind_sec, 419 unwind_entries, unwind_size, text_offset); 420 index += unwind_entries; 421 } 422 } 423 424 /* Now read in and internalize the stub unwind entries. */ 425 if (stub_unwind_size > 0) 426 { 427 unsigned int i; 428 char *buf = (char *) alloca (stub_unwind_size); 429 430 /* Read in the stub unwind entries. */ 431 bfd_get_section_contents (objfile->obfd.get (), stub_unwind_sec, buf, 432 0, stub_unwind_size); 433 434 /* Now convert them into regular unwind entries. */ 435 for (i = 0; i < stub_entries; i++, index++) 436 { 437 /* Clear out the next unwind entry. */ 438 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); 439 440 /* Convert offset & size into region_start and region_end. 441 Stuff away the stub type into "reserved" fields. */ 442 ui->table[index].region_start = bfd_get_32 (objfile->obfd, 443 (bfd_byte *) buf); 444 ui->table[index].region_start += text_offset; 445 buf += 4; 446 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, 447 (bfd_byte *) buf); 448 buf += 2; 449 ui->table[index].region_end 450 = ui->table[index].region_start + 4 * 451 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); 452 buf += 2; 453 } 454 455 } 456 457 /* Unwind table needs to be kept sorted. */ 458 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), 459 compare_unwind_entries); 460 461 /* Keep a pointer to the unwind information. */ 462 obj_private = hppa_objfile_priv_data.get (objfile); 463 if (obj_private == NULL) 464 obj_private = hppa_objfile_priv_data.emplace (objfile); 465 466 obj_private->unwind_info = ui; 467 } 468 469 /* Lookup the unwind (stack backtrace) info for the given PC. We search all 470 of the objfiles seeking the unwind table entry for this PC. Each objfile 471 contains a sorted list of struct unwind_table_entry. Since we do a binary 472 search of the unwind tables, we depend upon them to be sorted. */ 473 474 struct unwind_table_entry * 475 find_unwind_entry (CORE_ADDR pc) 476 { 477 int first, middle, last; 478 479 if (hppa_debug) 480 gdb_printf (gdb_stdlog, "{ find_unwind_entry %s -> ", 481 hex_string (pc)); 482 483 /* A function at address 0? Not in HP-UX! */ 484 if (pc == (CORE_ADDR) 0) 485 { 486 if (hppa_debug) 487 gdb_printf (gdb_stdlog, "NULL }\n"); 488 return NULL; 489 } 490 491 for (objfile *objfile : current_program_space->objfiles ()) 492 { 493 struct hppa_unwind_info *ui; 494 ui = NULL; 495 struct hppa_objfile_private *priv = hppa_objfile_priv_data.get (objfile); 496 if (priv) 497 ui = priv->unwind_info; 498 499 if (!ui) 500 { 501 read_unwind_info (objfile); 502 priv = hppa_objfile_priv_data.get (objfile); 503 if (priv == NULL) 504 error (_("Internal error reading unwind information.")); 505 ui = priv->unwind_info; 506 } 507 508 /* First, check the cache. */ 509 510 if (ui->cache 511 && pc >= ui->cache->region_start 512 && pc <= ui->cache->region_end) 513 { 514 if (hppa_debug) 515 gdb_printf (gdb_stdlog, "%s (cached) }\n", 516 hex_string ((uintptr_t) ui->cache)); 517 return ui->cache; 518 } 519 520 /* Not in the cache, do a binary search. */ 521 522 first = 0; 523 last = ui->last; 524 525 while (first <= last) 526 { 527 middle = (first + last) / 2; 528 if (pc >= ui->table[middle].region_start 529 && pc <= ui->table[middle].region_end) 530 { 531 ui->cache = &ui->table[middle]; 532 if (hppa_debug) 533 gdb_printf (gdb_stdlog, "%s }\n", 534 hex_string ((uintptr_t) ui->cache)); 535 return &ui->table[middle]; 536 } 537 538 if (pc < ui->table[middle].region_start) 539 last = middle - 1; 540 else 541 first = middle + 1; 542 } 543 } 544 545 if (hppa_debug) 546 gdb_printf (gdb_stdlog, "NULL (not found) }\n"); 547 548 return NULL; 549 } 550 551 /* Implement the stack_frame_destroyed_p gdbarch method. 552 553 The epilogue is defined here as the area either on the `bv' instruction 554 itself or an instruction which destroys the function's stack frame. 555 556 We do not assume that the epilogue is at the end of a function as we can 557 also have return sequences in the middle of a function. */ 558 559 static int 560 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) 561 { 562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 563 unsigned long status; 564 unsigned int inst; 565 gdb_byte buf[4]; 566 567 status = target_read_memory (pc, buf, 4); 568 if (status != 0) 569 return 0; 570 571 inst = extract_unsigned_integer (buf, 4, byte_order); 572 573 /* The most common way to perform a stack adjustment ldo X(sp),sp 574 We are destroying a stack frame if the offset is negative. */ 575 if ((inst & 0xffffc000) == 0x37de0000 576 && hppa_extract_14 (inst) < 0) 577 return 1; 578 579 /* ldw,mb D(sp),X or ldd,mb D(sp),X */ 580 if (((inst & 0x0fc010e0) == 0x0fc010e0 581 || (inst & 0x0fc010e0) == 0x0fc010e0) 582 && hppa_extract_14 (inst) < 0) 583 return 1; 584 585 /* bv %r0(%rp) or bv,n %r0(%rp) */ 586 if (inst == 0xe840c000 || inst == 0xe840c002) 587 return 1; 588 589 return 0; 590 } 591 592 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04}; 593 594 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint; 595 596 /* Return the name of a register. */ 597 598 static const char * 599 hppa32_register_name (struct gdbarch *gdbarch, int i) 600 { 601 static const char *names[] = { 602 "flags", "r1", "rp", "r3", 603 "r4", "r5", "r6", "r7", 604 "r8", "r9", "r10", "r11", 605 "r12", "r13", "r14", "r15", 606 "r16", "r17", "r18", "r19", 607 "r20", "r21", "r22", "r23", 608 "r24", "r25", "r26", "dp", 609 "ret0", "ret1", "sp", "r31", 610 "sar", "pcoqh", "pcsqh", "pcoqt", 611 "pcsqt", "eiem", "iir", "isr", 612 "ior", "ipsw", "goto", "sr4", 613 "sr0", "sr1", "sr2", "sr3", 614 "sr5", "sr6", "sr7", "cr0", 615 "cr8", "cr9", "ccr", "cr12", 616 "cr13", "cr24", "cr25", "cr26", 617 "cr27", "cr28", "cr29", "cr30", 618 "fpsr", "fpe1", "fpe2", "fpe3", 619 "fpe4", "fpe5", "fpe6", "fpe7", 620 "fr4", "fr4R", "fr5", "fr5R", 621 "fr6", "fr6R", "fr7", "fr7R", 622 "fr8", "fr8R", "fr9", "fr9R", 623 "fr10", "fr10R", "fr11", "fr11R", 624 "fr12", "fr12R", "fr13", "fr13R", 625 "fr14", "fr14R", "fr15", "fr15R", 626 "fr16", "fr16R", "fr17", "fr17R", 627 "fr18", "fr18R", "fr19", "fr19R", 628 "fr20", "fr20R", "fr21", "fr21R", 629 "fr22", "fr22R", "fr23", "fr23R", 630 "fr24", "fr24R", "fr25", "fr25R", 631 "fr26", "fr26R", "fr27", "fr27R", 632 "fr28", "fr28R", "fr29", "fr29R", 633 "fr30", "fr30R", "fr31", "fr31R" 634 }; 635 gdb_static_assert (ARRAY_SIZE (names) == hppa32_num_regs); 636 return names[i]; 637 } 638 639 static const char * 640 hppa64_register_name (struct gdbarch *gdbarch, int i) 641 { 642 static const char *names[] = { 643 "flags", "r1", "rp", "r3", 644 "r4", "r5", "r6", "r7", 645 "r8", "r9", "r10", "r11", 646 "r12", "r13", "r14", "r15", 647 "r16", "r17", "r18", "r19", 648 "r20", "r21", "r22", "r23", 649 "r24", "r25", "r26", "dp", 650 "ret0", "ret1", "sp", "r31", 651 "sar", "pcoqh", "pcsqh", "pcoqt", 652 "pcsqt", "eiem", "iir", "isr", 653 "ior", "ipsw", "goto", "sr4", 654 "sr0", "sr1", "sr2", "sr3", 655 "sr5", "sr6", "sr7", "cr0", 656 "cr8", "cr9", "ccr", "cr12", 657 "cr13", "cr24", "cr25", "cr26", 658 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", 659 "fpsr", "fpe1", "fpe2", "fpe3", 660 "fr4", "fr5", "fr6", "fr7", 661 "fr8", "fr9", "fr10", "fr11", 662 "fr12", "fr13", "fr14", "fr15", 663 "fr16", "fr17", "fr18", "fr19", 664 "fr20", "fr21", "fr22", "fr23", 665 "fr24", "fr25", "fr26", "fr27", 666 "fr28", "fr29", "fr30", "fr31" 667 }; 668 gdb_static_assert (ARRAY_SIZE (names) == hppa64_num_regs); 669 return names[i]; 670 } 671 672 /* Map dwarf DBX register numbers to GDB register numbers. */ 673 static int 674 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 675 { 676 /* The general registers and the sar are the same in both sets. */ 677 if (reg >= 0 && reg <= 32) 678 return reg; 679 680 /* fr4-fr31 are mapped from 72 in steps of 2. */ 681 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) 682 return HPPA64_FP4_REGNUM + (reg - 72) / 2; 683 684 return -1; 685 } 686 687 /* This function pushes a stack frame with arguments as part of the 688 inferior function calling mechanism. 689 690 This is the version of the function for the 32-bit PA machines, in 691 which later arguments appear at lower addresses. (The stack always 692 grows towards higher addresses.) 693 694 We simply allocate the appropriate amount of stack space and put 695 arguments into their proper slots. */ 696 697 static CORE_ADDR 698 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 699 struct regcache *regcache, CORE_ADDR bp_addr, 700 int nargs, struct value **args, CORE_ADDR sp, 701 function_call_return_method return_method, 702 CORE_ADDR struct_addr) 703 { 704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 705 706 /* Stack base address at which any pass-by-reference parameters are 707 stored. */ 708 CORE_ADDR struct_end = 0; 709 /* Stack base address at which the first parameter is stored. */ 710 CORE_ADDR param_end = 0; 711 712 /* Two passes. First pass computes the location of everything, 713 second pass writes the bytes out. */ 714 int write_pass; 715 716 /* Global pointer (r19) of the function we are trying to call. */ 717 CORE_ADDR gp; 718 719 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch); 720 721 for (write_pass = 0; write_pass < 2; write_pass++) 722 { 723 CORE_ADDR struct_ptr = 0; 724 /* The first parameter goes into sp-36, each stack slot is 4-bytes. 725 struct_ptr is adjusted for each argument below, so the first 726 argument will end up at sp-36. */ 727 CORE_ADDR param_ptr = 32; 728 int i; 729 int small_struct = 0; 730 731 for (i = 0; i < nargs; i++) 732 { 733 struct value *arg = args[i]; 734 struct type *type = check_typedef (value_type (arg)); 735 /* The corresponding parameter that is pushed onto the 736 stack, and [possibly] passed in a register. */ 737 gdb_byte param_val[8]; 738 int param_len; 739 memset (param_val, 0, sizeof param_val); 740 if (type->length () > 8) 741 { 742 /* Large parameter, pass by reference. Store the value 743 in "struct" area and then pass its address. */ 744 param_len = 4; 745 struct_ptr += align_up (type->length (), 8); 746 if (write_pass) 747 write_memory (struct_end - struct_ptr, 748 value_contents (arg).data (), type->length ()); 749 store_unsigned_integer (param_val, 4, byte_order, 750 struct_end - struct_ptr); 751 } 752 else if (type->code () == TYPE_CODE_INT 753 || type->code () == TYPE_CODE_ENUM) 754 { 755 /* Integer value store, right aligned. "unpack_long" 756 takes care of any sign-extension problems. */ 757 param_len = align_up (type->length (), 4); 758 store_unsigned_integer 759 (param_val, param_len, byte_order, 760 unpack_long (type, value_contents (arg).data ())); 761 } 762 else if (type->code () == TYPE_CODE_FLT) 763 { 764 /* Floating point value store, right aligned. */ 765 param_len = align_up (type->length (), 4); 766 memcpy (param_val, value_contents (arg).data (), param_len); 767 } 768 else 769 { 770 param_len = align_up (type->length (), 4); 771 772 /* Small struct value are stored right-aligned. */ 773 memcpy (param_val + param_len - type->length (), 774 value_contents (arg).data (), type->length ()); 775 776 /* Structures of size 5, 6 and 7 bytes are special in that 777 the higher-ordered word is stored in the lower-ordered 778 argument, and even though it is a 8-byte quantity the 779 registers need not be 8-byte aligned. */ 780 if (param_len > 4 && param_len < 8) 781 small_struct = 1; 782 } 783 784 param_ptr += param_len; 785 if (param_len == 8 && !small_struct) 786 param_ptr = align_up (param_ptr, 8); 787 788 /* First 4 non-FP arguments are passed in gr26-gr23. 789 First 4 32-bit FP arguments are passed in fr4L-fr7L. 790 First 2 64-bit FP arguments are passed in fr5 and fr7. 791 792 The rest go on the stack, starting at sp-36, towards lower 793 addresses. 8-byte arguments must be aligned to a 8-byte 794 stack boundary. */ 795 if (write_pass) 796 { 797 write_memory (param_end - param_ptr, param_val, param_len); 798 799 /* There are some cases when we don't know the type 800 expected by the callee (e.g. for variadic functions), so 801 pass the parameters in both general and fp regs. */ 802 if (param_ptr <= 48) 803 { 804 int grreg = 26 - (param_ptr - 36) / 4; 805 int fpLreg = 72 + (param_ptr - 36) / 4 * 2; 806 int fpreg = 74 + (param_ptr - 32) / 8 * 4; 807 808 regcache->cooked_write (grreg, param_val); 809 regcache->cooked_write (fpLreg, param_val); 810 811 if (param_len > 4) 812 { 813 regcache->cooked_write (grreg + 1, param_val + 4); 814 815 regcache->cooked_write (fpreg, param_val); 816 regcache->cooked_write (fpreg + 1, param_val + 4); 817 } 818 } 819 } 820 } 821 822 /* Update the various stack pointers. */ 823 if (!write_pass) 824 { 825 struct_end = sp + align_up (struct_ptr, 64); 826 /* PARAM_PTR already accounts for all the arguments passed 827 by the user. However, the ABI mandates minimum stack 828 space allocations for outgoing arguments. The ABI also 829 mandates minimum stack alignments which we must 830 preserve. */ 831 param_end = struct_end + align_up (param_ptr, 64); 832 } 833 } 834 835 /* If a structure has to be returned, set up register 28 to hold its 836 address. */ 837 if (return_method == return_method_struct) 838 regcache_cooked_write_unsigned (regcache, 28, struct_addr); 839 840 gp = tdep->find_global_pointer (gdbarch, function); 841 842 if (gp != 0) 843 regcache_cooked_write_unsigned (regcache, 19, gp); 844 845 /* Set the return address. */ 846 if (!gdbarch_push_dummy_code_p (gdbarch)) 847 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); 848 849 /* Update the Stack Pointer. */ 850 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); 851 852 return param_end; 853 } 854 855 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit 856 Runtime Architecture for PA-RISC 2.0", which is distributed as part 857 as of the HP-UX Software Transition Kit (STK). This implementation 858 is based on version 3.3, dated October 6, 1997. */ 859 860 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ 861 862 static int 863 hppa64_integral_or_pointer_p (const struct type *type) 864 { 865 switch (type->code ()) 866 { 867 case TYPE_CODE_INT: 868 case TYPE_CODE_BOOL: 869 case TYPE_CODE_CHAR: 870 case TYPE_CODE_ENUM: 871 case TYPE_CODE_RANGE: 872 { 873 int len = type->length (); 874 return (len == 1 || len == 2 || len == 4 || len == 8); 875 } 876 case TYPE_CODE_PTR: 877 case TYPE_CODE_REF: 878 case TYPE_CODE_RVALUE_REF: 879 return (type->length () == 8); 880 default: 881 break; 882 } 883 884 return 0; 885 } 886 887 /* Check whether TYPE is a "Floating Scalar Type". */ 888 889 static int 890 hppa64_floating_p (const struct type *type) 891 { 892 switch (type->code ()) 893 { 894 case TYPE_CODE_FLT: 895 { 896 int len = type->length (); 897 return (len == 4 || len == 8 || len == 16); 898 } 899 default: 900 break; 901 } 902 903 return 0; 904 } 905 906 /* If CODE points to a function entry address, try to look up the corresponding 907 function descriptor and return its address instead. If CODE is not a 908 function entry address, then just return it unchanged. */ 909 static CORE_ADDR 910 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) 911 { 912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 913 struct obj_section *sec, *opd; 914 915 sec = find_pc_section (code); 916 917 if (!sec) 918 return code; 919 920 /* If CODE is in a data section, assume it's already a fptr. */ 921 if (!(sec->the_bfd_section->flags & SEC_CODE)) 922 return code; 923 924 ALL_OBJFILE_OSECTIONS (sec->objfile, opd) 925 { 926 if (strcmp (opd->the_bfd_section->name, ".opd") == 0) 927 break; 928 } 929 930 if (opd < sec->objfile->sections_end) 931 { 932 for (CORE_ADDR addr = opd->addr (); addr < opd->endaddr (); addr += 2 * 8) 933 { 934 ULONGEST opdaddr; 935 gdb_byte tmp[8]; 936 937 if (target_read_memory (addr, tmp, sizeof (tmp))) 938 break; 939 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); 940 941 if (opdaddr == code) 942 return addr - 16; 943 } 944 } 945 946 return code; 947 } 948 949 static CORE_ADDR 950 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 951 struct regcache *regcache, CORE_ADDR bp_addr, 952 int nargs, struct value **args, CORE_ADDR sp, 953 function_call_return_method return_method, 954 CORE_ADDR struct_addr) 955 { 956 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch); 957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 958 int i, offset = 0; 959 CORE_ADDR gp; 960 961 /* "The outgoing parameter area [...] must be aligned at a 16-byte 962 boundary." */ 963 sp = align_up (sp, 16); 964 965 for (i = 0; i < nargs; i++) 966 { 967 struct value *arg = args[i]; 968 struct type *type = value_type (arg); 969 int len = type->length (); 970 const bfd_byte *valbuf; 971 bfd_byte fptrbuf[8]; 972 int regnum; 973 974 /* "Each parameter begins on a 64-bit (8-byte) boundary." */ 975 offset = align_up (offset, 8); 976 977 if (hppa64_integral_or_pointer_p (type)) 978 { 979 /* "Integral scalar parameters smaller than 64 bits are 980 padded on the left (i.e., the value is in the 981 least-significant bits of the 64-bit storage unit, and 982 the high-order bits are undefined)." Therefore we can 983 safely sign-extend them. */ 984 if (len < 8) 985 { 986 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); 987 len = 8; 988 } 989 } 990 else if (hppa64_floating_p (type)) 991 { 992 if (len > 8) 993 { 994 /* "Quad-precision (128-bit) floating-point scalar 995 parameters are aligned on a 16-byte boundary." */ 996 offset = align_up (offset, 16); 997 998 /* "Double-extended- and quad-precision floating-point 999 parameters within the first 64 bytes of the parameter 1000 list are always passed in general registers." */ 1001 } 1002 else 1003 { 1004 if (len == 4) 1005 { 1006 /* "Single-precision (32-bit) floating-point scalar 1007 parameters are padded on the left with 32 bits of 1008 garbage (i.e., the floating-point value is in the 1009 least-significant 32 bits of a 64-bit storage 1010 unit)." */ 1011 offset += 4; 1012 } 1013 1014 /* "Single- and double-precision floating-point 1015 parameters in this area are passed according to the 1016 available formal parameter information in a function 1017 prototype. [...] If no prototype is in scope, 1018 floating-point parameters must be passed both in the 1019 corresponding general registers and in the 1020 corresponding floating-point registers." */ 1021 regnum = HPPA64_FP4_REGNUM + offset / 8; 1022 1023 if (regnum < HPPA64_FP4_REGNUM + 8) 1024 { 1025 /* "Single-precision floating-point parameters, when 1026 passed in floating-point registers, are passed in 1027 the right halves of the floating point registers; 1028 the left halves are unused." */ 1029 regcache->cooked_write_part (regnum, offset % 8, len, 1030 value_contents (arg).data ()); 1031 } 1032 } 1033 } 1034 else 1035 { 1036 if (len > 8) 1037 { 1038 /* "Aggregates larger than 8 bytes are aligned on a 1039 16-byte boundary, possibly leaving an unused argument 1040 slot, which is filled with garbage. If necessary, 1041 they are padded on the right (with garbage), to a 1042 multiple of 8 bytes." */ 1043 offset = align_up (offset, 16); 1044 } 1045 } 1046 1047 /* If we are passing a function pointer, make sure we pass a function 1048 descriptor instead of the function entry address. */ 1049 if (type->code () == TYPE_CODE_PTR 1050 && type->target_type ()->code () == TYPE_CODE_FUNC) 1051 { 1052 ULONGEST codeptr, fptr; 1053 1054 codeptr = unpack_long (type, value_contents (arg).data ()); 1055 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); 1056 store_unsigned_integer (fptrbuf, type->length (), byte_order, 1057 fptr); 1058 valbuf = fptrbuf; 1059 } 1060 else 1061 { 1062 valbuf = value_contents (arg).data (); 1063 } 1064 1065 /* Always store the argument in memory. */ 1066 write_memory (sp + offset, valbuf, len); 1067 1068 regnum = HPPA_ARG0_REGNUM - offset / 8; 1069 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) 1070 { 1071 regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8), 1072 valbuf); 1073 offset += std::min (len, 8); 1074 valbuf += std::min (len, 8); 1075 len -= std::min (len, 8); 1076 regnum--; 1077 } 1078 1079 offset += len; 1080 } 1081 1082 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ 1083 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); 1084 1085 /* Allocate the outgoing parameter area. Make sure the outgoing 1086 parameter area is multiple of 16 bytes in length. */ 1087 sp += std::max (align_up (offset, 16), (ULONGEST) 64); 1088 1089 /* Allocate 32-bytes of scratch space. The documentation doesn't 1090 mention this, but it seems to be needed. */ 1091 sp += 32; 1092 1093 /* Allocate the frame marker area. */ 1094 sp += 16; 1095 1096 /* If a structure has to be returned, set up GR 28 (%ret0) to hold 1097 its address. */ 1098 if (return_method == return_method_struct) 1099 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); 1100 1101 /* Set up GR27 (%dp) to hold the global pointer (gp). */ 1102 gp = tdep->find_global_pointer (gdbarch, function); 1103 if (gp != 0) 1104 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); 1105 1106 /* Set up GR2 (%rp) to hold the return pointer (rp). */ 1107 if (!gdbarch_push_dummy_code_p (gdbarch)) 1108 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); 1109 1110 /* Set up GR30 to hold the stack pointer (sp). */ 1111 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); 1112 1113 return sp; 1114 } 1115 1116 1117 /* Handle 32/64-bit struct return conventions. */ 1118 1119 static enum return_value_convention 1120 hppa32_return_value (struct gdbarch *gdbarch, struct value *function, 1121 struct type *type, struct regcache *regcache, 1122 gdb_byte *readbuf, const gdb_byte *writebuf) 1123 { 1124 if (type->length () <= 2 * 4) 1125 { 1126 /* The value always lives in the right hand end of the register 1127 (or register pair)? */ 1128 int b; 1129 int reg = type->code () == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; 1130 int part = type->length () % 4; 1131 /* The left hand register contains only part of the value, 1132 transfer that first so that the rest can be xfered as entire 1133 4-byte registers. */ 1134 if (part > 0) 1135 { 1136 if (readbuf != NULL) 1137 regcache->cooked_read_part (reg, 4 - part, part, readbuf); 1138 if (writebuf != NULL) 1139 regcache->cooked_write_part (reg, 4 - part, part, writebuf); 1140 reg++; 1141 } 1142 /* Now transfer the remaining register values. */ 1143 for (b = part; b < type->length (); b += 4) 1144 { 1145 if (readbuf != NULL) 1146 regcache->cooked_read (reg, readbuf + b); 1147 if (writebuf != NULL) 1148 regcache->cooked_write (reg, writebuf + b); 1149 reg++; 1150 } 1151 return RETURN_VALUE_REGISTER_CONVENTION; 1152 } 1153 else 1154 return RETURN_VALUE_STRUCT_CONVENTION; 1155 } 1156 1157 static enum return_value_convention 1158 hppa64_return_value (struct gdbarch *gdbarch, struct value *function, 1159 struct type *type, struct regcache *regcache, 1160 gdb_byte *readbuf, const gdb_byte *writebuf) 1161 { 1162 int len = type->length (); 1163 int regnum, offset; 1164 1165 if (len > 16) 1166 { 1167 /* All return values larger than 128 bits must be aggregate 1168 return values. */ 1169 gdb_assert (!hppa64_integral_or_pointer_p (type)); 1170 gdb_assert (!hppa64_floating_p (type)); 1171 1172 /* "Aggregate return values larger than 128 bits are returned in 1173 a buffer allocated by the caller. The address of the buffer 1174 must be passed in GR 28." */ 1175 return RETURN_VALUE_STRUCT_CONVENTION; 1176 } 1177 1178 if (hppa64_integral_or_pointer_p (type)) 1179 { 1180 /* "Integral return values are returned in GR 28. Values 1181 smaller than 64 bits are padded on the left (with garbage)." */ 1182 regnum = HPPA_RET0_REGNUM; 1183 offset = 8 - len; 1184 } 1185 else if (hppa64_floating_p (type)) 1186 { 1187 if (len > 8) 1188 { 1189 /* "Double-extended- and quad-precision floating-point 1190 values are returned in GRs 28 and 29. The sign, 1191 exponent, and most-significant bits of the mantissa are 1192 returned in GR 28; the least-significant bits of the 1193 mantissa are passed in GR 29. For double-extended 1194 precision values, GR 29 is padded on the right with 48 1195 bits of garbage." */ 1196 regnum = HPPA_RET0_REGNUM; 1197 offset = 0; 1198 } 1199 else 1200 { 1201 /* "Single-precision and double-precision floating-point 1202 return values are returned in FR 4R (single precision) or 1203 FR 4 (double-precision)." */ 1204 regnum = HPPA64_FP4_REGNUM; 1205 offset = 8 - len; 1206 } 1207 } 1208 else 1209 { 1210 /* "Aggregate return values up to 64 bits in size are returned 1211 in GR 28. Aggregates smaller than 64 bits are left aligned 1212 in the register; the pad bits on the right are undefined." 1213 1214 "Aggregate return values between 65 and 128 bits are returned 1215 in GRs 28 and 29. The first 64 bits are placed in GR 28, and 1216 the remaining bits are placed, left aligned, in GR 29. The 1217 pad bits on the right of GR 29 (if any) are undefined." */ 1218 regnum = HPPA_RET0_REGNUM; 1219 offset = 0; 1220 } 1221 1222 if (readbuf) 1223 { 1224 while (len > 0) 1225 { 1226 regcache->cooked_read_part (regnum, offset, std::min (len, 8), 1227 readbuf); 1228 readbuf += std::min (len, 8); 1229 len -= std::min (len, 8); 1230 regnum++; 1231 } 1232 } 1233 1234 if (writebuf) 1235 { 1236 while (len > 0) 1237 { 1238 regcache->cooked_write_part (regnum, offset, std::min (len, 8), 1239 writebuf); 1240 writebuf += std::min (len, 8); 1241 len -= std::min (len, 8); 1242 regnum++; 1243 } 1244 } 1245 1246 return RETURN_VALUE_REGISTER_CONVENTION; 1247 } 1248 1249 1250 static CORE_ADDR 1251 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, 1252 struct target_ops *targ) 1253 { 1254 if (addr & 2) 1255 { 1256 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; 1257 CORE_ADDR plabel = addr & ~3; 1258 return read_memory_typed_address (plabel, func_ptr_type); 1259 } 1260 1261 return addr; 1262 } 1263 1264 static CORE_ADDR 1265 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 1266 { 1267 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ 1268 and not _bit_)! */ 1269 return align_up (addr, 64); 1270 } 1271 1272 /* Force all frames to 16-byte alignment. Better safe than sorry. */ 1273 1274 static CORE_ADDR 1275 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 1276 { 1277 /* Just always 16-byte align. */ 1278 return align_up (addr, 16); 1279 } 1280 1281 static CORE_ADDR 1282 hppa_read_pc (readable_regcache *regcache) 1283 { 1284 ULONGEST ipsw; 1285 ULONGEST pc; 1286 1287 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw); 1288 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc); 1289 1290 /* If the current instruction is nullified, then we are effectively 1291 still executing the previous instruction. Pretend we are still 1292 there. This is needed when single stepping; if the nullified 1293 instruction is on a different line, we don't want GDB to think 1294 we've stepped onto that line. */ 1295 if (ipsw & 0x00200000) 1296 pc -= 4; 1297 1298 return pc & ~0x3; 1299 } 1300 1301 void 1302 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) 1303 { 1304 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); 1305 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); 1306 } 1307 1308 /* For the given instruction (INST), return any adjustment it makes 1309 to the stack pointer or zero for no adjustment. 1310 1311 This only handles instructions commonly found in prologues. */ 1312 1313 static int 1314 prologue_inst_adjust_sp (unsigned long inst) 1315 { 1316 /* This must persist across calls. */ 1317 static int save_high21; 1318 1319 /* The most common way to perform a stack adjustment ldo X(sp),sp */ 1320 if ((inst & 0xffffc000) == 0x37de0000) 1321 return hppa_extract_14 (inst); 1322 1323 /* stwm X,D(sp) */ 1324 if ((inst & 0xffe00000) == 0x6fc00000) 1325 return hppa_extract_14 (inst); 1326 1327 /* std,ma X,D(sp) */ 1328 if ((inst & 0xffe00008) == 0x73c00008) 1329 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3); 1330 1331 /* addil high21,%r30; ldo low11,(%r1),%r30) 1332 save high bits in save_high21 for later use. */ 1333 if ((inst & 0xffe00000) == 0x2bc00000) 1334 { 1335 save_high21 = hppa_extract_21 (inst); 1336 return 0; 1337 } 1338 1339 if ((inst & 0xffff0000) == 0x343e0000) 1340 return save_high21 + hppa_extract_14 (inst); 1341 1342 /* fstws as used by the HP compilers. */ 1343 if ((inst & 0xffffffe0) == 0x2fd01220) 1344 return hppa_extract_5_load (inst); 1345 1346 /* No adjustment. */ 1347 return 0; 1348 } 1349 1350 /* Return nonzero if INST is a branch of some kind, else return zero. */ 1351 1352 static int 1353 is_branch (unsigned long inst) 1354 { 1355 switch (inst >> 26) 1356 { 1357 case 0x20: 1358 case 0x21: 1359 case 0x22: 1360 case 0x23: 1361 case 0x27: 1362 case 0x28: 1363 case 0x29: 1364 case 0x2a: 1365 case 0x2b: 1366 case 0x2f: 1367 case 0x30: 1368 case 0x31: 1369 case 0x32: 1370 case 0x33: 1371 case 0x38: 1372 case 0x39: 1373 case 0x3a: 1374 case 0x3b: 1375 return 1; 1376 1377 default: 1378 return 0; 1379 } 1380 } 1381 1382 /* Return the register number for a GR which is saved by INST or 1383 zero if INST does not save a GR. 1384 1385 Referenced from: 1386 1387 parisc 1.1: 1388 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf 1389 1390 parisc 2.0: 1391 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf 1392 1393 According to Table 6-5 of Chapter 6 (Memory Reference Instructions) 1394 on page 106 in parisc 2.0, all instructions for storing values from 1395 the general registers are: 1396 1397 Store: stb, sth, stw, std (according to Chapter 7, they 1398 are only in both "inst >> 26" and "inst >> 6". 1399 Store Absolute: stwa, stda (according to Chapter 7, they are only 1400 in "inst >> 6". 1401 Store Bytes: stby, stdby (according to Chapter 7, they are 1402 only in "inst >> 6"). 1403 1404 For (inst >> 26), according to Chapter 7: 1405 1406 The effective memory reference address is formed by the addition 1407 of an immediate displacement to a base value. 1408 1409 - stb: 0x18, store a byte from a general register. 1410 1411 - sth: 0x19, store a halfword from a general register. 1412 1413 - stw: 0x1a, store a word from a general register. 1414 1415 - stwm: 0x1b, store a word from a general register and perform base 1416 register modification (2.0 will still treat it as stw). 1417 1418 - std: 0x1c, store a doubleword from a general register (2.0 only). 1419 1420 - stw: 0x1f, store a word from a general register (2.0 only). 1421 1422 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7: 1423 1424 The effective memory reference address is formed by the addition 1425 of an index value to a base value specified in the instruction. 1426 1427 - stb: 0x08, store a byte from a general register (1.1 calls stbs). 1428 1429 - sth: 0x09, store a halfword from a general register (1.1 calls 1430 sths). 1431 1432 - stw: 0x0a, store a word from a general register (1.1 calls stws). 1433 1434 - std: 0x0b: store a doubleword from a general register (2.0 only) 1435 1436 Implement fast byte moves (stores) to unaligned word or doubleword 1437 destination. 1438 1439 - stby: 0x0c, for unaligned word (1.1 calls stbys). 1440 1441 - stdby: 0x0d for unaligned doubleword (2.0 only). 1442 1443 Store a word or doubleword using an absolute memory address formed 1444 using short or long displacement or indexed 1445 1446 - stwa: 0x0e, store a word from a general register to an absolute 1447 address (1.0 calls stwas). 1448 1449 - stda: 0x0f, store a doubleword from a general register to an 1450 absolute address (2.0 only). */ 1451 1452 static int 1453 inst_saves_gr (unsigned long inst) 1454 { 1455 switch ((inst >> 26) & 0x0f) 1456 { 1457 case 0x03: 1458 switch ((inst >> 6) & 0x0f) 1459 { 1460 case 0x08: 1461 case 0x09: 1462 case 0x0a: 1463 case 0x0b: 1464 case 0x0c: 1465 case 0x0d: 1466 case 0x0e: 1467 case 0x0f: 1468 return hppa_extract_5R_store (inst); 1469 default: 1470 return 0; 1471 } 1472 case 0x18: 1473 case 0x19: 1474 case 0x1a: 1475 case 0x1b: 1476 case 0x1c: 1477 /* no 0x1d or 0x1e -- according to parisc 2.0 document */ 1478 case 0x1f: 1479 return hppa_extract_5R_store (inst); 1480 default: 1481 return 0; 1482 } 1483 } 1484 1485 /* Return the register number for a FR which is saved by INST or 1486 zero it INST does not save a FR. 1487 1488 Note we only care about full 64bit register stores (that's the only 1489 kind of stores the prologue will use). 1490 1491 FIXME: What about argument stores with the HP compiler in ANSI mode? */ 1492 1493 static int 1494 inst_saves_fr (unsigned long inst) 1495 { 1496 /* Is this an FSTD? */ 1497 if ((inst & 0xfc00dfc0) == 0x2c001200) 1498 return hppa_extract_5r_store (inst); 1499 if ((inst & 0xfc000002) == 0x70000002) 1500 return hppa_extract_5R_store (inst); 1501 /* Is this an FSTW? */ 1502 if ((inst & 0xfc00df80) == 0x24001200) 1503 return hppa_extract_5r_store (inst); 1504 if ((inst & 0xfc000002) == 0x7c000000) 1505 return hppa_extract_5R_store (inst); 1506 return 0; 1507 } 1508 1509 /* Advance PC across any function entry prologue instructions 1510 to reach some "real" code. 1511 1512 Use information in the unwind table to determine what exactly should 1513 be in the prologue. */ 1514 1515 1516 static CORE_ADDR 1517 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, 1518 int stop_before_branch) 1519 { 1520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1521 gdb_byte buf[4]; 1522 CORE_ADDR orig_pc = pc; 1523 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; 1524 unsigned long args_stored, status, i, restart_gr, restart_fr; 1525 struct unwind_table_entry *u; 1526 int final_iteration; 1527 1528 restart_gr = 0; 1529 restart_fr = 0; 1530 1531 restart: 1532 u = find_unwind_entry (pc); 1533 if (!u) 1534 return pc; 1535 1536 /* If we are not at the beginning of a function, then return now. */ 1537 if ((pc & ~0x3) != u->region_start) 1538 return pc; 1539 1540 /* This is how much of a frame adjustment we need to account for. */ 1541 stack_remaining = u->Total_frame_size << 3; 1542 1543 /* Magic register saves we want to know about. */ 1544 save_rp = u->Save_RP; 1545 save_sp = u->Save_SP; 1546 1547 /* An indication that args may be stored into the stack. Unfortunately 1548 the HPUX compilers tend to set this in cases where no args were 1549 stored too!. */ 1550 args_stored = 1; 1551 1552 /* Turn the Entry_GR field into a bitmask. */ 1553 save_gr = 0; 1554 for (i = 3; i < u->Entry_GR + 3; i++) 1555 { 1556 /* Frame pointer gets saved into a special location. */ 1557 if (u->Save_SP && i == HPPA_FP_REGNUM) 1558 continue; 1559 1560 save_gr |= (1 << i); 1561 } 1562 save_gr &= ~restart_gr; 1563 1564 /* Turn the Entry_FR field into a bitmask too. */ 1565 save_fr = 0; 1566 for (i = 12; i < u->Entry_FR + 12; i++) 1567 save_fr |= (1 << i); 1568 save_fr &= ~restart_fr; 1569 1570 final_iteration = 0; 1571 1572 /* Loop until we find everything of interest or hit a branch. 1573 1574 For unoptimized GCC code and for any HP CC code this will never ever 1575 examine any user instructions. 1576 1577 For optimized GCC code we're faced with problems. GCC will schedule 1578 its prologue and make prologue instructions available for delay slot 1579 filling. The end result is user code gets mixed in with the prologue 1580 and a prologue instruction may be in the delay slot of the first branch 1581 or call. 1582 1583 Some unexpected things are expected with debugging optimized code, so 1584 we allow this routine to walk past user instructions in optimized 1585 GCC code. */ 1586 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 1587 || args_stored) 1588 { 1589 unsigned int reg_num; 1590 unsigned long old_stack_remaining, old_save_gr, old_save_fr; 1591 unsigned long old_save_rp, old_save_sp, next_inst; 1592 1593 /* Save copies of all the triggers so we can compare them later 1594 (only for HPC). */ 1595 old_save_gr = save_gr; 1596 old_save_fr = save_fr; 1597 old_save_rp = save_rp; 1598 old_save_sp = save_sp; 1599 old_stack_remaining = stack_remaining; 1600 1601 status = target_read_memory (pc, buf, 4); 1602 inst = extract_unsigned_integer (buf, 4, byte_order); 1603 1604 /* Yow! */ 1605 if (status != 0) 1606 return pc; 1607 1608 /* Note the interesting effects of this instruction. */ 1609 stack_remaining -= prologue_inst_adjust_sp (inst); 1610 1611 /* There are limited ways to store the return pointer into the 1612 stack. */ 1613 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) 1614 save_rp = 0; 1615 1616 /* These are the only ways we save SP into the stack. At this time 1617 the HP compilers never bother to save SP into the stack. */ 1618 if ((inst & 0xffffc000) == 0x6fc10000 1619 || (inst & 0xffffc00c) == 0x73c10008) 1620 save_sp = 0; 1621 1622 /* Are we loading some register with an offset from the argument 1623 pointer? */ 1624 if ((inst & 0xffe00000) == 0x37a00000 1625 || (inst & 0xffffffe0) == 0x081d0240) 1626 { 1627 pc += 4; 1628 continue; 1629 } 1630 1631 /* Account for general and floating-point register saves. */ 1632 reg_num = inst_saves_gr (inst); 1633 save_gr &= ~(1 << reg_num); 1634 1635 /* Ugh. Also account for argument stores into the stack. 1636 Unfortunately args_stored only tells us that some arguments 1637 where stored into the stack. Not how many or what kind! 1638 1639 This is a kludge as on the HP compiler sets this bit and it 1640 never does prologue scheduling. So once we see one, skip past 1641 all of them. We have similar code for the fp arg stores below. 1642 1643 FIXME. Can still die if we have a mix of GR and FR argument 1644 stores! */ 1645 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) 1646 && reg_num <= 26) 1647 { 1648 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) 1649 && reg_num <= 26) 1650 { 1651 pc += 4; 1652 status = target_read_memory (pc, buf, 4); 1653 inst = extract_unsigned_integer (buf, 4, byte_order); 1654 if (status != 0) 1655 return pc; 1656 reg_num = inst_saves_gr (inst); 1657 } 1658 args_stored = 0; 1659 continue; 1660 } 1661 1662 reg_num = inst_saves_fr (inst); 1663 save_fr &= ~(1 << reg_num); 1664 1665 status = target_read_memory (pc + 4, buf, 4); 1666 next_inst = extract_unsigned_integer (buf, 4, byte_order); 1667 1668 /* Yow! */ 1669 if (status != 0) 1670 return pc; 1671 1672 /* We've got to be read to handle the ldo before the fp register 1673 save. */ 1674 if ((inst & 0xfc000000) == 0x34000000 1675 && inst_saves_fr (next_inst) >= 4 1676 && inst_saves_fr (next_inst) 1677 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) 1678 { 1679 /* So we drop into the code below in a reasonable state. */ 1680 reg_num = inst_saves_fr (next_inst); 1681 pc -= 4; 1682 } 1683 1684 /* Ugh. Also account for argument stores into the stack. 1685 This is a kludge as on the HP compiler sets this bit and it 1686 never does prologue scheduling. So once we see one, skip past 1687 all of them. */ 1688 if (reg_num >= 4 1689 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) 1690 { 1691 while (reg_num >= 4 1692 && reg_num 1693 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) 1694 { 1695 pc += 8; 1696 status = target_read_memory (pc, buf, 4); 1697 inst = extract_unsigned_integer (buf, 4, byte_order); 1698 if (status != 0) 1699 return pc; 1700 if ((inst & 0xfc000000) != 0x34000000) 1701 break; 1702 status = target_read_memory (pc + 4, buf, 4); 1703 next_inst = extract_unsigned_integer (buf, 4, byte_order); 1704 if (status != 0) 1705 return pc; 1706 reg_num = inst_saves_fr (next_inst); 1707 } 1708 args_stored = 0; 1709 continue; 1710 } 1711 1712 /* Quit if we hit any kind of branch. This can happen if a prologue 1713 instruction is in the delay slot of the first call/branch. */ 1714 if (is_branch (inst) && stop_before_branch) 1715 break; 1716 1717 /* What a crock. The HP compilers set args_stored even if no 1718 arguments were stored into the stack (boo hiss). This could 1719 cause this code to then skip a bunch of user insns (up to the 1720 first branch). 1721 1722 To combat this we try to identify when args_stored was bogusly 1723 set and clear it. We only do this when args_stored is nonzero, 1724 all other resources are accounted for, and nothing changed on 1725 this pass. */ 1726 if (args_stored 1727 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) 1728 && old_save_gr == save_gr && old_save_fr == save_fr 1729 && old_save_rp == save_rp && old_save_sp == save_sp 1730 && old_stack_remaining == stack_remaining) 1731 break; 1732 1733 /* Bump the PC. */ 1734 pc += 4; 1735 1736 /* !stop_before_branch, so also look at the insn in the delay slot 1737 of the branch. */ 1738 if (final_iteration) 1739 break; 1740 if (is_branch (inst)) 1741 final_iteration = 1; 1742 } 1743 1744 /* We've got a tentative location for the end of the prologue. However 1745 because of limitations in the unwind descriptor mechanism we may 1746 have went too far into user code looking for the save of a register 1747 that does not exist. So, if there registers we expected to be saved 1748 but never were, mask them out and restart. 1749 1750 This should only happen in optimized code, and should be very rare. */ 1751 if (save_gr || (save_fr && !(restart_fr || restart_gr))) 1752 { 1753 pc = orig_pc; 1754 restart_gr = save_gr; 1755 restart_fr = save_fr; 1756 goto restart; 1757 } 1758 1759 return pc; 1760 } 1761 1762 1763 /* Return the address of the PC after the last prologue instruction if 1764 we can determine it from the debug symbols. Else return zero. */ 1765 1766 static CORE_ADDR 1767 after_prologue (CORE_ADDR pc) 1768 { 1769 struct symtab_and_line sal; 1770 CORE_ADDR func_addr, func_end; 1771 1772 /* If we can not find the symbol in the partial symbol table, then 1773 there is no hope we can determine the function's start address 1774 with this code. */ 1775 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 1776 return 0; 1777 1778 /* Get the line associated with FUNC_ADDR. */ 1779 sal = find_pc_line (func_addr, 0); 1780 1781 /* There are only two cases to consider. First, the end of the source line 1782 is within the function bounds. In that case we return the end of the 1783 source line. Second is the end of the source line extends beyond the 1784 bounds of the current function. We need to use the slow code to 1785 examine instructions in that case. 1786 1787 Anything else is simply a bug elsewhere. Fixing it here is absolutely 1788 the wrong thing to do. In fact, it should be entirely possible for this 1789 function to always return zero since the slow instruction scanning code 1790 is supposed to *always* work. If it does not, then it is a bug. */ 1791 if (sal.end < func_end) 1792 return sal.end; 1793 else 1794 return 0; 1795 } 1796 1797 /* To skip prologues, I use this predicate. Returns either PC itself 1798 if the code at PC does not look like a function prologue; otherwise 1799 returns an address that (if we're lucky) follows the prologue. 1800 1801 hppa_skip_prologue is called by gdb to place a breakpoint in a function. 1802 It doesn't necessarily skips all the insns in the prologue. In fact 1803 we might not want to skip all the insns because a prologue insn may 1804 appear in the delay slot of the first branch, and we don't want to 1805 skip over the branch in that case. */ 1806 1807 static CORE_ADDR 1808 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1809 { 1810 CORE_ADDR post_prologue_pc; 1811 1812 /* See if we can determine the end of the prologue via the symbol table. 1813 If so, then return either PC, or the PC after the prologue, whichever 1814 is greater. */ 1815 1816 post_prologue_pc = after_prologue (pc); 1817 1818 /* If after_prologue returned a useful address, then use it. Else 1819 fall back on the instruction skipping code. 1820 1821 Some folks have claimed this causes problems because the breakpoint 1822 may be the first instruction of the prologue. If that happens, then 1823 the instruction skipping code has a bug that needs to be fixed. */ 1824 if (post_prologue_pc != 0) 1825 return std::max (pc, post_prologue_pc); 1826 else 1827 return (skip_prologue_hard_way (gdbarch, pc, 1)); 1828 } 1829 1830 /* Return an unwind entry that falls within the frame's code block. */ 1831 1832 static struct unwind_table_entry * 1833 hppa_find_unwind_entry_in_block (frame_info_ptr this_frame) 1834 { 1835 CORE_ADDR pc = get_frame_address_in_block (this_frame); 1836 1837 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the 1838 result of get_frame_address_in_block implies a problem. 1839 The bits should have been removed earlier, before the return 1840 value of gdbarch_unwind_pc. That might be happening already; 1841 if it isn't, it should be fixed. Then this call can be 1842 removed. */ 1843 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); 1844 return find_unwind_entry (pc); 1845 } 1846 1847 struct hppa_frame_cache 1848 { 1849 CORE_ADDR base; 1850 trad_frame_saved_reg *saved_regs; 1851 }; 1852 1853 static struct hppa_frame_cache * 1854 hppa_frame_cache (frame_info_ptr this_frame, void **this_cache) 1855 { 1856 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1858 int word_size = gdbarch_ptr_bit (gdbarch) / 8; 1859 struct hppa_frame_cache *cache; 1860 long saved_gr_mask; 1861 long saved_fr_mask; 1862 long frame_size; 1863 struct unwind_table_entry *u; 1864 CORE_ADDR prologue_end; 1865 int fp_in_r1 = 0; 1866 int i; 1867 1868 if (hppa_debug) 1869 gdb_printf (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", 1870 frame_relative_level(this_frame)); 1871 1872 if ((*this_cache) != NULL) 1873 { 1874 if (hppa_debug) 1875 gdb_printf (gdb_stdlog, "base=%s (cached) }", 1876 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); 1877 return (struct hppa_frame_cache *) (*this_cache); 1878 } 1879 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); 1880 (*this_cache) = cache; 1881 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); 1882 1883 /* Yow! */ 1884 u = hppa_find_unwind_entry_in_block (this_frame); 1885 if (!u) 1886 { 1887 if (hppa_debug) 1888 gdb_printf (gdb_stdlog, "base=NULL (no unwind entry) }"); 1889 return (struct hppa_frame_cache *) (*this_cache); 1890 } 1891 1892 /* Turn the Entry_GR field into a bitmask. */ 1893 saved_gr_mask = 0; 1894 for (i = 3; i < u->Entry_GR + 3; i++) 1895 { 1896 /* Frame pointer gets saved into a special location. */ 1897 if (u->Save_SP && i == HPPA_FP_REGNUM) 1898 continue; 1899 1900 saved_gr_mask |= (1 << i); 1901 } 1902 1903 /* Turn the Entry_FR field into a bitmask too. */ 1904 saved_fr_mask = 0; 1905 for (i = 12; i < u->Entry_FR + 12; i++) 1906 saved_fr_mask |= (1 << i); 1907 1908 /* Loop until we find everything of interest or hit a branch. 1909 1910 For unoptimized GCC code and for any HP CC code this will never ever 1911 examine any user instructions. 1912 1913 For optimized GCC code we're faced with problems. GCC will schedule 1914 its prologue and make prologue instructions available for delay slot 1915 filling. The end result is user code gets mixed in with the prologue 1916 and a prologue instruction may be in the delay slot of the first branch 1917 or call. 1918 1919 Some unexpected things are expected with debugging optimized code, so 1920 we allow this routine to walk past user instructions in optimized 1921 GCC code. */ 1922 { 1923 int final_iteration = 0; 1924 CORE_ADDR pc, start_pc, end_pc; 1925 int looking_for_sp = u->Save_SP; 1926 int looking_for_rp = u->Save_RP; 1927 int fp_loc = -1; 1928 1929 /* We have to use skip_prologue_hard_way instead of just 1930 skip_prologue_using_sal, in case we stepped into a function without 1931 symbol information. hppa_skip_prologue also bounds the returned 1932 pc by the passed in pc, so it will not return a pc in the next 1933 function. 1934 1935 We used to call hppa_skip_prologue to find the end of the prologue, 1936 but if some non-prologue instructions get scheduled into the prologue, 1937 and the program is compiled with debug information, the "easy" way 1938 in hppa_skip_prologue will return a prologue end that is too early 1939 for us to notice any potential frame adjustments. */ 1940 1941 /* We used to use get_frame_func to locate the beginning of the 1942 function to pass to skip_prologue. However, when objects are 1943 compiled without debug symbols, get_frame_func can return the wrong 1944 function (or 0). We can do better than that by using unwind records. 1945 This only works if the Region_description of the unwind record 1946 indicates that it includes the entry point of the function. 1947 HP compilers sometimes generate unwind records for regions that 1948 do not include the entry or exit point of a function. GNU tools 1949 do not do this. */ 1950 1951 if ((u->Region_description & 0x2) == 0) 1952 start_pc = u->region_start; 1953 else 1954 start_pc = get_frame_func (this_frame); 1955 1956 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); 1957 end_pc = get_frame_pc (this_frame); 1958 1959 if (prologue_end != 0 && end_pc > prologue_end) 1960 end_pc = prologue_end; 1961 1962 frame_size = 0; 1963 1964 for (pc = start_pc; 1965 ((saved_gr_mask || saved_fr_mask 1966 || looking_for_sp || looking_for_rp 1967 || frame_size < (u->Total_frame_size << 3)) 1968 && pc < end_pc); 1969 pc += 4) 1970 { 1971 int reg; 1972 gdb_byte buf4[4]; 1973 long inst; 1974 1975 if (!safe_frame_unwind_memory (this_frame, pc, buf4)) 1976 { 1977 error (_("Cannot read instruction at %s."), 1978 paddress (gdbarch, pc)); 1979 return (struct hppa_frame_cache *) (*this_cache); 1980 } 1981 1982 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); 1983 1984 /* Note the interesting effects of this instruction. */ 1985 frame_size += prologue_inst_adjust_sp (inst); 1986 1987 /* There are limited ways to store the return pointer into the 1988 stack. */ 1989 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ 1990 { 1991 looking_for_rp = 0; 1992 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20); 1993 } 1994 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ 1995 { 1996 looking_for_rp = 0; 1997 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-24); 1998 } 1999 else if (inst == 0x0fc212c1 2000 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ 2001 { 2002 looking_for_rp = 0; 2003 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16); 2004 } 2005 2006 /* Check to see if we saved SP into the stack. This also 2007 happens to indicate the location of the saved frame 2008 pointer. */ 2009 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ 2010 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ 2011 { 2012 looking_for_sp = 0; 2013 cache->saved_regs[HPPA_FP_REGNUM].set_addr (0); 2014 } 2015 else if (inst == 0x08030241) /* copy %r3, %r1 */ 2016 { 2017 fp_in_r1 = 1; 2018 } 2019 2020 /* Account for general and floating-point register saves. */ 2021 reg = inst_saves_gr (inst); 2022 if (reg >= 3 && reg <= 18 2023 && (!u->Save_SP || reg != HPPA_FP_REGNUM)) 2024 { 2025 saved_gr_mask &= ~(1 << reg); 2026 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) 2027 /* stwm with a positive displacement is a _post_ 2028 _modify_. */ 2029 cache->saved_regs[reg].set_addr (0); 2030 else if ((inst & 0xfc00000c) == 0x70000008) 2031 /* A std has explicit post_modify forms. */ 2032 cache->saved_regs[reg].set_addr (0); 2033 else 2034 { 2035 CORE_ADDR offset; 2036 2037 if ((inst >> 26) == 0x1c) 2038 offset = (inst & 0x1 ? -(1 << 13) : 0) 2039 | (((inst >> 4) & 0x3ff) << 3); 2040 else if ((inst >> 26) == 0x03) 2041 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); 2042 else 2043 offset = hppa_extract_14 (inst); 2044 2045 /* Handle code with and without frame pointers. */ 2046 if (u->Save_SP) 2047 cache->saved_regs[reg].set_addr (offset); 2048 else 2049 cache->saved_regs[reg].set_addr ((u->Total_frame_size << 3) 2050 + offset); 2051 } 2052 } 2053 2054 /* GCC handles callee saved FP regs a little differently. 2055 2056 It emits an instruction to put the value of the start of 2057 the FP store area into %r1. It then uses fstds,ma with a 2058 basereg of %r1 for the stores. 2059 2060 HP CC emits them at the current stack pointer modifying the 2061 stack pointer as it stores each register. */ 2062 2063 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ 2064 if ((inst & 0xffffc000) == 0x34610000 2065 || (inst & 0xffffc000) == 0x37c10000) 2066 fp_loc = hppa_extract_14 (inst); 2067 2068 reg = inst_saves_fr (inst); 2069 if (reg >= 12 && reg <= 21) 2070 { 2071 /* Note +4 braindamage below is necessary because the FP 2072 status registers are internally 8 registers rather than 2073 the expected 4 registers. */ 2074 saved_fr_mask &= ~(1 << reg); 2075 if (fp_loc == -1) 2076 { 2077 /* 1st HP CC FP register store. After this 2078 instruction we've set enough state that the GCC and 2079 HPCC code are both handled in the same manner. */ 2080 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].set_addr (0); 2081 fp_loc = 8; 2082 } 2083 else 2084 { 2085 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].set_addr (fp_loc); 2086 fp_loc += 8; 2087 } 2088 } 2089 2090 /* Quit if we hit any kind of branch the previous iteration. */ 2091 if (final_iteration) 2092 break; 2093 /* We want to look precisely one instruction beyond the branch 2094 if we have not found everything yet. */ 2095 if (is_branch (inst)) 2096 final_iteration = 1; 2097 } 2098 } 2099 2100 { 2101 /* The frame base always represents the value of %sp at entry to 2102 the current function (and is thus equivalent to the "saved" 2103 stack pointer. */ 2104 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, 2105 HPPA_SP_REGNUM); 2106 CORE_ADDR fp; 2107 2108 if (hppa_debug) 2109 gdb_printf (gdb_stdlog, " (this_sp=%s, pc=%s, " 2110 "prologue_end=%s) ", 2111 paddress (gdbarch, this_sp), 2112 paddress (gdbarch, get_frame_pc (this_frame)), 2113 paddress (gdbarch, prologue_end)); 2114 2115 /* Check to see if a frame pointer is available, and use it for 2116 frame unwinding if it is. 2117 2118 There are some situations where we need to rely on the frame 2119 pointer to do stack unwinding. For example, if a function calls 2120 alloca (), the stack pointer can get adjusted inside the body of 2121 the function. In this case, the ABI requires that the compiler 2122 maintain a frame pointer for the function. 2123 2124 The unwind record has a flag (alloca_frame) that indicates that 2125 a function has a variable frame; unfortunately, gcc/binutils 2126 does not set this flag. Instead, whenever a frame pointer is used 2127 and saved on the stack, the Save_SP flag is set. We use this to 2128 decide whether to use the frame pointer for unwinding. 2129 2130 TODO: For the HP compiler, maybe we should use the alloca_frame flag 2131 instead of Save_SP. */ 2132 2133 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); 2134 2135 if (u->alloca_frame) 2136 fp -= u->Total_frame_size << 3; 2137 2138 if (get_frame_pc (this_frame) >= prologue_end 2139 && (u->Save_SP || u->alloca_frame) && fp != 0) 2140 { 2141 cache->base = fp; 2142 2143 if (hppa_debug) 2144 gdb_printf (gdb_stdlog, " (base=%s) [frame pointer]", 2145 paddress (gdbarch, cache->base)); 2146 } 2147 else if (u->Save_SP 2148 && cache->saved_regs[HPPA_SP_REGNUM].is_addr ()) 2149 { 2150 /* Both we're expecting the SP to be saved and the SP has been 2151 saved. The entry SP value is saved at this frame's SP 2152 address. */ 2153 cache->base = read_memory_integer (this_sp, word_size, byte_order); 2154 2155 if (hppa_debug) 2156 gdb_printf (gdb_stdlog, " (base=%s) [saved]", 2157 paddress (gdbarch, cache->base)); 2158 } 2159 else 2160 { 2161 /* The prologue has been slowly allocating stack space. Adjust 2162 the SP back. */ 2163 cache->base = this_sp - frame_size; 2164 if (hppa_debug) 2165 gdb_printf (gdb_stdlog, " (base=%s) [unwind adjust]", 2166 paddress (gdbarch, cache->base)); 2167 2168 } 2169 cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base); 2170 } 2171 2172 /* The PC is found in the "return register", "Millicode" uses "r31" 2173 as the return register while normal code uses "rp". */ 2174 if (u->Millicode) 2175 { 2176 if (cache->saved_regs[31].is_addr ()) 2177 { 2178 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; 2179 if (hppa_debug) 2180 gdb_printf (gdb_stdlog, " (pc=r31) [stack] } "); 2181 } 2182 else 2183 { 2184 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); 2185 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (r31); 2186 if (hppa_debug) 2187 gdb_printf (gdb_stdlog, " (pc=r31) [frame] } "); 2188 } 2189 } 2190 else 2191 { 2192 if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ()) 2193 { 2194 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = 2195 cache->saved_regs[HPPA_RP_REGNUM]; 2196 if (hppa_debug) 2197 gdb_printf (gdb_stdlog, " (pc=rp) [stack] } "); 2198 } 2199 else 2200 { 2201 ULONGEST rp = get_frame_register_unsigned (this_frame, 2202 HPPA_RP_REGNUM); 2203 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp); 2204 if (hppa_debug) 2205 gdb_printf (gdb_stdlog, " (pc=rp) [frame] } "); 2206 } 2207 } 2208 2209 /* If Save_SP is set, then we expect the frame pointer to be saved in the 2210 frame. However, there is a one-insn window where we haven't saved it 2211 yet, but we've already clobbered it. Detect this case and fix it up. 2212 2213 The prologue sequence for frame-pointer functions is: 2214 0: stw %rp, -20(%sp) 2215 4: copy %r3, %r1 2216 8: copy %sp, %r3 2217 c: stw,ma %r1, XX(%sp) 2218 2219 So if we are at offset c, the r3 value that we want is not yet saved 2220 on the stack, but it's been overwritten. The prologue analyzer will 2221 set fp_in_r1 when it sees the copy insn so we know to get the value 2222 from r1 instead. */ 2223 if (u->Save_SP && !cache->saved_regs[HPPA_FP_REGNUM].is_addr () 2224 && fp_in_r1) 2225 { 2226 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); 2227 cache->saved_regs[HPPA_FP_REGNUM].set_value (r1); 2228 } 2229 2230 { 2231 /* Convert all the offsets into addresses. */ 2232 int reg; 2233 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) 2234 { 2235 if (cache->saved_regs[reg].is_addr ()) 2236 cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () 2237 + cache->base); 2238 } 2239 } 2240 2241 { 2242 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch); 2243 2244 if (tdep->unwind_adjust_stub) 2245 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); 2246 } 2247 2248 if (hppa_debug) 2249 gdb_printf (gdb_stdlog, "base=%s }", 2250 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); 2251 return (struct hppa_frame_cache *) (*this_cache); 2252 } 2253 2254 static void 2255 hppa_frame_this_id (frame_info_ptr this_frame, void **this_cache, 2256 struct frame_id *this_id) 2257 { 2258 struct hppa_frame_cache *info; 2259 struct unwind_table_entry *u; 2260 2261 info = hppa_frame_cache (this_frame, this_cache); 2262 u = hppa_find_unwind_entry_in_block (this_frame); 2263 2264 (*this_id) = frame_id_build (info->base, u->region_start); 2265 } 2266 2267 static struct value * 2268 hppa_frame_prev_register (frame_info_ptr this_frame, 2269 void **this_cache, int regnum) 2270 { 2271 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); 2272 2273 return hppa_frame_prev_register_helper (this_frame, 2274 info->saved_regs, regnum); 2275 } 2276 2277 static int 2278 hppa_frame_unwind_sniffer (const struct frame_unwind *self, 2279 frame_info_ptr this_frame, void **this_cache) 2280 { 2281 if (hppa_find_unwind_entry_in_block (this_frame)) 2282 return 1; 2283 2284 return 0; 2285 } 2286 2287 static const struct frame_unwind hppa_frame_unwind = 2288 { 2289 "hppa unwind table", 2290 NORMAL_FRAME, 2291 default_frame_unwind_stop_reason, 2292 hppa_frame_this_id, 2293 hppa_frame_prev_register, 2294 NULL, 2295 hppa_frame_unwind_sniffer 2296 }; 2297 2298 /* This is a generic fallback frame unwinder that kicks in if we fail all 2299 the other ones. Normally we would expect the stub and regular unwinder 2300 to work, but in some cases we might hit a function that just doesn't 2301 have any unwind information available. In this case we try to do 2302 unwinding solely based on code reading. This is obviously going to be 2303 slow, so only use this as a last resort. Currently this will only 2304 identify the stack and pc for the frame. */ 2305 2306 static struct hppa_frame_cache * 2307 hppa_fallback_frame_cache (frame_info_ptr this_frame, void **this_cache) 2308 { 2309 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2311 struct hppa_frame_cache *cache; 2312 unsigned int frame_size = 0; 2313 int found_rp = 0; 2314 CORE_ADDR start_pc; 2315 2316 if (hppa_debug) 2317 gdb_printf (gdb_stdlog, 2318 "{ hppa_fallback_frame_cache (frame=%d) -> ", 2319 frame_relative_level (this_frame)); 2320 2321 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); 2322 (*this_cache) = cache; 2323 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); 2324 2325 start_pc = get_frame_func (this_frame); 2326 if (start_pc) 2327 { 2328 CORE_ADDR cur_pc = get_frame_pc (this_frame); 2329 CORE_ADDR pc; 2330 2331 for (pc = start_pc; pc < cur_pc; pc += 4) 2332 { 2333 unsigned int insn; 2334 2335 insn = read_memory_unsigned_integer (pc, 4, byte_order); 2336 frame_size += prologue_inst_adjust_sp (insn); 2337 2338 /* There are limited ways to store the return pointer into the 2339 stack. */ 2340 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ 2341 { 2342 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20); 2343 found_rp = 1; 2344 } 2345 else if (insn == 0x0fc212c1 2346 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ 2347 { 2348 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16); 2349 found_rp = 1; 2350 } 2351 } 2352 } 2353 2354 if (hppa_debug) 2355 gdb_printf (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", 2356 frame_size, found_rp); 2357 2358 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); 2359 cache->base -= frame_size; 2360 cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base); 2361 2362 if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ()) 2363 { 2364 cache->saved_regs[HPPA_RP_REGNUM].set_addr (cache->saved_regs[HPPA_RP_REGNUM].addr () 2365 + cache->base); 2366 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = 2367 cache->saved_regs[HPPA_RP_REGNUM]; 2368 } 2369 else 2370 { 2371 ULONGEST rp; 2372 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); 2373 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp); 2374 } 2375 2376 return cache; 2377 } 2378 2379 static void 2380 hppa_fallback_frame_this_id (frame_info_ptr this_frame, void **this_cache, 2381 struct frame_id *this_id) 2382 { 2383 struct hppa_frame_cache *info = 2384 hppa_fallback_frame_cache (this_frame, this_cache); 2385 2386 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); 2387 } 2388 2389 static struct value * 2390 hppa_fallback_frame_prev_register (frame_info_ptr this_frame, 2391 void **this_cache, int regnum) 2392 { 2393 struct hppa_frame_cache *info 2394 = hppa_fallback_frame_cache (this_frame, this_cache); 2395 2396 return hppa_frame_prev_register_helper (this_frame, 2397 info->saved_regs, regnum); 2398 } 2399 2400 static const struct frame_unwind hppa_fallback_frame_unwind = 2401 { 2402 "hppa prologue", 2403 NORMAL_FRAME, 2404 default_frame_unwind_stop_reason, 2405 hppa_fallback_frame_this_id, 2406 hppa_fallback_frame_prev_register, 2407 NULL, 2408 default_frame_sniffer 2409 }; 2410 2411 /* Stub frames, used for all kinds of call stubs. */ 2412 struct hppa_stub_unwind_cache 2413 { 2414 CORE_ADDR base; 2415 trad_frame_saved_reg *saved_regs; 2416 }; 2417 2418 static struct hppa_stub_unwind_cache * 2419 hppa_stub_frame_unwind_cache (frame_info_ptr this_frame, 2420 void **this_cache) 2421 { 2422 struct hppa_stub_unwind_cache *info; 2423 2424 if (*this_cache) 2425 return (struct hppa_stub_unwind_cache *) *this_cache; 2426 2427 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); 2428 *this_cache = info; 2429 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 2430 2431 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); 2432 2433 /* By default we assume that stubs do not change the rp. */ 2434 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_realreg (HPPA_RP_REGNUM); 2435 2436 return info; 2437 } 2438 2439 static void 2440 hppa_stub_frame_this_id (frame_info_ptr this_frame, 2441 void **this_prologue_cache, 2442 struct frame_id *this_id) 2443 { 2444 struct hppa_stub_unwind_cache *info 2445 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); 2446 2447 if (info) 2448 *this_id = frame_id_build (info->base, get_frame_func (this_frame)); 2449 } 2450 2451 static struct value * 2452 hppa_stub_frame_prev_register (frame_info_ptr this_frame, 2453 void **this_prologue_cache, int regnum) 2454 { 2455 struct hppa_stub_unwind_cache *info 2456 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); 2457 2458 if (info == NULL) 2459 error (_("Requesting registers from null frame.")); 2460 2461 return hppa_frame_prev_register_helper (this_frame, 2462 info->saved_regs, regnum); 2463 } 2464 2465 static int 2466 hppa_stub_unwind_sniffer (const struct frame_unwind *self, 2467 frame_info_ptr this_frame, 2468 void **this_cache) 2469 { 2470 CORE_ADDR pc = get_frame_address_in_block (this_frame); 2471 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2472 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch); 2473 2474 if (pc == 0 2475 || (tdep->in_solib_call_trampoline != NULL 2476 && tdep->in_solib_call_trampoline (gdbarch, pc)) 2477 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) 2478 return 1; 2479 return 0; 2480 } 2481 2482 static const struct frame_unwind hppa_stub_frame_unwind = { 2483 "hppa stub", 2484 NORMAL_FRAME, 2485 default_frame_unwind_stop_reason, 2486 hppa_stub_frame_this_id, 2487 hppa_stub_frame_prev_register, 2488 NULL, 2489 hppa_stub_unwind_sniffer 2490 }; 2491 2492 CORE_ADDR 2493 hppa_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame) 2494 { 2495 ULONGEST ipsw; 2496 CORE_ADDR pc; 2497 2498 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); 2499 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); 2500 2501 /* If the current instruction is nullified, then we are effectively 2502 still executing the previous instruction. Pretend we are still 2503 there. This is needed when single stepping; if the nullified 2504 instruction is on a different line, we don't want GDB to think 2505 we've stepped onto that line. */ 2506 if (ipsw & 0x00200000) 2507 pc -= 4; 2508 2509 return pc & ~0x3; 2510 } 2511 2512 static void 2513 unwind_command (const char *exp, int from_tty) 2514 { 2515 CORE_ADDR address; 2516 struct unwind_table_entry *u; 2517 2518 /* If we have an expression, evaluate it and use it as the address. */ 2519 2520 if (exp != 0 && *exp != 0) 2521 address = parse_and_eval_address (exp); 2522 else 2523 return; 2524 2525 u = find_unwind_entry (address); 2526 2527 if (!u) 2528 { 2529 gdb_printf ("Can't find unwind table entry for %s\n", exp); 2530 return; 2531 } 2532 2533 gdb_printf ("unwind_table_entry (%s):\n", host_address_to_string (u)); 2534 2535 gdb_printf ("\tregion_start = %s\n", hex_string (u->region_start)); 2536 2537 gdb_printf ("\tregion_end = %s\n", hex_string (u->region_end)); 2538 2539 #define pif(FLD) if (u->FLD) gdb_printf (" "#FLD); 2540 2541 gdb_printf ("\n\tflags ="); 2542 pif (Cannot_unwind); 2543 pif (Millicode); 2544 pif (Millicode_save_sr0); 2545 pif (Entry_SR); 2546 pif (Args_stored); 2547 pif (Variable_Frame); 2548 pif (Separate_Package_Body); 2549 pif (Frame_Extension_Millicode); 2550 pif (Stack_Overflow_Check); 2551 pif (Two_Instruction_SP_Increment); 2552 pif (sr4export); 2553 pif (cxx_info); 2554 pif (cxx_try_catch); 2555 pif (sched_entry_seq); 2556 pif (Save_SP); 2557 pif (Save_RP); 2558 pif (Save_MRP_in_frame); 2559 pif (save_r19); 2560 pif (Cleanup_defined); 2561 pif (MPE_XL_interrupt_marker); 2562 pif (HP_UX_interrupt_marker); 2563 pif (Large_frame); 2564 pif (alloca_frame); 2565 2566 gdb_putc ('\n'); 2567 2568 #define pin(FLD) gdb_printf ("\t"#FLD" = 0x%x\n", u->FLD); 2569 2570 pin (Region_description); 2571 pin (Entry_FR); 2572 pin (Entry_GR); 2573 pin (Total_frame_size); 2574 2575 if (u->stub_unwind.stub_type) 2576 { 2577 gdb_printf ("\tstub type = "); 2578 switch (u->stub_unwind.stub_type) 2579 { 2580 case LONG_BRANCH: 2581 gdb_printf ("long branch\n"); 2582 break; 2583 case PARAMETER_RELOCATION: 2584 gdb_printf ("parameter relocation\n"); 2585 break; 2586 case EXPORT: 2587 gdb_printf ("export\n"); 2588 break; 2589 case IMPORT: 2590 gdb_printf ("import\n"); 2591 break; 2592 case IMPORT_SHLIB: 2593 gdb_printf ("import shlib\n"); 2594 break; 2595 default: 2596 gdb_printf ("unknown (%d)\n", u->stub_unwind.stub_type); 2597 } 2598 } 2599 } 2600 2601 /* Return the GDB type object for the "standard" data type of data in 2602 register REGNUM. */ 2603 2604 static struct type * 2605 hppa32_register_type (struct gdbarch *gdbarch, int regnum) 2606 { 2607 if (regnum < HPPA_FP4_REGNUM) 2608 return builtin_type (gdbarch)->builtin_uint32; 2609 else 2610 return builtin_type (gdbarch)->builtin_float; 2611 } 2612 2613 static struct type * 2614 hppa64_register_type (struct gdbarch *gdbarch, int regnum) 2615 { 2616 if (regnum < HPPA64_FP4_REGNUM) 2617 return builtin_type (gdbarch)->builtin_uint64; 2618 else 2619 return builtin_type (gdbarch)->builtin_double; 2620 } 2621 2622 /* Return non-zero if REGNUM is not a register available to the user 2623 through ptrace/ttrace. */ 2624 2625 static int 2626 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) 2627 { 2628 return (regnum == 0 2629 || regnum == HPPA_PCSQ_HEAD_REGNUM 2630 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) 2631 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); 2632 } 2633 2634 static int 2635 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) 2636 { 2637 /* cr26 and cr27 are readable (but not writable) from userspace. */ 2638 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) 2639 return 0; 2640 else 2641 return hppa32_cannot_store_register (gdbarch, regnum); 2642 } 2643 2644 static int 2645 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) 2646 { 2647 return (regnum == 0 2648 || regnum == HPPA_PCSQ_HEAD_REGNUM 2649 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) 2650 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); 2651 } 2652 2653 static int 2654 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) 2655 { 2656 /* cr26 and cr27 are readable (but not writable) from userspace. */ 2657 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) 2658 return 0; 2659 else 2660 return hppa64_cannot_store_register (gdbarch, regnum); 2661 } 2662 2663 static CORE_ADDR 2664 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) 2665 { 2666 /* The low two bits of the PC on the PA contain the privilege level. 2667 Some genius implementing a (non-GCC) compiler apparently decided 2668 this means that "addresses" in a text section therefore include a 2669 privilege level, and thus symbol tables should contain these bits. 2670 This seems like a bonehead thing to do--anyway, it seems to work 2671 for our purposes to just ignore those bits. */ 2672 2673 return (addr &= ~0x3); 2674 } 2675 2676 /* Get the ARGIth function argument for the current function. */ 2677 2678 static CORE_ADDR 2679 hppa_fetch_pointer_argument (frame_info_ptr frame, int argi, 2680 struct type *type) 2681 { 2682 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); 2683 } 2684 2685 static enum register_status 2686 hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, 2687 int regnum, gdb_byte *buf) 2688 { 2689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2690 ULONGEST tmp; 2691 enum register_status status; 2692 2693 status = regcache->raw_read (regnum, &tmp); 2694 if (status == REG_VALID) 2695 { 2696 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) 2697 tmp &= ~0x3; 2698 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); 2699 } 2700 return status; 2701 } 2702 2703 static CORE_ADDR 2704 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) 2705 { 2706 return 0; 2707 } 2708 2709 struct value * 2710 hppa_frame_prev_register_helper (frame_info_ptr this_frame, 2711 trad_frame_saved_reg saved_regs[], 2712 int regnum) 2713 { 2714 struct gdbarch *arch = get_frame_arch (this_frame); 2715 enum bfd_endian byte_order = gdbarch_byte_order (arch); 2716 2717 if (regnum == HPPA_PCOQ_TAIL_REGNUM) 2718 { 2719 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); 2720 CORE_ADDR pc; 2721 struct value *pcoq_val = 2722 trad_frame_get_prev_register (this_frame, saved_regs, 2723 HPPA_PCOQ_HEAD_REGNUM); 2724 2725 pc = extract_unsigned_integer (value_contents_all (pcoq_val).data (), 2726 size, byte_order); 2727 return frame_unwind_got_constant (this_frame, regnum, pc + 4); 2728 } 2729 2730 return trad_frame_get_prev_register (this_frame, saved_regs, regnum); 2731 } 2732 2733 2734 /* An instruction to match. */ 2735 struct insn_pattern 2736 { 2737 unsigned int data; /* See if it matches this.... */ 2738 unsigned int mask; /* ... with this mask. */ 2739 }; 2740 2741 /* See bfd/elf32-hppa.c */ 2742 static struct insn_pattern hppa_long_branch_stub[] = { 2743 /* ldil LR'xxx,%r1 */ 2744 { 0x20200000, 0xffe00000 }, 2745 /* be,n RR'xxx(%sr4,%r1) */ 2746 { 0xe0202002, 0xffe02002 }, 2747 { 0, 0 } 2748 }; 2749 2750 static struct insn_pattern hppa_long_branch_pic_stub[] = { 2751 /* b,l .+8, %r1 */ 2752 { 0xe8200000, 0xffe00000 }, 2753 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ 2754 { 0x28200000, 0xffe00000 }, 2755 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ 2756 { 0xe0202002, 0xffe02002 }, 2757 { 0, 0 } 2758 }; 2759 2760 static struct insn_pattern hppa_import_stub[] = { 2761 /* addil LR'xxx, %dp */ 2762 { 0x2b600000, 0xffe00000 }, 2763 /* ldw RR'xxx(%r1), %r21 */ 2764 { 0x48350000, 0xffffb000 }, 2765 /* bv %r0(%r21) */ 2766 { 0xeaa0c000, 0xffffffff }, 2767 /* ldw RR'xxx+4(%r1), %r19 */ 2768 { 0x48330000, 0xffffb000 }, 2769 { 0, 0 } 2770 }; 2771 2772 static struct insn_pattern hppa_import_pic_stub[] = { 2773 /* addil LR'xxx,%r19 */ 2774 { 0x2a600000, 0xffe00000 }, 2775 /* ldw RR'xxx(%r1),%r21 */ 2776 { 0x48350000, 0xffffb000 }, 2777 /* bv %r0(%r21) */ 2778 { 0xeaa0c000, 0xffffffff }, 2779 /* ldw RR'xxx+4(%r1),%r19 */ 2780 { 0x48330000, 0xffffb000 }, 2781 { 0, 0 }, 2782 }; 2783 2784 static struct insn_pattern hppa_plt_stub[] = { 2785 /* b,l 1b, %r20 - 1b is 3 insns before here */ 2786 { 0xea9f1fdd, 0xffffffff }, 2787 /* depi 0,31,2,%r20 */ 2788 { 0xd6801c1e, 0xffffffff }, 2789 { 0, 0 } 2790 }; 2791 2792 /* Maximum number of instructions on the patterns above. */ 2793 #define HPPA_MAX_INSN_PATTERN_LEN 4 2794 2795 /* Return non-zero if the instructions at PC match the series 2796 described in PATTERN, or zero otherwise. PATTERN is an array of 2797 'struct insn_pattern' objects, terminated by an entry whose mask is 2798 zero. 2799 2800 When the match is successful, fill INSN[i] with what PATTERN[i] 2801 matched. */ 2802 2803 static int 2804 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, 2805 struct insn_pattern *pattern, unsigned int *insn) 2806 { 2807 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2808 CORE_ADDR npc = pc; 2809 int i; 2810 2811 for (i = 0; pattern[i].mask; i++) 2812 { 2813 gdb_byte buf[HPPA_INSN_SIZE]; 2814 2815 target_read_memory (npc, buf, HPPA_INSN_SIZE); 2816 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); 2817 if ((insn[i] & pattern[i].mask) == pattern[i].data) 2818 npc += 4; 2819 else 2820 return 0; 2821 } 2822 2823 return 1; 2824 } 2825 2826 /* This relaxed version of the instruction matcher allows us to match 2827 from somewhere inside the pattern, by looking backwards in the 2828 instruction scheme. */ 2829 2830 static int 2831 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, 2832 struct insn_pattern *pattern, unsigned int *insn) 2833 { 2834 int offset, len = 0; 2835 2836 while (pattern[len].mask) 2837 len++; 2838 2839 for (offset = 0; offset < len; offset++) 2840 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, 2841 pattern, insn)) 2842 return 1; 2843 2844 return 0; 2845 } 2846 2847 static int 2848 hppa_in_dyncall (CORE_ADDR pc) 2849 { 2850 struct unwind_table_entry *u; 2851 2852 u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); 2853 if (!u) 2854 return 0; 2855 2856 return (pc >= u->region_start && pc <= u->region_end); 2857 } 2858 2859 int 2860 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) 2861 { 2862 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; 2863 struct unwind_table_entry *u; 2864 2865 if (in_plt_section (pc) || hppa_in_dyncall (pc)) 2866 return 1; 2867 2868 /* The GNU toolchain produces linker stubs without unwind 2869 information. Since the pattern matching for linker stubs can be 2870 quite slow, so bail out if we do have an unwind entry. */ 2871 2872 u = find_unwind_entry (pc); 2873 if (u != NULL) 2874 return 0; 2875 2876 return 2877 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) 2878 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) 2879 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) 2880 || hppa_match_insns_relaxed (gdbarch, pc, 2881 hppa_long_branch_pic_stub, insn)); 2882 } 2883 2884 /* This code skips several kind of "trampolines" used on PA-RISC 2885 systems: $$dyncall, import stubs and PLT stubs. */ 2886 2887 CORE_ADDR 2888 hppa_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc) 2889 { 2890 struct gdbarch *gdbarch = get_frame_arch (frame); 2891 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; 2892 2893 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; 2894 int dp_rel; 2895 2896 /* $$dyncall handles both PLABELs and direct addresses. */ 2897 if (hppa_in_dyncall (pc)) 2898 { 2899 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); 2900 2901 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ 2902 if (pc & 0x2) 2903 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); 2904 2905 return pc; 2906 } 2907 2908 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); 2909 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) 2910 { 2911 /* Extract the target address from the addil/ldw sequence. */ 2912 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); 2913 2914 if (dp_rel) 2915 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); 2916 else 2917 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); 2918 2919 /* fallthrough */ 2920 } 2921 2922 if (in_plt_section (pc)) 2923 { 2924 pc = read_memory_typed_address (pc, func_ptr_type); 2925 2926 /* If the PLT slot has not yet been resolved, the target will be 2927 the PLT stub. */ 2928 if (in_plt_section (pc)) 2929 { 2930 /* Sanity check: are we pointing to the PLT stub? */ 2931 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) 2932 { 2933 warning (_("Cannot resolve PLT stub at %s."), 2934 paddress (gdbarch, pc)); 2935 return 0; 2936 } 2937 2938 /* This should point to the fixup routine. */ 2939 pc = read_memory_typed_address (pc + 8, func_ptr_type); 2940 } 2941 } 2942 2943 return pc; 2944 } 2945 2946 2947 /* Here is a table of C type sizes on hppa with various compiles 2948 and options. I measured this on PA 9000/800 with HP-UX 11.11 2949 and these compilers: 2950 2951 /usr/ccs/bin/cc HP92453-01 A.11.01.21 2952 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP 2953 /opt/aCC/bin/aCC B3910B A.03.45 2954 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 2955 2956 cc : 1 2 4 4 8 : 4 8 -- : 4 4 2957 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 2958 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 2959 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 2960 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 2961 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 2962 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 2963 gcc : 1 2 4 4 8 : 4 8 16 : 4 4 2964 2965 Each line is: 2966 2967 compiler and options 2968 char, short, int, long, long long 2969 float, double, long double 2970 char *, void (*)() 2971 2972 So all these compilers use either ILP32 or LP64 model. 2973 TODO: gcc has more options so it needs more investigation. 2974 2975 For floating point types, see: 2976 2977 http://docs.hp.com/hpux/pdf/B3906-90006.pdf 2978 HP-UX floating-point guide, hpux 11.00 2979 2980 -- chastain 2003-12-18 */ 2981 2982 static struct gdbarch * 2983 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 2984 { 2985 struct gdbarch *gdbarch; 2986 2987 /* find a candidate among the list of pre-declared architectures. */ 2988 arches = gdbarch_list_lookup_by_info (arches, &info); 2989 if (arches != NULL) 2990 return (arches->gdbarch); 2991 2992 /* If none found, then allocate and initialize one. */ 2993 hppa_gdbarch_tdep *tdep = new hppa_gdbarch_tdep; 2994 gdbarch = gdbarch_alloc (&info, tdep); 2995 2996 /* Determine from the bfd_arch_info structure if we are dealing with 2997 a 32 or 64 bits architecture. If the bfd_arch_info is not available, 2998 then default to a 32bit machine. */ 2999 if (info.bfd_arch_info != NULL) 3000 tdep->bytes_per_address = 3001 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; 3002 else 3003 tdep->bytes_per_address = 4; 3004 3005 tdep->find_global_pointer = hppa_find_global_pointer; 3006 3007 /* Some parts of the gdbarch vector depend on whether we are running 3008 on a 32 bits or 64 bits target. */ 3009 switch (tdep->bytes_per_address) 3010 { 3011 case 4: 3012 set_gdbarch_num_regs (gdbarch, hppa32_num_regs); 3013 set_gdbarch_register_name (gdbarch, hppa32_register_name); 3014 set_gdbarch_register_type (gdbarch, hppa32_register_type); 3015 set_gdbarch_cannot_store_register (gdbarch, 3016 hppa32_cannot_store_register); 3017 set_gdbarch_cannot_fetch_register (gdbarch, 3018 hppa32_cannot_fetch_register); 3019 break; 3020 case 8: 3021 set_gdbarch_num_regs (gdbarch, hppa64_num_regs); 3022 set_gdbarch_register_name (gdbarch, hppa64_register_name); 3023 set_gdbarch_register_type (gdbarch, hppa64_register_type); 3024 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); 3025 set_gdbarch_cannot_store_register (gdbarch, 3026 hppa64_cannot_store_register); 3027 set_gdbarch_cannot_fetch_register (gdbarch, 3028 hppa64_cannot_fetch_register); 3029 break; 3030 default: 3031 internal_error (_("Unsupported address size: %d"), 3032 tdep->bytes_per_address); 3033 } 3034 3035 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); 3036 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); 3037 3038 /* The following gdbarch vector elements are the same in both ILP32 3039 and LP64, but might show differences some day. */ 3040 set_gdbarch_long_long_bit (gdbarch, 64); 3041 set_gdbarch_long_double_bit (gdbarch, 128); 3042 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad); 3043 3044 /* The following gdbarch vector elements do not depend on the address 3045 size, or in any other gdbarch element previously set. */ 3046 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); 3047 set_gdbarch_stack_frame_destroyed_p (gdbarch, 3048 hppa_stack_frame_destroyed_p); 3049 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); 3050 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); 3051 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); 3052 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); 3053 set_gdbarch_believe_pcc_promotion (gdbarch, 1); 3054 set_gdbarch_read_pc (gdbarch, hppa_read_pc); 3055 set_gdbarch_write_pc (gdbarch, hppa_write_pc); 3056 3057 /* Helper for function argument information. */ 3058 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); 3059 3060 /* When a hardware watchpoint triggers, we'll move the inferior past 3061 it by removing all eventpoints; stepping past the instruction 3062 that caused the trigger; reinserting eventpoints; and checking 3063 whether any watched location changed. */ 3064 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); 3065 3066 /* Inferior function call methods. */ 3067 switch (tdep->bytes_per_address) 3068 { 3069 case 4: 3070 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); 3071 set_gdbarch_frame_align (gdbarch, hppa32_frame_align); 3072 set_gdbarch_convert_from_func_ptr_addr 3073 (gdbarch, hppa32_convert_from_func_ptr_addr); 3074 break; 3075 case 8: 3076 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); 3077 set_gdbarch_frame_align (gdbarch, hppa64_frame_align); 3078 break; 3079 default: 3080 internal_error (_("bad switch")); 3081 } 3082 3083 /* Struct return methods. */ 3084 switch (tdep->bytes_per_address) 3085 { 3086 case 4: 3087 set_gdbarch_return_value (gdbarch, hppa32_return_value); 3088 break; 3089 case 8: 3090 set_gdbarch_return_value (gdbarch, hppa64_return_value); 3091 break; 3092 default: 3093 internal_error (_("bad switch")); 3094 } 3095 3096 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc); 3097 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind); 3098 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); 3099 3100 /* Frame unwind methods. */ 3101 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); 3102 3103 /* Hook in ABI-specific overrides, if they have been registered. */ 3104 gdbarch_init_osabi (info, gdbarch); 3105 3106 /* Hook in the default unwinders. */ 3107 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); 3108 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); 3109 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); 3110 3111 return gdbarch; 3112 } 3113 3114 static void 3115 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) 3116 { 3117 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch); 3118 3119 gdb_printf (file, "bytes_per_address = %d\n", 3120 tdep->bytes_per_address); 3121 gdb_printf (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); 3122 } 3123 3124 void _initialize_hppa_tdep (); 3125 void 3126 _initialize_hppa_tdep () 3127 { 3128 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); 3129 3130 add_cmd ("unwind", class_maintenance, unwind_command, 3131 _("Print unwind table entry at given address."), 3132 &maintenanceprintlist); 3133 3134 /* Debug this files internals. */ 3135 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ 3136 Set whether hppa target specific debugging information should be displayed."), 3137 _("\ 3138 Show whether hppa target specific debugging information is displayed."), _("\ 3139 This flag controls whether hppa target specific debugging information is\n\ 3140 displayed. This information is particularly useful for debugging frame\n\ 3141 unwinding problems."), 3142 NULL, 3143 NULL, /* FIXME: i18n: hppa debug flag is %s. */ 3144 &setdebuglist, &showdebuglist); 3145 } 3146