1 /* Target-dependent code for the HP PA-RISC architecture. 2 3 Copyright (C) 1986-2015 Free Software Foundation, Inc. 4 5 Contributed by the Center for Software Science at the 6 University of Utah (pa-gdb-bugs@cs.utah.edu). 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 #include "defs.h" 24 #include "bfd.h" 25 #include "inferior.h" 26 #include "regcache.h" 27 #include "completer.h" 28 #include "osabi.h" 29 #include "arch-utils.h" 30 /* For argument passing to the inferior. */ 31 #include "symtab.h" 32 #include "dis-asm.h" 33 #include "trad-frame.h" 34 #include "frame-unwind.h" 35 #include "frame-base.h" 36 37 #include "gdbcore.h" 38 #include "gdbcmd.h" 39 #include "gdbtypes.h" 40 #include "objfiles.h" 41 #include "hppa-tdep.h" 42 43 static int hppa_debug = 0; 44 45 /* Some local constants. */ 46 static const int hppa32_num_regs = 128; 47 static const int hppa64_num_regs = 96; 48 49 /* hppa-specific object data -- unwind and solib info. 50 TODO/maybe: think about splitting this into two parts; the unwind data is 51 common to all hppa targets, but is only used in this file; we can register 52 that separately and make this static. The solib data is probably hpux- 53 specific, so we can create a separate extern objfile_data that is registered 54 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ 55 const struct objfile_data *hppa_objfile_priv_data = NULL; 56 57 /* Get at various relevent fields of an instruction word. */ 58 #define MASK_5 0x1f 59 #define MASK_11 0x7ff 60 #define MASK_14 0x3fff 61 #define MASK_21 0x1fffff 62 63 /* Sizes (in bytes) of the native unwind entries. */ 64 #define UNWIND_ENTRY_SIZE 16 65 #define STUB_UNWIND_ENTRY_SIZE 8 66 67 /* Routines to extract various sized constants out of hppa 68 instructions. */ 69 70 /* This assumes that no garbage lies outside of the lower bits of 71 value. */ 72 73 static int 74 hppa_sign_extend (unsigned val, unsigned bits) 75 { 76 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); 77 } 78 79 /* For many immediate values the sign bit is the low bit! */ 80 81 static int 82 hppa_low_hppa_sign_extend (unsigned val, unsigned bits) 83 { 84 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); 85 } 86 87 /* Extract the bits at positions between FROM and TO, using HP's numbering 88 (MSB = 0). */ 89 90 int 91 hppa_get_field (unsigned word, int from, int to) 92 { 93 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); 94 } 95 96 /* Extract the immediate field from a ld{bhw}s instruction. */ 97 98 int 99 hppa_extract_5_load (unsigned word) 100 { 101 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); 102 } 103 104 /* Extract the immediate field from a break instruction. */ 105 106 unsigned 107 hppa_extract_5r_store (unsigned word) 108 { 109 return (word & MASK_5); 110 } 111 112 /* Extract the immediate field from a {sr}sm instruction. */ 113 114 unsigned 115 hppa_extract_5R_store (unsigned word) 116 { 117 return (word >> 16 & MASK_5); 118 } 119 120 /* Extract a 14 bit immediate field. */ 121 122 int 123 hppa_extract_14 (unsigned word) 124 { 125 return hppa_low_hppa_sign_extend (word & MASK_14, 14); 126 } 127 128 /* Extract a 21 bit constant. */ 129 130 int 131 hppa_extract_21 (unsigned word) 132 { 133 int val; 134 135 word &= MASK_21; 136 word <<= 11; 137 val = hppa_get_field (word, 20, 20); 138 val <<= 11; 139 val |= hppa_get_field (word, 9, 19); 140 val <<= 2; 141 val |= hppa_get_field (word, 5, 6); 142 val <<= 5; 143 val |= hppa_get_field (word, 0, 4); 144 val <<= 2; 145 val |= hppa_get_field (word, 7, 8); 146 return hppa_sign_extend (val, 21) << 11; 147 } 148 149 /* extract a 17 bit constant from branch instructions, returning the 150 19 bit signed value. */ 151 152 int 153 hppa_extract_17 (unsigned word) 154 { 155 return hppa_sign_extend (hppa_get_field (word, 19, 28) | 156 hppa_get_field (word, 29, 29) << 10 | 157 hppa_get_field (word, 11, 15) << 11 | 158 (word & 0x1) << 16, 17) << 2; 159 } 160 161 CORE_ADDR 162 hppa_symbol_address(const char *sym) 163 { 164 struct bound_minimal_symbol minsym; 165 166 minsym = lookup_minimal_symbol (sym, NULL, NULL); 167 if (minsym.minsym) 168 return BMSYMBOL_VALUE_ADDRESS (minsym); 169 else 170 return (CORE_ADDR)-1; 171 } 172 173 struct hppa_objfile_private * 174 hppa_init_objfile_priv_data (struct objfile *objfile) 175 { 176 struct hppa_objfile_private *priv; 177 178 priv = (struct hppa_objfile_private *) 179 obstack_alloc (&objfile->objfile_obstack, 180 sizeof (struct hppa_objfile_private)); 181 set_objfile_data (objfile, hppa_objfile_priv_data, priv); 182 memset (priv, 0, sizeof (*priv)); 183 184 return priv; 185 } 186 187 188 /* Compare the start address for two unwind entries returning 1 if 189 the first address is larger than the second, -1 if the second is 190 larger than the first, and zero if they are equal. */ 191 192 static int 193 compare_unwind_entries (const void *arg1, const void *arg2) 194 { 195 const struct unwind_table_entry *a = arg1; 196 const struct unwind_table_entry *b = arg2; 197 198 if (a->region_start > b->region_start) 199 return 1; 200 else if (a->region_start < b->region_start) 201 return -1; 202 else 203 return 0; 204 } 205 206 static void 207 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) 208 { 209 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 210 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 211 { 212 bfd_vma value = section->vma - section->filepos; 213 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; 214 215 if (value < *low_text_segment_address) 216 *low_text_segment_address = value; 217 } 218 } 219 220 static void 221 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, 222 asection *section, unsigned int entries, 223 size_t size, CORE_ADDR text_offset) 224 { 225 /* We will read the unwind entries into temporary memory, then 226 fill in the actual unwind table. */ 227 228 if (size > 0) 229 { 230 struct gdbarch *gdbarch = get_objfile_arch (objfile); 231 unsigned long tmp; 232 unsigned i; 233 char *buf = alloca (size); 234 CORE_ADDR low_text_segment_address; 235 236 /* For ELF targets, then unwinds are supposed to 237 be segment relative offsets instead of absolute addresses. 238 239 Note that when loading a shared library (text_offset != 0) the 240 unwinds are already relative to the text_offset that will be 241 passed in. */ 242 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) 243 { 244 low_text_segment_address = -1; 245 246 bfd_map_over_sections (objfile->obfd, 247 record_text_segment_lowaddr, 248 &low_text_segment_address); 249 250 text_offset = low_text_segment_address; 251 } 252 else if (gdbarch_tdep (gdbarch)->solib_get_text_base) 253 { 254 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); 255 } 256 257 bfd_get_section_contents (objfile->obfd, section, buf, 0, size); 258 259 /* Now internalize the information being careful to handle host/target 260 endian issues. */ 261 for (i = 0; i < entries; i++) 262 { 263 table[i].region_start = bfd_get_32 (objfile->obfd, 264 (bfd_byte *) buf); 265 table[i].region_start += text_offset; 266 buf += 4; 267 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); 268 table[i].region_end += text_offset; 269 buf += 4; 270 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); 271 buf += 4; 272 table[i].Cannot_unwind = (tmp >> 31) & 0x1; 273 table[i].Millicode = (tmp >> 30) & 0x1; 274 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; 275 table[i].Region_description = (tmp >> 27) & 0x3; 276 table[i].reserved = (tmp >> 26) & 0x1; 277 table[i].Entry_SR = (tmp >> 25) & 0x1; 278 table[i].Entry_FR = (tmp >> 21) & 0xf; 279 table[i].Entry_GR = (tmp >> 16) & 0x1f; 280 table[i].Args_stored = (tmp >> 15) & 0x1; 281 table[i].Variable_Frame = (tmp >> 14) & 0x1; 282 table[i].Separate_Package_Body = (tmp >> 13) & 0x1; 283 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; 284 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; 285 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; 286 table[i].sr4export = (tmp >> 9) & 0x1; 287 table[i].cxx_info = (tmp >> 8) & 0x1; 288 table[i].cxx_try_catch = (tmp >> 7) & 0x1; 289 table[i].sched_entry_seq = (tmp >> 6) & 0x1; 290 table[i].reserved1 = (tmp >> 5) & 0x1; 291 table[i].Save_SP = (tmp >> 4) & 0x1; 292 table[i].Save_RP = (tmp >> 3) & 0x1; 293 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; 294 table[i].save_r19 = (tmp >> 1) & 0x1; 295 table[i].Cleanup_defined = tmp & 0x1; 296 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); 297 buf += 4; 298 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; 299 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; 300 table[i].Large_frame = (tmp >> 29) & 0x1; 301 table[i].alloca_frame = (tmp >> 28) & 0x1; 302 table[i].reserved2 = (tmp >> 27) & 0x1; 303 table[i].Total_frame_size = tmp & 0x7ffffff; 304 305 /* Stub unwinds are handled elsewhere. */ 306 table[i].stub_unwind.stub_type = 0; 307 table[i].stub_unwind.padding = 0; 308 } 309 } 310 } 311 312 /* Read in the backtrace information stored in the `$UNWIND_START$' section of 313 the object file. This info is used mainly by find_unwind_entry() to find 314 out the stack frame size and frame pointer used by procedures. We put 315 everything on the psymbol obstack in the objfile so that it automatically 316 gets freed when the objfile is destroyed. */ 317 318 static void 319 read_unwind_info (struct objfile *objfile) 320 { 321 asection *unwind_sec, *stub_unwind_sec; 322 size_t unwind_size, stub_unwind_size, total_size; 323 unsigned index, unwind_entries; 324 unsigned stub_entries, total_entries; 325 CORE_ADDR text_offset; 326 struct hppa_unwind_info *ui; 327 struct hppa_objfile_private *obj_private; 328 329 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 330 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, 331 sizeof (struct hppa_unwind_info)); 332 333 ui->table = NULL; 334 ui->cache = NULL; 335 ui->last = -1; 336 337 /* For reasons unknown the HP PA64 tools generate multiple unwinder 338 sections in a single executable. So we just iterate over every 339 section in the BFD looking for unwinder sections intead of trying 340 to do a lookup with bfd_get_section_by_name. 341 342 First determine the total size of the unwind tables so that we 343 can allocate memory in a nice big hunk. */ 344 total_entries = 0; 345 for (unwind_sec = objfile->obfd->sections; 346 unwind_sec; 347 unwind_sec = unwind_sec->next) 348 { 349 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 350 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) 351 { 352 unwind_size = bfd_section_size (objfile->obfd, unwind_sec); 353 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; 354 355 total_entries += unwind_entries; 356 } 357 } 358 359 /* Now compute the size of the stub unwinds. Note the ELF tools do not 360 use stub unwinds at the current time. */ 361 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); 362 363 if (stub_unwind_sec) 364 { 365 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); 366 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; 367 } 368 else 369 { 370 stub_unwind_size = 0; 371 stub_entries = 0; 372 } 373 374 /* Compute total number of unwind entries and their total size. */ 375 total_entries += stub_entries; 376 total_size = total_entries * sizeof (struct unwind_table_entry); 377 378 /* Allocate memory for the unwind table. */ 379 ui->table = (struct unwind_table_entry *) 380 obstack_alloc (&objfile->objfile_obstack, total_size); 381 ui->last = total_entries - 1; 382 383 /* Now read in each unwind section and internalize the standard unwind 384 entries. */ 385 index = 0; 386 for (unwind_sec = objfile->obfd->sections; 387 unwind_sec; 388 unwind_sec = unwind_sec->next) 389 { 390 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 391 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) 392 { 393 unwind_size = bfd_section_size (objfile->obfd, unwind_sec); 394 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; 395 396 internalize_unwinds (objfile, &ui->table[index], unwind_sec, 397 unwind_entries, unwind_size, text_offset); 398 index += unwind_entries; 399 } 400 } 401 402 /* Now read in and internalize the stub unwind entries. */ 403 if (stub_unwind_size > 0) 404 { 405 unsigned int i; 406 char *buf = alloca (stub_unwind_size); 407 408 /* Read in the stub unwind entries. */ 409 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, 410 0, stub_unwind_size); 411 412 /* Now convert them into regular unwind entries. */ 413 for (i = 0; i < stub_entries; i++, index++) 414 { 415 /* Clear out the next unwind entry. */ 416 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); 417 418 /* Convert offset & size into region_start and region_end. 419 Stuff away the stub type into "reserved" fields. */ 420 ui->table[index].region_start = bfd_get_32 (objfile->obfd, 421 (bfd_byte *) buf); 422 ui->table[index].region_start += text_offset; 423 buf += 4; 424 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, 425 (bfd_byte *) buf); 426 buf += 2; 427 ui->table[index].region_end 428 = ui->table[index].region_start + 4 * 429 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); 430 buf += 2; 431 } 432 433 } 434 435 /* Unwind table needs to be kept sorted. */ 436 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), 437 compare_unwind_entries); 438 439 /* Keep a pointer to the unwind information. */ 440 obj_private = (struct hppa_objfile_private *) 441 objfile_data (objfile, hppa_objfile_priv_data); 442 if (obj_private == NULL) 443 obj_private = hppa_init_objfile_priv_data (objfile); 444 445 obj_private->unwind_info = ui; 446 } 447 448 /* Lookup the unwind (stack backtrace) info for the given PC. We search all 449 of the objfiles seeking the unwind table entry for this PC. Each objfile 450 contains a sorted list of struct unwind_table_entry. Since we do a binary 451 search of the unwind tables, we depend upon them to be sorted. */ 452 453 struct unwind_table_entry * 454 find_unwind_entry (CORE_ADDR pc) 455 { 456 int first, middle, last; 457 struct objfile *objfile; 458 struct hppa_objfile_private *priv; 459 460 if (hppa_debug) 461 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", 462 hex_string (pc)); 463 464 /* A function at address 0? Not in HP-UX! */ 465 if (pc == (CORE_ADDR) 0) 466 { 467 if (hppa_debug) 468 fprintf_unfiltered (gdb_stdlog, "NULL }\n"); 469 return NULL; 470 } 471 472 ALL_OBJFILES (objfile) 473 { 474 struct hppa_unwind_info *ui; 475 ui = NULL; 476 priv = objfile_data (objfile, hppa_objfile_priv_data); 477 if (priv) 478 ui = ((struct hppa_objfile_private *) priv)->unwind_info; 479 480 if (!ui) 481 { 482 read_unwind_info (objfile); 483 priv = objfile_data (objfile, hppa_objfile_priv_data); 484 if (priv == NULL) 485 error (_("Internal error reading unwind information.")); 486 ui = ((struct hppa_objfile_private *) priv)->unwind_info; 487 } 488 489 /* First, check the cache. */ 490 491 if (ui->cache 492 && pc >= ui->cache->region_start 493 && pc <= ui->cache->region_end) 494 { 495 if (hppa_debug) 496 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", 497 hex_string ((uintptr_t) ui->cache)); 498 return ui->cache; 499 } 500 501 /* Not in the cache, do a binary search. */ 502 503 first = 0; 504 last = ui->last; 505 506 while (first <= last) 507 { 508 middle = (first + last) / 2; 509 if (pc >= ui->table[middle].region_start 510 && pc <= ui->table[middle].region_end) 511 { 512 ui->cache = &ui->table[middle]; 513 if (hppa_debug) 514 fprintf_unfiltered (gdb_stdlog, "%s }\n", 515 hex_string ((uintptr_t) ui->cache)); 516 return &ui->table[middle]; 517 } 518 519 if (pc < ui->table[middle].region_start) 520 last = middle - 1; 521 else 522 first = middle + 1; 523 } 524 } /* ALL_OBJFILES() */ 525 526 if (hppa_debug) 527 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); 528 529 return NULL; 530 } 531 532 /* The epilogue is defined here as the area either on the `bv' instruction 533 itself or an instruction which destroys the function's stack frame. 534 535 We do not assume that the epilogue is at the end of a function as we can 536 also have return sequences in the middle of a function. */ 537 static int 538 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) 539 { 540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 541 unsigned long status; 542 unsigned int inst; 543 gdb_byte buf[4]; 544 545 status = target_read_memory (pc, buf, 4); 546 if (status != 0) 547 return 0; 548 549 inst = extract_unsigned_integer (buf, 4, byte_order); 550 551 /* The most common way to perform a stack adjustment ldo X(sp),sp 552 We are destroying a stack frame if the offset is negative. */ 553 if ((inst & 0xffffc000) == 0x37de0000 554 && hppa_extract_14 (inst) < 0) 555 return 1; 556 557 /* ldw,mb D(sp),X or ldd,mb D(sp),X */ 558 if (((inst & 0x0fc010e0) == 0x0fc010e0 559 || (inst & 0x0fc010e0) == 0x0fc010e0) 560 && hppa_extract_14 (inst) < 0) 561 return 1; 562 563 /* bv %r0(%rp) or bv,n %r0(%rp) */ 564 if (inst == 0xe840c000 || inst == 0xe840c002) 565 return 1; 566 567 return 0; 568 } 569 570 static const unsigned char * 571 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) 572 { 573 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; 574 (*len) = sizeof (breakpoint); 575 return breakpoint; 576 } 577 578 /* Return the name of a register. */ 579 580 static const char * 581 hppa32_register_name (struct gdbarch *gdbarch, int i) 582 { 583 static char *names[] = { 584 "flags", "r1", "rp", "r3", 585 "r4", "r5", "r6", "r7", 586 "r8", "r9", "r10", "r11", 587 "r12", "r13", "r14", "r15", 588 "r16", "r17", "r18", "r19", 589 "r20", "r21", "r22", "r23", 590 "r24", "r25", "r26", "dp", 591 "ret0", "ret1", "sp", "r31", 592 "sar", "pcoqh", "pcsqh", "pcoqt", 593 "pcsqt", "eiem", "iir", "isr", 594 "ior", "ipsw", "goto", "sr4", 595 "sr0", "sr1", "sr2", "sr3", 596 "sr5", "sr6", "sr7", "cr0", 597 "cr8", "cr9", "ccr", "cr12", 598 "cr13", "cr24", "cr25", "cr26", 599 "cr27", "cr28", "cr29", "cr30", 600 "fpsr", "fpe1", "fpe2", "fpe3", 601 "fpe4", "fpe5", "fpe6", "fpe7", 602 "fr4", "fr4R", "fr5", "fr5R", 603 "fr6", "fr6R", "fr7", "fr7R", 604 "fr8", "fr8R", "fr9", "fr9R", 605 "fr10", "fr10R", "fr11", "fr11R", 606 "fr12", "fr12R", "fr13", "fr13R", 607 "fr14", "fr14R", "fr15", "fr15R", 608 "fr16", "fr16R", "fr17", "fr17R", 609 "fr18", "fr18R", "fr19", "fr19R", 610 "fr20", "fr20R", "fr21", "fr21R", 611 "fr22", "fr22R", "fr23", "fr23R", 612 "fr24", "fr24R", "fr25", "fr25R", 613 "fr26", "fr26R", "fr27", "fr27R", 614 "fr28", "fr28R", "fr29", "fr29R", 615 "fr30", "fr30R", "fr31", "fr31R" 616 }; 617 if (i < 0 || i >= (sizeof (names) / sizeof (*names))) 618 return NULL; 619 else 620 return names[i]; 621 } 622 623 static const char * 624 hppa64_register_name (struct gdbarch *gdbarch, int i) 625 { 626 static char *names[] = { 627 "flags", "r1", "rp", "r3", 628 "r4", "r5", "r6", "r7", 629 "r8", "r9", "r10", "r11", 630 "r12", "r13", "r14", "r15", 631 "r16", "r17", "r18", "r19", 632 "r20", "r21", "r22", "r23", 633 "r24", "r25", "r26", "dp", 634 "ret0", "ret1", "sp", "r31", 635 "sar", "pcoqh", "pcsqh", "pcoqt", 636 "pcsqt", "eiem", "iir", "isr", 637 "ior", "ipsw", "goto", "sr4", 638 "sr0", "sr1", "sr2", "sr3", 639 "sr5", "sr6", "sr7", "cr0", 640 "cr8", "cr9", "ccr", "cr12", 641 "cr13", "cr24", "cr25", "cr26", 642 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", 643 "fpsr", "fpe1", "fpe2", "fpe3", 644 "fr4", "fr5", "fr6", "fr7", 645 "fr8", "fr9", "fr10", "fr11", 646 "fr12", "fr13", "fr14", "fr15", 647 "fr16", "fr17", "fr18", "fr19", 648 "fr20", "fr21", "fr22", "fr23", 649 "fr24", "fr25", "fr26", "fr27", 650 "fr28", "fr29", "fr30", "fr31" 651 }; 652 if (i < 0 || i >= (sizeof (names) / sizeof (*names))) 653 return NULL; 654 else 655 return names[i]; 656 } 657 658 /* Map dwarf DBX register numbers to GDB register numbers. */ 659 static int 660 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 661 { 662 /* The general registers and the sar are the same in both sets. */ 663 if (reg <= 32) 664 return reg; 665 666 /* fr4-fr31 are mapped from 72 in steps of 2. */ 667 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) 668 return HPPA64_FP4_REGNUM + (reg - 72) / 2; 669 670 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg); 671 return -1; 672 } 673 674 /* This function pushes a stack frame with arguments as part of the 675 inferior function calling mechanism. 676 677 This is the version of the function for the 32-bit PA machines, in 678 which later arguments appear at lower addresses. (The stack always 679 grows towards higher addresses.) 680 681 We simply allocate the appropriate amount of stack space and put 682 arguments into their proper slots. */ 683 684 static CORE_ADDR 685 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 686 struct regcache *regcache, CORE_ADDR bp_addr, 687 int nargs, struct value **args, CORE_ADDR sp, 688 int struct_return, CORE_ADDR struct_addr) 689 { 690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 691 692 /* Stack base address at which any pass-by-reference parameters are 693 stored. */ 694 CORE_ADDR struct_end = 0; 695 /* Stack base address at which the first parameter is stored. */ 696 CORE_ADDR param_end = 0; 697 698 /* The inner most end of the stack after all the parameters have 699 been pushed. */ 700 CORE_ADDR new_sp = 0; 701 702 /* Two passes. First pass computes the location of everything, 703 second pass writes the bytes out. */ 704 int write_pass; 705 706 /* Global pointer (r19) of the function we are trying to call. */ 707 CORE_ADDR gp; 708 709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 710 711 for (write_pass = 0; write_pass < 2; write_pass++) 712 { 713 CORE_ADDR struct_ptr = 0; 714 /* The first parameter goes into sp-36, each stack slot is 4-bytes. 715 struct_ptr is adjusted for each argument below, so the first 716 argument will end up at sp-36. */ 717 CORE_ADDR param_ptr = 32; 718 int i; 719 int small_struct = 0; 720 721 for (i = 0; i < nargs; i++) 722 { 723 struct value *arg = args[i]; 724 struct type *type = check_typedef (value_type (arg)); 725 /* The corresponding parameter that is pushed onto the 726 stack, and [possibly] passed in a register. */ 727 gdb_byte param_val[8]; 728 int param_len; 729 memset (param_val, 0, sizeof param_val); 730 if (TYPE_LENGTH (type) > 8) 731 { 732 /* Large parameter, pass by reference. Store the value 733 in "struct" area and then pass its address. */ 734 param_len = 4; 735 struct_ptr += align_up (TYPE_LENGTH (type), 8); 736 if (write_pass) 737 write_memory (struct_end - struct_ptr, value_contents (arg), 738 TYPE_LENGTH (type)); 739 store_unsigned_integer (param_val, 4, byte_order, 740 struct_end - struct_ptr); 741 } 742 else if (TYPE_CODE (type) == TYPE_CODE_INT 743 || TYPE_CODE (type) == TYPE_CODE_ENUM) 744 { 745 /* Integer value store, right aligned. "unpack_long" 746 takes care of any sign-extension problems. */ 747 param_len = align_up (TYPE_LENGTH (type), 4); 748 store_unsigned_integer (param_val, param_len, byte_order, 749 unpack_long (type, 750 value_contents (arg))); 751 } 752 else if (TYPE_CODE (type) == TYPE_CODE_FLT) 753 { 754 /* Floating point value store, right aligned. */ 755 param_len = align_up (TYPE_LENGTH (type), 4); 756 memcpy (param_val, value_contents (arg), param_len); 757 } 758 else 759 { 760 param_len = align_up (TYPE_LENGTH (type), 4); 761 762 /* Small struct value are stored right-aligned. */ 763 memcpy (param_val + param_len - TYPE_LENGTH (type), 764 value_contents (arg), TYPE_LENGTH (type)); 765 766 /* Structures of size 5, 6 and 7 bytes are special in that 767 the higher-ordered word is stored in the lower-ordered 768 argument, and even though it is a 8-byte quantity the 769 registers need not be 8-byte aligned. */ 770 if (param_len > 4 && param_len < 8) 771 small_struct = 1; 772 } 773 774 param_ptr += param_len; 775 if (param_len == 8 && !small_struct) 776 param_ptr = align_up (param_ptr, 8); 777 778 /* First 4 non-FP arguments are passed in gr26-gr23. 779 First 4 32-bit FP arguments are passed in fr4L-fr7L. 780 First 2 64-bit FP arguments are passed in fr5 and fr7. 781 782 The rest go on the stack, starting at sp-36, towards lower 783 addresses. 8-byte arguments must be aligned to a 8-byte 784 stack boundary. */ 785 if (write_pass) 786 { 787 write_memory (param_end - param_ptr, param_val, param_len); 788 789 /* There are some cases when we don't know the type 790 expected by the callee (e.g. for variadic functions), so 791 pass the parameters in both general and fp regs. */ 792 if (param_ptr <= 48) 793 { 794 int grreg = 26 - (param_ptr - 36) / 4; 795 int fpLreg = 72 + (param_ptr - 36) / 4 * 2; 796 int fpreg = 74 + (param_ptr - 32) / 8 * 4; 797 798 regcache_cooked_write (regcache, grreg, param_val); 799 regcache_cooked_write (regcache, fpLreg, param_val); 800 801 if (param_len > 4) 802 { 803 regcache_cooked_write (regcache, grreg + 1, 804 param_val + 4); 805 806 regcache_cooked_write (regcache, fpreg, param_val); 807 regcache_cooked_write (regcache, fpreg + 1, 808 param_val + 4); 809 } 810 } 811 } 812 } 813 814 /* Update the various stack pointers. */ 815 if (!write_pass) 816 { 817 struct_end = sp + align_up (struct_ptr, 64); 818 /* PARAM_PTR already accounts for all the arguments passed 819 by the user. However, the ABI mandates minimum stack 820 space allocations for outgoing arguments. The ABI also 821 mandates minimum stack alignments which we must 822 preserve. */ 823 param_end = struct_end + align_up (param_ptr, 64); 824 } 825 } 826 827 /* If a structure has to be returned, set up register 28 to hold its 828 address. */ 829 if (struct_return) 830 regcache_cooked_write_unsigned (regcache, 28, struct_addr); 831 832 gp = tdep->find_global_pointer (gdbarch, function); 833 834 if (gp != 0) 835 regcache_cooked_write_unsigned (regcache, 19, gp); 836 837 /* Set the return address. */ 838 if (!gdbarch_push_dummy_code_p (gdbarch)) 839 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); 840 841 /* Update the Stack Pointer. */ 842 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); 843 844 return param_end; 845 } 846 847 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit 848 Runtime Architecture for PA-RISC 2.0", which is distributed as part 849 as of the HP-UX Software Transition Kit (STK). This implementation 850 is based on version 3.3, dated October 6, 1997. */ 851 852 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ 853 854 static int 855 hppa64_integral_or_pointer_p (const struct type *type) 856 { 857 switch (TYPE_CODE (type)) 858 { 859 case TYPE_CODE_INT: 860 case TYPE_CODE_BOOL: 861 case TYPE_CODE_CHAR: 862 case TYPE_CODE_ENUM: 863 case TYPE_CODE_RANGE: 864 { 865 int len = TYPE_LENGTH (type); 866 return (len == 1 || len == 2 || len == 4 || len == 8); 867 } 868 case TYPE_CODE_PTR: 869 case TYPE_CODE_REF: 870 return (TYPE_LENGTH (type) == 8); 871 default: 872 break; 873 } 874 875 return 0; 876 } 877 878 /* Check whether TYPE is a "Floating Scalar Type". */ 879 880 static int 881 hppa64_floating_p (const struct type *type) 882 { 883 switch (TYPE_CODE (type)) 884 { 885 case TYPE_CODE_FLT: 886 { 887 int len = TYPE_LENGTH (type); 888 return (len == 4 || len == 8 || len == 16); 889 } 890 default: 891 break; 892 } 893 894 return 0; 895 } 896 897 /* If CODE points to a function entry address, try to look up the corresponding 898 function descriptor and return its address instead. If CODE is not a 899 function entry address, then just return it unchanged. */ 900 static CORE_ADDR 901 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) 902 { 903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 904 struct obj_section *sec, *opd; 905 906 sec = find_pc_section (code); 907 908 if (!sec) 909 return code; 910 911 /* If CODE is in a data section, assume it's already a fptr. */ 912 if (!(sec->the_bfd_section->flags & SEC_CODE)) 913 return code; 914 915 ALL_OBJFILE_OSECTIONS (sec->objfile, opd) 916 { 917 if (strcmp (opd->the_bfd_section->name, ".opd") == 0) 918 break; 919 } 920 921 if (opd < sec->objfile->sections_end) 922 { 923 CORE_ADDR addr; 924 925 for (addr = obj_section_addr (opd); 926 addr < obj_section_endaddr (opd); 927 addr += 2 * 8) 928 { 929 ULONGEST opdaddr; 930 gdb_byte tmp[8]; 931 932 if (target_read_memory (addr, tmp, sizeof (tmp))) 933 break; 934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); 935 936 if (opdaddr == code) 937 return addr - 16; 938 } 939 } 940 941 return code; 942 } 943 944 static CORE_ADDR 945 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 946 struct regcache *regcache, CORE_ADDR bp_addr, 947 int nargs, struct value **args, CORE_ADDR sp, 948 int struct_return, CORE_ADDR struct_addr) 949 { 950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 952 int i, offset = 0; 953 CORE_ADDR gp; 954 955 /* "The outgoing parameter area [...] must be aligned at a 16-byte 956 boundary." */ 957 sp = align_up (sp, 16); 958 959 for (i = 0; i < nargs; i++) 960 { 961 struct value *arg = args[i]; 962 struct type *type = value_type (arg); 963 int len = TYPE_LENGTH (type); 964 const bfd_byte *valbuf; 965 bfd_byte fptrbuf[8]; 966 int regnum; 967 968 /* "Each parameter begins on a 64-bit (8-byte) boundary." */ 969 offset = align_up (offset, 8); 970 971 if (hppa64_integral_or_pointer_p (type)) 972 { 973 /* "Integral scalar parameters smaller than 64 bits are 974 padded on the left (i.e., the value is in the 975 least-significant bits of the 64-bit storage unit, and 976 the high-order bits are undefined)." Therefore we can 977 safely sign-extend them. */ 978 if (len < 8) 979 { 980 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); 981 len = 8; 982 } 983 } 984 else if (hppa64_floating_p (type)) 985 { 986 if (len > 8) 987 { 988 /* "Quad-precision (128-bit) floating-point scalar 989 parameters are aligned on a 16-byte boundary." */ 990 offset = align_up (offset, 16); 991 992 /* "Double-extended- and quad-precision floating-point 993 parameters within the first 64 bytes of the parameter 994 list are always passed in general registers." */ 995 } 996 else 997 { 998 if (len == 4) 999 { 1000 /* "Single-precision (32-bit) floating-point scalar 1001 parameters are padded on the left with 32 bits of 1002 garbage (i.e., the floating-point value is in the 1003 least-significant 32 bits of a 64-bit storage 1004 unit)." */ 1005 offset += 4; 1006 } 1007 1008 /* "Single- and double-precision floating-point 1009 parameters in this area are passed according to the 1010 available formal parameter information in a function 1011 prototype. [...] If no prototype is in scope, 1012 floating-point parameters must be passed both in the 1013 corresponding general registers and in the 1014 corresponding floating-point registers." */ 1015 regnum = HPPA64_FP4_REGNUM + offset / 8; 1016 1017 if (regnum < HPPA64_FP4_REGNUM + 8) 1018 { 1019 /* "Single-precision floating-point parameters, when 1020 passed in floating-point registers, are passed in 1021 the right halves of the floating point registers; 1022 the left halves are unused." */ 1023 regcache_cooked_write_part (regcache, regnum, offset % 8, 1024 len, value_contents (arg)); 1025 } 1026 } 1027 } 1028 else 1029 { 1030 if (len > 8) 1031 { 1032 /* "Aggregates larger than 8 bytes are aligned on a 1033 16-byte boundary, possibly leaving an unused argument 1034 slot, which is filled with garbage. If necessary, 1035 they are padded on the right (with garbage), to a 1036 multiple of 8 bytes." */ 1037 offset = align_up (offset, 16); 1038 } 1039 } 1040 1041 /* If we are passing a function pointer, make sure we pass a function 1042 descriptor instead of the function entry address. */ 1043 if (TYPE_CODE (type) == TYPE_CODE_PTR 1044 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) 1045 { 1046 ULONGEST codeptr, fptr; 1047 1048 codeptr = unpack_long (type, value_contents (arg)); 1049 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); 1050 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, 1051 fptr); 1052 valbuf = fptrbuf; 1053 } 1054 else 1055 { 1056 valbuf = value_contents (arg); 1057 } 1058 1059 /* Always store the argument in memory. */ 1060 write_memory (sp + offset, valbuf, len); 1061 1062 regnum = HPPA_ARG0_REGNUM - offset / 8; 1063 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) 1064 { 1065 regcache_cooked_write_part (regcache, regnum, 1066 offset % 8, min (len, 8), valbuf); 1067 offset += min (len, 8); 1068 valbuf += min (len, 8); 1069 len -= min (len, 8); 1070 regnum--; 1071 } 1072 1073 offset += len; 1074 } 1075 1076 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ 1077 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); 1078 1079 /* Allocate the outgoing parameter area. Make sure the outgoing 1080 parameter area is multiple of 16 bytes in length. */ 1081 sp += max (align_up (offset, 16), 64); 1082 1083 /* Allocate 32-bytes of scratch space. The documentation doesn't 1084 mention this, but it seems to be needed. */ 1085 sp += 32; 1086 1087 /* Allocate the frame marker area. */ 1088 sp += 16; 1089 1090 /* If a structure has to be returned, set up GR 28 (%ret0) to hold 1091 its address. */ 1092 if (struct_return) 1093 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); 1094 1095 /* Set up GR27 (%dp) to hold the global pointer (gp). */ 1096 gp = tdep->find_global_pointer (gdbarch, function); 1097 if (gp != 0) 1098 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); 1099 1100 /* Set up GR2 (%rp) to hold the return pointer (rp). */ 1101 if (!gdbarch_push_dummy_code_p (gdbarch)) 1102 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); 1103 1104 /* Set up GR30 to hold the stack pointer (sp). */ 1105 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); 1106 1107 return sp; 1108 } 1109 1110 1111 /* Handle 32/64-bit struct return conventions. */ 1112 1113 static enum return_value_convention 1114 hppa32_return_value (struct gdbarch *gdbarch, struct value *function, 1115 struct type *type, struct regcache *regcache, 1116 gdb_byte *readbuf, const gdb_byte *writebuf) 1117 { 1118 if (TYPE_LENGTH (type) <= 2 * 4) 1119 { 1120 /* The value always lives in the right hand end of the register 1121 (or register pair)? */ 1122 int b; 1123 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; 1124 int part = TYPE_LENGTH (type) % 4; 1125 /* The left hand register contains only part of the value, 1126 transfer that first so that the rest can be xfered as entire 1127 4-byte registers. */ 1128 if (part > 0) 1129 { 1130 if (readbuf != NULL) 1131 regcache_cooked_read_part (regcache, reg, 4 - part, 1132 part, readbuf); 1133 if (writebuf != NULL) 1134 regcache_cooked_write_part (regcache, reg, 4 - part, 1135 part, writebuf); 1136 reg++; 1137 } 1138 /* Now transfer the remaining register values. */ 1139 for (b = part; b < TYPE_LENGTH (type); b += 4) 1140 { 1141 if (readbuf != NULL) 1142 regcache_cooked_read (regcache, reg, readbuf + b); 1143 if (writebuf != NULL) 1144 regcache_cooked_write (regcache, reg, writebuf + b); 1145 reg++; 1146 } 1147 return RETURN_VALUE_REGISTER_CONVENTION; 1148 } 1149 else 1150 return RETURN_VALUE_STRUCT_CONVENTION; 1151 } 1152 1153 static enum return_value_convention 1154 hppa64_return_value (struct gdbarch *gdbarch, struct value *function, 1155 struct type *type, struct regcache *regcache, 1156 gdb_byte *readbuf, const gdb_byte *writebuf) 1157 { 1158 int len = TYPE_LENGTH (type); 1159 int regnum, offset; 1160 1161 if (len > 16) 1162 { 1163 /* All return values larget than 128 bits must be aggregate 1164 return values. */ 1165 gdb_assert (!hppa64_integral_or_pointer_p (type)); 1166 gdb_assert (!hppa64_floating_p (type)); 1167 1168 /* "Aggregate return values larger than 128 bits are returned in 1169 a buffer allocated by the caller. The address of the buffer 1170 must be passed in GR 28." */ 1171 return RETURN_VALUE_STRUCT_CONVENTION; 1172 } 1173 1174 if (hppa64_integral_or_pointer_p (type)) 1175 { 1176 /* "Integral return values are returned in GR 28. Values 1177 smaller than 64 bits are padded on the left (with garbage)." */ 1178 regnum = HPPA_RET0_REGNUM; 1179 offset = 8 - len; 1180 } 1181 else if (hppa64_floating_p (type)) 1182 { 1183 if (len > 8) 1184 { 1185 /* "Double-extended- and quad-precision floating-point 1186 values are returned in GRs 28 and 29. The sign, 1187 exponent, and most-significant bits of the mantissa are 1188 returned in GR 28; the least-significant bits of the 1189 mantissa are passed in GR 29. For double-extended 1190 precision values, GR 29 is padded on the right with 48 1191 bits of garbage." */ 1192 regnum = HPPA_RET0_REGNUM; 1193 offset = 0; 1194 } 1195 else 1196 { 1197 /* "Single-precision and double-precision floating-point 1198 return values are returned in FR 4R (single precision) or 1199 FR 4 (double-precision)." */ 1200 regnum = HPPA64_FP4_REGNUM; 1201 offset = 8 - len; 1202 } 1203 } 1204 else 1205 { 1206 /* "Aggregate return values up to 64 bits in size are returned 1207 in GR 28. Aggregates smaller than 64 bits are left aligned 1208 in the register; the pad bits on the right are undefined." 1209 1210 "Aggregate return values between 65 and 128 bits are returned 1211 in GRs 28 and 29. The first 64 bits are placed in GR 28, and 1212 the remaining bits are placed, left aligned, in GR 29. The 1213 pad bits on the right of GR 29 (if any) are undefined." */ 1214 regnum = HPPA_RET0_REGNUM; 1215 offset = 0; 1216 } 1217 1218 if (readbuf) 1219 { 1220 while (len > 0) 1221 { 1222 regcache_cooked_read_part (regcache, regnum, offset, 1223 min (len, 8), readbuf); 1224 readbuf += min (len, 8); 1225 len -= min (len, 8); 1226 regnum++; 1227 } 1228 } 1229 1230 if (writebuf) 1231 { 1232 while (len > 0) 1233 { 1234 regcache_cooked_write_part (regcache, regnum, offset, 1235 min (len, 8), writebuf); 1236 writebuf += min (len, 8); 1237 len -= min (len, 8); 1238 regnum++; 1239 } 1240 } 1241 1242 return RETURN_VALUE_REGISTER_CONVENTION; 1243 } 1244 1245 1246 static CORE_ADDR 1247 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, 1248 struct target_ops *targ) 1249 { 1250 if (addr & 2) 1251 { 1252 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; 1253 CORE_ADDR plabel = addr & ~3; 1254 return read_memory_typed_address (plabel, func_ptr_type); 1255 } 1256 1257 return addr; 1258 } 1259 1260 static CORE_ADDR 1261 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 1262 { 1263 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ 1264 and not _bit_)! */ 1265 return align_up (addr, 64); 1266 } 1267 1268 /* Force all frames to 16-byte alignment. Better safe than sorry. */ 1269 1270 static CORE_ADDR 1271 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 1272 { 1273 /* Just always 16-byte align. */ 1274 return align_up (addr, 16); 1275 } 1276 1277 CORE_ADDR 1278 hppa_read_pc (struct regcache *regcache) 1279 { 1280 ULONGEST ipsw; 1281 ULONGEST pc; 1282 1283 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw); 1284 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc); 1285 1286 /* If the current instruction is nullified, then we are effectively 1287 still executing the previous instruction. Pretend we are still 1288 there. This is needed when single stepping; if the nullified 1289 instruction is on a different line, we don't want GDB to think 1290 we've stepped onto that line. */ 1291 if (ipsw & 0x00200000) 1292 pc -= 4; 1293 1294 return pc & ~0x3; 1295 } 1296 1297 void 1298 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) 1299 { 1300 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); 1301 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); 1302 } 1303 1304 /* For the given instruction (INST), return any adjustment it makes 1305 to the stack pointer or zero for no adjustment. 1306 1307 This only handles instructions commonly found in prologues. */ 1308 1309 static int 1310 prologue_inst_adjust_sp (unsigned long inst) 1311 { 1312 /* This must persist across calls. */ 1313 static int save_high21; 1314 1315 /* The most common way to perform a stack adjustment ldo X(sp),sp */ 1316 if ((inst & 0xffffc000) == 0x37de0000) 1317 return hppa_extract_14 (inst); 1318 1319 /* stwm X,D(sp) */ 1320 if ((inst & 0xffe00000) == 0x6fc00000) 1321 return hppa_extract_14 (inst); 1322 1323 /* std,ma X,D(sp) */ 1324 if ((inst & 0xffe00008) == 0x73c00008) 1325 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); 1326 1327 /* addil high21,%r30; ldo low11,(%r1),%r30) 1328 save high bits in save_high21 for later use. */ 1329 if ((inst & 0xffe00000) == 0x2bc00000) 1330 { 1331 save_high21 = hppa_extract_21 (inst); 1332 return 0; 1333 } 1334 1335 if ((inst & 0xffff0000) == 0x343e0000) 1336 return save_high21 + hppa_extract_14 (inst); 1337 1338 /* fstws as used by the HP compilers. */ 1339 if ((inst & 0xffffffe0) == 0x2fd01220) 1340 return hppa_extract_5_load (inst); 1341 1342 /* No adjustment. */ 1343 return 0; 1344 } 1345 1346 /* Return nonzero if INST is a branch of some kind, else return zero. */ 1347 1348 static int 1349 is_branch (unsigned long inst) 1350 { 1351 switch (inst >> 26) 1352 { 1353 case 0x20: 1354 case 0x21: 1355 case 0x22: 1356 case 0x23: 1357 case 0x27: 1358 case 0x28: 1359 case 0x29: 1360 case 0x2a: 1361 case 0x2b: 1362 case 0x2f: 1363 case 0x30: 1364 case 0x31: 1365 case 0x32: 1366 case 0x33: 1367 case 0x38: 1368 case 0x39: 1369 case 0x3a: 1370 case 0x3b: 1371 return 1; 1372 1373 default: 1374 return 0; 1375 } 1376 } 1377 1378 /* Return the register number for a GR which is saved by INST or 1379 zero it INST does not save a GR. */ 1380 1381 static int 1382 inst_saves_gr (unsigned long inst) 1383 { 1384 /* Does it look like a stw? */ 1385 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b 1386 || (inst >> 26) == 0x1f 1387 || ((inst >> 26) == 0x1f 1388 && ((inst >> 6) == 0xa))) 1389 return hppa_extract_5R_store (inst); 1390 1391 /* Does it look like a std? */ 1392 if ((inst >> 26) == 0x1c 1393 || ((inst >> 26) == 0x03 1394 && ((inst >> 6) & 0xf) == 0xb)) 1395 return hppa_extract_5R_store (inst); 1396 1397 /* Does it look like a stwm? GCC & HPC may use this in prologues. */ 1398 if ((inst >> 26) == 0x1b) 1399 return hppa_extract_5R_store (inst); 1400 1401 /* Does it look like sth or stb? HPC versions 9.0 and later use these 1402 too. */ 1403 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 1404 || ((inst >> 26) == 0x3 1405 && (((inst >> 6) & 0xf) == 0x8 1406 || (inst >> 6) & 0xf) == 0x9)) 1407 return hppa_extract_5R_store (inst); 1408 1409 return 0; 1410 } 1411 1412 /* Return the register number for a FR which is saved by INST or 1413 zero it INST does not save a FR. 1414 1415 Note we only care about full 64bit register stores (that's the only 1416 kind of stores the prologue will use). 1417 1418 FIXME: What about argument stores with the HP compiler in ANSI mode? */ 1419 1420 static int 1421 inst_saves_fr (unsigned long inst) 1422 { 1423 /* Is this an FSTD? */ 1424 if ((inst & 0xfc00dfc0) == 0x2c001200) 1425 return hppa_extract_5r_store (inst); 1426 if ((inst & 0xfc000002) == 0x70000002) 1427 return hppa_extract_5R_store (inst); 1428 /* Is this an FSTW? */ 1429 if ((inst & 0xfc00df80) == 0x24001200) 1430 return hppa_extract_5r_store (inst); 1431 if ((inst & 0xfc000002) == 0x7c000000) 1432 return hppa_extract_5R_store (inst); 1433 return 0; 1434 } 1435 1436 /* Advance PC across any function entry prologue instructions 1437 to reach some "real" code. 1438 1439 Use information in the unwind table to determine what exactly should 1440 be in the prologue. */ 1441 1442 1443 static CORE_ADDR 1444 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, 1445 int stop_before_branch) 1446 { 1447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1448 gdb_byte buf[4]; 1449 CORE_ADDR orig_pc = pc; 1450 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; 1451 unsigned long args_stored, status, i, restart_gr, restart_fr; 1452 struct unwind_table_entry *u; 1453 int final_iteration; 1454 1455 restart_gr = 0; 1456 restart_fr = 0; 1457 1458 restart: 1459 u = find_unwind_entry (pc); 1460 if (!u) 1461 return pc; 1462 1463 /* If we are not at the beginning of a function, then return now. */ 1464 if ((pc & ~0x3) != u->region_start) 1465 return pc; 1466 1467 /* This is how much of a frame adjustment we need to account for. */ 1468 stack_remaining = u->Total_frame_size << 3; 1469 1470 /* Magic register saves we want to know about. */ 1471 save_rp = u->Save_RP; 1472 save_sp = u->Save_SP; 1473 1474 /* An indication that args may be stored into the stack. Unfortunately 1475 the HPUX compilers tend to set this in cases where no args were 1476 stored too!. */ 1477 args_stored = 1; 1478 1479 /* Turn the Entry_GR field into a bitmask. */ 1480 save_gr = 0; 1481 for (i = 3; i < u->Entry_GR + 3; i++) 1482 { 1483 /* Frame pointer gets saved into a special location. */ 1484 if (u->Save_SP && i == HPPA_FP_REGNUM) 1485 continue; 1486 1487 save_gr |= (1 << i); 1488 } 1489 save_gr &= ~restart_gr; 1490 1491 /* Turn the Entry_FR field into a bitmask too. */ 1492 save_fr = 0; 1493 for (i = 12; i < u->Entry_FR + 12; i++) 1494 save_fr |= (1 << i); 1495 save_fr &= ~restart_fr; 1496 1497 final_iteration = 0; 1498 1499 /* Loop until we find everything of interest or hit a branch. 1500 1501 For unoptimized GCC code and for any HP CC code this will never ever 1502 examine any user instructions. 1503 1504 For optimzied GCC code we're faced with problems. GCC will schedule 1505 its prologue and make prologue instructions available for delay slot 1506 filling. The end result is user code gets mixed in with the prologue 1507 and a prologue instruction may be in the delay slot of the first branch 1508 or call. 1509 1510 Some unexpected things are expected with debugging optimized code, so 1511 we allow this routine to walk past user instructions in optimized 1512 GCC code. */ 1513 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 1514 || args_stored) 1515 { 1516 unsigned int reg_num; 1517 unsigned long old_stack_remaining, old_save_gr, old_save_fr; 1518 unsigned long old_save_rp, old_save_sp, next_inst; 1519 1520 /* Save copies of all the triggers so we can compare them later 1521 (only for HPC). */ 1522 old_save_gr = save_gr; 1523 old_save_fr = save_fr; 1524 old_save_rp = save_rp; 1525 old_save_sp = save_sp; 1526 old_stack_remaining = stack_remaining; 1527 1528 status = target_read_memory (pc, buf, 4); 1529 inst = extract_unsigned_integer (buf, 4, byte_order); 1530 1531 /* Yow! */ 1532 if (status != 0) 1533 return pc; 1534 1535 /* Note the interesting effects of this instruction. */ 1536 stack_remaining -= prologue_inst_adjust_sp (inst); 1537 1538 /* There are limited ways to store the return pointer into the 1539 stack. */ 1540 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) 1541 save_rp = 0; 1542 1543 /* These are the only ways we save SP into the stack. At this time 1544 the HP compilers never bother to save SP into the stack. */ 1545 if ((inst & 0xffffc000) == 0x6fc10000 1546 || (inst & 0xffffc00c) == 0x73c10008) 1547 save_sp = 0; 1548 1549 /* Are we loading some register with an offset from the argument 1550 pointer? */ 1551 if ((inst & 0xffe00000) == 0x37a00000 1552 || (inst & 0xffffffe0) == 0x081d0240) 1553 { 1554 pc += 4; 1555 continue; 1556 } 1557 1558 /* Account for general and floating-point register saves. */ 1559 reg_num = inst_saves_gr (inst); 1560 save_gr &= ~(1 << reg_num); 1561 1562 /* Ugh. Also account for argument stores into the stack. 1563 Unfortunately args_stored only tells us that some arguments 1564 where stored into the stack. Not how many or what kind! 1565 1566 This is a kludge as on the HP compiler sets this bit and it 1567 never does prologue scheduling. So once we see one, skip past 1568 all of them. We have similar code for the fp arg stores below. 1569 1570 FIXME. Can still die if we have a mix of GR and FR argument 1571 stores! */ 1572 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) 1573 && reg_num <= 26) 1574 { 1575 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) 1576 && reg_num <= 26) 1577 { 1578 pc += 4; 1579 status = target_read_memory (pc, buf, 4); 1580 inst = extract_unsigned_integer (buf, 4, byte_order); 1581 if (status != 0) 1582 return pc; 1583 reg_num = inst_saves_gr (inst); 1584 } 1585 args_stored = 0; 1586 continue; 1587 } 1588 1589 reg_num = inst_saves_fr (inst); 1590 save_fr &= ~(1 << reg_num); 1591 1592 status = target_read_memory (pc + 4, buf, 4); 1593 next_inst = extract_unsigned_integer (buf, 4, byte_order); 1594 1595 /* Yow! */ 1596 if (status != 0) 1597 return pc; 1598 1599 /* We've got to be read to handle the ldo before the fp register 1600 save. */ 1601 if ((inst & 0xfc000000) == 0x34000000 1602 && inst_saves_fr (next_inst) >= 4 1603 && inst_saves_fr (next_inst) 1604 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) 1605 { 1606 /* So we drop into the code below in a reasonable state. */ 1607 reg_num = inst_saves_fr (next_inst); 1608 pc -= 4; 1609 } 1610 1611 /* Ugh. Also account for argument stores into the stack. 1612 This is a kludge as on the HP compiler sets this bit and it 1613 never does prologue scheduling. So once we see one, skip past 1614 all of them. */ 1615 if (reg_num >= 4 1616 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) 1617 { 1618 while (reg_num >= 4 1619 && reg_num 1620 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) 1621 { 1622 pc += 8; 1623 status = target_read_memory (pc, buf, 4); 1624 inst = extract_unsigned_integer (buf, 4, byte_order); 1625 if (status != 0) 1626 return pc; 1627 if ((inst & 0xfc000000) != 0x34000000) 1628 break; 1629 status = target_read_memory (pc + 4, buf, 4); 1630 next_inst = extract_unsigned_integer (buf, 4, byte_order); 1631 if (status != 0) 1632 return pc; 1633 reg_num = inst_saves_fr (next_inst); 1634 } 1635 args_stored = 0; 1636 continue; 1637 } 1638 1639 /* Quit if we hit any kind of branch. This can happen if a prologue 1640 instruction is in the delay slot of the first call/branch. */ 1641 if (is_branch (inst) && stop_before_branch) 1642 break; 1643 1644 /* What a crock. The HP compilers set args_stored even if no 1645 arguments were stored into the stack (boo hiss). This could 1646 cause this code to then skip a bunch of user insns (up to the 1647 first branch). 1648 1649 To combat this we try to identify when args_stored was bogusly 1650 set and clear it. We only do this when args_stored is nonzero, 1651 all other resources are accounted for, and nothing changed on 1652 this pass. */ 1653 if (args_stored 1654 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) 1655 && old_save_gr == save_gr && old_save_fr == save_fr 1656 && old_save_rp == save_rp && old_save_sp == save_sp 1657 && old_stack_remaining == stack_remaining) 1658 break; 1659 1660 /* Bump the PC. */ 1661 pc += 4; 1662 1663 /* !stop_before_branch, so also look at the insn in the delay slot 1664 of the branch. */ 1665 if (final_iteration) 1666 break; 1667 if (is_branch (inst)) 1668 final_iteration = 1; 1669 } 1670 1671 /* We've got a tenative location for the end of the prologue. However 1672 because of limitations in the unwind descriptor mechanism we may 1673 have went too far into user code looking for the save of a register 1674 that does not exist. So, if there registers we expected to be saved 1675 but never were, mask them out and restart. 1676 1677 This should only happen in optimized code, and should be very rare. */ 1678 if (save_gr || (save_fr && !(restart_fr || restart_gr))) 1679 { 1680 pc = orig_pc; 1681 restart_gr = save_gr; 1682 restart_fr = save_fr; 1683 goto restart; 1684 } 1685 1686 return pc; 1687 } 1688 1689 1690 /* Return the address of the PC after the last prologue instruction if 1691 we can determine it from the debug symbols. Else return zero. */ 1692 1693 static CORE_ADDR 1694 after_prologue (CORE_ADDR pc) 1695 { 1696 struct symtab_and_line sal; 1697 CORE_ADDR func_addr, func_end; 1698 1699 /* If we can not find the symbol in the partial symbol table, then 1700 there is no hope we can determine the function's start address 1701 with this code. */ 1702 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 1703 return 0; 1704 1705 /* Get the line associated with FUNC_ADDR. */ 1706 sal = find_pc_line (func_addr, 0); 1707 1708 /* There are only two cases to consider. First, the end of the source line 1709 is within the function bounds. In that case we return the end of the 1710 source line. Second is the end of the source line extends beyond the 1711 bounds of the current function. We need to use the slow code to 1712 examine instructions in that case. 1713 1714 Anything else is simply a bug elsewhere. Fixing it here is absolutely 1715 the wrong thing to do. In fact, it should be entirely possible for this 1716 function to always return zero since the slow instruction scanning code 1717 is supposed to *always* work. If it does not, then it is a bug. */ 1718 if (sal.end < func_end) 1719 return sal.end; 1720 else 1721 return 0; 1722 } 1723 1724 /* To skip prologues, I use this predicate. Returns either PC itself 1725 if the code at PC does not look like a function prologue; otherwise 1726 returns an address that (if we're lucky) follows the prologue. 1727 1728 hppa_skip_prologue is called by gdb to place a breakpoint in a function. 1729 It doesn't necessarily skips all the insns in the prologue. In fact 1730 we might not want to skip all the insns because a prologue insn may 1731 appear in the delay slot of the first branch, and we don't want to 1732 skip over the branch in that case. */ 1733 1734 static CORE_ADDR 1735 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1736 { 1737 CORE_ADDR post_prologue_pc; 1738 1739 /* See if we can determine the end of the prologue via the symbol table. 1740 If so, then return either PC, or the PC after the prologue, whichever 1741 is greater. */ 1742 1743 post_prologue_pc = after_prologue (pc); 1744 1745 /* If after_prologue returned a useful address, then use it. Else 1746 fall back on the instruction skipping code. 1747 1748 Some folks have claimed this causes problems because the breakpoint 1749 may be the first instruction of the prologue. If that happens, then 1750 the instruction skipping code has a bug that needs to be fixed. */ 1751 if (post_prologue_pc != 0) 1752 return max (pc, post_prologue_pc); 1753 else 1754 return (skip_prologue_hard_way (gdbarch, pc, 1)); 1755 } 1756 1757 /* Return an unwind entry that falls within the frame's code block. */ 1758 1759 static struct unwind_table_entry * 1760 hppa_find_unwind_entry_in_block (struct frame_info *this_frame) 1761 { 1762 CORE_ADDR pc = get_frame_address_in_block (this_frame); 1763 1764 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the 1765 result of get_frame_address_in_block implies a problem. 1766 The bits should have been removed earlier, before the return 1767 value of gdbarch_unwind_pc. That might be happening already; 1768 if it isn't, it should be fixed. Then this call can be 1769 removed. */ 1770 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); 1771 return find_unwind_entry (pc); 1772 } 1773 1774 struct hppa_frame_cache 1775 { 1776 CORE_ADDR base; 1777 struct trad_frame_saved_reg *saved_regs; 1778 }; 1779 1780 static struct hppa_frame_cache * 1781 hppa_frame_cache (struct frame_info *this_frame, void **this_cache) 1782 { 1783 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1785 int word_size = gdbarch_ptr_bit (gdbarch) / 8; 1786 struct hppa_frame_cache *cache; 1787 long saved_gr_mask; 1788 long saved_fr_mask; 1789 long frame_size; 1790 struct unwind_table_entry *u; 1791 CORE_ADDR prologue_end; 1792 int fp_in_r1 = 0; 1793 int i; 1794 1795 if (hppa_debug) 1796 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", 1797 frame_relative_level(this_frame)); 1798 1799 if ((*this_cache) != NULL) 1800 { 1801 if (hppa_debug) 1802 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", 1803 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); 1804 return (*this_cache); 1805 } 1806 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); 1807 (*this_cache) = cache; 1808 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); 1809 1810 /* Yow! */ 1811 u = hppa_find_unwind_entry_in_block (this_frame); 1812 if (!u) 1813 { 1814 if (hppa_debug) 1815 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); 1816 return (*this_cache); 1817 } 1818 1819 /* Turn the Entry_GR field into a bitmask. */ 1820 saved_gr_mask = 0; 1821 for (i = 3; i < u->Entry_GR + 3; i++) 1822 { 1823 /* Frame pointer gets saved into a special location. */ 1824 if (u->Save_SP && i == HPPA_FP_REGNUM) 1825 continue; 1826 1827 saved_gr_mask |= (1 << i); 1828 } 1829 1830 /* Turn the Entry_FR field into a bitmask too. */ 1831 saved_fr_mask = 0; 1832 for (i = 12; i < u->Entry_FR + 12; i++) 1833 saved_fr_mask |= (1 << i); 1834 1835 /* Loop until we find everything of interest or hit a branch. 1836 1837 For unoptimized GCC code and for any HP CC code this will never ever 1838 examine any user instructions. 1839 1840 For optimized GCC code we're faced with problems. GCC will schedule 1841 its prologue and make prologue instructions available for delay slot 1842 filling. The end result is user code gets mixed in with the prologue 1843 and a prologue instruction may be in the delay slot of the first branch 1844 or call. 1845 1846 Some unexpected things are expected with debugging optimized code, so 1847 we allow this routine to walk past user instructions in optimized 1848 GCC code. */ 1849 { 1850 int final_iteration = 0; 1851 CORE_ADDR pc, start_pc, end_pc; 1852 int looking_for_sp = u->Save_SP; 1853 int looking_for_rp = u->Save_RP; 1854 int fp_loc = -1; 1855 1856 /* We have to use skip_prologue_hard_way instead of just 1857 skip_prologue_using_sal, in case we stepped into a function without 1858 symbol information. hppa_skip_prologue also bounds the returned 1859 pc by the passed in pc, so it will not return a pc in the next 1860 function. 1861 1862 We used to call hppa_skip_prologue to find the end of the prologue, 1863 but if some non-prologue instructions get scheduled into the prologue, 1864 and the program is compiled with debug information, the "easy" way 1865 in hppa_skip_prologue will return a prologue end that is too early 1866 for us to notice any potential frame adjustments. */ 1867 1868 /* We used to use get_frame_func to locate the beginning of the 1869 function to pass to skip_prologue. However, when objects are 1870 compiled without debug symbols, get_frame_func can return the wrong 1871 function (or 0). We can do better than that by using unwind records. 1872 This only works if the Region_description of the unwind record 1873 indicates that it includes the entry point of the function. 1874 HP compilers sometimes generate unwind records for regions that 1875 do not include the entry or exit point of a function. GNU tools 1876 do not do this. */ 1877 1878 if ((u->Region_description & 0x2) == 0) 1879 start_pc = u->region_start; 1880 else 1881 start_pc = get_frame_func (this_frame); 1882 1883 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); 1884 end_pc = get_frame_pc (this_frame); 1885 1886 if (prologue_end != 0 && end_pc > prologue_end) 1887 end_pc = prologue_end; 1888 1889 frame_size = 0; 1890 1891 for (pc = start_pc; 1892 ((saved_gr_mask || saved_fr_mask 1893 || looking_for_sp || looking_for_rp 1894 || frame_size < (u->Total_frame_size << 3)) 1895 && pc < end_pc); 1896 pc += 4) 1897 { 1898 int reg; 1899 gdb_byte buf4[4]; 1900 long inst; 1901 1902 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) 1903 { 1904 error (_("Cannot read instruction at %s."), 1905 paddress (gdbarch, pc)); 1906 return (*this_cache); 1907 } 1908 1909 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); 1910 1911 /* Note the interesting effects of this instruction. */ 1912 frame_size += prologue_inst_adjust_sp (inst); 1913 1914 /* There are limited ways to store the return pointer into the 1915 stack. */ 1916 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ 1917 { 1918 looking_for_rp = 0; 1919 cache->saved_regs[HPPA_RP_REGNUM].addr = -20; 1920 } 1921 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ 1922 { 1923 looking_for_rp = 0; 1924 cache->saved_regs[HPPA_RP_REGNUM].addr = -24; 1925 } 1926 else if (inst == 0x0fc212c1 1927 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ 1928 { 1929 looking_for_rp = 0; 1930 cache->saved_regs[HPPA_RP_REGNUM].addr = -16; 1931 } 1932 1933 /* Check to see if we saved SP into the stack. This also 1934 happens to indicate the location of the saved frame 1935 pointer. */ 1936 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ 1937 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ 1938 { 1939 looking_for_sp = 0; 1940 cache->saved_regs[HPPA_FP_REGNUM].addr = 0; 1941 } 1942 else if (inst == 0x08030241) /* copy %r3, %r1 */ 1943 { 1944 fp_in_r1 = 1; 1945 } 1946 1947 /* Account for general and floating-point register saves. */ 1948 reg = inst_saves_gr (inst); 1949 if (reg >= 3 && reg <= 18 1950 && (!u->Save_SP || reg != HPPA_FP_REGNUM)) 1951 { 1952 saved_gr_mask &= ~(1 << reg); 1953 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) 1954 /* stwm with a positive displacement is a _post_ 1955 _modify_. */ 1956 cache->saved_regs[reg].addr = 0; 1957 else if ((inst & 0xfc00000c) == 0x70000008) 1958 /* A std has explicit post_modify forms. */ 1959 cache->saved_regs[reg].addr = 0; 1960 else 1961 { 1962 CORE_ADDR offset; 1963 1964 if ((inst >> 26) == 0x1c) 1965 offset = (inst & 0x1 ? -1 << 13 : 0) 1966 | (((inst >> 4) & 0x3ff) << 3); 1967 else if ((inst >> 26) == 0x03) 1968 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); 1969 else 1970 offset = hppa_extract_14 (inst); 1971 1972 /* Handle code with and without frame pointers. */ 1973 if (u->Save_SP) 1974 cache->saved_regs[reg].addr = offset; 1975 else 1976 cache->saved_regs[reg].addr 1977 = (u->Total_frame_size << 3) + offset; 1978 } 1979 } 1980 1981 /* GCC handles callee saved FP regs a little differently. 1982 1983 It emits an instruction to put the value of the start of 1984 the FP store area into %r1. It then uses fstds,ma with a 1985 basereg of %r1 for the stores. 1986 1987 HP CC emits them at the current stack pointer modifying the 1988 stack pointer as it stores each register. */ 1989 1990 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ 1991 if ((inst & 0xffffc000) == 0x34610000 1992 || (inst & 0xffffc000) == 0x37c10000) 1993 fp_loc = hppa_extract_14 (inst); 1994 1995 reg = inst_saves_fr (inst); 1996 if (reg >= 12 && reg <= 21) 1997 { 1998 /* Note +4 braindamage below is necessary because the FP 1999 status registers are internally 8 registers rather than 2000 the expected 4 registers. */ 2001 saved_fr_mask &= ~(1 << reg); 2002 if (fp_loc == -1) 2003 { 2004 /* 1st HP CC FP register store. After this 2005 instruction we've set enough state that the GCC and 2006 HPCC code are both handled in the same manner. */ 2007 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; 2008 fp_loc = 8; 2009 } 2010 else 2011 { 2012 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; 2013 fp_loc += 8; 2014 } 2015 } 2016 2017 /* Quit if we hit any kind of branch the previous iteration. */ 2018 if (final_iteration) 2019 break; 2020 /* We want to look precisely one instruction beyond the branch 2021 if we have not found everything yet. */ 2022 if (is_branch (inst)) 2023 final_iteration = 1; 2024 } 2025 } 2026 2027 { 2028 /* The frame base always represents the value of %sp at entry to 2029 the current function (and is thus equivalent to the "saved" 2030 stack pointer. */ 2031 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, 2032 HPPA_SP_REGNUM); 2033 CORE_ADDR fp; 2034 2035 if (hppa_debug) 2036 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " 2037 "prologue_end=%s) ", 2038 paddress (gdbarch, this_sp), 2039 paddress (gdbarch, get_frame_pc (this_frame)), 2040 paddress (gdbarch, prologue_end)); 2041 2042 /* Check to see if a frame pointer is available, and use it for 2043 frame unwinding if it is. 2044 2045 There are some situations where we need to rely on the frame 2046 pointer to do stack unwinding. For example, if a function calls 2047 alloca (), the stack pointer can get adjusted inside the body of 2048 the function. In this case, the ABI requires that the compiler 2049 maintain a frame pointer for the function. 2050 2051 The unwind record has a flag (alloca_frame) that indicates that 2052 a function has a variable frame; unfortunately, gcc/binutils 2053 does not set this flag. Instead, whenever a frame pointer is used 2054 and saved on the stack, the Save_SP flag is set. We use this to 2055 decide whether to use the frame pointer for unwinding. 2056 2057 TODO: For the HP compiler, maybe we should use the alloca_frame flag 2058 instead of Save_SP. */ 2059 2060 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); 2061 2062 if (u->alloca_frame) 2063 fp -= u->Total_frame_size << 3; 2064 2065 if (get_frame_pc (this_frame) >= prologue_end 2066 && (u->Save_SP || u->alloca_frame) && fp != 0) 2067 { 2068 cache->base = fp; 2069 2070 if (hppa_debug) 2071 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", 2072 paddress (gdbarch, cache->base)); 2073 } 2074 else if (u->Save_SP 2075 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) 2076 { 2077 /* Both we're expecting the SP to be saved and the SP has been 2078 saved. The entry SP value is saved at this frame's SP 2079 address. */ 2080 cache->base = read_memory_integer (this_sp, word_size, byte_order); 2081 2082 if (hppa_debug) 2083 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", 2084 paddress (gdbarch, cache->base)); 2085 } 2086 else 2087 { 2088 /* The prologue has been slowly allocating stack space. Adjust 2089 the SP back. */ 2090 cache->base = this_sp - frame_size; 2091 if (hppa_debug) 2092 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", 2093 paddress (gdbarch, cache->base)); 2094 2095 } 2096 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); 2097 } 2098 2099 /* The PC is found in the "return register", "Millicode" uses "r31" 2100 as the return register while normal code uses "rp". */ 2101 if (u->Millicode) 2102 { 2103 if (trad_frame_addr_p (cache->saved_regs, 31)) 2104 { 2105 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; 2106 if (hppa_debug) 2107 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); 2108 } 2109 else 2110 { 2111 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); 2112 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); 2113 if (hppa_debug) 2114 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); 2115 } 2116 } 2117 else 2118 { 2119 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) 2120 { 2121 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = 2122 cache->saved_regs[HPPA_RP_REGNUM]; 2123 if (hppa_debug) 2124 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); 2125 } 2126 else 2127 { 2128 ULONGEST rp = get_frame_register_unsigned (this_frame, 2129 HPPA_RP_REGNUM); 2130 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); 2131 if (hppa_debug) 2132 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); 2133 } 2134 } 2135 2136 /* If Save_SP is set, then we expect the frame pointer to be saved in the 2137 frame. However, there is a one-insn window where we haven't saved it 2138 yet, but we've already clobbered it. Detect this case and fix it up. 2139 2140 The prologue sequence for frame-pointer functions is: 2141 0: stw %rp, -20(%sp) 2142 4: copy %r3, %r1 2143 8: copy %sp, %r3 2144 c: stw,ma %r1, XX(%sp) 2145 2146 So if we are at offset c, the r3 value that we want is not yet saved 2147 on the stack, but it's been overwritten. The prologue analyzer will 2148 set fp_in_r1 when it sees the copy insn so we know to get the value 2149 from r1 instead. */ 2150 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) 2151 && fp_in_r1) 2152 { 2153 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); 2154 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); 2155 } 2156 2157 { 2158 /* Convert all the offsets into addresses. */ 2159 int reg; 2160 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) 2161 { 2162 if (trad_frame_addr_p (cache->saved_regs, reg)) 2163 cache->saved_regs[reg].addr += cache->base; 2164 } 2165 } 2166 2167 { 2168 struct gdbarch_tdep *tdep; 2169 2170 tdep = gdbarch_tdep (gdbarch); 2171 2172 if (tdep->unwind_adjust_stub) 2173 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); 2174 } 2175 2176 if (hppa_debug) 2177 fprintf_unfiltered (gdb_stdlog, "base=%s }", 2178 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); 2179 return (*this_cache); 2180 } 2181 2182 static void 2183 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, 2184 struct frame_id *this_id) 2185 { 2186 struct hppa_frame_cache *info; 2187 CORE_ADDR pc = get_frame_pc (this_frame); 2188 struct unwind_table_entry *u; 2189 2190 info = hppa_frame_cache (this_frame, this_cache); 2191 u = hppa_find_unwind_entry_in_block (this_frame); 2192 2193 (*this_id) = frame_id_build (info->base, u->region_start); 2194 } 2195 2196 static struct value * 2197 hppa_frame_prev_register (struct frame_info *this_frame, 2198 void **this_cache, int regnum) 2199 { 2200 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); 2201 2202 return hppa_frame_prev_register_helper (this_frame, 2203 info->saved_regs, regnum); 2204 } 2205 2206 static int 2207 hppa_frame_unwind_sniffer (const struct frame_unwind *self, 2208 struct frame_info *this_frame, void **this_cache) 2209 { 2210 if (hppa_find_unwind_entry_in_block (this_frame)) 2211 return 1; 2212 2213 return 0; 2214 } 2215 2216 static const struct frame_unwind hppa_frame_unwind = 2217 { 2218 NORMAL_FRAME, 2219 default_frame_unwind_stop_reason, 2220 hppa_frame_this_id, 2221 hppa_frame_prev_register, 2222 NULL, 2223 hppa_frame_unwind_sniffer 2224 }; 2225 2226 /* This is a generic fallback frame unwinder that kicks in if we fail all 2227 the other ones. Normally we would expect the stub and regular unwinder 2228 to work, but in some cases we might hit a function that just doesn't 2229 have any unwind information available. In this case we try to do 2230 unwinding solely based on code reading. This is obviously going to be 2231 slow, so only use this as a last resort. Currently this will only 2232 identify the stack and pc for the frame. */ 2233 2234 static struct hppa_frame_cache * 2235 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) 2236 { 2237 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2238 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2239 struct hppa_frame_cache *cache; 2240 unsigned int frame_size = 0; 2241 int found_rp = 0; 2242 CORE_ADDR start_pc; 2243 2244 if (hppa_debug) 2245 fprintf_unfiltered (gdb_stdlog, 2246 "{ hppa_fallback_frame_cache (frame=%d) -> ", 2247 frame_relative_level (this_frame)); 2248 2249 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); 2250 (*this_cache) = cache; 2251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); 2252 2253 start_pc = get_frame_func (this_frame); 2254 if (start_pc) 2255 { 2256 CORE_ADDR cur_pc = get_frame_pc (this_frame); 2257 CORE_ADDR pc; 2258 2259 for (pc = start_pc; pc < cur_pc; pc += 4) 2260 { 2261 unsigned int insn; 2262 2263 insn = read_memory_unsigned_integer (pc, 4, byte_order); 2264 frame_size += prologue_inst_adjust_sp (insn); 2265 2266 /* There are limited ways to store the return pointer into the 2267 stack. */ 2268 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ 2269 { 2270 cache->saved_regs[HPPA_RP_REGNUM].addr = -20; 2271 found_rp = 1; 2272 } 2273 else if (insn == 0x0fc212c1 2274 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ 2275 { 2276 cache->saved_regs[HPPA_RP_REGNUM].addr = -16; 2277 found_rp = 1; 2278 } 2279 } 2280 } 2281 2282 if (hppa_debug) 2283 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", 2284 frame_size, found_rp); 2285 2286 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); 2287 cache->base -= frame_size; 2288 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); 2289 2290 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) 2291 { 2292 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; 2293 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = 2294 cache->saved_regs[HPPA_RP_REGNUM]; 2295 } 2296 else 2297 { 2298 ULONGEST rp; 2299 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); 2300 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); 2301 } 2302 2303 return cache; 2304 } 2305 2306 static void 2307 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, 2308 struct frame_id *this_id) 2309 { 2310 struct hppa_frame_cache *info = 2311 hppa_fallback_frame_cache (this_frame, this_cache); 2312 2313 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); 2314 } 2315 2316 static struct value * 2317 hppa_fallback_frame_prev_register (struct frame_info *this_frame, 2318 void **this_cache, int regnum) 2319 { 2320 struct hppa_frame_cache *info 2321 = hppa_fallback_frame_cache (this_frame, this_cache); 2322 2323 return hppa_frame_prev_register_helper (this_frame, 2324 info->saved_regs, regnum); 2325 } 2326 2327 static const struct frame_unwind hppa_fallback_frame_unwind = 2328 { 2329 NORMAL_FRAME, 2330 default_frame_unwind_stop_reason, 2331 hppa_fallback_frame_this_id, 2332 hppa_fallback_frame_prev_register, 2333 NULL, 2334 default_frame_sniffer 2335 }; 2336 2337 /* Stub frames, used for all kinds of call stubs. */ 2338 struct hppa_stub_unwind_cache 2339 { 2340 CORE_ADDR base; 2341 struct trad_frame_saved_reg *saved_regs; 2342 }; 2343 2344 static struct hppa_stub_unwind_cache * 2345 hppa_stub_frame_unwind_cache (struct frame_info *this_frame, 2346 void **this_cache) 2347 { 2348 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2349 struct hppa_stub_unwind_cache *info; 2350 struct unwind_table_entry *u; 2351 2352 if (*this_cache) 2353 return *this_cache; 2354 2355 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); 2356 *this_cache = info; 2357 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 2358 2359 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); 2360 2361 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM) 2362 { 2363 /* HPUX uses export stubs in function calls; the export stub clobbers 2364 the return value of the caller, and, later restores it from the 2365 stack. */ 2366 u = find_unwind_entry (get_frame_pc (this_frame)); 2367 2368 if (u && u->stub_unwind.stub_type == EXPORT) 2369 { 2370 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24; 2371 2372 return info; 2373 } 2374 } 2375 2376 /* By default we assume that stubs do not change the rp. */ 2377 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; 2378 2379 return info; 2380 } 2381 2382 static void 2383 hppa_stub_frame_this_id (struct frame_info *this_frame, 2384 void **this_prologue_cache, 2385 struct frame_id *this_id) 2386 { 2387 struct hppa_stub_unwind_cache *info 2388 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); 2389 2390 if (info) 2391 *this_id = frame_id_build (info->base, get_frame_func (this_frame)); 2392 } 2393 2394 static struct value * 2395 hppa_stub_frame_prev_register (struct frame_info *this_frame, 2396 void **this_prologue_cache, int regnum) 2397 { 2398 struct hppa_stub_unwind_cache *info 2399 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); 2400 2401 if (info == NULL) 2402 error (_("Requesting registers from null frame.")); 2403 2404 return hppa_frame_prev_register_helper (this_frame, 2405 info->saved_regs, regnum); 2406 } 2407 2408 static int 2409 hppa_stub_unwind_sniffer (const struct frame_unwind *self, 2410 struct frame_info *this_frame, 2411 void **this_cache) 2412 { 2413 CORE_ADDR pc = get_frame_address_in_block (this_frame); 2414 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 2416 2417 if (pc == 0 2418 || (tdep->in_solib_call_trampoline != NULL 2419 && tdep->in_solib_call_trampoline (gdbarch, pc)) 2420 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) 2421 return 1; 2422 return 0; 2423 } 2424 2425 static const struct frame_unwind hppa_stub_frame_unwind = { 2426 NORMAL_FRAME, 2427 default_frame_unwind_stop_reason, 2428 hppa_stub_frame_this_id, 2429 hppa_stub_frame_prev_register, 2430 NULL, 2431 hppa_stub_unwind_sniffer 2432 }; 2433 2434 static struct frame_id 2435 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 2436 { 2437 return frame_id_build (get_frame_register_unsigned (this_frame, 2438 HPPA_SP_REGNUM), 2439 get_frame_pc (this_frame)); 2440 } 2441 2442 CORE_ADDR 2443 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 2444 { 2445 ULONGEST ipsw; 2446 CORE_ADDR pc; 2447 2448 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); 2449 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); 2450 2451 /* If the current instruction is nullified, then we are effectively 2452 still executing the previous instruction. Pretend we are still 2453 there. This is needed when single stepping; if the nullified 2454 instruction is on a different line, we don't want GDB to think 2455 we've stepped onto that line. */ 2456 if (ipsw & 0x00200000) 2457 pc -= 4; 2458 2459 return pc & ~0x3; 2460 } 2461 2462 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. 2463 Return NULL if no such symbol was found. */ 2464 2465 struct bound_minimal_symbol 2466 hppa_lookup_stub_minimal_symbol (const char *name, 2467 enum unwind_stub_types stub_type) 2468 { 2469 struct objfile *objfile; 2470 struct minimal_symbol *msym; 2471 struct bound_minimal_symbol result = { NULL, NULL }; 2472 2473 ALL_MSYMBOLS (objfile, msym) 2474 { 2475 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0) 2476 { 2477 struct unwind_table_entry *u; 2478 2479 u = find_unwind_entry (MSYMBOL_VALUE (msym)); 2480 if (u != NULL && u->stub_unwind.stub_type == stub_type) 2481 { 2482 result.objfile = objfile; 2483 result.minsym = msym; 2484 return result; 2485 } 2486 } 2487 } 2488 2489 return result; 2490 } 2491 2492 static void 2493 unwind_command (char *exp, int from_tty) 2494 { 2495 CORE_ADDR address; 2496 struct unwind_table_entry *u; 2497 2498 /* If we have an expression, evaluate it and use it as the address. */ 2499 2500 if (exp != 0 && *exp != 0) 2501 address = parse_and_eval_address (exp); 2502 else 2503 return; 2504 2505 u = find_unwind_entry (address); 2506 2507 if (!u) 2508 { 2509 printf_unfiltered ("Can't find unwind table entry for %s\n", exp); 2510 return; 2511 } 2512 2513 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u)); 2514 2515 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); 2516 gdb_flush (gdb_stdout); 2517 2518 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); 2519 gdb_flush (gdb_stdout); 2520 2521 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); 2522 2523 printf_unfiltered ("\n\tflags ="); 2524 pif (Cannot_unwind); 2525 pif (Millicode); 2526 pif (Millicode_save_sr0); 2527 pif (Entry_SR); 2528 pif (Args_stored); 2529 pif (Variable_Frame); 2530 pif (Separate_Package_Body); 2531 pif (Frame_Extension_Millicode); 2532 pif (Stack_Overflow_Check); 2533 pif (Two_Instruction_SP_Increment); 2534 pif (sr4export); 2535 pif (cxx_info); 2536 pif (cxx_try_catch); 2537 pif (sched_entry_seq); 2538 pif (Save_SP); 2539 pif (Save_RP); 2540 pif (Save_MRP_in_frame); 2541 pif (save_r19); 2542 pif (Cleanup_defined); 2543 pif (MPE_XL_interrupt_marker); 2544 pif (HP_UX_interrupt_marker); 2545 pif (Large_frame); 2546 pif (alloca_frame); 2547 2548 putchar_unfiltered ('\n'); 2549 2550 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); 2551 2552 pin (Region_description); 2553 pin (Entry_FR); 2554 pin (Entry_GR); 2555 pin (Total_frame_size); 2556 2557 if (u->stub_unwind.stub_type) 2558 { 2559 printf_unfiltered ("\tstub type = "); 2560 switch (u->stub_unwind.stub_type) 2561 { 2562 case LONG_BRANCH: 2563 printf_unfiltered ("long branch\n"); 2564 break; 2565 case PARAMETER_RELOCATION: 2566 printf_unfiltered ("parameter relocation\n"); 2567 break; 2568 case EXPORT: 2569 printf_unfiltered ("export\n"); 2570 break; 2571 case IMPORT: 2572 printf_unfiltered ("import\n"); 2573 break; 2574 case IMPORT_SHLIB: 2575 printf_unfiltered ("import shlib\n"); 2576 break; 2577 default: 2578 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); 2579 } 2580 } 2581 } 2582 2583 /* Return the GDB type object for the "standard" data type of data in 2584 register REGNUM. */ 2585 2586 static struct type * 2587 hppa32_register_type (struct gdbarch *gdbarch, int regnum) 2588 { 2589 if (regnum < HPPA_FP4_REGNUM) 2590 return builtin_type (gdbarch)->builtin_uint32; 2591 else 2592 return builtin_type (gdbarch)->builtin_float; 2593 } 2594 2595 static struct type * 2596 hppa64_register_type (struct gdbarch *gdbarch, int regnum) 2597 { 2598 if (regnum < HPPA64_FP4_REGNUM) 2599 return builtin_type (gdbarch)->builtin_uint64; 2600 else 2601 return builtin_type (gdbarch)->builtin_double; 2602 } 2603 2604 /* Return non-zero if REGNUM is not a register available to the user 2605 through ptrace/ttrace. */ 2606 2607 static int 2608 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) 2609 { 2610 return (regnum == 0 2611 || regnum == HPPA_PCSQ_HEAD_REGNUM 2612 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) 2613 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); 2614 } 2615 2616 static int 2617 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) 2618 { 2619 /* cr26 and cr27 are readable (but not writable) from userspace. */ 2620 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) 2621 return 0; 2622 else 2623 return hppa32_cannot_store_register (gdbarch, regnum); 2624 } 2625 2626 static int 2627 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) 2628 { 2629 return (regnum == 0 2630 || regnum == HPPA_PCSQ_HEAD_REGNUM 2631 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) 2632 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); 2633 } 2634 2635 static int 2636 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) 2637 { 2638 /* cr26 and cr27 are readable (but not writable) from userspace. */ 2639 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) 2640 return 0; 2641 else 2642 return hppa64_cannot_store_register (gdbarch, regnum); 2643 } 2644 2645 static CORE_ADDR 2646 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) 2647 { 2648 /* The low two bits of the PC on the PA contain the privilege level. 2649 Some genius implementing a (non-GCC) compiler apparently decided 2650 this means that "addresses" in a text section therefore include a 2651 privilege level, and thus symbol tables should contain these bits. 2652 This seems like a bonehead thing to do--anyway, it seems to work 2653 for our purposes to just ignore those bits. */ 2654 2655 return (addr &= ~0x3); 2656 } 2657 2658 /* Get the ARGIth function argument for the current function. */ 2659 2660 static CORE_ADDR 2661 hppa_fetch_pointer_argument (struct frame_info *frame, int argi, 2662 struct type *type) 2663 { 2664 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); 2665 } 2666 2667 static enum register_status 2668 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, 2669 int regnum, gdb_byte *buf) 2670 { 2671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2672 ULONGEST tmp; 2673 enum register_status status; 2674 2675 status = regcache_raw_read_unsigned (regcache, regnum, &tmp); 2676 if (status == REG_VALID) 2677 { 2678 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) 2679 tmp &= ~0x3; 2680 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); 2681 } 2682 return status; 2683 } 2684 2685 static CORE_ADDR 2686 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) 2687 { 2688 return 0; 2689 } 2690 2691 struct value * 2692 hppa_frame_prev_register_helper (struct frame_info *this_frame, 2693 struct trad_frame_saved_reg saved_regs[], 2694 int regnum) 2695 { 2696 struct gdbarch *arch = get_frame_arch (this_frame); 2697 enum bfd_endian byte_order = gdbarch_byte_order (arch); 2698 2699 if (regnum == HPPA_PCOQ_TAIL_REGNUM) 2700 { 2701 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); 2702 CORE_ADDR pc; 2703 struct value *pcoq_val = 2704 trad_frame_get_prev_register (this_frame, saved_regs, 2705 HPPA_PCOQ_HEAD_REGNUM); 2706 2707 pc = extract_unsigned_integer (value_contents_all (pcoq_val), 2708 size, byte_order); 2709 return frame_unwind_got_constant (this_frame, regnum, pc + 4); 2710 } 2711 2712 /* Make sure the "flags" register is zero in all unwound frames. 2713 The "flags" registers is a HP-UX specific wart, and only the code 2714 in hppa-hpux-tdep.c depends on it. However, it is easier to deal 2715 with it here. This shouldn't affect other systems since those 2716 should provide zero for the "flags" register anyway. */ 2717 if (regnum == HPPA_FLAGS_REGNUM) 2718 return frame_unwind_got_constant (this_frame, regnum, 0); 2719 2720 return trad_frame_get_prev_register (this_frame, saved_regs, regnum); 2721 } 2722 2723 2724 /* An instruction to match. */ 2725 struct insn_pattern 2726 { 2727 unsigned int data; /* See if it matches this.... */ 2728 unsigned int mask; /* ... with this mask. */ 2729 }; 2730 2731 /* See bfd/elf32-hppa.c */ 2732 static struct insn_pattern hppa_long_branch_stub[] = { 2733 /* ldil LR'xxx,%r1 */ 2734 { 0x20200000, 0xffe00000 }, 2735 /* be,n RR'xxx(%sr4,%r1) */ 2736 { 0xe0202002, 0xffe02002 }, 2737 { 0, 0 } 2738 }; 2739 2740 static struct insn_pattern hppa_long_branch_pic_stub[] = { 2741 /* b,l .+8, %r1 */ 2742 { 0xe8200000, 0xffe00000 }, 2743 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ 2744 { 0x28200000, 0xffe00000 }, 2745 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ 2746 { 0xe0202002, 0xffe02002 }, 2747 { 0, 0 } 2748 }; 2749 2750 static struct insn_pattern hppa_import_stub[] = { 2751 /* addil LR'xxx, %dp */ 2752 { 0x2b600000, 0xffe00000 }, 2753 /* ldw RR'xxx(%r1), %r21 */ 2754 { 0x48350000, 0xffffb000 }, 2755 /* bv %r0(%r21) */ 2756 { 0xeaa0c000, 0xffffffff }, 2757 /* ldw RR'xxx+4(%r1), %r19 */ 2758 { 0x48330000, 0xffffb000 }, 2759 { 0, 0 } 2760 }; 2761 2762 static struct insn_pattern hppa_import_pic_stub[] = { 2763 /* addil LR'xxx,%r19 */ 2764 { 0x2a600000, 0xffe00000 }, 2765 /* ldw RR'xxx(%r1),%r21 */ 2766 { 0x48350000, 0xffffb000 }, 2767 /* bv %r0(%r21) */ 2768 { 0xeaa0c000, 0xffffffff }, 2769 /* ldw RR'xxx+4(%r1),%r19 */ 2770 { 0x48330000, 0xffffb000 }, 2771 { 0, 0 }, 2772 }; 2773 2774 static struct insn_pattern hppa_plt_stub[] = { 2775 /* b,l 1b, %r20 - 1b is 3 insns before here */ 2776 { 0xea9f1fdd, 0xffffffff }, 2777 /* depi 0,31,2,%r20 */ 2778 { 0xd6801c1e, 0xffffffff }, 2779 { 0, 0 } 2780 }; 2781 2782 /* Maximum number of instructions on the patterns above. */ 2783 #define HPPA_MAX_INSN_PATTERN_LEN 4 2784 2785 /* Return non-zero if the instructions at PC match the series 2786 described in PATTERN, or zero otherwise. PATTERN is an array of 2787 'struct insn_pattern' objects, terminated by an entry whose mask is 2788 zero. 2789 2790 When the match is successful, fill INSN[i] with what PATTERN[i] 2791 matched. */ 2792 2793 static int 2794 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, 2795 struct insn_pattern *pattern, unsigned int *insn) 2796 { 2797 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2798 CORE_ADDR npc = pc; 2799 int i; 2800 2801 for (i = 0; pattern[i].mask; i++) 2802 { 2803 gdb_byte buf[HPPA_INSN_SIZE]; 2804 2805 target_read_memory (npc, buf, HPPA_INSN_SIZE); 2806 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); 2807 if ((insn[i] & pattern[i].mask) == pattern[i].data) 2808 npc += 4; 2809 else 2810 return 0; 2811 } 2812 2813 return 1; 2814 } 2815 2816 /* This relaxed version of the insstruction matcher allows us to match 2817 from somewhere inside the pattern, by looking backwards in the 2818 instruction scheme. */ 2819 2820 static int 2821 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, 2822 struct insn_pattern *pattern, unsigned int *insn) 2823 { 2824 int offset, len = 0; 2825 2826 while (pattern[len].mask) 2827 len++; 2828 2829 for (offset = 0; offset < len; offset++) 2830 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, 2831 pattern, insn)) 2832 return 1; 2833 2834 return 0; 2835 } 2836 2837 static int 2838 hppa_in_dyncall (CORE_ADDR pc) 2839 { 2840 struct unwind_table_entry *u; 2841 2842 u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); 2843 if (!u) 2844 return 0; 2845 2846 return (pc >= u->region_start && pc <= u->region_end); 2847 } 2848 2849 int 2850 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) 2851 { 2852 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; 2853 struct unwind_table_entry *u; 2854 2855 if (in_plt_section (pc) || hppa_in_dyncall (pc)) 2856 return 1; 2857 2858 /* The GNU toolchain produces linker stubs without unwind 2859 information. Since the pattern matching for linker stubs can be 2860 quite slow, so bail out if we do have an unwind entry. */ 2861 2862 u = find_unwind_entry (pc); 2863 if (u != NULL) 2864 return 0; 2865 2866 return 2867 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) 2868 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) 2869 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) 2870 || hppa_match_insns_relaxed (gdbarch, pc, 2871 hppa_long_branch_pic_stub, insn)); 2872 } 2873 2874 /* This code skips several kind of "trampolines" used on PA-RISC 2875 systems: $$dyncall, import stubs and PLT stubs. */ 2876 2877 CORE_ADDR 2878 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 2879 { 2880 struct gdbarch *gdbarch = get_frame_arch (frame); 2881 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; 2882 2883 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; 2884 int dp_rel; 2885 2886 /* $$dyncall handles both PLABELs and direct addresses. */ 2887 if (hppa_in_dyncall (pc)) 2888 { 2889 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); 2890 2891 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ 2892 if (pc & 0x2) 2893 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); 2894 2895 return pc; 2896 } 2897 2898 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); 2899 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) 2900 { 2901 /* Extract the target address from the addil/ldw sequence. */ 2902 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); 2903 2904 if (dp_rel) 2905 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); 2906 else 2907 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); 2908 2909 /* fallthrough */ 2910 } 2911 2912 if (in_plt_section (pc)) 2913 { 2914 pc = read_memory_typed_address (pc, func_ptr_type); 2915 2916 /* If the PLT slot has not yet been resolved, the target will be 2917 the PLT stub. */ 2918 if (in_plt_section (pc)) 2919 { 2920 /* Sanity check: are we pointing to the PLT stub? */ 2921 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) 2922 { 2923 warning (_("Cannot resolve PLT stub at %s."), 2924 paddress (gdbarch, pc)); 2925 return 0; 2926 } 2927 2928 /* This should point to the fixup routine. */ 2929 pc = read_memory_typed_address (pc + 8, func_ptr_type); 2930 } 2931 } 2932 2933 return pc; 2934 } 2935 2936 2937 /* Here is a table of C type sizes on hppa with various compiles 2938 and options. I measured this on PA 9000/800 with HP-UX 11.11 2939 and these compilers: 2940 2941 /usr/ccs/bin/cc HP92453-01 A.11.01.21 2942 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP 2943 /opt/aCC/bin/aCC B3910B A.03.45 2944 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 2945 2946 cc : 1 2 4 4 8 : 4 8 -- : 4 4 2947 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 2948 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 2949 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 2950 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 2951 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 2952 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 2953 gcc : 1 2 4 4 8 : 4 8 16 : 4 4 2954 2955 Each line is: 2956 2957 compiler and options 2958 char, short, int, long, long long 2959 float, double, long double 2960 char *, void (*)() 2961 2962 So all these compilers use either ILP32 or LP64 model. 2963 TODO: gcc has more options so it needs more investigation. 2964 2965 For floating point types, see: 2966 2967 http://docs.hp.com/hpux/pdf/B3906-90006.pdf 2968 HP-UX floating-point guide, hpux 11.00 2969 2970 -- chastain 2003-12-18 */ 2971 2972 static struct gdbarch * 2973 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 2974 { 2975 struct gdbarch_tdep *tdep; 2976 struct gdbarch *gdbarch; 2977 2978 /* Try to determine the ABI of the object we are loading. */ 2979 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) 2980 { 2981 /* If it's a SOM file, assume it's HP/UX SOM. */ 2982 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) 2983 info.osabi = GDB_OSABI_HPUX_SOM; 2984 } 2985 2986 /* find a candidate among the list of pre-declared architectures. */ 2987 arches = gdbarch_list_lookup_by_info (arches, &info); 2988 if (arches != NULL) 2989 return (arches->gdbarch); 2990 2991 /* If none found, then allocate and initialize one. */ 2992 tdep = XCNEW (struct gdbarch_tdep); 2993 gdbarch = gdbarch_alloc (&info, tdep); 2994 2995 /* Determine from the bfd_arch_info structure if we are dealing with 2996 a 32 or 64 bits architecture. If the bfd_arch_info is not available, 2997 then default to a 32bit machine. */ 2998 if (info.bfd_arch_info != NULL) 2999 tdep->bytes_per_address = 3000 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; 3001 else 3002 tdep->bytes_per_address = 4; 3003 3004 tdep->find_global_pointer = hppa_find_global_pointer; 3005 3006 /* Some parts of the gdbarch vector depend on whether we are running 3007 on a 32 bits or 64 bits target. */ 3008 switch (tdep->bytes_per_address) 3009 { 3010 case 4: 3011 set_gdbarch_num_regs (gdbarch, hppa32_num_regs); 3012 set_gdbarch_register_name (gdbarch, hppa32_register_name); 3013 set_gdbarch_register_type (gdbarch, hppa32_register_type); 3014 set_gdbarch_cannot_store_register (gdbarch, 3015 hppa32_cannot_store_register); 3016 set_gdbarch_cannot_fetch_register (gdbarch, 3017 hppa32_cannot_fetch_register); 3018 break; 3019 case 8: 3020 set_gdbarch_num_regs (gdbarch, hppa64_num_regs); 3021 set_gdbarch_register_name (gdbarch, hppa64_register_name); 3022 set_gdbarch_register_type (gdbarch, hppa64_register_type); 3023 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); 3024 set_gdbarch_cannot_store_register (gdbarch, 3025 hppa64_cannot_store_register); 3026 set_gdbarch_cannot_fetch_register (gdbarch, 3027 hppa64_cannot_fetch_register); 3028 break; 3029 default: 3030 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), 3031 tdep->bytes_per_address); 3032 } 3033 3034 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); 3035 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); 3036 3037 /* The following gdbarch vector elements are the same in both ILP32 3038 and LP64, but might show differences some day. */ 3039 set_gdbarch_long_long_bit (gdbarch, 64); 3040 set_gdbarch_long_double_bit (gdbarch, 128); 3041 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); 3042 3043 /* The following gdbarch vector elements do not depend on the address 3044 size, or in any other gdbarch element previously set. */ 3045 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); 3046 set_gdbarch_in_function_epilogue_p (gdbarch, 3047 hppa_in_function_epilogue_p); 3048 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); 3049 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); 3050 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); 3051 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); 3052 set_gdbarch_believe_pcc_promotion (gdbarch, 1); 3053 set_gdbarch_read_pc (gdbarch, hppa_read_pc); 3054 set_gdbarch_write_pc (gdbarch, hppa_write_pc); 3055 3056 /* Helper for function argument information. */ 3057 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); 3058 3059 set_gdbarch_print_insn (gdbarch, print_insn_hppa); 3060 3061 /* When a hardware watchpoint triggers, we'll move the inferior past 3062 it by removing all eventpoints; stepping past the instruction 3063 that caused the trigger; reinserting eventpoints; and checking 3064 whether any watched location changed. */ 3065 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); 3066 3067 /* Inferior function call methods. */ 3068 switch (tdep->bytes_per_address) 3069 { 3070 case 4: 3071 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); 3072 set_gdbarch_frame_align (gdbarch, hppa32_frame_align); 3073 set_gdbarch_convert_from_func_ptr_addr 3074 (gdbarch, hppa32_convert_from_func_ptr_addr); 3075 break; 3076 case 8: 3077 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); 3078 set_gdbarch_frame_align (gdbarch, hppa64_frame_align); 3079 break; 3080 default: 3081 internal_error (__FILE__, __LINE__, _("bad switch")); 3082 } 3083 3084 /* Struct return methods. */ 3085 switch (tdep->bytes_per_address) 3086 { 3087 case 4: 3088 set_gdbarch_return_value (gdbarch, hppa32_return_value); 3089 break; 3090 case 8: 3091 set_gdbarch_return_value (gdbarch, hppa64_return_value); 3092 break; 3093 default: 3094 internal_error (__FILE__, __LINE__, _("bad switch")); 3095 } 3096 3097 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); 3098 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); 3099 3100 /* Frame unwind methods. */ 3101 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id); 3102 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); 3103 3104 /* Hook in ABI-specific overrides, if they have been registered. */ 3105 gdbarch_init_osabi (info, gdbarch); 3106 3107 /* Hook in the default unwinders. */ 3108 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); 3109 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); 3110 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); 3111 3112 return gdbarch; 3113 } 3114 3115 static void 3116 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) 3117 { 3118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 3119 3120 fprintf_unfiltered (file, "bytes_per_address = %d\n", 3121 tdep->bytes_per_address); 3122 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); 3123 } 3124 3125 /* Provide a prototype to silence -Wmissing-prototypes. */ 3126 extern initialize_file_ftype _initialize_hppa_tdep; 3127 3128 void 3129 _initialize_hppa_tdep (void) 3130 { 3131 struct cmd_list_element *c; 3132 3133 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); 3134 3135 hppa_objfile_priv_data = register_objfile_data (); 3136 3137 add_cmd ("unwind", class_maintenance, unwind_command, 3138 _("Print unwind table entry at given address."), 3139 &maintenanceprintlist); 3140 3141 /* Debug this files internals. */ 3142 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ 3143 Set whether hppa target specific debugging information should be displayed."), 3144 _("\ 3145 Show whether hppa target specific debugging information is displayed."), _("\ 3146 This flag controls whether hppa target specific debugging information is\n\ 3147 displayed. This information is particularly useful for debugging frame\n\ 3148 unwinding problems."), 3149 NULL, 3150 NULL, /* FIXME: i18n: hppa debug flag is %s. */ 3151 &setdebuglist, &showdebuglist); 3152 } 3153