xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/gnu-v3-abi.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Abstraction of GNU v3 abi.
2    Contributed by Jim Blandy <jimb@redhat.com>
3 
4    Copyright (C) 2001-2023 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34 #include "inferior.h"
35 
36 static struct cp_abi_ops gnu_v3_abi_ops;
37 
38 /* A gdbarch key for std::type_info, in the event that it can't be
39    found in the debug info.  */
40 
41 static const registry<gdbarch>::key<struct type> std_type_info_gdbarch_data;
42 
43 
44 static int
45 gnuv3_is_vtable_name (const char *name)
46 {
47   return startswith (name, "_ZTV");
48 }
49 
50 static int
51 gnuv3_is_operator_name (const char *name)
52 {
53   return startswith (name, CP_OPERATOR_STR);
54 }
55 
56 
57 /* To help us find the components of a vtable, we build ourselves a
58    GDB type object representing the vtable structure.  Following the
59    V3 ABI, it goes something like this:
60 
61    struct gdb_gnu_v3_abi_vtable {
62 
63      / * An array of virtual call and virtual base offsets.  The real
64 	 length of this array depends on the class hierarchy; we use
65 	 negative subscripts to access the elements.  Yucky, but
66 	 better than the alternatives.  * /
67      ptrdiff_t vcall_and_vbase_offsets[0];
68 
69      / * The offset from a virtual pointer referring to this table
70 	 to the top of the complete object.  * /
71      ptrdiff_t offset_to_top;
72 
73      / * The type_info pointer for this class.  This is really a
74 	 std::type_info *, but GDB doesn't really look at the
75 	 type_info object itself, so we don't bother to get the type
76 	 exactly right.  * /
77      void *type_info;
78 
79      / * Virtual table pointers in objects point here.  * /
80 
81      / * Virtual function pointers.  Like the vcall/vbase array, the
82 	 real length of this table depends on the class hierarchy.  * /
83      void (*virtual_functions[0]) ();
84 
85    };
86 
87    The catch, of course, is that the exact layout of this table
88    depends on the ABI --- word size, endianness, alignment, etc.  So
89    the GDB type object is actually a per-architecture kind of thing.
90 
91    vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92    which refers to the struct type * for this structure, laid out
93    appropriately for the architecture.  */
94 static const registry<gdbarch>::key<struct type> vtable_type_gdbarch_data;
95 
96 
97 /* Human-readable names for the numbers of the fields above.  */
98 enum {
99   vtable_field_vcall_and_vbase_offsets,
100   vtable_field_offset_to_top,
101   vtable_field_type_info,
102   vtable_field_virtual_functions
103 };
104 
105 
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107    described above, laid out appropriately for ARCH.
108 
109    We use this function as the gdbarch per-architecture data
110    initialization function.  */
111 static struct type *
112 get_gdb_vtable_type (struct gdbarch *arch)
113 {
114   struct type *t;
115   struct field *field_list, *field;
116   int offset;
117 
118   struct type *result = vtable_type_gdbarch_data.get (arch);
119   if (result != nullptr)
120     return result;
121 
122   struct type *void_ptr_type
123     = builtin_type (arch)->builtin_data_ptr;
124   struct type *ptr_to_void_fn_type
125     = builtin_type (arch)->builtin_func_ptr;
126 
127   /* ARCH can't give us the true ptrdiff_t type, so we guess.  */
128   struct type *ptrdiff_type
129     = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
130 
131   /* We assume no padding is necessary, since GDB doesn't know
132      anything about alignment at the moment.  If this assumption bites
133      us, we should add a gdbarch method which, given a type, returns
134      the alignment that type requires, and then use that here.  */
135 
136   /* Build the field list.  */
137   field_list = XCNEWVEC (struct field, 4);
138   field = &field_list[0];
139   offset = 0;
140 
141   /* ptrdiff_t vcall_and_vbase_offsets[0]; */
142   field->set_name ("vcall_and_vbase_offsets");
143   field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
144   field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
145   offset += field->type ()->length ();
146   field++;
147 
148   /* ptrdiff_t offset_to_top; */
149   field->set_name ("offset_to_top");
150   field->set_type (ptrdiff_type);
151   field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
152   offset += field->type ()->length ();
153   field++;
154 
155   /* void *type_info; */
156   field->set_name ("type_info");
157   field->set_type (void_ptr_type);
158   field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
159   offset += field->type ()->length ();
160   field++;
161 
162   /* void (*virtual_functions[0]) (); */
163   field->set_name ("virtual_functions");
164   field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
165   field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
166   offset += field->type ()->length ();
167   field++;
168 
169   /* We assumed in the allocation above that there were four fields.  */
170   gdb_assert (field == (field_list + 4));
171 
172   t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
173   t->set_num_fields (field - field_list);
174   t->set_fields (field_list);
175   t->set_name ("gdb_gnu_v3_abi_vtable");
176   INIT_CPLUS_SPECIFIC (t);
177 
178   result = make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
179   vtable_type_gdbarch_data.set (arch, result);
180   return result;
181 }
182 
183 
184 /* Return the ptrdiff_t type used in the vtable type.  */
185 static struct type *
186 vtable_ptrdiff_type (struct gdbarch *gdbarch)
187 {
188   struct type *vtable_type = get_gdb_vtable_type (gdbarch);
189 
190   /* The "offset_to_top" field has the appropriate (ptrdiff_t) type.  */
191   return vtable_type->field (vtable_field_offset_to_top).type ();
192 }
193 
194 /* Return the offset from the start of the imaginary `struct
195    gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
196    (i.e., where objects' virtual table pointers point).  */
197 static int
198 vtable_address_point_offset (struct gdbarch *gdbarch)
199 {
200   struct type *vtable_type = get_gdb_vtable_type (gdbarch);
201 
202   return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos ()
203 	  / TARGET_CHAR_BIT);
204 }
205 
206 
207 /* Determine whether structure TYPE is a dynamic class.  Cache the
208    result.  */
209 
210 static int
211 gnuv3_dynamic_class (struct type *type)
212 {
213   int fieldnum, fieldelem;
214 
215   type = check_typedef (type);
216   gdb_assert (type->code () == TYPE_CODE_STRUCT
217 	      || type->code () == TYPE_CODE_UNION);
218 
219   if (type->code () == TYPE_CODE_UNION)
220     return 0;
221 
222   if (TYPE_CPLUS_DYNAMIC (type))
223     return TYPE_CPLUS_DYNAMIC (type) == 1;
224 
225   ALLOCATE_CPLUS_STRUCT_TYPE (type);
226 
227   for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
228     if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
229 	|| gnuv3_dynamic_class (type->field (fieldnum).type ()))
230       {
231 	TYPE_CPLUS_DYNAMIC (type) = 1;
232 	return 1;
233       }
234 
235   for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
236     for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
237 	 fieldelem++)
238       {
239 	struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
240 
241 	if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
242 	  {
243 	    TYPE_CPLUS_DYNAMIC (type) = 1;
244 	    return 1;
245 	  }
246       }
247 
248   TYPE_CPLUS_DYNAMIC (type) = -1;
249   return 0;
250 }
251 
252 /* Find the vtable for a value of CONTAINER_TYPE located at
253    CONTAINER_ADDR.  Return a value of the correct vtable type for this
254    architecture, or NULL if CONTAINER does not have a vtable.  */
255 
256 static struct value *
257 gnuv3_get_vtable (struct gdbarch *gdbarch,
258 		  struct type *container_type, CORE_ADDR container_addr)
259 {
260   struct type *vtable_type = get_gdb_vtable_type (gdbarch);
261   struct type *vtable_pointer_type;
262   struct value *vtable_pointer;
263   CORE_ADDR vtable_address;
264 
265   container_type = check_typedef (container_type);
266   gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
267 
268   /* If this type does not have a virtual table, don't read the first
269      field.  */
270   if (!gnuv3_dynamic_class (container_type))
271     return NULL;
272 
273   /* We do not consult the debug information to find the virtual table.
274      The ABI specifies that it is always at offset zero in any class,
275      and debug information may not represent it.
276 
277      We avoid using value_contents on principle, because the object might
278      be large.  */
279 
280   /* Find the type "pointer to virtual table".  */
281   vtable_pointer_type = lookup_pointer_type (vtable_type);
282 
283   /* Load it from the start of the class.  */
284   vtable_pointer = value_at (vtable_pointer_type, container_addr);
285   vtable_address = value_as_address (vtable_pointer);
286 
287   /* Correct it to point at the start of the virtual table, rather
288      than the address point.  */
289   return value_at_lazy (vtable_type,
290 			vtable_address
291 			- vtable_address_point_offset (gdbarch));
292 }
293 
294 
295 static struct type *
296 gnuv3_rtti_type (struct value *value,
297 		 int *full_p, LONGEST *top_p, int *using_enc_p)
298 {
299   struct gdbarch *gdbarch;
300   struct type *values_type = check_typedef (value_type (value));
301   struct value *vtable;
302   struct minimal_symbol *vtable_symbol;
303   const char *vtable_symbol_name;
304   const char *class_name;
305   struct type *run_time_type;
306   LONGEST offset_to_top;
307   const char *atsign;
308 
309   /* We only have RTTI for dynamic class objects.  */
310   if (values_type->code () != TYPE_CODE_STRUCT
311       || !gnuv3_dynamic_class (values_type))
312     return NULL;
313 
314   /* Determine architecture.  */
315   gdbarch = values_type->arch ();
316 
317   if (using_enc_p)
318     *using_enc_p = 0;
319 
320   vtable = gnuv3_get_vtable (gdbarch, values_type,
321 			     value_as_address (value_addr (value)));
322   if (vtable == NULL)
323     return NULL;
324 
325   /* Find the linker symbol for this vtable.  */
326   vtable_symbol
327     = lookup_minimal_symbol_by_pc (value_address (vtable)
328 				   + value_embedded_offset (vtable)).minsym;
329   if (! vtable_symbol)
330     return NULL;
331 
332   /* The symbol's demangled name should be something like "vtable for
333      CLASS", where CLASS is the name of the run-time type of VALUE.
334      If we didn't like this approach, we could instead look in the
335      type_info object itself to get the class name.  But this way
336      should work just as well, and doesn't read target memory.  */
337   vtable_symbol_name = vtable_symbol->demangled_name ();
338   if (vtable_symbol_name == NULL
339       || !startswith (vtable_symbol_name, "vtable for "))
340     {
341       warning (_("can't find linker symbol for virtual table for `%s' value"),
342 	       TYPE_SAFE_NAME (values_type));
343       if (vtable_symbol_name)
344 	warning (_("  found `%s' instead"), vtable_symbol_name);
345       return NULL;
346     }
347   class_name = vtable_symbol_name + 11;
348 
349   /* Strip off @plt and version suffixes.  */
350   atsign = strchr (class_name, '@');
351   if (atsign != NULL)
352     {
353       char *copy;
354 
355       copy = (char *) alloca (atsign - class_name + 1);
356       memcpy (copy, class_name, atsign - class_name);
357       copy[atsign - class_name] = '\0';
358       class_name = copy;
359     }
360 
361   /* Try to look up the class name as a type name.  */
362   /* FIXME: chastain/2003-11-26: block=NULL is bogus.  See pr gdb/1465.  */
363   run_time_type = cp_lookup_rtti_type (class_name, NULL);
364   if (run_time_type == NULL)
365     return NULL;
366 
367   /* Get the offset from VALUE to the top of the complete object.
368      NOTE: this is the reverse of the meaning of *TOP_P.  */
369   offset_to_top
370     = value_as_long (value_field (vtable, vtable_field_offset_to_top));
371 
372   if (full_p)
373     *full_p = (- offset_to_top == value_embedded_offset (value)
374 	       && (value_enclosing_type (value)->length ()
375 		   >= run_time_type->length ()));
376   if (top_p)
377     *top_p = - offset_to_top;
378   return run_time_type;
379 }
380 
381 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
382    function, of type FNTYPE.  */
383 
384 static struct value *
385 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
386 		      struct type *fntype, int vtable_index)
387 {
388   struct value *vtable, *vfn;
389 
390   /* Every class with virtual functions must have a vtable.  */
391   vtable = gnuv3_get_vtable (gdbarch, value_type (container),
392 			     value_as_address (value_addr (container)));
393   gdb_assert (vtable != NULL);
394 
395   /* Fetch the appropriate function pointer from the vtable.  */
396   vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
397 			 vtable_index);
398 
399   /* If this architecture uses function descriptors directly in the vtable,
400      then the address of the vtable entry is actually a "function pointer"
401      (i.e. points to the descriptor).  We don't need to scale the index
402      by the size of a function descriptor; GCC does that before outputting
403      debug information.  */
404   if (gdbarch_vtable_function_descriptors (gdbarch))
405     vfn = value_addr (vfn);
406 
407   /* Cast the function pointer to the appropriate type.  */
408   vfn = value_cast (lookup_pointer_type (fntype), vfn);
409 
410   return vfn;
411 }
412 
413 /* GNU v3 implementation of value_virtual_fn_field.  See cp-abi.h
414    for a description of the arguments.  */
415 
416 static struct value *
417 gnuv3_virtual_fn_field (struct value **value_p,
418 			struct fn_field *f, int j,
419 			struct type *vfn_base, int offset)
420 {
421   struct type *values_type = check_typedef (value_type (*value_p));
422   struct gdbarch *gdbarch;
423 
424   /* Some simple sanity checks.  */
425   if (values_type->code () != TYPE_CODE_STRUCT)
426     error (_("Only classes can have virtual functions."));
427 
428   /* Determine architecture.  */
429   gdbarch = values_type->arch ();
430 
431   /* Cast our value to the base class which defines this virtual
432      function.  This takes care of any necessary `this'
433      adjustments.  */
434   if (vfn_base != values_type)
435     *value_p = value_cast (vfn_base, *value_p);
436 
437   return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
438 			       TYPE_FN_FIELD_VOFFSET (f, j));
439 }
440 
441 /* Compute the offset of the baseclass which is
442    the INDEXth baseclass of class TYPE,
443    for value at VALADDR (in host) at ADDRESS (in target).
444    The result is the offset of the baseclass value relative
445    to (the address of)(ARG) + OFFSET.
446 
447    -1 is returned on error.  */
448 
449 static int
450 gnuv3_baseclass_offset (struct type *type, int index,
451 			const bfd_byte *valaddr, LONGEST embedded_offset,
452 			CORE_ADDR address, const struct value *val)
453 {
454   struct gdbarch *gdbarch;
455   struct type *ptr_type;
456   struct value *vtable;
457   struct value *vbase_array;
458   long int cur_base_offset, base_offset;
459 
460   /* Determine architecture.  */
461   gdbarch = type->arch ();
462   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
463 
464   /* If it isn't a virtual base, this is easy.  The offset is in the
465      type definition.  */
466   if (!BASETYPE_VIA_VIRTUAL (type, index))
467     return TYPE_BASECLASS_BITPOS (type, index) / 8;
468 
469   /* If we have a DWARF expression for the offset, evaluate it.  */
470   if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
471     {
472       struct dwarf2_property_baton baton;
473       baton.property_type
474 	= lookup_pointer_type (type->field (index).type ());
475       baton.locexpr = *type->field (index).loc_dwarf_block ();
476 
477       struct dynamic_prop prop;
478       prop.set_locexpr (&baton);
479 
480       struct property_addr_info addr_stack;
481       addr_stack.type = type;
482       /* Note that we don't set "valaddr" here.  Doing so causes
483 	 regressions.  FIXME.  */
484       addr_stack.addr = address + embedded_offset;
485       addr_stack.next = nullptr;
486 
487       CORE_ADDR result;
488       if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
489 				    {addr_stack.addr}))
490 	return (int) (result - addr_stack.addr);
491     }
492 
493   /* To access a virtual base, we need to use the vbase offset stored in
494      our vtable.  Recent GCC versions provide this information.  If it isn't
495      available, we could get what we needed from RTTI, or from drawing the
496      complete inheritance graph based on the debug info.  Neither is
497      worthwhile.  */
498   cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
499   if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
500     error (_("Expected a negative vbase offset (old compiler?)"));
501 
502   cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
503   if ((- cur_base_offset) % ptr_type->length () != 0)
504     error (_("Misaligned vbase offset."));
505   cur_base_offset = cur_base_offset / ((int) ptr_type->length ());
506 
507   vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
508   gdb_assert (vtable != NULL);
509   vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
510   base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
511   return base_offset;
512 }
513 
514 /* Locate a virtual method in DOMAIN or its non-virtual base classes
515    which has virtual table index VOFFSET.  The method has an associated
516    "this" adjustment of ADJUSTMENT bytes.  */
517 
518 static const char *
519 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
520 		      LONGEST adjustment)
521 {
522   int i;
523 
524   /* Search this class first.  */
525   if (adjustment == 0)
526     {
527       int len;
528 
529       len = TYPE_NFN_FIELDS (domain);
530       for (i = 0; i < len; i++)
531 	{
532 	  int len2, j;
533 	  struct fn_field *f;
534 
535 	  f = TYPE_FN_FIELDLIST1 (domain, i);
536 	  len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
537 
538 	  check_stub_method_group (domain, i);
539 	  for (j = 0; j < len2; j++)
540 	    if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
541 	      return TYPE_FN_FIELD_PHYSNAME (f, j);
542 	}
543     }
544 
545   /* Next search non-virtual bases.  If it's in a virtual base,
546      we're out of luck.  */
547   for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
548     {
549       int pos;
550       struct type *basetype;
551 
552       if (BASETYPE_VIA_VIRTUAL (domain, i))
553 	continue;
554 
555       pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
556       basetype = domain->field (i).type ();
557       /* Recurse with a modified adjustment.  We don't need to adjust
558 	 voffset.  */
559       if (adjustment >= pos && adjustment < pos + basetype->length ())
560 	return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
561     }
562 
563   return NULL;
564 }
565 
566 /* Decode GNU v3 method pointer.  */
567 
568 static int
569 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
570 			 const gdb_byte *contents,
571 			 CORE_ADDR *value_p,
572 			 LONGEST *adjustment_p)
573 {
574   struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
575   struct type *offset_type = vtable_ptrdiff_type (gdbarch);
576   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
577   CORE_ADDR ptr_value;
578   LONGEST voffset, adjustment;
579   int vbit;
580 
581   /* Extract the pointer to member.  The first element is either a pointer
582      or a vtable offset.  For pointers, we need to use extract_typed_address
583      to allow the back-end to convert the pointer to a GDB address -- but
584      vtable offsets we must handle as integers.  At this point, we do not
585      yet know which case we have, so we extract the value under both
586      interpretations and choose the right one later on.  */
587   ptr_value = extract_typed_address (contents, funcptr_type);
588   voffset = extract_signed_integer (contents,
589 				    funcptr_type->length (), byte_order);
590   contents += funcptr_type->length ();
591   adjustment = extract_signed_integer (contents,
592 				       offset_type->length (), byte_order);
593 
594   if (!gdbarch_vbit_in_delta (gdbarch))
595     {
596       vbit = voffset & 1;
597       voffset = voffset ^ vbit;
598     }
599   else
600     {
601       vbit = adjustment & 1;
602       adjustment = adjustment >> 1;
603     }
604 
605   *value_p = vbit? voffset : ptr_value;
606   *adjustment_p = adjustment;
607   return vbit;
608 }
609 
610 /* GNU v3 implementation of cplus_print_method_ptr.  */
611 
612 static void
613 gnuv3_print_method_ptr (const gdb_byte *contents,
614 			struct type *type,
615 			struct ui_file *stream)
616 {
617   struct type *self_type = TYPE_SELF_TYPE (type);
618   struct gdbarch *gdbarch = self_type->arch ();
619   CORE_ADDR ptr_value;
620   LONGEST adjustment;
621   int vbit;
622 
623   /* Extract the pointer to member.  */
624   vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
625 
626   /* Check for NULL.  */
627   if (ptr_value == 0 && vbit == 0)
628     {
629       gdb_printf (stream, "NULL");
630       return;
631     }
632 
633   /* Search for a virtual method.  */
634   if (vbit)
635     {
636       CORE_ADDR voffset;
637       const char *physname;
638 
639       /* It's a virtual table offset, maybe in this class.  Search
640 	 for a field with the correct vtable offset.  First convert it
641 	 to an index, as used in TYPE_FN_FIELD_VOFFSET.  */
642       voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length ();
643 
644       physname = gnuv3_find_method_in (self_type, voffset, adjustment);
645 
646       /* If we found a method, print that.  We don't bother to disambiguate
647 	 possible paths to the method based on the adjustment.  */
648       if (physname)
649 	{
650 	  gdb::unique_xmalloc_ptr<char> demangled_name
651 	    = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS);
652 
653 	  gdb_printf (stream, "&virtual ");
654 	  if (demangled_name == NULL)
655 	    gdb_puts (physname, stream);
656 	  else
657 	    gdb_puts (demangled_name.get (), stream);
658 	  return;
659 	}
660     }
661   else if (ptr_value != 0)
662     {
663       /* Found a non-virtual function: print out the type.  */
664       gdb_puts ("(", stream);
665       c_print_type (type, "", stream, -1, 0, current_language->la_language,
666 		    &type_print_raw_options);
667       gdb_puts (") ", stream);
668     }
669 
670   /* We didn't find it; print the raw data.  */
671   if (vbit)
672     {
673       gdb_printf (stream, "&virtual table offset ");
674       print_longest (stream, 'd', 1, ptr_value);
675     }
676   else
677     {
678       struct value_print_options opts;
679 
680       get_user_print_options (&opts);
681       print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
682     }
683 
684   if (adjustment)
685     {
686       gdb_printf (stream, ", this adjustment ");
687       print_longest (stream, 'd', 1, adjustment);
688     }
689 }
690 
691 /* GNU v3 implementation of cplus_method_ptr_size.  */
692 
693 static int
694 gnuv3_method_ptr_size (struct type *type)
695 {
696   return 2 * builtin_type (type->arch ())->builtin_data_ptr->length ();
697 }
698 
699 /* GNU v3 implementation of cplus_make_method_ptr.  */
700 
701 static void
702 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
703 		       CORE_ADDR value, int is_virtual)
704 {
705   struct gdbarch *gdbarch = type->arch ();
706   int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
707   enum bfd_endian byte_order = type_byte_order (type);
708 
709   /* FIXME drow/2006-12-24: The adjustment of "this" is currently
710      always zero, since the method pointer is of the correct type.
711      But if the method pointer came from a base class, this is
712      incorrect - it should be the offset to the base.  The best
713      fix might be to create the pointer to member pointing at the
714      base class and cast it to the derived class, but that requires
715      support for adjusting pointers to members when casting them -
716      not currently supported by GDB.  */
717 
718   if (!gdbarch_vbit_in_delta (gdbarch))
719     {
720       store_unsigned_integer (contents, size, byte_order, value | is_virtual);
721       store_unsigned_integer (contents + size, size, byte_order, 0);
722     }
723   else
724     {
725       store_unsigned_integer (contents, size, byte_order, value);
726       store_unsigned_integer (contents + size, size, byte_order, is_virtual);
727     }
728 }
729 
730 /* GNU v3 implementation of cplus_method_ptr_to_value.  */
731 
732 static struct value *
733 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
734 {
735   struct gdbarch *gdbarch;
736   const gdb_byte *contents = value_contents (method_ptr).data ();
737   CORE_ADDR ptr_value;
738   struct type *self_type, *final_type, *method_type;
739   LONGEST adjustment;
740   int vbit;
741 
742   self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
743   final_type = lookup_pointer_type (self_type);
744 
745   method_type = check_typedef (value_type (method_ptr))->target_type ();
746 
747   /* Extract the pointer to member.  */
748   gdbarch = self_type->arch ();
749   vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
750 
751   /* First convert THIS to match the containing type of the pointer to
752      member.  This cast may adjust the value of THIS.  */
753   *this_p = value_cast (final_type, *this_p);
754 
755   /* Then apply whatever adjustment is necessary.  This creates a somewhat
756      strange pointer: it claims to have type FINAL_TYPE, but in fact it
757      might not be a valid FINAL_TYPE.  For instance, it might be a
758      base class of FINAL_TYPE.  And if it's not the primary base class,
759      then printing it out as a FINAL_TYPE object would produce some pretty
760      garbage.
761 
762      But we don't really know the type of the first argument in
763      METHOD_TYPE either, which is why this happens.  We can't
764      dereference this later as a FINAL_TYPE, but once we arrive in the
765      called method we'll have debugging information for the type of
766      "this" - and that'll match the value we produce here.
767 
768      You can provoke this case by casting a Base::* to a Derived::*, for
769      instance.  */
770   *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
771   *this_p = value_ptradd (*this_p, adjustment);
772   *this_p = value_cast (final_type, *this_p);
773 
774   if (vbit)
775     {
776       LONGEST voffset;
777 
778       voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length ();
779       return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
780 				   method_type, voffset);
781     }
782   else
783     return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
784 }
785 
786 /* Objects of this type are stored in a hash table and a vector when
787    printing the vtables for a class.  */
788 
789 struct value_and_voffset
790 {
791   /* The value representing the object.  */
792   struct value *value;
793 
794   /* The maximum vtable offset we've found for any object at this
795      offset in the outermost object.  */
796   int max_voffset;
797 };
798 
799 /* Hash function for value_and_voffset.  */
800 
801 static hashval_t
802 hash_value_and_voffset (const void *p)
803 {
804   const struct value_and_voffset *o = (const struct value_and_voffset *) p;
805 
806   return value_address (o->value) + value_embedded_offset (o->value);
807 }
808 
809 /* Equality function for value_and_voffset.  */
810 
811 static int
812 eq_value_and_voffset (const void *a, const void *b)
813 {
814   const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
815   const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
816 
817   return (value_address (ova->value) + value_embedded_offset (ova->value)
818 	  == value_address (ovb->value) + value_embedded_offset (ovb->value));
819 }
820 
821 /* Comparison function for value_and_voffset.  */
822 
823 static bool
824 compare_value_and_voffset (const struct value_and_voffset *va,
825 			   const struct value_and_voffset *vb)
826 {
827   CORE_ADDR addra = (value_address (va->value)
828 		     + value_embedded_offset (va->value));
829   CORE_ADDR addrb = (value_address (vb->value)
830 		     + value_embedded_offset (vb->value));
831 
832   return addra < addrb;
833 }
834 
835 /* A helper function used when printing vtables.  This determines the
836    key (most derived) sub-object at each address and also computes the
837    maximum vtable offset seen for the corresponding vtable.  Updates
838    OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
839    needed.  VALUE is the object to examine.  */
840 
841 static void
842 compute_vtable_size (htab_t offset_hash,
843 		     std::vector<value_and_voffset *> *offset_vec,
844 		     struct value *value)
845 {
846   int i;
847   struct type *type = check_typedef (value_type (value));
848   void **slot;
849   struct value_and_voffset search_vo, *current_vo;
850 
851   gdb_assert (type->code () == TYPE_CODE_STRUCT);
852 
853   /* If the object is not dynamic, then we are done; as it cannot have
854      dynamic base types either.  */
855   if (!gnuv3_dynamic_class (type))
856     return;
857 
858   /* Update the hash and the vec, if needed.  */
859   search_vo.value = value;
860   slot = htab_find_slot (offset_hash, &search_vo, INSERT);
861   if (*slot)
862     current_vo = (struct value_and_voffset *) *slot;
863   else
864     {
865       current_vo = XNEW (struct value_and_voffset);
866       current_vo->value = value;
867       current_vo->max_voffset = -1;
868       *slot = current_vo;
869       offset_vec->push_back (current_vo);
870     }
871 
872   /* Update the value_and_voffset object with the highest vtable
873      offset from this class.  */
874   for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
875     {
876       int j;
877       struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
878 
879       for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
880 	{
881 	  if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
882 	    {
883 	      int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
884 
885 	      if (voffset > current_vo->max_voffset)
886 		current_vo->max_voffset = voffset;
887 	    }
888 	}
889     }
890 
891   /* Recurse into base classes.  */
892   for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
893     compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
894 }
895 
896 /* Helper for gnuv3_print_vtable that prints a single vtable.  */
897 
898 static void
899 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
900 		  int max_voffset,
901 		  struct value_print_options *opts)
902 {
903   int i;
904   struct type *type = check_typedef (value_type (value));
905   struct value *vtable;
906   CORE_ADDR vt_addr;
907 
908   vtable = gnuv3_get_vtable (gdbarch, type,
909 			     value_address (value)
910 			     + value_embedded_offset (value));
911   vt_addr = value_address (value_field (vtable,
912 					vtable_field_virtual_functions));
913 
914   gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"),
915 	      TYPE_SAFE_NAME (type),
916 	      paddress (gdbarch, vt_addr),
917 	      paddress (gdbarch, (value_address (value)
918 				  + value_embedded_offset (value))));
919 
920   for (i = 0; i <= max_voffset; ++i)
921     {
922       /* Initialize it just to avoid a GCC false warning.  */
923       CORE_ADDR addr = 0;
924       int got_error = 0;
925       struct value *vfn;
926 
927       gdb_printf ("[%d]: ", i);
928 
929       vfn = value_subscript (value_field (vtable,
930 					  vtable_field_virtual_functions),
931 			     i);
932 
933       if (gdbarch_vtable_function_descriptors (gdbarch))
934 	vfn = value_addr (vfn);
935 
936       try
937 	{
938 	  addr = value_as_address (vfn);
939 	}
940       catch (const gdb_exception_error &ex)
941 	{
942 	  fprintf_styled (gdb_stdout, metadata_style.style (),
943 			  _("<error: %s>"), ex.what ());
944 	  got_error = 1;
945 	}
946 
947       if (!got_error)
948 	print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
949       gdb_printf ("\n");
950     }
951 }
952 
953 /* Implementation of the print_vtable method.  */
954 
955 static void
956 gnuv3_print_vtable (struct value *value)
957 {
958   struct gdbarch *gdbarch;
959   struct type *type;
960   struct value *vtable;
961   struct value_print_options opts;
962   int count;
963 
964   value = coerce_ref (value);
965   type = check_typedef (value_type (value));
966   if (type->code () == TYPE_CODE_PTR)
967     {
968       value = value_ind (value);
969       type = check_typedef (value_type (value));
970     }
971 
972   get_user_print_options (&opts);
973 
974   /* Respect 'set print object'.  */
975   if (opts.objectprint)
976     {
977       value = value_full_object (value, NULL, 0, 0, 0);
978       type = check_typedef (value_type (value));
979     }
980 
981   gdbarch = type->arch ();
982 
983   vtable = NULL;
984   if (type->code () == TYPE_CODE_STRUCT)
985     vtable = gnuv3_get_vtable (gdbarch, type,
986 			       value_as_address (value_addr (value)));
987 
988   if (!vtable)
989     {
990       gdb_printf (_("This object does not have a virtual function table\n"));
991       return;
992     }
993 
994   htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
995 					  eq_value_and_voffset,
996 					  xfree, xcalloc, xfree));
997   std::vector<value_and_voffset *> result_vec;
998 
999   compute_vtable_size (offset_hash.get (), &result_vec, value);
1000   std::sort (result_vec.begin (), result_vec.end (),
1001 	     compare_value_and_voffset);
1002 
1003   count = 0;
1004   for (value_and_voffset *iter : result_vec)
1005     {
1006       if (iter->max_voffset >= 0)
1007 	{
1008 	  if (count > 0)
1009 	    gdb_printf ("\n");
1010 	  print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1011 	  ++count;
1012 	}
1013     }
1014 }
1015 
1016 /* Return a GDB type representing `struct std::type_info', laid out
1017    appropriately for ARCH.
1018 
1019    We use this function as the gdbarch per-architecture data
1020    initialization function.  */
1021 
1022 static struct type *
1023 build_std_type_info_type (struct gdbarch *arch)
1024 {
1025   struct type *t;
1026   struct field *field_list, *field;
1027   int offset;
1028   struct type *void_ptr_type
1029     = builtin_type (arch)->builtin_data_ptr;
1030   struct type *char_type
1031     = builtin_type (arch)->builtin_char;
1032   struct type *char_ptr_type
1033     = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1034 
1035   field_list = XCNEWVEC (struct field, 2);
1036   field = &field_list[0];
1037   offset = 0;
1038 
1039   /* The vtable.  */
1040   field->set_name ("_vptr.type_info");
1041   field->set_type (void_ptr_type);
1042   field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1043   offset += field->type ()->length ();
1044   field++;
1045 
1046   /* The name.  */
1047   field->set_name ("__name");
1048   field->set_type (char_ptr_type);
1049   field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1050   offset += field->type ()->length ();
1051   field++;
1052 
1053   gdb_assert (field == (field_list + 2));
1054 
1055   t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1056   t->set_num_fields (field - field_list);
1057   t->set_fields (field_list);
1058   t->set_name ("gdb_gnu_v3_type_info");
1059   INIT_CPLUS_SPECIFIC (t);
1060 
1061   return t;
1062 }
1063 
1064 /* Implement the 'get_typeid_type' method.  */
1065 
1066 static struct type *
1067 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1068 {
1069   struct symbol *typeinfo;
1070   struct type *typeinfo_type;
1071 
1072   typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1073 			    NULL).symbol;
1074   if (typeinfo == NULL)
1075     {
1076       typeinfo_type = std_type_info_gdbarch_data.get (gdbarch);
1077       if (typeinfo_type == nullptr)
1078 	{
1079 	  typeinfo_type = build_std_type_info_type (gdbarch);
1080 	  std_type_info_gdbarch_data.set (gdbarch, typeinfo_type);
1081 	}
1082     }
1083   else
1084     typeinfo_type = typeinfo->type ();
1085 
1086   return typeinfo_type;
1087 }
1088 
1089 /* Implement the 'get_typeid' method.  */
1090 
1091 static struct value *
1092 gnuv3_get_typeid (struct value *value)
1093 {
1094   struct type *typeinfo_type;
1095   struct type *type;
1096   struct gdbarch *gdbarch;
1097   struct value *result;
1098   std::string type_name;
1099   gdb::unique_xmalloc_ptr<char> canonical;
1100 
1101   /* We have to handle values a bit trickily here, to allow this code
1102      to work properly with non_lvalue values that are really just
1103      disguised types.  */
1104   if (value_lval_const (value) == lval_memory)
1105     value = coerce_ref (value);
1106 
1107   type = check_typedef (value_type (value));
1108 
1109   /* In the non_lvalue case, a reference might have slipped through
1110      here.  */
1111   if (type->code () == TYPE_CODE_REF)
1112     type = check_typedef (type->target_type ());
1113 
1114   /* Ignore top-level cv-qualifiers.  */
1115   type = make_cv_type (0, 0, type, NULL);
1116   gdbarch = type->arch ();
1117 
1118   type_name = type_to_string (type);
1119   if (type_name.empty ())
1120     error (_("cannot find typeinfo for unnamed type"));
1121 
1122   /* We need to canonicalize the type name here, because we do lookups
1123      using the demangled name, and so we must match the format it
1124      uses.  E.g., GDB tends to use "const char *" as a type name, but
1125      the demangler uses "char const *".  */
1126   canonical = cp_canonicalize_string (type_name.c_str ());
1127   const char *name = (canonical == nullptr
1128 		      ? type_name.c_str ()
1129 		      : canonical.get ());
1130 
1131   typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1132 
1133   /* We check for lval_memory because in the "typeid (type-id)" case,
1134      the type is passed via a not_lval value object.  */
1135   if (type->code () == TYPE_CODE_STRUCT
1136       && value_lval_const (value) == lval_memory
1137       && gnuv3_dynamic_class (type))
1138     {
1139       struct value *vtable, *typeinfo_value;
1140       CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1141 
1142       vtable = gnuv3_get_vtable (gdbarch, type, address);
1143       if (vtable == NULL)
1144 	error (_("cannot find typeinfo for object of type '%s'"),
1145 	       name);
1146       typeinfo_value = value_field (vtable, vtable_field_type_info);
1147       result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1148 				      typeinfo_value));
1149     }
1150   else
1151     {
1152       std::string sym_name = std::string ("typeinfo for ") + name;
1153       bound_minimal_symbol minsym
1154 	= lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1155 
1156       if (minsym.minsym == NULL)
1157 	error (_("could not find typeinfo symbol for '%s'"), name);
1158 
1159       result = value_at_lazy (typeinfo_type, minsym.value_address ());
1160     }
1161 
1162   return result;
1163 }
1164 
1165 /* Implement the 'get_typename_from_type_info' method.  */
1166 
1167 static std::string
1168 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1169 {
1170   struct gdbarch *gdbarch = value_type (type_info_ptr)->arch ();
1171   struct bound_minimal_symbol typeinfo_sym;
1172   CORE_ADDR addr;
1173   const char *symname;
1174   const char *class_name;
1175   const char *atsign;
1176 
1177   addr = value_as_address (type_info_ptr);
1178   typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1179   if (typeinfo_sym.minsym == NULL)
1180     error (_("could not find minimal symbol for typeinfo address %s"),
1181 	   paddress (gdbarch, addr));
1182 
1183 #define TYPEINFO_PREFIX "typeinfo for "
1184 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1185   symname = typeinfo_sym.minsym->demangled_name ();
1186   if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1187 				  TYPEINFO_PREFIX_LEN))
1188     error (_("typeinfo symbol '%s' has unexpected name"),
1189 	   typeinfo_sym.minsym->linkage_name ());
1190   class_name = symname + TYPEINFO_PREFIX_LEN;
1191 
1192   /* Strip off @plt and version suffixes.  */
1193   atsign = strchr (class_name, '@');
1194   if (atsign != NULL)
1195     return std::string (class_name, atsign - class_name);
1196   return class_name;
1197 }
1198 
1199 /* Implement the 'get_type_from_type_info' method.  */
1200 
1201 static struct type *
1202 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1203 {
1204   /* We have to parse the type name, since in general there is not a
1205      symbol for a type.  This is somewhat bogus since there may be a
1206      mis-parse.  Another approach might be to re-use the demangler's
1207      internal form to reconstruct the type somehow.  */
1208   std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1209   expression_up expr (parse_expression (type_name.c_str ()));
1210   struct value *type_val = evaluate_type (expr.get ());
1211   return value_type (type_val);
1212 }
1213 
1214 /* Determine if we are currently in a C++ thunk.  If so, get the address
1215    of the routine we are thunking to and continue to there instead.  */
1216 
1217 static CORE_ADDR
1218 gnuv3_skip_trampoline (frame_info_ptr frame, CORE_ADDR stop_pc)
1219 {
1220   CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1221   struct gdbarch *gdbarch = get_frame_arch (frame);
1222   struct bound_minimal_symbol thunk_sym, fn_sym;
1223   struct obj_section *section;
1224   const char *thunk_name, *fn_name;
1225 
1226   real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1227   if (real_stop_pc == 0)
1228     real_stop_pc = stop_pc;
1229 
1230   /* Find the linker symbol for this potential thunk.  */
1231   thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1232   section = find_pc_section (real_stop_pc);
1233   if (thunk_sym.minsym == NULL || section == NULL)
1234     return 0;
1235 
1236   /* The symbol's demangled name should be something like "virtual
1237      thunk to FUNCTION", where FUNCTION is the name of the function
1238      being thunked to.  */
1239   thunk_name = thunk_sym.minsym->demangled_name ();
1240   if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1241     return 0;
1242 
1243   fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1244   fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1245   if (fn_sym.minsym == NULL)
1246     return 0;
1247 
1248   method_stop_pc = fn_sym.value_address ();
1249 
1250   /* Some targets have minimal symbols pointing to function descriptors
1251      (powerpc 64 for example).  Make sure to retrieve the address
1252      of the real function from the function descriptor before passing on
1253      the address to other layers of GDB.  */
1254   func_addr = gdbarch_convert_from_func_ptr_addr
1255     (gdbarch, method_stop_pc, current_inferior ()->top_target ());
1256   if (func_addr != 0)
1257     method_stop_pc = func_addr;
1258 
1259   real_stop_pc = gdbarch_skip_trampoline_code
1260 		   (gdbarch, frame, method_stop_pc);
1261   if (real_stop_pc == 0)
1262     real_stop_pc = method_stop_pc;
1263 
1264   return real_stop_pc;
1265 }
1266 
1267 /* A member function is in one these states.  */
1268 
1269 enum definition_style
1270 {
1271   DOES_NOT_EXIST_IN_SOURCE,
1272   DEFAULTED_INSIDE,
1273   DEFAULTED_OUTSIDE,
1274   DELETED,
1275   EXPLICIT,
1276 };
1277 
1278 /* Return how the given field is defined.  */
1279 
1280 static definition_style
1281 get_def_style (struct fn_field *fn, int fieldelem)
1282 {
1283   if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1284     return DELETED;
1285 
1286   if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1287     return DOES_NOT_EXIST_IN_SOURCE;
1288 
1289   switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1290     {
1291     case DW_DEFAULTED_no:
1292       return EXPLICIT;
1293     case DW_DEFAULTED_in_class:
1294       return DEFAULTED_INSIDE;
1295     case DW_DEFAULTED_out_of_class:
1296       return DEFAULTED_OUTSIDE;
1297     default:
1298       break;
1299     }
1300 
1301   return EXPLICIT;
1302 }
1303 
1304 /* Helper functions to determine whether the given definition style
1305    denotes that the definition is user-provided or implicit.
1306    Being defaulted outside the class decl counts as an explicit
1307    user-definition, while being defaulted inside is implicit.  */
1308 
1309 static bool
1310 is_user_provided_def (definition_style def)
1311 {
1312   return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1313 }
1314 
1315 static bool
1316 is_implicit_def (definition_style def)
1317 {
1318   return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1319 }
1320 
1321 /* Helper function to decide if METHOD_TYPE is a copy/move
1322    constructor type for CLASS_TYPE.  EXPECTED is the expected
1323    type code for the "right-hand-side" argument.
1324    This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1325    and IS_MOVE_CONSTRUCTOR_TYPE functions below.  Normally, you should
1326    not need to call this directly.  */
1327 
1328 static bool
1329 is_copy_or_move_constructor_type (struct type *class_type,
1330 				  struct type *method_type,
1331 				  type_code expected)
1332 {
1333   /* The method should take at least two arguments...  */
1334   if (method_type->num_fields () < 2)
1335     return false;
1336 
1337   /* ...and the second argument should be the same as the class
1338      type, with the expected type code...  */
1339   struct type *arg_type = method_type->field (1).type ();
1340 
1341   if (arg_type->code () != expected)
1342     return false;
1343 
1344   struct type *target = check_typedef (arg_type->target_type ());
1345   if (!(class_types_same_p (target, class_type)))
1346     return false;
1347 
1348   /* ...and if any of the remaining arguments don't have a default value
1349      then this is not a copy or move constructor, but just a
1350      constructor.  */
1351   for (int i = 2; i < method_type->num_fields (); i++)
1352     {
1353       arg_type = method_type->field (i).type ();
1354       /* FIXME aktemur/2019-10-31: As of this date, neither
1355 	 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1356 	 attribute.  GDB is also not set to read this attribute, yet.
1357 	 Hence, we immediately return false if there are more than
1358 	 2 parameters.
1359 	 GCC bug link:
1360 	 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1361       */
1362       return false;
1363     }
1364 
1365   return true;
1366 }
1367 
1368 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE.  */
1369 
1370 static bool
1371 is_copy_constructor_type (struct type *class_type,
1372 			  struct type *method_type)
1373 {
1374   return is_copy_or_move_constructor_type (class_type, method_type,
1375 					   TYPE_CODE_REF);
1376 }
1377 
1378 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE.  */
1379 
1380 static bool
1381 is_move_constructor_type (struct type *class_type,
1382 			  struct type *method_type)
1383 {
1384   return is_copy_or_move_constructor_type (class_type, method_type,
1385 					   TYPE_CODE_RVALUE_REF);
1386 }
1387 
1388 /* Return pass-by-reference information for the given TYPE.
1389 
1390    The rule in the v3 ABI document comes from section 3.1.1.  If the
1391    type has a non-trivial copy constructor or destructor, then the
1392    caller must make a copy (by calling the copy constructor if there
1393    is one or perform the copy itself otherwise), pass the address of
1394    the copy, and then destroy the temporary (if necessary).
1395 
1396    For return values with non-trivial copy/move constructors or
1397    destructors, space will be allocated in the caller, and a pointer
1398    will be passed as the first argument (preceding "this").
1399 
1400    We don't have a bulletproof mechanism for determining whether a
1401    constructor or destructor is trivial.  For GCC and DWARF5 debug
1402    information, we can check the calling_convention attribute,
1403    the 'artificial' flag, the 'defaulted' attribute, and the
1404    'deleted' attribute.  */
1405 
1406 static struct language_pass_by_ref_info
1407 gnuv3_pass_by_reference (struct type *type)
1408 {
1409   int fieldnum, fieldelem;
1410 
1411   type = check_typedef (type);
1412 
1413   /* Start with the default values.  */
1414   struct language_pass_by_ref_info info;
1415 
1416   bool has_cc_attr = false;
1417   bool is_pass_by_value = false;
1418   bool is_dynamic = false;
1419   definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1420   definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1421   definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1422 
1423   /* We're only interested in things that can have methods.  */
1424   if (type->code () != TYPE_CODE_STRUCT
1425       && type->code () != TYPE_CODE_UNION)
1426     return info;
1427 
1428   /* The compiler may have emitted the calling convention attribute.
1429      Note: GCC does not produce this attribute as of version 9.2.1.
1430      Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418  */
1431   if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1432     {
1433       has_cc_attr = true;
1434       is_pass_by_value = true;
1435       /* Do not return immediately.  We have to find out if this type
1436 	 is copy_constructible and destructible.  */
1437     }
1438 
1439   if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1440     {
1441       has_cc_attr = true;
1442       is_pass_by_value = false;
1443     }
1444 
1445   /* A dynamic class has a non-trivial copy constructor.
1446      See c++98 section 12.8 Copying class objects [class.copy].  */
1447   if (gnuv3_dynamic_class (type))
1448     is_dynamic = true;
1449 
1450   for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1451     for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1452 	 fieldelem++)
1453       {
1454 	struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1455 	const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1456 	struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1457 
1458 	if (name[0] == '~')
1459 	  {
1460 	    /* We've found a destructor.
1461 	       There should be at most one dtor definition.  */
1462 	    gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1463 	    dtor_def = get_def_style (fn, fieldelem);
1464 	  }
1465 	else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1466 		 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1467 	  {
1468 	    /* FIXME drow/2007-09-23: We could do this using the name of
1469 	       the method and the name of the class instead of dealing
1470 	       with the mangled name.  We don't have a convenient function
1471 	       to strip off both leading scope qualifiers and trailing
1472 	       template arguments yet.  */
1473 	    if (is_copy_constructor_type (type, fieldtype))
1474 	      {
1475 		/* There may be more than one cctors.  E.g.: one that
1476 		   take a const parameter and another that takes a
1477 		   non-const parameter.  Such as:
1478 
1479 		   class K {
1480 		     K (const K &k)...
1481 		     K (K &k)...
1482 		   };
1483 
1484 		   It is sufficient for the type to be non-trivial
1485 		   even only one of the cctors is explicit.
1486 		   Therefore, update the cctor_def value in the
1487 		   implicit -> explicit direction, not backwards.  */
1488 
1489 		if (is_implicit_def (cctor_def))
1490 		  cctor_def = get_def_style (fn, fieldelem);
1491 	      }
1492 	    else if (is_move_constructor_type (type, fieldtype))
1493 	      {
1494 		/* Again, there may be multiple move ctors.  Update the
1495 		   mctor_def value if we found an explicit def and the
1496 		   existing one is not explicit.  Otherwise retain the
1497 		   existing value.  */
1498 		if (is_implicit_def (mctor_def))
1499 		  mctor_def = get_def_style (fn, fieldelem);
1500 	      }
1501 	  }
1502       }
1503 
1504   bool cctor_implicitly_deleted
1505     = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1506        && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1507 
1508   bool cctor_explicitly_deleted = (cctor_def == DELETED);
1509 
1510   if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1511     info.copy_constructible = false;
1512 
1513   if (dtor_def == DELETED)
1514     info.destructible = false;
1515 
1516   info.trivially_destructible = is_implicit_def (dtor_def);
1517 
1518   info.trivially_copy_constructible
1519     = (is_implicit_def (cctor_def)
1520        && !is_dynamic);
1521 
1522   info.trivially_copyable
1523     = (info.trivially_copy_constructible
1524        && info.trivially_destructible
1525        && !is_user_provided_def (mctor_def));
1526 
1527   /* Even if all the constructors and destructors were artificial, one
1528      of them may have invoked a non-artificial constructor or
1529      destructor in a base class.  If any base class needs to be passed
1530      by reference, so does this class.  Similarly for members, which
1531      are constructed whenever this class is.  We do not need to worry
1532      about recursive loops here, since we are only looking at members
1533      of complete class type.  Also ignore any static members.  */
1534   for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1535     if (!field_is_static (&type->field (fieldnum)))
1536       {
1537 	struct type *field_type = type->field (fieldnum).type ();
1538 
1539 	/* For arrays, make the decision based on the element type.  */
1540 	if (field_type->code () == TYPE_CODE_ARRAY)
1541 	  field_type = check_typedef (field_type->target_type ());
1542 
1543 	struct language_pass_by_ref_info field_info
1544 	  = gnuv3_pass_by_reference (field_type);
1545 
1546 	if (!field_info.copy_constructible)
1547 	  info.copy_constructible = false;
1548 	if (!field_info.destructible)
1549 	  info.destructible = false;
1550 	if (!field_info.trivially_copyable)
1551 	  info.trivially_copyable = false;
1552 	if (!field_info.trivially_copy_constructible)
1553 	  info.trivially_copy_constructible = false;
1554 	if (!field_info.trivially_destructible)
1555 	  info.trivially_destructible = false;
1556       }
1557 
1558   /* Consistency check.  */
1559   if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1560     {
1561       /* DWARF CC attribute is not the same as the inferred value;
1562 	 use the DWARF attribute.  */
1563       info.trivially_copyable = is_pass_by_value;
1564     }
1565 
1566   return info;
1567 }
1568 
1569 static void
1570 init_gnuv3_ops (void)
1571 {
1572   gnu_v3_abi_ops.shortname = "gnu-v3";
1573   gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1574   gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1575   gnu_v3_abi_ops.is_destructor_name =
1576     (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1577   gnu_v3_abi_ops.is_constructor_name =
1578     (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1579   gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1580   gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1581   gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1582   gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1583   gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1584   gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1585   gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1586   gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1587   gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1588   gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1589   gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1590   gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1591   gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1592   gnu_v3_abi_ops.get_typename_from_type_info
1593     = gnuv3_get_typename_from_type_info;
1594   gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1595   gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1596 }
1597 
1598 void _initialize_gnu_v3_abi ();
1599 void
1600 _initialize_gnu_v3_abi ()
1601 {
1602   init_gnuv3_ops ();
1603 
1604   register_cp_abi (&gnu_v3_abi_ops);
1605   set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1606 }
1607