1 /* Abstraction of GNU v3 abi. 2 Contributed by Jim Blandy <jimb@redhat.com> 3 4 Copyright (C) 2001-2023 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "value.h" 23 #include "cp-abi.h" 24 #include "cp-support.h" 25 #include "demangle.h" 26 #include "dwarf2.h" 27 #include "objfiles.h" 28 #include "valprint.h" 29 #include "c-lang.h" 30 #include "typeprint.h" 31 #include <algorithm> 32 #include "cli/cli-style.h" 33 #include "dwarf2/loc.h" 34 #include "inferior.h" 35 36 static struct cp_abi_ops gnu_v3_abi_ops; 37 38 /* A gdbarch key for std::type_info, in the event that it can't be 39 found in the debug info. */ 40 41 static const registry<gdbarch>::key<struct type> std_type_info_gdbarch_data; 42 43 44 static int 45 gnuv3_is_vtable_name (const char *name) 46 { 47 return startswith (name, "_ZTV"); 48 } 49 50 static int 51 gnuv3_is_operator_name (const char *name) 52 { 53 return startswith (name, CP_OPERATOR_STR); 54 } 55 56 57 /* To help us find the components of a vtable, we build ourselves a 58 GDB type object representing the vtable structure. Following the 59 V3 ABI, it goes something like this: 60 61 struct gdb_gnu_v3_abi_vtable { 62 63 / * An array of virtual call and virtual base offsets. The real 64 length of this array depends on the class hierarchy; we use 65 negative subscripts to access the elements. Yucky, but 66 better than the alternatives. * / 67 ptrdiff_t vcall_and_vbase_offsets[0]; 68 69 / * The offset from a virtual pointer referring to this table 70 to the top of the complete object. * / 71 ptrdiff_t offset_to_top; 72 73 / * The type_info pointer for this class. This is really a 74 std::type_info *, but GDB doesn't really look at the 75 type_info object itself, so we don't bother to get the type 76 exactly right. * / 77 void *type_info; 78 79 / * Virtual table pointers in objects point here. * / 80 81 / * Virtual function pointers. Like the vcall/vbase array, the 82 real length of this table depends on the class hierarchy. * / 83 void (*virtual_functions[0]) (); 84 85 }; 86 87 The catch, of course, is that the exact layout of this table 88 depends on the ABI --- word size, endianness, alignment, etc. So 89 the GDB type object is actually a per-architecture kind of thing. 90 91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer 92 which refers to the struct type * for this structure, laid out 93 appropriately for the architecture. */ 94 static const registry<gdbarch>::key<struct type> vtable_type_gdbarch_data; 95 96 97 /* Human-readable names for the numbers of the fields above. */ 98 enum { 99 vtable_field_vcall_and_vbase_offsets, 100 vtable_field_offset_to_top, 101 vtable_field_type_info, 102 vtable_field_virtual_functions 103 }; 104 105 106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable', 107 described above, laid out appropriately for ARCH. 108 109 We use this function as the gdbarch per-architecture data 110 initialization function. */ 111 static struct type * 112 get_gdb_vtable_type (struct gdbarch *arch) 113 { 114 struct type *t; 115 struct field *field_list, *field; 116 int offset; 117 118 struct type *result = vtable_type_gdbarch_data.get (arch); 119 if (result != nullptr) 120 return result; 121 122 struct type *void_ptr_type 123 = builtin_type (arch)->builtin_data_ptr; 124 struct type *ptr_to_void_fn_type 125 = builtin_type (arch)->builtin_func_ptr; 126 127 /* ARCH can't give us the true ptrdiff_t type, so we guess. */ 128 struct type *ptrdiff_type 129 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t"); 130 131 /* We assume no padding is necessary, since GDB doesn't know 132 anything about alignment at the moment. If this assumption bites 133 us, we should add a gdbarch method which, given a type, returns 134 the alignment that type requires, and then use that here. */ 135 136 /* Build the field list. */ 137 field_list = XCNEWVEC (struct field, 4); 138 field = &field_list[0]; 139 offset = 0; 140 141 /* ptrdiff_t vcall_and_vbase_offsets[0]; */ 142 field->set_name ("vcall_and_vbase_offsets"); 143 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1)); 144 field->set_loc_bitpos (offset * TARGET_CHAR_BIT); 145 offset += field->type ()->length (); 146 field++; 147 148 /* ptrdiff_t offset_to_top; */ 149 field->set_name ("offset_to_top"); 150 field->set_type (ptrdiff_type); 151 field->set_loc_bitpos (offset * TARGET_CHAR_BIT); 152 offset += field->type ()->length (); 153 field++; 154 155 /* void *type_info; */ 156 field->set_name ("type_info"); 157 field->set_type (void_ptr_type); 158 field->set_loc_bitpos (offset * TARGET_CHAR_BIT); 159 offset += field->type ()->length (); 160 field++; 161 162 /* void (*virtual_functions[0]) (); */ 163 field->set_name ("virtual_functions"); 164 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1)); 165 field->set_loc_bitpos (offset * TARGET_CHAR_BIT); 166 offset += field->type ()->length (); 167 field++; 168 169 /* We assumed in the allocation above that there were four fields. */ 170 gdb_assert (field == (field_list + 4)); 171 172 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL); 173 t->set_num_fields (field - field_list); 174 t->set_fields (field_list); 175 t->set_name ("gdb_gnu_v3_abi_vtable"); 176 INIT_CPLUS_SPECIFIC (t); 177 178 result = make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE); 179 vtable_type_gdbarch_data.set (arch, result); 180 return result; 181 } 182 183 184 /* Return the ptrdiff_t type used in the vtable type. */ 185 static struct type * 186 vtable_ptrdiff_type (struct gdbarch *gdbarch) 187 { 188 struct type *vtable_type = get_gdb_vtable_type (gdbarch); 189 190 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */ 191 return vtable_type->field (vtable_field_offset_to_top).type (); 192 } 193 194 /* Return the offset from the start of the imaginary `struct 195 gdb_gnu_v3_abi_vtable' object to the vtable's "address point" 196 (i.e., where objects' virtual table pointers point). */ 197 static int 198 vtable_address_point_offset (struct gdbarch *gdbarch) 199 { 200 struct type *vtable_type = get_gdb_vtable_type (gdbarch); 201 202 return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos () 203 / TARGET_CHAR_BIT); 204 } 205 206 207 /* Determine whether structure TYPE is a dynamic class. Cache the 208 result. */ 209 210 static int 211 gnuv3_dynamic_class (struct type *type) 212 { 213 int fieldnum, fieldelem; 214 215 type = check_typedef (type); 216 gdb_assert (type->code () == TYPE_CODE_STRUCT 217 || type->code () == TYPE_CODE_UNION); 218 219 if (type->code () == TYPE_CODE_UNION) 220 return 0; 221 222 if (TYPE_CPLUS_DYNAMIC (type)) 223 return TYPE_CPLUS_DYNAMIC (type) == 1; 224 225 ALLOCATE_CPLUS_STRUCT_TYPE (type); 226 227 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++) 228 if (BASETYPE_VIA_VIRTUAL (type, fieldnum) 229 || gnuv3_dynamic_class (type->field (fieldnum).type ())) 230 { 231 TYPE_CPLUS_DYNAMIC (type) = 1; 232 return 1; 233 } 234 235 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) 236 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); 237 fieldelem++) 238 { 239 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum); 240 241 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem)) 242 { 243 TYPE_CPLUS_DYNAMIC (type) = 1; 244 return 1; 245 } 246 } 247 248 TYPE_CPLUS_DYNAMIC (type) = -1; 249 return 0; 250 } 251 252 /* Find the vtable for a value of CONTAINER_TYPE located at 253 CONTAINER_ADDR. Return a value of the correct vtable type for this 254 architecture, or NULL if CONTAINER does not have a vtable. */ 255 256 static struct value * 257 gnuv3_get_vtable (struct gdbarch *gdbarch, 258 struct type *container_type, CORE_ADDR container_addr) 259 { 260 struct type *vtable_type = get_gdb_vtable_type (gdbarch); 261 struct type *vtable_pointer_type; 262 struct value *vtable_pointer; 263 CORE_ADDR vtable_address; 264 265 container_type = check_typedef (container_type); 266 gdb_assert (container_type->code () == TYPE_CODE_STRUCT); 267 268 /* If this type does not have a virtual table, don't read the first 269 field. */ 270 if (!gnuv3_dynamic_class (container_type)) 271 return NULL; 272 273 /* We do not consult the debug information to find the virtual table. 274 The ABI specifies that it is always at offset zero in any class, 275 and debug information may not represent it. 276 277 We avoid using value_contents on principle, because the object might 278 be large. */ 279 280 /* Find the type "pointer to virtual table". */ 281 vtable_pointer_type = lookup_pointer_type (vtable_type); 282 283 /* Load it from the start of the class. */ 284 vtable_pointer = value_at (vtable_pointer_type, container_addr); 285 vtable_address = value_as_address (vtable_pointer); 286 287 /* Correct it to point at the start of the virtual table, rather 288 than the address point. */ 289 return value_at_lazy (vtable_type, 290 vtable_address 291 - vtable_address_point_offset (gdbarch)); 292 } 293 294 295 static struct type * 296 gnuv3_rtti_type (struct value *value, 297 int *full_p, LONGEST *top_p, int *using_enc_p) 298 { 299 struct gdbarch *gdbarch; 300 struct type *values_type = check_typedef (value_type (value)); 301 struct value *vtable; 302 struct minimal_symbol *vtable_symbol; 303 const char *vtable_symbol_name; 304 const char *class_name; 305 struct type *run_time_type; 306 LONGEST offset_to_top; 307 const char *atsign; 308 309 /* We only have RTTI for dynamic class objects. */ 310 if (values_type->code () != TYPE_CODE_STRUCT 311 || !gnuv3_dynamic_class (values_type)) 312 return NULL; 313 314 /* Determine architecture. */ 315 gdbarch = values_type->arch (); 316 317 if (using_enc_p) 318 *using_enc_p = 0; 319 320 vtable = gnuv3_get_vtable (gdbarch, values_type, 321 value_as_address (value_addr (value))); 322 if (vtable == NULL) 323 return NULL; 324 325 /* Find the linker symbol for this vtable. */ 326 vtable_symbol 327 = lookup_minimal_symbol_by_pc (value_address (vtable) 328 + value_embedded_offset (vtable)).minsym; 329 if (! vtable_symbol) 330 return NULL; 331 332 /* The symbol's demangled name should be something like "vtable for 333 CLASS", where CLASS is the name of the run-time type of VALUE. 334 If we didn't like this approach, we could instead look in the 335 type_info object itself to get the class name. But this way 336 should work just as well, and doesn't read target memory. */ 337 vtable_symbol_name = vtable_symbol->demangled_name (); 338 if (vtable_symbol_name == NULL 339 || !startswith (vtable_symbol_name, "vtable for ")) 340 { 341 warning (_("can't find linker symbol for virtual table for `%s' value"), 342 TYPE_SAFE_NAME (values_type)); 343 if (vtable_symbol_name) 344 warning (_(" found `%s' instead"), vtable_symbol_name); 345 return NULL; 346 } 347 class_name = vtable_symbol_name + 11; 348 349 /* Strip off @plt and version suffixes. */ 350 atsign = strchr (class_name, '@'); 351 if (atsign != NULL) 352 { 353 char *copy; 354 355 copy = (char *) alloca (atsign - class_name + 1); 356 memcpy (copy, class_name, atsign - class_name); 357 copy[atsign - class_name] = '\0'; 358 class_name = copy; 359 } 360 361 /* Try to look up the class name as a type name. */ 362 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */ 363 run_time_type = cp_lookup_rtti_type (class_name, NULL); 364 if (run_time_type == NULL) 365 return NULL; 366 367 /* Get the offset from VALUE to the top of the complete object. 368 NOTE: this is the reverse of the meaning of *TOP_P. */ 369 offset_to_top 370 = value_as_long (value_field (vtable, vtable_field_offset_to_top)); 371 372 if (full_p) 373 *full_p = (- offset_to_top == value_embedded_offset (value) 374 && (value_enclosing_type (value)->length () 375 >= run_time_type->length ())); 376 if (top_p) 377 *top_p = - offset_to_top; 378 return run_time_type; 379 } 380 381 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual 382 function, of type FNTYPE. */ 383 384 static struct value * 385 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container, 386 struct type *fntype, int vtable_index) 387 { 388 struct value *vtable, *vfn; 389 390 /* Every class with virtual functions must have a vtable. */ 391 vtable = gnuv3_get_vtable (gdbarch, value_type (container), 392 value_as_address (value_addr (container))); 393 gdb_assert (vtable != NULL); 394 395 /* Fetch the appropriate function pointer from the vtable. */ 396 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions), 397 vtable_index); 398 399 /* If this architecture uses function descriptors directly in the vtable, 400 then the address of the vtable entry is actually a "function pointer" 401 (i.e. points to the descriptor). We don't need to scale the index 402 by the size of a function descriptor; GCC does that before outputting 403 debug information. */ 404 if (gdbarch_vtable_function_descriptors (gdbarch)) 405 vfn = value_addr (vfn); 406 407 /* Cast the function pointer to the appropriate type. */ 408 vfn = value_cast (lookup_pointer_type (fntype), vfn); 409 410 return vfn; 411 } 412 413 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h 414 for a description of the arguments. */ 415 416 static struct value * 417 gnuv3_virtual_fn_field (struct value **value_p, 418 struct fn_field *f, int j, 419 struct type *vfn_base, int offset) 420 { 421 struct type *values_type = check_typedef (value_type (*value_p)); 422 struct gdbarch *gdbarch; 423 424 /* Some simple sanity checks. */ 425 if (values_type->code () != TYPE_CODE_STRUCT) 426 error (_("Only classes can have virtual functions.")); 427 428 /* Determine architecture. */ 429 gdbarch = values_type->arch (); 430 431 /* Cast our value to the base class which defines this virtual 432 function. This takes care of any necessary `this' 433 adjustments. */ 434 if (vfn_base != values_type) 435 *value_p = value_cast (vfn_base, *value_p); 436 437 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j), 438 TYPE_FN_FIELD_VOFFSET (f, j)); 439 } 440 441 /* Compute the offset of the baseclass which is 442 the INDEXth baseclass of class TYPE, 443 for value at VALADDR (in host) at ADDRESS (in target). 444 The result is the offset of the baseclass value relative 445 to (the address of)(ARG) + OFFSET. 446 447 -1 is returned on error. */ 448 449 static int 450 gnuv3_baseclass_offset (struct type *type, int index, 451 const bfd_byte *valaddr, LONGEST embedded_offset, 452 CORE_ADDR address, const struct value *val) 453 { 454 struct gdbarch *gdbarch; 455 struct type *ptr_type; 456 struct value *vtable; 457 struct value *vbase_array; 458 long int cur_base_offset, base_offset; 459 460 /* Determine architecture. */ 461 gdbarch = type->arch (); 462 ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 463 464 /* If it isn't a virtual base, this is easy. The offset is in the 465 type definition. */ 466 if (!BASETYPE_VIA_VIRTUAL (type, index)) 467 return TYPE_BASECLASS_BITPOS (type, index) / 8; 468 469 /* If we have a DWARF expression for the offset, evaluate it. */ 470 if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK) 471 { 472 struct dwarf2_property_baton baton; 473 baton.property_type 474 = lookup_pointer_type (type->field (index).type ()); 475 baton.locexpr = *type->field (index).loc_dwarf_block (); 476 477 struct dynamic_prop prop; 478 prop.set_locexpr (&baton); 479 480 struct property_addr_info addr_stack; 481 addr_stack.type = type; 482 /* Note that we don't set "valaddr" here. Doing so causes 483 regressions. FIXME. */ 484 addr_stack.addr = address + embedded_offset; 485 addr_stack.next = nullptr; 486 487 CORE_ADDR result; 488 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result, 489 {addr_stack.addr})) 490 return (int) (result - addr_stack.addr); 491 } 492 493 /* To access a virtual base, we need to use the vbase offset stored in 494 our vtable. Recent GCC versions provide this information. If it isn't 495 available, we could get what we needed from RTTI, or from drawing the 496 complete inheritance graph based on the debug info. Neither is 497 worthwhile. */ 498 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8; 499 if (cur_base_offset >= - vtable_address_point_offset (gdbarch)) 500 error (_("Expected a negative vbase offset (old compiler?)")); 501 502 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch); 503 if ((- cur_base_offset) % ptr_type->length () != 0) 504 error (_("Misaligned vbase offset.")); 505 cur_base_offset = cur_base_offset / ((int) ptr_type->length ()); 506 507 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset); 508 gdb_assert (vtable != NULL); 509 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets); 510 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset)); 511 return base_offset; 512 } 513 514 /* Locate a virtual method in DOMAIN or its non-virtual base classes 515 which has virtual table index VOFFSET. The method has an associated 516 "this" adjustment of ADJUSTMENT bytes. */ 517 518 static const char * 519 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset, 520 LONGEST adjustment) 521 { 522 int i; 523 524 /* Search this class first. */ 525 if (adjustment == 0) 526 { 527 int len; 528 529 len = TYPE_NFN_FIELDS (domain); 530 for (i = 0; i < len; i++) 531 { 532 int len2, j; 533 struct fn_field *f; 534 535 f = TYPE_FN_FIELDLIST1 (domain, i); 536 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); 537 538 check_stub_method_group (domain, i); 539 for (j = 0; j < len2; j++) 540 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset) 541 return TYPE_FN_FIELD_PHYSNAME (f, j); 542 } 543 } 544 545 /* Next search non-virtual bases. If it's in a virtual base, 546 we're out of luck. */ 547 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++) 548 { 549 int pos; 550 struct type *basetype; 551 552 if (BASETYPE_VIA_VIRTUAL (domain, i)) 553 continue; 554 555 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8; 556 basetype = domain->field (i).type (); 557 /* Recurse with a modified adjustment. We don't need to adjust 558 voffset. */ 559 if (adjustment >= pos && adjustment < pos + basetype->length ()) 560 return gnuv3_find_method_in (basetype, voffset, adjustment - pos); 561 } 562 563 return NULL; 564 } 565 566 /* Decode GNU v3 method pointer. */ 567 568 static int 569 gnuv3_decode_method_ptr (struct gdbarch *gdbarch, 570 const gdb_byte *contents, 571 CORE_ADDR *value_p, 572 LONGEST *adjustment_p) 573 { 574 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr; 575 struct type *offset_type = vtable_ptrdiff_type (gdbarch); 576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 577 CORE_ADDR ptr_value; 578 LONGEST voffset, adjustment; 579 int vbit; 580 581 /* Extract the pointer to member. The first element is either a pointer 582 or a vtable offset. For pointers, we need to use extract_typed_address 583 to allow the back-end to convert the pointer to a GDB address -- but 584 vtable offsets we must handle as integers. At this point, we do not 585 yet know which case we have, so we extract the value under both 586 interpretations and choose the right one later on. */ 587 ptr_value = extract_typed_address (contents, funcptr_type); 588 voffset = extract_signed_integer (contents, 589 funcptr_type->length (), byte_order); 590 contents += funcptr_type->length (); 591 adjustment = extract_signed_integer (contents, 592 offset_type->length (), byte_order); 593 594 if (!gdbarch_vbit_in_delta (gdbarch)) 595 { 596 vbit = voffset & 1; 597 voffset = voffset ^ vbit; 598 } 599 else 600 { 601 vbit = adjustment & 1; 602 adjustment = adjustment >> 1; 603 } 604 605 *value_p = vbit? voffset : ptr_value; 606 *adjustment_p = adjustment; 607 return vbit; 608 } 609 610 /* GNU v3 implementation of cplus_print_method_ptr. */ 611 612 static void 613 gnuv3_print_method_ptr (const gdb_byte *contents, 614 struct type *type, 615 struct ui_file *stream) 616 { 617 struct type *self_type = TYPE_SELF_TYPE (type); 618 struct gdbarch *gdbarch = self_type->arch (); 619 CORE_ADDR ptr_value; 620 LONGEST adjustment; 621 int vbit; 622 623 /* Extract the pointer to member. */ 624 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); 625 626 /* Check for NULL. */ 627 if (ptr_value == 0 && vbit == 0) 628 { 629 gdb_printf (stream, "NULL"); 630 return; 631 } 632 633 /* Search for a virtual method. */ 634 if (vbit) 635 { 636 CORE_ADDR voffset; 637 const char *physname; 638 639 /* It's a virtual table offset, maybe in this class. Search 640 for a field with the correct vtable offset. First convert it 641 to an index, as used in TYPE_FN_FIELD_VOFFSET. */ 642 voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length (); 643 644 physname = gnuv3_find_method_in (self_type, voffset, adjustment); 645 646 /* If we found a method, print that. We don't bother to disambiguate 647 possible paths to the method based on the adjustment. */ 648 if (physname) 649 { 650 gdb::unique_xmalloc_ptr<char> demangled_name 651 = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS); 652 653 gdb_printf (stream, "&virtual "); 654 if (demangled_name == NULL) 655 gdb_puts (physname, stream); 656 else 657 gdb_puts (demangled_name.get (), stream); 658 return; 659 } 660 } 661 else if (ptr_value != 0) 662 { 663 /* Found a non-virtual function: print out the type. */ 664 gdb_puts ("(", stream); 665 c_print_type (type, "", stream, -1, 0, current_language->la_language, 666 &type_print_raw_options); 667 gdb_puts (") ", stream); 668 } 669 670 /* We didn't find it; print the raw data. */ 671 if (vbit) 672 { 673 gdb_printf (stream, "&virtual table offset "); 674 print_longest (stream, 'd', 1, ptr_value); 675 } 676 else 677 { 678 struct value_print_options opts; 679 680 get_user_print_options (&opts); 681 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle); 682 } 683 684 if (adjustment) 685 { 686 gdb_printf (stream, ", this adjustment "); 687 print_longest (stream, 'd', 1, adjustment); 688 } 689 } 690 691 /* GNU v3 implementation of cplus_method_ptr_size. */ 692 693 static int 694 gnuv3_method_ptr_size (struct type *type) 695 { 696 return 2 * builtin_type (type->arch ())->builtin_data_ptr->length (); 697 } 698 699 /* GNU v3 implementation of cplus_make_method_ptr. */ 700 701 static void 702 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents, 703 CORE_ADDR value, int is_virtual) 704 { 705 struct gdbarch *gdbarch = type->arch (); 706 int size = builtin_type (gdbarch)->builtin_data_ptr->length (); 707 enum bfd_endian byte_order = type_byte_order (type); 708 709 /* FIXME drow/2006-12-24: The adjustment of "this" is currently 710 always zero, since the method pointer is of the correct type. 711 But if the method pointer came from a base class, this is 712 incorrect - it should be the offset to the base. The best 713 fix might be to create the pointer to member pointing at the 714 base class and cast it to the derived class, but that requires 715 support for adjusting pointers to members when casting them - 716 not currently supported by GDB. */ 717 718 if (!gdbarch_vbit_in_delta (gdbarch)) 719 { 720 store_unsigned_integer (contents, size, byte_order, value | is_virtual); 721 store_unsigned_integer (contents + size, size, byte_order, 0); 722 } 723 else 724 { 725 store_unsigned_integer (contents, size, byte_order, value); 726 store_unsigned_integer (contents + size, size, byte_order, is_virtual); 727 } 728 } 729 730 /* GNU v3 implementation of cplus_method_ptr_to_value. */ 731 732 static struct value * 733 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr) 734 { 735 struct gdbarch *gdbarch; 736 const gdb_byte *contents = value_contents (method_ptr).data (); 737 CORE_ADDR ptr_value; 738 struct type *self_type, *final_type, *method_type; 739 LONGEST adjustment; 740 int vbit; 741 742 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr))); 743 final_type = lookup_pointer_type (self_type); 744 745 method_type = check_typedef (value_type (method_ptr))->target_type (); 746 747 /* Extract the pointer to member. */ 748 gdbarch = self_type->arch (); 749 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); 750 751 /* First convert THIS to match the containing type of the pointer to 752 member. This cast may adjust the value of THIS. */ 753 *this_p = value_cast (final_type, *this_p); 754 755 /* Then apply whatever adjustment is necessary. This creates a somewhat 756 strange pointer: it claims to have type FINAL_TYPE, but in fact it 757 might not be a valid FINAL_TYPE. For instance, it might be a 758 base class of FINAL_TYPE. And if it's not the primary base class, 759 then printing it out as a FINAL_TYPE object would produce some pretty 760 garbage. 761 762 But we don't really know the type of the first argument in 763 METHOD_TYPE either, which is why this happens. We can't 764 dereference this later as a FINAL_TYPE, but once we arrive in the 765 called method we'll have debugging information for the type of 766 "this" - and that'll match the value we produce here. 767 768 You can provoke this case by casting a Base::* to a Derived::*, for 769 instance. */ 770 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p); 771 *this_p = value_ptradd (*this_p, adjustment); 772 *this_p = value_cast (final_type, *this_p); 773 774 if (vbit) 775 { 776 LONGEST voffset; 777 778 voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length (); 779 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p), 780 method_type, voffset); 781 } 782 else 783 return value_from_pointer (lookup_pointer_type (method_type), ptr_value); 784 } 785 786 /* Objects of this type are stored in a hash table and a vector when 787 printing the vtables for a class. */ 788 789 struct value_and_voffset 790 { 791 /* The value representing the object. */ 792 struct value *value; 793 794 /* The maximum vtable offset we've found for any object at this 795 offset in the outermost object. */ 796 int max_voffset; 797 }; 798 799 /* Hash function for value_and_voffset. */ 800 801 static hashval_t 802 hash_value_and_voffset (const void *p) 803 { 804 const struct value_and_voffset *o = (const struct value_and_voffset *) p; 805 806 return value_address (o->value) + value_embedded_offset (o->value); 807 } 808 809 /* Equality function for value_and_voffset. */ 810 811 static int 812 eq_value_and_voffset (const void *a, const void *b) 813 { 814 const struct value_and_voffset *ova = (const struct value_and_voffset *) a; 815 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b; 816 817 return (value_address (ova->value) + value_embedded_offset (ova->value) 818 == value_address (ovb->value) + value_embedded_offset (ovb->value)); 819 } 820 821 /* Comparison function for value_and_voffset. */ 822 823 static bool 824 compare_value_and_voffset (const struct value_and_voffset *va, 825 const struct value_and_voffset *vb) 826 { 827 CORE_ADDR addra = (value_address (va->value) 828 + value_embedded_offset (va->value)); 829 CORE_ADDR addrb = (value_address (vb->value) 830 + value_embedded_offset (vb->value)); 831 832 return addra < addrb; 833 } 834 835 /* A helper function used when printing vtables. This determines the 836 key (most derived) sub-object at each address and also computes the 837 maximum vtable offset seen for the corresponding vtable. Updates 838 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if 839 needed. VALUE is the object to examine. */ 840 841 static void 842 compute_vtable_size (htab_t offset_hash, 843 std::vector<value_and_voffset *> *offset_vec, 844 struct value *value) 845 { 846 int i; 847 struct type *type = check_typedef (value_type (value)); 848 void **slot; 849 struct value_and_voffset search_vo, *current_vo; 850 851 gdb_assert (type->code () == TYPE_CODE_STRUCT); 852 853 /* If the object is not dynamic, then we are done; as it cannot have 854 dynamic base types either. */ 855 if (!gnuv3_dynamic_class (type)) 856 return; 857 858 /* Update the hash and the vec, if needed. */ 859 search_vo.value = value; 860 slot = htab_find_slot (offset_hash, &search_vo, INSERT); 861 if (*slot) 862 current_vo = (struct value_and_voffset *) *slot; 863 else 864 { 865 current_vo = XNEW (struct value_and_voffset); 866 current_vo->value = value; 867 current_vo->max_voffset = -1; 868 *slot = current_vo; 869 offset_vec->push_back (current_vo); 870 } 871 872 /* Update the value_and_voffset object with the highest vtable 873 offset from this class. */ 874 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i) 875 { 876 int j; 877 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i); 878 879 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j) 880 { 881 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j)) 882 { 883 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j); 884 885 if (voffset > current_vo->max_voffset) 886 current_vo->max_voffset = voffset; 887 } 888 } 889 } 890 891 /* Recurse into base classes. */ 892 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i) 893 compute_vtable_size (offset_hash, offset_vec, value_field (value, i)); 894 } 895 896 /* Helper for gnuv3_print_vtable that prints a single vtable. */ 897 898 static void 899 print_one_vtable (struct gdbarch *gdbarch, struct value *value, 900 int max_voffset, 901 struct value_print_options *opts) 902 { 903 int i; 904 struct type *type = check_typedef (value_type (value)); 905 struct value *vtable; 906 CORE_ADDR vt_addr; 907 908 vtable = gnuv3_get_vtable (gdbarch, type, 909 value_address (value) 910 + value_embedded_offset (value)); 911 vt_addr = value_address (value_field (vtable, 912 vtable_field_virtual_functions)); 913 914 gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"), 915 TYPE_SAFE_NAME (type), 916 paddress (gdbarch, vt_addr), 917 paddress (gdbarch, (value_address (value) 918 + value_embedded_offset (value)))); 919 920 for (i = 0; i <= max_voffset; ++i) 921 { 922 /* Initialize it just to avoid a GCC false warning. */ 923 CORE_ADDR addr = 0; 924 int got_error = 0; 925 struct value *vfn; 926 927 gdb_printf ("[%d]: ", i); 928 929 vfn = value_subscript (value_field (vtable, 930 vtable_field_virtual_functions), 931 i); 932 933 if (gdbarch_vtable_function_descriptors (gdbarch)) 934 vfn = value_addr (vfn); 935 936 try 937 { 938 addr = value_as_address (vfn); 939 } 940 catch (const gdb_exception_error &ex) 941 { 942 fprintf_styled (gdb_stdout, metadata_style.style (), 943 _("<error: %s>"), ex.what ()); 944 got_error = 1; 945 } 946 947 if (!got_error) 948 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout); 949 gdb_printf ("\n"); 950 } 951 } 952 953 /* Implementation of the print_vtable method. */ 954 955 static void 956 gnuv3_print_vtable (struct value *value) 957 { 958 struct gdbarch *gdbarch; 959 struct type *type; 960 struct value *vtable; 961 struct value_print_options opts; 962 int count; 963 964 value = coerce_ref (value); 965 type = check_typedef (value_type (value)); 966 if (type->code () == TYPE_CODE_PTR) 967 { 968 value = value_ind (value); 969 type = check_typedef (value_type (value)); 970 } 971 972 get_user_print_options (&opts); 973 974 /* Respect 'set print object'. */ 975 if (opts.objectprint) 976 { 977 value = value_full_object (value, NULL, 0, 0, 0); 978 type = check_typedef (value_type (value)); 979 } 980 981 gdbarch = type->arch (); 982 983 vtable = NULL; 984 if (type->code () == TYPE_CODE_STRUCT) 985 vtable = gnuv3_get_vtable (gdbarch, type, 986 value_as_address (value_addr (value))); 987 988 if (!vtable) 989 { 990 gdb_printf (_("This object does not have a virtual function table\n")); 991 return; 992 } 993 994 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset, 995 eq_value_and_voffset, 996 xfree, xcalloc, xfree)); 997 std::vector<value_and_voffset *> result_vec; 998 999 compute_vtable_size (offset_hash.get (), &result_vec, value); 1000 std::sort (result_vec.begin (), result_vec.end (), 1001 compare_value_and_voffset); 1002 1003 count = 0; 1004 for (value_and_voffset *iter : result_vec) 1005 { 1006 if (iter->max_voffset >= 0) 1007 { 1008 if (count > 0) 1009 gdb_printf ("\n"); 1010 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts); 1011 ++count; 1012 } 1013 } 1014 } 1015 1016 /* Return a GDB type representing `struct std::type_info', laid out 1017 appropriately for ARCH. 1018 1019 We use this function as the gdbarch per-architecture data 1020 initialization function. */ 1021 1022 static struct type * 1023 build_std_type_info_type (struct gdbarch *arch) 1024 { 1025 struct type *t; 1026 struct field *field_list, *field; 1027 int offset; 1028 struct type *void_ptr_type 1029 = builtin_type (arch)->builtin_data_ptr; 1030 struct type *char_type 1031 = builtin_type (arch)->builtin_char; 1032 struct type *char_ptr_type 1033 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL); 1034 1035 field_list = XCNEWVEC (struct field, 2); 1036 field = &field_list[0]; 1037 offset = 0; 1038 1039 /* The vtable. */ 1040 field->set_name ("_vptr.type_info"); 1041 field->set_type (void_ptr_type); 1042 field->set_loc_bitpos (offset * TARGET_CHAR_BIT); 1043 offset += field->type ()->length (); 1044 field++; 1045 1046 /* The name. */ 1047 field->set_name ("__name"); 1048 field->set_type (char_ptr_type); 1049 field->set_loc_bitpos (offset * TARGET_CHAR_BIT); 1050 offset += field->type ()->length (); 1051 field++; 1052 1053 gdb_assert (field == (field_list + 2)); 1054 1055 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL); 1056 t->set_num_fields (field - field_list); 1057 t->set_fields (field_list); 1058 t->set_name ("gdb_gnu_v3_type_info"); 1059 INIT_CPLUS_SPECIFIC (t); 1060 1061 return t; 1062 } 1063 1064 /* Implement the 'get_typeid_type' method. */ 1065 1066 static struct type * 1067 gnuv3_get_typeid_type (struct gdbarch *gdbarch) 1068 { 1069 struct symbol *typeinfo; 1070 struct type *typeinfo_type; 1071 1072 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN, 1073 NULL).symbol; 1074 if (typeinfo == NULL) 1075 { 1076 typeinfo_type = std_type_info_gdbarch_data.get (gdbarch); 1077 if (typeinfo_type == nullptr) 1078 { 1079 typeinfo_type = build_std_type_info_type (gdbarch); 1080 std_type_info_gdbarch_data.set (gdbarch, typeinfo_type); 1081 } 1082 } 1083 else 1084 typeinfo_type = typeinfo->type (); 1085 1086 return typeinfo_type; 1087 } 1088 1089 /* Implement the 'get_typeid' method. */ 1090 1091 static struct value * 1092 gnuv3_get_typeid (struct value *value) 1093 { 1094 struct type *typeinfo_type; 1095 struct type *type; 1096 struct gdbarch *gdbarch; 1097 struct value *result; 1098 std::string type_name; 1099 gdb::unique_xmalloc_ptr<char> canonical; 1100 1101 /* We have to handle values a bit trickily here, to allow this code 1102 to work properly with non_lvalue values that are really just 1103 disguised types. */ 1104 if (value_lval_const (value) == lval_memory) 1105 value = coerce_ref (value); 1106 1107 type = check_typedef (value_type (value)); 1108 1109 /* In the non_lvalue case, a reference might have slipped through 1110 here. */ 1111 if (type->code () == TYPE_CODE_REF) 1112 type = check_typedef (type->target_type ()); 1113 1114 /* Ignore top-level cv-qualifiers. */ 1115 type = make_cv_type (0, 0, type, NULL); 1116 gdbarch = type->arch (); 1117 1118 type_name = type_to_string (type); 1119 if (type_name.empty ()) 1120 error (_("cannot find typeinfo for unnamed type")); 1121 1122 /* We need to canonicalize the type name here, because we do lookups 1123 using the demangled name, and so we must match the format it 1124 uses. E.g., GDB tends to use "const char *" as a type name, but 1125 the demangler uses "char const *". */ 1126 canonical = cp_canonicalize_string (type_name.c_str ()); 1127 const char *name = (canonical == nullptr 1128 ? type_name.c_str () 1129 : canonical.get ()); 1130 1131 typeinfo_type = gnuv3_get_typeid_type (gdbarch); 1132 1133 /* We check for lval_memory because in the "typeid (type-id)" case, 1134 the type is passed via a not_lval value object. */ 1135 if (type->code () == TYPE_CODE_STRUCT 1136 && value_lval_const (value) == lval_memory 1137 && gnuv3_dynamic_class (type)) 1138 { 1139 struct value *vtable, *typeinfo_value; 1140 CORE_ADDR address = value_address (value) + value_embedded_offset (value); 1141 1142 vtable = gnuv3_get_vtable (gdbarch, type, address); 1143 if (vtable == NULL) 1144 error (_("cannot find typeinfo for object of type '%s'"), 1145 name); 1146 typeinfo_value = value_field (vtable, vtable_field_type_info); 1147 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL), 1148 typeinfo_value)); 1149 } 1150 else 1151 { 1152 std::string sym_name = std::string ("typeinfo for ") + name; 1153 bound_minimal_symbol minsym 1154 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL); 1155 1156 if (minsym.minsym == NULL) 1157 error (_("could not find typeinfo symbol for '%s'"), name); 1158 1159 result = value_at_lazy (typeinfo_type, minsym.value_address ()); 1160 } 1161 1162 return result; 1163 } 1164 1165 /* Implement the 'get_typename_from_type_info' method. */ 1166 1167 static std::string 1168 gnuv3_get_typename_from_type_info (struct value *type_info_ptr) 1169 { 1170 struct gdbarch *gdbarch = value_type (type_info_ptr)->arch (); 1171 struct bound_minimal_symbol typeinfo_sym; 1172 CORE_ADDR addr; 1173 const char *symname; 1174 const char *class_name; 1175 const char *atsign; 1176 1177 addr = value_as_address (type_info_ptr); 1178 typeinfo_sym = lookup_minimal_symbol_by_pc (addr); 1179 if (typeinfo_sym.minsym == NULL) 1180 error (_("could not find minimal symbol for typeinfo address %s"), 1181 paddress (gdbarch, addr)); 1182 1183 #define TYPEINFO_PREFIX "typeinfo for " 1184 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1) 1185 symname = typeinfo_sym.minsym->demangled_name (); 1186 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX, 1187 TYPEINFO_PREFIX_LEN)) 1188 error (_("typeinfo symbol '%s' has unexpected name"), 1189 typeinfo_sym.minsym->linkage_name ()); 1190 class_name = symname + TYPEINFO_PREFIX_LEN; 1191 1192 /* Strip off @plt and version suffixes. */ 1193 atsign = strchr (class_name, '@'); 1194 if (atsign != NULL) 1195 return std::string (class_name, atsign - class_name); 1196 return class_name; 1197 } 1198 1199 /* Implement the 'get_type_from_type_info' method. */ 1200 1201 static struct type * 1202 gnuv3_get_type_from_type_info (struct value *type_info_ptr) 1203 { 1204 /* We have to parse the type name, since in general there is not a 1205 symbol for a type. This is somewhat bogus since there may be a 1206 mis-parse. Another approach might be to re-use the demangler's 1207 internal form to reconstruct the type somehow. */ 1208 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr); 1209 expression_up expr (parse_expression (type_name.c_str ())); 1210 struct value *type_val = evaluate_type (expr.get ()); 1211 return value_type (type_val); 1212 } 1213 1214 /* Determine if we are currently in a C++ thunk. If so, get the address 1215 of the routine we are thunking to and continue to there instead. */ 1216 1217 static CORE_ADDR 1218 gnuv3_skip_trampoline (frame_info_ptr frame, CORE_ADDR stop_pc) 1219 { 1220 CORE_ADDR real_stop_pc, method_stop_pc, func_addr; 1221 struct gdbarch *gdbarch = get_frame_arch (frame); 1222 struct bound_minimal_symbol thunk_sym, fn_sym; 1223 struct obj_section *section; 1224 const char *thunk_name, *fn_name; 1225 1226 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 1227 if (real_stop_pc == 0) 1228 real_stop_pc = stop_pc; 1229 1230 /* Find the linker symbol for this potential thunk. */ 1231 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc); 1232 section = find_pc_section (real_stop_pc); 1233 if (thunk_sym.minsym == NULL || section == NULL) 1234 return 0; 1235 1236 /* The symbol's demangled name should be something like "virtual 1237 thunk to FUNCTION", where FUNCTION is the name of the function 1238 being thunked to. */ 1239 thunk_name = thunk_sym.minsym->demangled_name (); 1240 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL) 1241 return 0; 1242 1243 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to "); 1244 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile); 1245 if (fn_sym.minsym == NULL) 1246 return 0; 1247 1248 method_stop_pc = fn_sym.value_address (); 1249 1250 /* Some targets have minimal symbols pointing to function descriptors 1251 (powerpc 64 for example). Make sure to retrieve the address 1252 of the real function from the function descriptor before passing on 1253 the address to other layers of GDB. */ 1254 func_addr = gdbarch_convert_from_func_ptr_addr 1255 (gdbarch, method_stop_pc, current_inferior ()->top_target ()); 1256 if (func_addr != 0) 1257 method_stop_pc = func_addr; 1258 1259 real_stop_pc = gdbarch_skip_trampoline_code 1260 (gdbarch, frame, method_stop_pc); 1261 if (real_stop_pc == 0) 1262 real_stop_pc = method_stop_pc; 1263 1264 return real_stop_pc; 1265 } 1266 1267 /* A member function is in one these states. */ 1268 1269 enum definition_style 1270 { 1271 DOES_NOT_EXIST_IN_SOURCE, 1272 DEFAULTED_INSIDE, 1273 DEFAULTED_OUTSIDE, 1274 DELETED, 1275 EXPLICIT, 1276 }; 1277 1278 /* Return how the given field is defined. */ 1279 1280 static definition_style 1281 get_def_style (struct fn_field *fn, int fieldelem) 1282 { 1283 if (TYPE_FN_FIELD_DELETED (fn, fieldelem)) 1284 return DELETED; 1285 1286 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem)) 1287 return DOES_NOT_EXIST_IN_SOURCE; 1288 1289 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem)) 1290 { 1291 case DW_DEFAULTED_no: 1292 return EXPLICIT; 1293 case DW_DEFAULTED_in_class: 1294 return DEFAULTED_INSIDE; 1295 case DW_DEFAULTED_out_of_class: 1296 return DEFAULTED_OUTSIDE; 1297 default: 1298 break; 1299 } 1300 1301 return EXPLICIT; 1302 } 1303 1304 /* Helper functions to determine whether the given definition style 1305 denotes that the definition is user-provided or implicit. 1306 Being defaulted outside the class decl counts as an explicit 1307 user-definition, while being defaulted inside is implicit. */ 1308 1309 static bool 1310 is_user_provided_def (definition_style def) 1311 { 1312 return def == EXPLICIT || def == DEFAULTED_OUTSIDE; 1313 } 1314 1315 static bool 1316 is_implicit_def (definition_style def) 1317 { 1318 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE; 1319 } 1320 1321 /* Helper function to decide if METHOD_TYPE is a copy/move 1322 constructor type for CLASS_TYPE. EXPECTED is the expected 1323 type code for the "right-hand-side" argument. 1324 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE 1325 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should 1326 not need to call this directly. */ 1327 1328 static bool 1329 is_copy_or_move_constructor_type (struct type *class_type, 1330 struct type *method_type, 1331 type_code expected) 1332 { 1333 /* The method should take at least two arguments... */ 1334 if (method_type->num_fields () < 2) 1335 return false; 1336 1337 /* ...and the second argument should be the same as the class 1338 type, with the expected type code... */ 1339 struct type *arg_type = method_type->field (1).type (); 1340 1341 if (arg_type->code () != expected) 1342 return false; 1343 1344 struct type *target = check_typedef (arg_type->target_type ()); 1345 if (!(class_types_same_p (target, class_type))) 1346 return false; 1347 1348 /* ...and if any of the remaining arguments don't have a default value 1349 then this is not a copy or move constructor, but just a 1350 constructor. */ 1351 for (int i = 2; i < method_type->num_fields (); i++) 1352 { 1353 arg_type = method_type->field (i).type (); 1354 /* FIXME aktemur/2019-10-31: As of this date, neither 1355 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value 1356 attribute. GDB is also not set to read this attribute, yet. 1357 Hence, we immediately return false if there are more than 1358 2 parameters. 1359 GCC bug link: 1360 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959 1361 */ 1362 return false; 1363 } 1364 1365 return true; 1366 } 1367 1368 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */ 1369 1370 static bool 1371 is_copy_constructor_type (struct type *class_type, 1372 struct type *method_type) 1373 { 1374 return is_copy_or_move_constructor_type (class_type, method_type, 1375 TYPE_CODE_REF); 1376 } 1377 1378 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */ 1379 1380 static bool 1381 is_move_constructor_type (struct type *class_type, 1382 struct type *method_type) 1383 { 1384 return is_copy_or_move_constructor_type (class_type, method_type, 1385 TYPE_CODE_RVALUE_REF); 1386 } 1387 1388 /* Return pass-by-reference information for the given TYPE. 1389 1390 The rule in the v3 ABI document comes from section 3.1.1. If the 1391 type has a non-trivial copy constructor or destructor, then the 1392 caller must make a copy (by calling the copy constructor if there 1393 is one or perform the copy itself otherwise), pass the address of 1394 the copy, and then destroy the temporary (if necessary). 1395 1396 For return values with non-trivial copy/move constructors or 1397 destructors, space will be allocated in the caller, and a pointer 1398 will be passed as the first argument (preceding "this"). 1399 1400 We don't have a bulletproof mechanism for determining whether a 1401 constructor or destructor is trivial. For GCC and DWARF5 debug 1402 information, we can check the calling_convention attribute, 1403 the 'artificial' flag, the 'defaulted' attribute, and the 1404 'deleted' attribute. */ 1405 1406 static struct language_pass_by_ref_info 1407 gnuv3_pass_by_reference (struct type *type) 1408 { 1409 int fieldnum, fieldelem; 1410 1411 type = check_typedef (type); 1412 1413 /* Start with the default values. */ 1414 struct language_pass_by_ref_info info; 1415 1416 bool has_cc_attr = false; 1417 bool is_pass_by_value = false; 1418 bool is_dynamic = false; 1419 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE; 1420 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE; 1421 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE; 1422 1423 /* We're only interested in things that can have methods. */ 1424 if (type->code () != TYPE_CODE_STRUCT 1425 && type->code () != TYPE_CODE_UNION) 1426 return info; 1427 1428 /* The compiler may have emitted the calling convention attribute. 1429 Note: GCC does not produce this attribute as of version 9.2.1. 1430 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */ 1431 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value) 1432 { 1433 has_cc_attr = true; 1434 is_pass_by_value = true; 1435 /* Do not return immediately. We have to find out if this type 1436 is copy_constructible and destructible. */ 1437 } 1438 1439 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference) 1440 { 1441 has_cc_attr = true; 1442 is_pass_by_value = false; 1443 } 1444 1445 /* A dynamic class has a non-trivial copy constructor. 1446 See c++98 section 12.8 Copying class objects [class.copy]. */ 1447 if (gnuv3_dynamic_class (type)) 1448 is_dynamic = true; 1449 1450 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) 1451 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); 1452 fieldelem++) 1453 { 1454 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum); 1455 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum); 1456 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem); 1457 1458 if (name[0] == '~') 1459 { 1460 /* We've found a destructor. 1461 There should be at most one dtor definition. */ 1462 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE); 1463 dtor_def = get_def_style (fn, fieldelem); 1464 } 1465 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)) 1466 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem)) 1467 { 1468 /* FIXME drow/2007-09-23: We could do this using the name of 1469 the method and the name of the class instead of dealing 1470 with the mangled name. We don't have a convenient function 1471 to strip off both leading scope qualifiers and trailing 1472 template arguments yet. */ 1473 if (is_copy_constructor_type (type, fieldtype)) 1474 { 1475 /* There may be more than one cctors. E.g.: one that 1476 take a const parameter and another that takes a 1477 non-const parameter. Such as: 1478 1479 class K { 1480 K (const K &k)... 1481 K (K &k)... 1482 }; 1483 1484 It is sufficient for the type to be non-trivial 1485 even only one of the cctors is explicit. 1486 Therefore, update the cctor_def value in the 1487 implicit -> explicit direction, not backwards. */ 1488 1489 if (is_implicit_def (cctor_def)) 1490 cctor_def = get_def_style (fn, fieldelem); 1491 } 1492 else if (is_move_constructor_type (type, fieldtype)) 1493 { 1494 /* Again, there may be multiple move ctors. Update the 1495 mctor_def value if we found an explicit def and the 1496 existing one is not explicit. Otherwise retain the 1497 existing value. */ 1498 if (is_implicit_def (mctor_def)) 1499 mctor_def = get_def_style (fn, fieldelem); 1500 } 1501 } 1502 } 1503 1504 bool cctor_implicitly_deleted 1505 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE 1506 && cctor_def == DOES_NOT_EXIST_IN_SOURCE); 1507 1508 bool cctor_explicitly_deleted = (cctor_def == DELETED); 1509 1510 if (cctor_implicitly_deleted || cctor_explicitly_deleted) 1511 info.copy_constructible = false; 1512 1513 if (dtor_def == DELETED) 1514 info.destructible = false; 1515 1516 info.trivially_destructible = is_implicit_def (dtor_def); 1517 1518 info.trivially_copy_constructible 1519 = (is_implicit_def (cctor_def) 1520 && !is_dynamic); 1521 1522 info.trivially_copyable 1523 = (info.trivially_copy_constructible 1524 && info.trivially_destructible 1525 && !is_user_provided_def (mctor_def)); 1526 1527 /* Even if all the constructors and destructors were artificial, one 1528 of them may have invoked a non-artificial constructor or 1529 destructor in a base class. If any base class needs to be passed 1530 by reference, so does this class. Similarly for members, which 1531 are constructed whenever this class is. We do not need to worry 1532 about recursive loops here, since we are only looking at members 1533 of complete class type. Also ignore any static members. */ 1534 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++) 1535 if (!field_is_static (&type->field (fieldnum))) 1536 { 1537 struct type *field_type = type->field (fieldnum).type (); 1538 1539 /* For arrays, make the decision based on the element type. */ 1540 if (field_type->code () == TYPE_CODE_ARRAY) 1541 field_type = check_typedef (field_type->target_type ()); 1542 1543 struct language_pass_by_ref_info field_info 1544 = gnuv3_pass_by_reference (field_type); 1545 1546 if (!field_info.copy_constructible) 1547 info.copy_constructible = false; 1548 if (!field_info.destructible) 1549 info.destructible = false; 1550 if (!field_info.trivially_copyable) 1551 info.trivially_copyable = false; 1552 if (!field_info.trivially_copy_constructible) 1553 info.trivially_copy_constructible = false; 1554 if (!field_info.trivially_destructible) 1555 info.trivially_destructible = false; 1556 } 1557 1558 /* Consistency check. */ 1559 if (has_cc_attr && info.trivially_copyable != is_pass_by_value) 1560 { 1561 /* DWARF CC attribute is not the same as the inferred value; 1562 use the DWARF attribute. */ 1563 info.trivially_copyable = is_pass_by_value; 1564 } 1565 1566 return info; 1567 } 1568 1569 static void 1570 init_gnuv3_ops (void) 1571 { 1572 gnu_v3_abi_ops.shortname = "gnu-v3"; 1573 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI"; 1574 gnu_v3_abi_ops.doc = "G++ Version 3 ABI"; 1575 gnu_v3_abi_ops.is_destructor_name = 1576 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor; 1577 gnu_v3_abi_ops.is_constructor_name = 1578 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor; 1579 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name; 1580 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name; 1581 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type; 1582 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field; 1583 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset; 1584 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr; 1585 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size; 1586 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr; 1587 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value; 1588 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable; 1589 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid; 1590 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type; 1591 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info; 1592 gnu_v3_abi_ops.get_typename_from_type_info 1593 = gnuv3_get_typename_from_type_info; 1594 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline; 1595 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference; 1596 } 1597 1598 void _initialize_gnu_v3_abi (); 1599 void 1600 _initialize_gnu_v3_abi () 1601 { 1602 init_gnuv3_ops (); 1603 1604 register_cp_abi (&gnu_v3_abi_ops); 1605 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname); 1606 } 1607