1 /* Read ELF (Executable and Linking Format) object files for GDB. 2 3 Copyright (C) 1991-2023 Free Software Foundation, Inc. 4 5 Written by Fred Fish at Cygnus Support. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "bfd.h" 24 #include "elf-bfd.h" 25 #include "elf/common.h" 26 #include "elf/internal.h" 27 #include "elf/mips.h" 28 #include "symtab.h" 29 #include "symfile.h" 30 #include "objfiles.h" 31 #include "stabsread.h" 32 #include "demangle.h" 33 #include "psympriv.h" 34 #include "filenames.h" 35 #include "probe.h" 36 #include "arch-utils.h" 37 #include "gdbtypes.h" 38 #include "value.h" 39 #include "infcall.h" 40 #include "gdbthread.h" 41 #include "inferior.h" 42 #include "regcache.h" 43 #include "bcache.h" 44 #include "gdb_bfd.h" 45 #include "build-id.h" 46 #include "location.h" 47 #include "auxv.h" 48 #include "mdebugread.h" 49 #include "ctfread.h" 50 #include "gdbsupport/gdb_string_view.h" 51 #include "gdbsupport/scoped_fd.h" 52 #include "debuginfod-support.h" 53 #include "dwarf2/public.h" 54 55 /* The struct elfinfo is available only during ELF symbol table and 56 psymtab reading. It is destroyed at the completion of psymtab-reading. 57 It's local to elf_symfile_read. */ 58 59 struct elfinfo 60 { 61 asection *stabsect; /* Section pointer for .stab section */ 62 asection *mdebugsect; /* Section pointer for .mdebug section */ 63 asection *ctfsect; /* Section pointer for .ctf section */ 64 }; 65 66 /* Type for per-BFD data. */ 67 68 typedef std::vector<std::unique_ptr<probe>> elfread_data; 69 70 /* Per-BFD data for probe info. */ 71 72 static const registry<bfd>::key<elfread_data> probe_key; 73 74 /* Minimal symbols located at the GOT entries for .plt - that is the real 75 pointer where the given entry will jump to. It gets updated by the real 76 function address during lazy ld.so resolving in the inferior. These 77 minimal symbols are indexed for <tab>-completion. */ 78 79 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" 80 81 /* Locate the segments in ABFD. */ 82 83 static symfile_segment_data_up 84 elf_symfile_segments (bfd *abfd) 85 { 86 Elf_Internal_Phdr *phdrs, **segments; 87 long phdrs_size; 88 int num_phdrs, num_segments, num_sections, i; 89 asection *sect; 90 91 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); 92 if (phdrs_size == -1) 93 return NULL; 94 95 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size); 96 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); 97 if (num_phdrs == -1) 98 return NULL; 99 100 num_segments = 0; 101 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs); 102 for (i = 0; i < num_phdrs; i++) 103 if (phdrs[i].p_type == PT_LOAD) 104 segments[num_segments++] = &phdrs[i]; 105 106 if (num_segments == 0) 107 return NULL; 108 109 symfile_segment_data_up data (new symfile_segment_data); 110 data->segments.reserve (num_segments); 111 112 for (i = 0; i < num_segments; i++) 113 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz); 114 115 num_sections = bfd_count_sections (abfd); 116 117 /* All elements are initialized to 0 (map to no segment). */ 118 data->segment_info.resize (num_sections); 119 120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 121 { 122 int j; 123 124 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) 125 continue; 126 127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr; 128 129 for (j = 0; j < num_segments; j++) 130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j])) 131 { 132 data->segment_info[i] = j + 1; 133 break; 134 } 135 136 /* We should have found a segment for every non-empty section. 137 If we haven't, we will not relocate this section by any 138 offsets we apply to the segments. As an exception, do not 139 warn about SHT_NOBITS sections; in normal ELF execution 140 environments, SHT_NOBITS means zero-initialized and belongs 141 in a segment, but in no-OS environments some tools (e.g. ARM 142 RealView) use SHT_NOBITS for uninitialized data. Since it is 143 uninitialized, it doesn't need a program header. Such 144 binaries are not relocatable. */ 145 146 /* Exclude debuginfo files from this warning, too, since those 147 are often not strictly compliant with the standard. See, e.g., 148 ld/24717 for more discussion. */ 149 if (!is_debuginfo_file (abfd) 150 && bfd_section_size (sect) > 0 && j == num_segments 151 && (bfd_section_flags (sect) & SEC_LOAD) != 0) 152 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"), 153 bfd_section_name (sect), bfd_get_filename (abfd)); 154 } 155 156 return data; 157 } 158 159 /* We are called once per section from elf_symfile_read. We 160 need to examine each section we are passed, check to see 161 if it is something we are interested in processing, and 162 if so, stash away some access information for the section. 163 164 For now we recognize the dwarf debug information sections and 165 line number sections from matching their section names. The 166 ELF definition is no real help here since it has no direct 167 knowledge of DWARF (by design, so any debugging format can be 168 used). 169 170 We also recognize the ".stab" sections used by the Sun compilers 171 released with Solaris 2. 172 173 FIXME: The section names should not be hardwired strings (what 174 should they be? I don't think most object file formats have enough 175 section flags to specify what kind of debug section it is. 176 -kingdon). */ 177 178 static void 179 elf_locate_sections (asection *sectp, struct elfinfo *ei) 180 { 181 if (strcmp (sectp->name, ".stab") == 0) 182 { 183 ei->stabsect = sectp; 184 } 185 else if (strcmp (sectp->name, ".mdebug") == 0) 186 { 187 ei->mdebugsect = sectp; 188 } 189 else if (strcmp (sectp->name, ".ctf") == 0) 190 { 191 ei->ctfsect = sectp; 192 } 193 } 194 195 static struct minimal_symbol * 196 record_minimal_symbol (minimal_symbol_reader &reader, 197 gdb::string_view name, bool copy_name, 198 CORE_ADDR address, 199 enum minimal_symbol_type ms_type, 200 asection *bfd_section, struct objfile *objfile) 201 { 202 struct gdbarch *gdbarch = objfile->arch (); 203 204 if (ms_type == mst_text || ms_type == mst_file_text 205 || ms_type == mst_text_gnu_ifunc) 206 address = gdbarch_addr_bits_remove (gdbarch, address); 207 208 /* We only setup section information for allocatable sections. Usually 209 we'd only expect to find msymbols for allocatable sections, but if the 210 ELF is malformed then this might not be the case. In that case don't 211 create an msymbol that references an uninitialised section object. */ 212 int section_index = 0; 213 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC) 214 section_index = gdb_bfd_section_index (objfile->obfd.get (), bfd_section); 215 216 struct minimal_symbol *result 217 = reader.record_full (name, copy_name, address, ms_type, section_index); 218 if ((objfile->flags & OBJF_MAINLINE) == 0 219 && (ms_type == mst_data || ms_type == mst_bss)) 220 result->maybe_copied = 1; 221 222 return result; 223 } 224 225 /* Read the symbol table of an ELF file. 226 227 Given an objfile, a symbol table, and a flag indicating whether the 228 symbol table contains regular, dynamic, or synthetic symbols, add all 229 the global function and data symbols to the minimal symbol table. 230 231 In stabs-in-ELF, as implemented by Sun, there are some local symbols 232 defined in the ELF symbol table, which can be used to locate 233 the beginnings of sections from each ".o" file that was linked to 234 form the executable objfile. We gather any such info and record it 235 in data structures hung off the objfile's private data. */ 236 237 #define ST_REGULAR 0 238 #define ST_DYNAMIC 1 239 #define ST_SYNTHETIC 2 240 241 static void 242 elf_symtab_read (minimal_symbol_reader &reader, 243 struct objfile *objfile, int type, 244 long number_of_symbols, asymbol **symbol_table, 245 bool copy_names) 246 { 247 struct gdbarch *gdbarch = objfile->arch (); 248 asymbol *sym; 249 long i; 250 CORE_ADDR symaddr; 251 enum minimal_symbol_type ms_type; 252 /* Name of the last file symbol. This is either a constant string or is 253 saved on the objfile's filename cache. */ 254 const char *filesymname = ""; 255 int stripped = (bfd_get_symcount (objfile->obfd.get ()) == 0); 256 int elf_make_msymbol_special_p 257 = gdbarch_elf_make_msymbol_special_p (gdbarch); 258 259 for (i = 0; i < number_of_symbols; i++) 260 { 261 sym = symbol_table[i]; 262 if (sym->name == NULL || *sym->name == '\0') 263 { 264 /* Skip names that don't exist (shouldn't happen), or names 265 that are null strings (may happen). */ 266 continue; 267 } 268 269 elf_symbol_type *elf_sym = (elf_symbol_type *) sym; 270 271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are 272 symbols which do not correspond to objects in the symbol table, 273 but have some other target-specific meaning. */ 274 if (bfd_is_target_special_symbol (objfile->obfd.get (), sym)) 275 { 276 if (gdbarch_record_special_symbol_p (gdbarch)) 277 gdbarch_record_special_symbol (gdbarch, objfile, sym); 278 continue; 279 } 280 281 if (type == ST_DYNAMIC 282 && sym->section == bfd_und_section_ptr 283 && (sym->flags & BSF_FUNCTION)) 284 { 285 struct minimal_symbol *msym; 286 bfd *abfd = objfile->obfd.get (); 287 asection *sect; 288 289 /* Symbol is a reference to a function defined in 290 a shared library. 291 If its value is non zero then it is usually the address 292 of the corresponding entry in the procedure linkage table, 293 plus the desired section offset. 294 If its value is zero then the dynamic linker has to resolve 295 the symbol. We are unable to find any meaningful address 296 for this symbol in the executable file, so we skip it. */ 297 symaddr = sym->value; 298 if (symaddr == 0) 299 continue; 300 301 /* sym->section is the undefined section. However, we want to 302 record the section where the PLT stub resides with the 303 minimal symbol. Search the section table for the one that 304 covers the stub's address. */ 305 for (sect = abfd->sections; sect != NULL; sect = sect->next) 306 { 307 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) 308 continue; 309 310 if (symaddr >= bfd_section_vma (sect) 311 && symaddr < bfd_section_vma (sect) 312 + bfd_section_size (sect)) 313 break; 314 } 315 if (!sect) 316 continue; 317 318 /* On ia64-hpux, we have discovered that the system linker 319 adds undefined symbols with nonzero addresses that cannot 320 be right (their address points inside the code of another 321 function in the .text section). This creates problems 322 when trying to determine which symbol corresponds to 323 a given address. 324 325 We try to detect those buggy symbols by checking which 326 section we think they correspond to. Normally, PLT symbols 327 are stored inside their own section, and the typical name 328 for that section is ".plt". So, if there is a ".plt" 329 section, and yet the section name of our symbol does not 330 start with ".plt", we ignore that symbol. */ 331 if (!startswith (sect->name, ".plt") 332 && bfd_get_section_by_name (abfd, ".plt") != NULL) 333 continue; 334 335 msym = record_minimal_symbol 336 (reader, sym->name, copy_names, 337 symaddr, mst_solib_trampoline, sect, objfile); 338 if (msym != NULL) 339 { 340 msym->filename = filesymname; 341 if (elf_make_msymbol_special_p) 342 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); 343 } 344 continue; 345 } 346 347 /* If it is a nonstripped executable, do not enter dynamic 348 symbols, as the dynamic symbol table is usually a subset 349 of the main symbol table. */ 350 if (type == ST_DYNAMIC && !stripped) 351 continue; 352 if (sym->flags & BSF_FILE) 353 filesymname = objfile->intern (sym->name); 354 else if (sym->flags & BSF_SECTION_SYM) 355 continue; 356 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK 357 | BSF_GNU_UNIQUE)) 358 { 359 struct minimal_symbol *msym; 360 361 /* Select global/local/weak symbols. Note that bfd puts abs 362 symbols in their own section, so all symbols we are 363 interested in will have a section. */ 364 /* Bfd symbols are section relative. */ 365 symaddr = sym->value + sym->section->vma; 366 /* For non-absolute symbols, use the type of the section 367 they are relative to, to intuit text/data. Bfd provides 368 no way of figuring this out for absolute symbols. */ 369 if (sym->section == bfd_abs_section_ptr) 370 { 371 /* This is a hack to get the minimal symbol type 372 right for Irix 5, which has absolute addresses 373 with special section indices for dynamic symbols. 374 375 NOTE: uweigand-20071112: Synthetic symbols do not 376 have an ELF-private part, so do not touch those. */ 377 unsigned int shndx = type == ST_SYNTHETIC ? 0 : 378 elf_sym->internal_elf_sym.st_shndx; 379 380 switch (shndx) 381 { 382 case SHN_MIPS_TEXT: 383 ms_type = mst_text; 384 break; 385 case SHN_MIPS_DATA: 386 ms_type = mst_data; 387 break; 388 case SHN_MIPS_ACOMMON: 389 ms_type = mst_bss; 390 break; 391 default: 392 ms_type = mst_abs; 393 } 394 395 /* If it is an Irix dynamic symbol, skip section name 396 symbols, relocate all others by section offset. */ 397 if (ms_type != mst_abs) 398 { 399 if (sym->name[0] == '.') 400 continue; 401 } 402 } 403 else if (sym->section->flags & SEC_CODE) 404 { 405 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) 406 { 407 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) 408 ms_type = mst_text_gnu_ifunc; 409 else 410 ms_type = mst_text; 411 } 412 /* The BSF_SYNTHETIC check is there to omit ppc64 function 413 descriptors mistaken for static functions starting with 'L'. 414 */ 415 else if ((sym->name[0] == '.' && sym->name[1] == 'L' 416 && (sym->flags & BSF_SYNTHETIC) == 0) 417 || ((sym->flags & BSF_LOCAL) 418 && sym->name[0] == '$' 419 && sym->name[1] == 'L')) 420 /* Looks like a compiler-generated label. Skip 421 it. The assembler should be skipping these (to 422 keep executables small), but apparently with 423 gcc on the (deleted) delta m88k SVR4, it loses. 424 So to have us check too should be harmless (but 425 I encourage people to fix this in the assembler 426 instead of adding checks here). */ 427 continue; 428 else 429 { 430 ms_type = mst_file_text; 431 } 432 } 433 else if (sym->section->flags & SEC_ALLOC) 434 { 435 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) 436 { 437 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) 438 { 439 ms_type = mst_data_gnu_ifunc; 440 } 441 else if (sym->section->flags & SEC_LOAD) 442 { 443 ms_type = mst_data; 444 } 445 else 446 { 447 ms_type = mst_bss; 448 } 449 } 450 else if (sym->flags & BSF_LOCAL) 451 { 452 if (sym->section->flags & SEC_LOAD) 453 { 454 ms_type = mst_file_data; 455 } 456 else 457 { 458 ms_type = mst_file_bss; 459 } 460 } 461 else 462 { 463 ms_type = mst_unknown; 464 } 465 } 466 else 467 { 468 /* FIXME: Solaris2 shared libraries include lots of 469 odd "absolute" and "undefined" symbols, that play 470 hob with actions like finding what function the PC 471 is in. Ignore them if they aren't text, data, or bss. */ 472 /* ms_type = mst_unknown; */ 473 continue; /* Skip this symbol. */ 474 } 475 msym = record_minimal_symbol 476 (reader, sym->name, copy_names, symaddr, 477 ms_type, sym->section, objfile); 478 479 if (msym) 480 { 481 /* NOTE: uweigand-20071112: A synthetic symbol does not have an 482 ELF-private part. */ 483 if (type != ST_SYNTHETIC) 484 { 485 /* Pass symbol size field in via BFD. FIXME!!! */ 486 msym->set_size (elf_sym->internal_elf_sym.st_size); 487 } 488 489 msym->filename = filesymname; 490 if (elf_make_msymbol_special_p) 491 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); 492 } 493 494 /* If we see a default versioned symbol, install it under 495 its version-less name. */ 496 if (msym != NULL) 497 { 498 const char *atsign = strchr (sym->name, '@'); 499 bool is_at_symbol = atsign != nullptr && atsign > sym->name; 500 bool is_plt = is_at_symbol && strcmp (atsign, "@plt") == 0; 501 int len = is_at_symbol ? atsign - sym->name : 0; 502 503 if (is_at_symbol 504 && !is_plt 505 && (elf_sym->version & VERSYM_HIDDEN) == 0) 506 record_minimal_symbol (reader, 507 gdb::string_view (sym->name, len), 508 true, symaddr, ms_type, sym->section, 509 objfile); 510 else if (is_plt) 511 { 512 /* For @plt symbols, also record a trampoline to the 513 destination symbol. The @plt symbol will be used 514 in disassembly, and the trampoline will be used 515 when we are trying to find the target. */ 516 if (ms_type == mst_text && type == ST_SYNTHETIC) 517 { 518 struct minimal_symbol *mtramp; 519 520 mtramp = record_minimal_symbol 521 (reader, gdb::string_view (sym->name, len), true, 522 symaddr, mst_solib_trampoline, sym->section, objfile); 523 if (mtramp) 524 { 525 mtramp->set_size (msym->size()); 526 mtramp->created_by_gdb = 1; 527 mtramp->filename = filesymname; 528 if (elf_make_msymbol_special_p) 529 gdbarch_elf_make_msymbol_special (gdbarch, 530 sym, mtramp); 531 } 532 } 533 } 534 } 535 } 536 } 537 } 538 539 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX) 540 for later look ups of which function to call when user requests 541 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target 542 library defining `function' we cannot yet know while reading OBJFILE which 543 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later 544 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ 545 546 static void 547 elf_rel_plt_read (minimal_symbol_reader &reader, 548 struct objfile *objfile, asymbol **dyn_symbol_table) 549 { 550 bfd *obfd = objfile->obfd.get (); 551 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 552 asection *relplt, *got_plt; 553 bfd_size_type reloc_count, reloc; 554 struct gdbarch *gdbarch = objfile->arch (); 555 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 556 size_t ptr_size = ptr_type->length (); 557 558 if (objfile->separate_debug_objfile_backlink) 559 return; 560 561 got_plt = bfd_get_section_by_name (obfd, ".got.plt"); 562 if (got_plt == NULL) 563 { 564 /* For platforms where there is no separate .got.plt. */ 565 got_plt = bfd_get_section_by_name (obfd, ".got"); 566 if (got_plt == NULL) 567 return; 568 } 569 570 /* Depending on system, we may find jump slots in a relocation 571 section for either .got.plt or .plt. */ 572 asection *plt = bfd_get_section_by_name (obfd, ".plt"); 573 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1; 574 575 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx; 576 577 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ 578 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) 579 { 580 const auto &this_hdr = elf_section_data (relplt)->this_hdr; 581 582 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA) 583 { 584 if (this_hdr.sh_info == plt_elf_idx 585 || this_hdr.sh_info == got_plt_elf_idx) 586 break; 587 } 588 } 589 if (relplt == NULL) 590 return; 591 592 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) 593 return; 594 595 std::string string_buffer; 596 597 /* Does ADDRESS reside in SECTION of OBFD? */ 598 auto within_section = [obfd] (asection *section, CORE_ADDR address) 599 { 600 if (section == NULL) 601 return false; 602 603 return (bfd_section_vma (section) <= address 604 && (address < bfd_section_vma (section) 605 + bfd_section_size (section))); 606 }; 607 608 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; 609 for (reloc = 0; reloc < reloc_count; reloc++) 610 { 611 const char *name; 612 struct minimal_symbol *msym; 613 CORE_ADDR address; 614 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX; 615 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); 616 617 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); 618 address = relplt->relocation[reloc].address; 619 620 asection *msym_section; 621 622 /* Does the pointer reside in either the .got.plt or .plt 623 sections? */ 624 if (within_section (got_plt, address)) 625 msym_section = got_plt; 626 else if (within_section (plt, address)) 627 msym_section = plt; 628 else 629 continue; 630 631 /* We cannot check if NAME is a reference to 632 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the 633 symbol is undefined and the objfile having NAME defined may 634 not yet have been loaded. */ 635 636 string_buffer.assign (name); 637 string_buffer.append (got_suffix, got_suffix + got_suffix_len); 638 639 msym = record_minimal_symbol (reader, string_buffer, 640 true, address, mst_slot_got_plt, 641 msym_section, objfile); 642 if (msym) 643 msym->set_size (ptr_size); 644 } 645 } 646 647 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ 648 649 static const registry<objfile>::key<htab, htab_deleter> 650 elf_objfile_gnu_ifunc_cache_data; 651 652 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ 653 654 struct elf_gnu_ifunc_cache 655 { 656 /* This is always a function entry address, not a function descriptor. */ 657 CORE_ADDR addr; 658 659 char name[1]; 660 }; 661 662 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ 663 664 static hashval_t 665 elf_gnu_ifunc_cache_hash (const void *a_voidp) 666 { 667 const struct elf_gnu_ifunc_cache *a 668 = (const struct elf_gnu_ifunc_cache *) a_voidp; 669 670 return htab_hash_string (a->name); 671 } 672 673 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ 674 675 static int 676 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) 677 { 678 const struct elf_gnu_ifunc_cache *a 679 = (const struct elf_gnu_ifunc_cache *) a_voidp; 680 const struct elf_gnu_ifunc_cache *b 681 = (const struct elf_gnu_ifunc_cache *) b_voidp; 682 683 return strcmp (a->name, b->name) == 0; 684 } 685 686 /* Record the target function address of a STT_GNU_IFUNC function NAME is the 687 function entry address ADDR. Return 1 if NAME and ADDR are considered as 688 valid and therefore they were successfully recorded, return 0 otherwise. 689 690 Function does not expect a duplicate entry. Use 691 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already 692 exists. */ 693 694 static int 695 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) 696 { 697 struct bound_minimal_symbol msym; 698 struct objfile *objfile; 699 htab_t htab; 700 struct elf_gnu_ifunc_cache entry_local, *entry_p; 701 void **slot; 702 703 msym = lookup_minimal_symbol_by_pc (addr); 704 if (msym.minsym == NULL) 705 return 0; 706 if (msym.value_address () != addr) 707 return 0; 708 objfile = msym.objfile; 709 710 /* If .plt jumps back to .plt the symbol is still deferred for later 711 resolution and it has no use for GDB. */ 712 const char *target_name = msym.minsym->linkage_name (); 713 size_t len = strlen (target_name); 714 715 /* Note we check the symbol's name instead of checking whether the 716 symbol is in the .plt section because some systems have @plt 717 symbols in the .text section. */ 718 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0) 719 return 0; 720 721 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile); 722 if (htab == NULL) 723 { 724 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash, 725 elf_gnu_ifunc_cache_eq, 726 NULL, xcalloc, xfree); 727 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab); 728 } 729 730 entry_local.addr = addr; 731 obstack_grow (&objfile->objfile_obstack, &entry_local, 732 offsetof (struct elf_gnu_ifunc_cache, name)); 733 obstack_grow_str0 (&objfile->objfile_obstack, name); 734 entry_p 735 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack); 736 737 slot = htab_find_slot (htab, entry_p, INSERT); 738 if (*slot != NULL) 739 { 740 struct elf_gnu_ifunc_cache *entry_found_p 741 = (struct elf_gnu_ifunc_cache *) *slot; 742 struct gdbarch *gdbarch = objfile->arch (); 743 744 if (entry_found_p->addr != addr) 745 { 746 /* This case indicates buggy inferior program, the resolved address 747 should never change. */ 748 749 warning (_("gnu-indirect-function \"%s\" has changed its resolved " 750 "function_address from %s to %s"), 751 name, paddress (gdbarch, entry_found_p->addr), 752 paddress (gdbarch, addr)); 753 } 754 755 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ 756 } 757 *slot = entry_p; 758 759 return 1; 760 } 761 762 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC 763 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P 764 is not NULL) and the function returns 1. It returns 0 otherwise. 765 766 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this 767 function. */ 768 769 static int 770 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) 771 { 772 int found = 0; 773 774 /* FIXME: we only search the initial namespace. 775 776 To search other namespaces, we would need to provide context, e.g. in 777 form of an objfile in that namespace. */ 778 gdbarch_iterate_over_objfiles_in_search_order 779 (target_gdbarch (), 780 [name, &addr_p, &found] (struct objfile *objfile) 781 { 782 htab_t htab; 783 elf_gnu_ifunc_cache *entry_p; 784 void **slot; 785 786 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile); 787 if (htab == NULL) 788 return 0; 789 790 entry_p = ((elf_gnu_ifunc_cache *) 791 alloca (sizeof (*entry_p) + strlen (name))); 792 strcpy (entry_p->name, name); 793 794 slot = htab_find_slot (htab, entry_p, NO_INSERT); 795 if (slot == NULL) 796 return 0; 797 entry_p = (elf_gnu_ifunc_cache *) *slot; 798 gdb_assert (entry_p != NULL); 799 800 if (addr_p) 801 *addr_p = entry_p->addr; 802 803 found = 1; 804 return 1; 805 }, nullptr); 806 807 return found; 808 } 809 810 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC 811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P 812 is not NULL) and the function returns 1. It returns 0 otherwise. 813 814 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. 815 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to 816 prevent cache entries duplicates. */ 817 818 static int 819 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) 820 { 821 char *name_got_plt; 822 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); 823 int found = 0; 824 825 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1); 826 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); 827 828 /* FIXME: we only search the initial namespace. 829 830 To search other namespaces, we would need to provide context, e.g. in 831 form of an objfile in that namespace. */ 832 gdbarch_iterate_over_objfiles_in_search_order 833 (target_gdbarch (), 834 [name, name_got_plt, &addr_p, &found] (struct objfile *objfile) 835 { 836 bfd *obfd = objfile->obfd.get (); 837 struct gdbarch *gdbarch = objfile->arch (); 838 type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 839 size_t ptr_size = ptr_type->length (); 840 CORE_ADDR pointer_address, addr; 841 asection *plt; 842 gdb_byte *buf = (gdb_byte *) alloca (ptr_size); 843 bound_minimal_symbol msym; 844 845 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); 846 if (msym.minsym == NULL) 847 return 0; 848 if (msym.minsym->type () != mst_slot_got_plt) 849 return 0; 850 pointer_address = msym.value_address (); 851 852 plt = bfd_get_section_by_name (obfd, ".plt"); 853 if (plt == NULL) 854 return 0; 855 856 if (msym.minsym->size () != ptr_size) 857 return 0; 858 if (target_read_memory (pointer_address, buf, ptr_size) != 0) 859 return 0; 860 addr = extract_typed_address (buf, ptr_type); 861 addr = gdbarch_convert_from_func_ptr_addr 862 (gdbarch, addr, current_inferior ()->top_target ()); 863 addr = gdbarch_addr_bits_remove (gdbarch, addr); 864 865 if (elf_gnu_ifunc_record_cache (name, addr)) 866 { 867 if (addr_p != NULL) 868 *addr_p = addr; 869 870 found = 1; 871 return 1; 872 } 873 874 return 0; 875 }, nullptr); 876 877 return found; 878 } 879 880 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC 881 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P 882 is not NULL) and the function returns true. It returns false otherwise. 883 884 Both the elf_objfile_gnu_ifunc_cache_data hash table and 885 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ 886 887 static bool 888 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) 889 { 890 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) 891 return true; 892 893 if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) 894 return true; 895 896 return false; 897 } 898 899 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to 900 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned 901 is the entry point of the resolved STT_GNU_IFUNC target function to call. 902 */ 903 904 static CORE_ADDR 905 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) 906 { 907 const char *name_at_pc; 908 CORE_ADDR start_at_pc, address; 909 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; 910 struct value *function, *address_val; 911 CORE_ADDR hwcap = 0; 912 struct value *hwcap_val; 913 914 /* Try first any non-intrusive methods without an inferior call. */ 915 916 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) 917 && start_at_pc == pc) 918 { 919 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) 920 return address; 921 } 922 else 923 name_at_pc = NULL; 924 925 function = allocate_value (func_func_type); 926 VALUE_LVAL (function) = lval_memory; 927 set_value_address (function, pc); 928 929 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as 930 parameter. FUNCTION is the function entry address. ADDRESS may be a 931 function descriptor. */ 932 933 target_auxv_search (AT_HWCAP, &hwcap); 934 hwcap_val = value_from_longest (builtin_type (gdbarch) 935 ->builtin_unsigned_long, hwcap); 936 address_val = call_function_by_hand (function, NULL, hwcap_val); 937 address = value_as_address (address_val); 938 address = gdbarch_convert_from_func_ptr_addr 939 (gdbarch, address, current_inferior ()->top_target ()); 940 address = gdbarch_addr_bits_remove (gdbarch, address); 941 942 if (name_at_pc) 943 elf_gnu_ifunc_record_cache (name_at_pc, address); 944 945 return address; 946 } 947 948 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ 949 950 static void 951 elf_gnu_ifunc_resolver_stop (code_breakpoint *b) 952 { 953 struct breakpoint *b_return; 954 frame_info_ptr prev_frame = get_prev_frame (get_current_frame ()); 955 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); 956 CORE_ADDR prev_pc = get_frame_pc (prev_frame); 957 int thread_id = inferior_thread ()->global_num; 958 959 gdb_assert (b->type == bp_gnu_ifunc_resolver); 960 961 for (b_return = b->related_breakpoint; b_return != b; 962 b_return = b_return->related_breakpoint) 963 { 964 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); 965 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); 966 gdb_assert (frame_id_p (b_return->frame_id)); 967 968 if (b_return->thread == thread_id 969 && b_return->loc->requested_address == prev_pc 970 && b_return->frame_id == prev_frame_id) 971 break; 972 } 973 974 if (b_return == b) 975 { 976 /* No need to call find_pc_line for symbols resolving as this is only 977 a helper breakpointer never shown to the user. */ 978 979 symtab_and_line sal; 980 sal.pspace = current_inferior ()->pspace; 981 sal.pc = prev_pc; 982 sal.section = find_pc_overlay (sal.pc); 983 sal.explicit_pc = 1; 984 b_return 985 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, 986 prev_frame_id, 987 bp_gnu_ifunc_resolver_return).release (); 988 989 /* set_momentary_breakpoint invalidates PREV_FRAME. */ 990 prev_frame = NULL; 991 992 /* Add new b_return to the ring list b->related_breakpoint. */ 993 gdb_assert (b_return->related_breakpoint == b_return); 994 b_return->related_breakpoint = b->related_breakpoint; 995 b->related_breakpoint = b_return; 996 } 997 } 998 999 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ 1000 1001 static void 1002 elf_gnu_ifunc_resolver_return_stop (code_breakpoint *b) 1003 { 1004 thread_info *thread = inferior_thread (); 1005 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); 1006 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; 1007 struct type *value_type = func_func_type->target_type (); 1008 struct regcache *regcache = get_thread_regcache (thread); 1009 struct value *func_func; 1010 struct value *value; 1011 CORE_ADDR resolved_address, resolved_pc; 1012 1013 gdb_assert (b->type == bp_gnu_ifunc_resolver_return); 1014 1015 while (b->related_breakpoint != b) 1016 { 1017 struct breakpoint *b_next = b->related_breakpoint; 1018 1019 switch (b->type) 1020 { 1021 case bp_gnu_ifunc_resolver: 1022 break; 1023 case bp_gnu_ifunc_resolver_return: 1024 delete_breakpoint (b); 1025 break; 1026 default: 1027 internal_error (_("handle_inferior_event: Invalid " 1028 "gnu-indirect-function breakpoint type %d"), 1029 (int) b->type); 1030 } 1031 b = (code_breakpoint *) b_next; 1032 } 1033 gdb_assert (b->type == bp_gnu_ifunc_resolver); 1034 gdb_assert (b->loc->next == NULL); 1035 1036 func_func = allocate_value (func_func_type); 1037 VALUE_LVAL (func_func) = lval_memory; 1038 set_value_address (func_func, b->loc->related_address); 1039 1040 value = allocate_value (value_type); 1041 gdbarch_return_value (gdbarch, func_func, value_type, regcache, 1042 value_contents_raw (value).data (), NULL); 1043 resolved_address = value_as_address (value); 1044 resolved_pc = gdbarch_convert_from_func_ptr_addr 1045 (gdbarch, resolved_address, current_inferior ()->top_target ()); 1046 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc); 1047 1048 gdb_assert (current_program_space == b->pspace || b->pspace == NULL); 1049 elf_gnu_ifunc_record_cache (b->locspec->to_string (), resolved_pc); 1050 1051 b->type = bp_breakpoint; 1052 update_breakpoint_locations (b, current_program_space, 1053 find_function_start_sal (resolved_pc, NULL, true), 1054 {}); 1055 } 1056 1057 /* A helper function for elf_symfile_read that reads the minimal 1058 symbols. */ 1059 1060 static void 1061 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags, 1062 const struct elfinfo *ei) 1063 { 1064 bfd *synth_abfd, *abfd = objfile->obfd.get (); 1065 long symcount = 0, dynsymcount = 0, synthcount, storage_needed; 1066 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; 1067 asymbol *synthsyms; 1068 1069 symtab_create_debug_printf ("reading minimal symbols of objfile %s", 1070 objfile_name (objfile)); 1071 1072 /* If we already have minsyms, then we can skip some work here. 1073 However, if there were stabs or mdebug sections, we go ahead and 1074 redo all the work anyway, because the psym readers for those 1075 kinds of debuginfo need extra information found here. This can 1076 go away once all types of symbols are in the per-BFD object. */ 1077 if (objfile->per_bfd->minsyms_read 1078 && ei->stabsect == NULL 1079 && ei->mdebugsect == NULL 1080 && ei->ctfsect == NULL) 1081 { 1082 symtab_create_debug_printf ("minimal symbols were previously read"); 1083 return; 1084 } 1085 1086 minimal_symbol_reader reader (objfile); 1087 1088 /* Process the normal ELF symbol table first. */ 1089 1090 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd.get ()); 1091 if (storage_needed < 0) 1092 error (_("Can't read symbols from %s: %s"), 1093 bfd_get_filename (objfile->obfd.get ()), 1094 bfd_errmsg (bfd_get_error ())); 1095 1096 if (storage_needed > 0) 1097 { 1098 /* Memory gets permanently referenced from ABFD after 1099 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */ 1100 1101 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed); 1102 symcount = bfd_canonicalize_symtab (objfile->obfd.get (), symbol_table); 1103 1104 if (symcount < 0) 1105 error (_("Can't read symbols from %s: %s"), 1106 bfd_get_filename (objfile->obfd.get ()), 1107 bfd_errmsg (bfd_get_error ())); 1108 1109 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table, 1110 false); 1111 } 1112 1113 /* Add the dynamic symbols. */ 1114 1115 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd.get ()); 1116 1117 if (storage_needed > 0) 1118 { 1119 /* Memory gets permanently referenced from ABFD after 1120 bfd_get_synthetic_symtab so it must not get freed before ABFD gets. 1121 It happens only in the case when elf_slurp_reloc_table sees 1122 asection->relocation NULL. Determining which section is asection is 1123 done by _bfd_elf_get_synthetic_symtab which is all a bfd 1124 implementation detail, though. */ 1125 1126 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed); 1127 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd.get (), 1128 dyn_symbol_table); 1129 1130 if (dynsymcount < 0) 1131 error (_("Can't read symbols from %s: %s"), 1132 bfd_get_filename (objfile->obfd.get ()), 1133 bfd_errmsg (bfd_get_error ())); 1134 1135 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount, 1136 dyn_symbol_table, false); 1137 1138 elf_rel_plt_read (reader, objfile, dyn_symbol_table); 1139 } 1140 1141 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from 1142 elfutils (eu-strip) moves even the .symtab section into the .debug file. 1143 1144 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol 1145 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code 1146 address. But with eu-strip files bfd_get_synthetic_symtab would fail to 1147 read the code address from .opd while it reads the .symtab section from 1148 a separate debug info file as the .opd section is SHT_NOBITS there. 1149 1150 With SYNTH_ABFD the .opd section will be read from the original 1151 backlinked binary where it is valid. */ 1152 1153 if (objfile->separate_debug_objfile_backlink) 1154 synth_abfd = objfile->separate_debug_objfile_backlink->obfd.get (); 1155 else 1156 synth_abfd = abfd; 1157 1158 /* Add synthetic symbols - for instance, names for any PLT entries. */ 1159 1160 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, 1161 dynsymcount, dyn_symbol_table, 1162 &synthsyms); 1163 if (synthcount > 0) 1164 { 1165 long i; 1166 1167 std::unique_ptr<asymbol *[]> 1168 synth_symbol_table (new asymbol *[synthcount]); 1169 for (i = 0; i < synthcount; i++) 1170 synth_symbol_table[i] = synthsyms + i; 1171 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount, 1172 synth_symbol_table.get (), true); 1173 1174 xfree (synthsyms); 1175 synthsyms = NULL; 1176 } 1177 1178 /* Install any minimal symbols that have been collected as the current 1179 minimal symbols for this objfile. The debug readers below this point 1180 should not generate new minimal symbols; if they do it's their 1181 responsibility to install them. "mdebug" appears to be the only one 1182 which will do this. */ 1183 1184 reader.install (); 1185 1186 symtab_create_debug_printf ("done reading minimal symbols"); 1187 } 1188 1189 /* Dwarf-specific helper for elf_symfile_read. Return true if we managed to 1190 load dwarf debug info. */ 1191 1192 static bool 1193 elf_symfile_read_dwarf2 (struct objfile *objfile, 1194 symfile_add_flags symfile_flags) 1195 { 1196 bool has_dwarf2 = true; 1197 1198 if (dwarf2_has_info (objfile, NULL, true)) 1199 dwarf2_initialize_objfile (objfile); 1200 /* If the file has its own symbol tables it has no separate debug 1201 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to 1202 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with 1203 `.note.gnu.build-id'. 1204 1205 .gnu_debugdata is !objfile::has_partial_symbols because it contains only 1206 .symtab, not .debug_* section. But if we already added .gnu_debugdata as 1207 an objfile via find_separate_debug_file_in_section there was no separate 1208 debug info available. Therefore do not attempt to search for another one, 1209 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to 1210 be NULL and we would possibly violate it. */ 1211 1212 else if (!objfile->has_partial_symbols () 1213 && objfile->separate_debug_objfile == NULL 1214 && objfile->separate_debug_objfile_backlink == NULL) 1215 { 1216 std::string debugfile = find_separate_debug_file_by_buildid (objfile); 1217 1218 if (debugfile.empty ()) 1219 debugfile = find_separate_debug_file_by_debuglink (objfile); 1220 1221 if (!debugfile.empty ()) 1222 { 1223 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ())); 1224 1225 symbol_file_add_separate (debug_bfd, debugfile.c_str (), 1226 symfile_flags, objfile); 1227 } 1228 else 1229 { 1230 has_dwarf2 = false; 1231 const struct bfd_build_id *build_id 1232 = build_id_bfd_get (objfile->obfd.get ()); 1233 const char *filename = bfd_get_filename (objfile->obfd.get ()); 1234 1235 if (build_id != nullptr) 1236 { 1237 gdb::unique_xmalloc_ptr<char> symfile_path; 1238 scoped_fd fd (debuginfod_debuginfo_query (build_id->data, 1239 build_id->size, 1240 filename, 1241 &symfile_path)); 1242 1243 if (fd.get () >= 0) 1244 { 1245 /* File successfully retrieved from server. */ 1246 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ())); 1247 1248 if (debug_bfd == nullptr) 1249 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"), 1250 filename); 1251 else if (build_id_verify (debug_bfd.get (), build_id->size, 1252 build_id->data)) 1253 { 1254 symbol_file_add_separate (debug_bfd, symfile_path.get (), 1255 symfile_flags, objfile); 1256 has_dwarf2 = true; 1257 } 1258 } 1259 } 1260 } 1261 } 1262 1263 return has_dwarf2; 1264 } 1265 1266 /* Scan and build partial symbols for a symbol file. 1267 We have been initialized by a call to elf_symfile_init, which 1268 currently does nothing. 1269 1270 This function only does the minimum work necessary for letting the 1271 user "name" things symbolically; it does not read the entire symtab. 1272 Instead, it reads the external and static symbols and puts them in partial 1273 symbol tables. When more extensive information is requested of a 1274 file, the corresponding partial symbol table is mutated into a full 1275 fledged symbol table by going back and reading the symbols 1276 for real. 1277 1278 We look for sections with specific names, to tell us what debug 1279 format to look for: FIXME!!! 1280 1281 elfstab_build_psymtabs() handles STABS symbols; 1282 mdebug_build_psymtabs() handles ECOFF debugging information. 1283 1284 Note that ELF files have a "minimal" symbol table, which looks a lot 1285 like a COFF symbol table, but has only the minimal information necessary 1286 for linking. We process this also, and use the information to 1287 build gdb's minimal symbol table. This gives us some minimal debugging 1288 capability even for files compiled without -g. */ 1289 1290 static void 1291 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags) 1292 { 1293 bfd *abfd = objfile->obfd.get (); 1294 struct elfinfo ei; 1295 1296 memset ((char *) &ei, 0, sizeof (ei)); 1297 if (!(objfile->flags & OBJF_READNEVER)) 1298 { 1299 for (asection *sect : gdb_bfd_sections (abfd)) 1300 elf_locate_sections (sect, &ei); 1301 } 1302 1303 elf_read_minimal_symbols (objfile, symfile_flags, &ei); 1304 1305 /* ELF debugging information is inserted into the psymtab in the 1306 order of least informative first - most informative last. Since 1307 the psymtab table is searched `most recent insertion first' this 1308 increases the probability that more detailed debug information 1309 for a section is found. 1310 1311 For instance, an object file might contain both .mdebug (XCOFF) 1312 and .debug_info (DWARF2) sections then .mdebug is inserted first 1313 (searched last) and DWARF2 is inserted last (searched first). If 1314 we don't do this then the XCOFF info is found first - for code in 1315 an included file XCOFF info is useless. */ 1316 1317 if (ei.mdebugsect) 1318 { 1319 const struct ecoff_debug_swap *swap; 1320 1321 /* .mdebug section, presumably holding ECOFF debugging 1322 information. */ 1323 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1324 if (swap) 1325 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); 1326 } 1327 if (ei.stabsect) 1328 { 1329 asection *str_sect; 1330 1331 /* Stab sections have an associated string table that looks like 1332 a separate section. */ 1333 str_sect = bfd_get_section_by_name (abfd, ".stabstr"); 1334 1335 /* FIXME should probably warn about a stab section without a stabstr. */ 1336 if (str_sect) 1337 elfstab_build_psymtabs (objfile, 1338 ei.stabsect, 1339 str_sect->filepos, 1340 bfd_section_size (str_sect)); 1341 } 1342 1343 bool has_dwarf2 = elf_symfile_read_dwarf2 (objfile, symfile_flags); 1344 1345 /* Read the CTF section only if there is no DWARF info. */ 1346 if (!has_dwarf2 && ei.ctfsect) 1347 { 1348 elfctf_build_psymtabs (objfile); 1349 } 1350 } 1351 1352 /* Initialize anything that needs initializing when a completely new symbol 1353 file is specified (not just adding some symbols from another file, e.g. a 1354 shared library). */ 1355 1356 static void 1357 elf_new_init (struct objfile *ignore) 1358 { 1359 } 1360 1361 /* Perform any local cleanups required when we are done with a particular 1362 objfile. I.E, we are in the process of discarding all symbol information 1363 for an objfile, freeing up all memory held for it, and unlinking the 1364 objfile struct from the global list of known objfiles. */ 1365 1366 static void 1367 elf_symfile_finish (struct objfile *objfile) 1368 { 1369 } 1370 1371 /* ELF specific initialization routine for reading symbols. */ 1372 1373 static void 1374 elf_symfile_init (struct objfile *objfile) 1375 { 1376 /* ELF objects may be reordered, so set OBJF_REORDERED. If we 1377 find this causes a significant slowdown in gdb then we could 1378 set it in the debug symbol readers only when necessary. */ 1379 objfile->flags |= OBJF_REORDERED; 1380 } 1381 1382 /* Implementation of `sym_get_probes', as documented in symfile.h. */ 1383 1384 static const elfread_data & 1385 elf_get_probes (struct objfile *objfile) 1386 { 1387 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd.get ()); 1388 1389 if (probes_per_bfd == NULL) 1390 { 1391 probes_per_bfd = probe_key.emplace (objfile->obfd.get ()); 1392 1393 /* Here we try to gather information about all types of probes from the 1394 objfile. */ 1395 for (const static_probe_ops *ops : all_static_probe_ops) 1396 ops->get_probes (probes_per_bfd, objfile); 1397 } 1398 1399 return *probes_per_bfd; 1400 } 1401 1402 1403 1404 /* Implementation `sym_probe_fns', as documented in symfile.h. */ 1405 1406 static const struct sym_probe_fns elf_probe_fns = 1407 { 1408 elf_get_probes, /* sym_get_probes */ 1409 }; 1410 1411 /* Register that we are able to handle ELF object file formats. */ 1412 1413 static const struct sym_fns elf_sym_fns = 1414 { 1415 elf_new_init, /* init anything gbl to entire symtab */ 1416 elf_symfile_init, /* read initial info, setup for sym_read() */ 1417 elf_symfile_read, /* read a symbol file into symtab */ 1418 elf_symfile_finish, /* finished with file, cleanup */ 1419 default_symfile_offsets, /* Translate ext. to int. relocation */ 1420 elf_symfile_segments, /* Get segment information from a file. */ 1421 NULL, 1422 default_symfile_relocate, /* Relocate a debug section. */ 1423 &elf_probe_fns, /* sym_probe_fns */ 1424 }; 1425 1426 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ 1427 1428 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = 1429 { 1430 elf_gnu_ifunc_resolve_addr, 1431 elf_gnu_ifunc_resolve_name, 1432 elf_gnu_ifunc_resolver_stop, 1433 elf_gnu_ifunc_resolver_return_stop 1434 }; 1435 1436 void _initialize_elfread (); 1437 void 1438 _initialize_elfread () 1439 { 1440 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); 1441 1442 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; 1443 } 1444