xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/blockframe.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Get info from stack frames; convert between frames, blocks,
2    functions and pc values.
3 
4    Copyright (C) 1986-2023 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "symtab.h"
23 #include "bfd.h"
24 #include "objfiles.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "value.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "annotate.h"
31 #include "regcache.h"
32 #include "dummy-frame.h"
33 #include "command.h"
34 #include "gdbcmd.h"
35 #include "block.h"
36 #include "inline-frame.h"
37 
38 /* Return the innermost lexical block in execution in a specified
39    stack frame.  The frame address is assumed valid.
40 
41    If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
42    address we used to choose the block.  We use this to find a source
43    line, to decide which macro definitions are in scope.
44 
45    The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
46    PC, and may not really be a valid PC at all.  For example, in the
47    caller of a function declared to never return, the code at the
48    return address will never be reached, so the call instruction may
49    be the very last instruction in the block.  So the address we use
50    to choose the block is actually one byte before the return address
51    --- hopefully pointing us at the call instruction, or its delay
52    slot instruction.  */
53 
54 const struct block *
55 get_frame_block (frame_info_ptr frame, CORE_ADDR *addr_in_block)
56 {
57   CORE_ADDR pc;
58   const struct block *bl;
59   int inline_count;
60 
61   if (!get_frame_address_in_block_if_available (frame, &pc))
62     return NULL;
63 
64   if (addr_in_block)
65     *addr_in_block = pc;
66 
67   bl = block_for_pc (pc);
68   if (bl == NULL)
69     return NULL;
70 
71   inline_count = frame_inlined_callees (frame);
72 
73   while (inline_count > 0)
74     {
75       if (block_inlined_p (bl))
76 	inline_count--;
77 
78       bl = bl->superblock ();
79       gdb_assert (bl != NULL);
80     }
81 
82   return bl;
83 }
84 
85 CORE_ADDR
86 get_pc_function_start (CORE_ADDR pc)
87 {
88   const struct block *bl;
89   struct bound_minimal_symbol msymbol;
90 
91   bl = block_for_pc (pc);
92   if (bl)
93     {
94       struct symbol *symbol = block_linkage_function (bl);
95 
96       if (symbol)
97 	{
98 	  bl = symbol->value_block ();
99 	  return bl->entry_pc ();
100 	}
101     }
102 
103   msymbol = lookup_minimal_symbol_by_pc (pc);
104   if (msymbol.minsym)
105     {
106       CORE_ADDR fstart = msymbol.value_address ();
107 
108       if (find_pc_section (fstart))
109 	return fstart;
110     }
111 
112   return 0;
113 }
114 
115 /* Return the symbol for the function executing in frame FRAME.  */
116 
117 struct symbol *
118 get_frame_function (frame_info_ptr frame)
119 {
120   const struct block *bl = get_frame_block (frame, 0);
121 
122   if (bl == NULL)
123     return NULL;
124 
125   while (bl->function () == NULL && bl->superblock () != NULL)
126     bl = bl->superblock ();
127 
128   return bl->function ();
129 }
130 
131 
132 /* Return the function containing pc value PC in section SECTION.
133    Returns 0 if function is not known.  */
134 
135 struct symbol *
136 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
137 {
138   const struct block *b = block_for_pc_sect (pc, section);
139 
140   if (b == 0)
141     return 0;
142   return block_linkage_function (b);
143 }
144 
145 /* Return the function containing pc value PC.
146    Returns 0 if function is not known.
147    Backward compatibility, no section */
148 
149 struct symbol *
150 find_pc_function (CORE_ADDR pc)
151 {
152   return find_pc_sect_function (pc, find_pc_mapped_section (pc));
153 }
154 
155 /* See symtab.h.  */
156 
157 struct symbol *
158 find_pc_sect_containing_function (CORE_ADDR pc, struct obj_section *section)
159 {
160   const block *bl = block_for_pc_sect (pc, section);
161 
162   if (bl == nullptr)
163     return nullptr;
164 
165   return block_containing_function (bl);
166 }
167 
168 /* These variables are used to cache the most recent result of
169    find_pc_partial_function.
170 
171    The addresses cache_pc_function_low and cache_pc_function_high
172    record the range in which PC was found during the most recent
173    successful lookup.  When the function occupies a single contiguous
174    address range, these values correspond to the low and high
175    addresses of the function.  (The high address is actually one byte
176    beyond the last byte of the function.)  For a function with more
177    than one (non-contiguous) range, the range in which PC was found is
178    used to set the cache bounds.
179 
180    When determining whether or not these cached values apply to a
181    particular PC value, PC must be within the range specified by
182    cache_pc_function_low and cache_pc_function_high.  In addition to
183    PC being in that range, cache_pc_section must also match PC's
184    section.  See find_pc_partial_function() for details on both the
185    comparison as well as how PC's section is determined.
186 
187    The other values aren't used for determining whether the cache
188    applies, but are used for setting the outputs from
189    find_pc_partial_function.  cache_pc_function_low and
190    cache_pc_function_high are used to set outputs as well.  */
191 
192 static CORE_ADDR cache_pc_function_low = 0;
193 static CORE_ADDR cache_pc_function_high = 0;
194 static const general_symbol_info *cache_pc_function_sym = nullptr;
195 static struct obj_section *cache_pc_function_section = NULL;
196 static const struct block *cache_pc_function_block = nullptr;
197 
198 /* Clear cache, e.g. when symbol table is discarded.  */
199 
200 void
201 clear_pc_function_cache (void)
202 {
203   cache_pc_function_low = 0;
204   cache_pc_function_high = 0;
205   cache_pc_function_sym = nullptr;
206   cache_pc_function_section = NULL;
207   cache_pc_function_block = nullptr;
208 }
209 
210 /* See symtab.h.  */
211 
212 bool
213 find_pc_partial_function_sym (CORE_ADDR pc,
214 			      const struct general_symbol_info **sym,
215 			      CORE_ADDR *address, CORE_ADDR *endaddr,
216 			      const struct block **block)
217 {
218   struct obj_section *section;
219   struct symbol *f;
220   struct bound_minimal_symbol msymbol;
221   struct compunit_symtab *compunit_symtab = NULL;
222   CORE_ADDR mapped_pc;
223 
224   /* To ensure that the symbol returned belongs to the correct section
225      (and that the last [random] symbol from the previous section
226      isn't returned) try to find the section containing PC.  First try
227      the overlay code (which by default returns NULL); and second try
228      the normal section code (which almost always succeeds).  */
229   section = find_pc_overlay (pc);
230   if (section == NULL)
231     section = find_pc_section (pc);
232 
233   mapped_pc = overlay_mapped_address (pc, section);
234 
235   if (mapped_pc >= cache_pc_function_low
236       && mapped_pc < cache_pc_function_high
237       && section == cache_pc_function_section)
238     goto return_cached_value;
239 
240   msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
241   compunit_symtab = find_pc_sect_compunit_symtab (mapped_pc, section);
242 
243   if (compunit_symtab != NULL)
244     {
245       /* Checking whether the msymbol has a larger value is for the
246 	 "pathological" case mentioned in stack.c:find_frame_funname.
247 
248 	 We use BLOCK_ENTRY_PC instead of BLOCK_START_PC for this
249 	 comparison because the minimal symbol should refer to the
250 	 function's entry pc which is not necessarily the lowest
251 	 address of the function.  This will happen when the function
252 	 has more than one range and the entry pc is not within the
253 	 lowest range of addresses.  */
254       f = find_pc_sect_function (mapped_pc, section);
255       if (f != NULL
256 	  && (msymbol.minsym == NULL
257 	      || (f->value_block ()->entry_pc ()
258 		  >= msymbol.value_address ())))
259 	{
260 	  const struct block *b = f->value_block ();
261 
262 	  cache_pc_function_sym = f;
263 	  cache_pc_function_section = section;
264 	  cache_pc_function_block = b;
265 
266 	  /* For blocks occupying contiguous addresses (i.e. no gaps),
267 	     the low and high cache addresses are simply the start
268 	     and end of the block.
269 
270 	     For blocks with non-contiguous ranges, we have to search
271 	     for the range containing mapped_pc and then use the start
272 	     and end of that range.
273 
274 	     This causes the returned *ADDRESS and *ENDADDR values to
275 	     be limited to the range in which mapped_pc is found.  See
276 	     comment preceding declaration of find_pc_partial_function
277 	     in symtab.h for more information.  */
278 
279 	  if (b->is_contiguous ())
280 	    {
281 	      cache_pc_function_low = b->start ();
282 	      cache_pc_function_high = b->end ();
283 	    }
284 	  else
285 	    {
286 	      bool found = false;
287 	      for (const blockrange &range : b->ranges ())
288 		{
289 		  if (range.start () <= mapped_pc && mapped_pc < range.end ())
290 		    {
291 		      cache_pc_function_low = range.start ();
292 		      cache_pc_function_high = range.end ();
293 		      found = true;
294 		      break;
295 		    }
296 		}
297 	      /* Above loop should exit via the break.  */
298 	      gdb_assert (found);
299 	    }
300 
301 
302 	  goto return_cached_value;
303 	}
304     }
305 
306   /* Not in the normal symbol tables, see if the pc is in a known
307      section.  If it's not, then give up.  This ensures that anything
308      beyond the end of the text seg doesn't appear to be part of the
309      last function in the text segment.  */
310 
311   if (!section)
312     msymbol.minsym = NULL;
313 
314   /* Must be in the minimal symbol table.  */
315   if (msymbol.minsym == NULL)
316     {
317       /* No available symbol.  */
318       if (sym != nullptr)
319 	*sym = 0;
320       if (address != NULL)
321 	*address = 0;
322       if (endaddr != NULL)
323 	*endaddr = 0;
324       if (block != nullptr)
325 	*block = nullptr;
326       return false;
327     }
328 
329   cache_pc_function_low = msymbol.value_address ();
330   cache_pc_function_sym = msymbol.minsym;
331   cache_pc_function_section = section;
332   cache_pc_function_high = minimal_symbol_upper_bound (msymbol);
333   cache_pc_function_block = nullptr;
334 
335  return_cached_value:
336 
337   if (address)
338     {
339       if (pc_in_unmapped_range (pc, section))
340 	*address = overlay_unmapped_address (cache_pc_function_low, section);
341       else
342 	*address = cache_pc_function_low;
343     }
344 
345   if (sym != nullptr)
346     *sym = cache_pc_function_sym;
347 
348   if (endaddr)
349     {
350       if (pc_in_unmapped_range (pc, section))
351 	{
352 	  /* Because the high address is actually beyond the end of
353 	     the function (and therefore possibly beyond the end of
354 	     the overlay), we must actually convert (high - 1) and
355 	     then add one to that.  */
356 
357 	  *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
358 						   section);
359 	}
360       else
361 	*endaddr = cache_pc_function_high;
362     }
363 
364   if (block != nullptr)
365     *block = cache_pc_function_block;
366 
367   return true;
368 }
369 
370 /* See symtab.h.  */
371 
372 bool
373 find_pc_partial_function (CORE_ADDR pc, const char **name, CORE_ADDR *address,
374 			  CORE_ADDR *endaddr, const struct block **block)
375 {
376   const general_symbol_info *gsi;
377   bool r = find_pc_partial_function_sym (pc, &gsi, address, endaddr, block);
378   if (name != nullptr)
379     *name = r ? gsi->linkage_name () : nullptr;
380   return r;
381 }
382 
383 
384 /* See symtab.h.  */
385 
386 bool
387 find_function_entry_range_from_pc (CORE_ADDR pc, const char **name,
388 				   CORE_ADDR *address, CORE_ADDR *endaddr)
389 {
390   const struct block *block;
391   bool status = find_pc_partial_function (pc, name, address, endaddr, &block);
392 
393   if (status && block != nullptr && !block->is_contiguous ())
394     {
395       CORE_ADDR entry_pc = block->entry_pc ();
396 
397       for (const blockrange &range : block->ranges ())
398 	{
399 	  if (range.start () <= entry_pc && entry_pc < range.end ())
400 	    {
401 	      if (address != nullptr)
402 		*address = range.start ();
403 
404 	      if (endaddr != nullptr)
405 		*endaddr = range.end ();
406 
407 	      return status;
408 	    }
409 	}
410 
411       /* It's an internal error if we exit the above loop without finding
412 	 the range.  */
413       internal_error (_("Entry block not found in find_function_entry_range_from_pc"));
414     }
415 
416   return status;
417 }
418 
419 /* See symtab.h.  */
420 
421 struct type *
422 find_function_type (CORE_ADDR pc)
423 {
424   struct symbol *sym = find_pc_function (pc);
425 
426   if (sym != NULL && sym->value_block ()->entry_pc () == pc)
427     return sym->type ();
428 
429   return NULL;
430 }
431 
432 /* See symtab.h.  */
433 
434 struct type *
435 find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr)
436 {
437   struct type *resolver_type = find_function_type (resolver_funaddr);
438   if (resolver_type != NULL)
439     {
440       /* Get the return type of the resolver.  */
441       struct type *resolver_ret_type
442 	= check_typedef (resolver_type->target_type ());
443 
444       /* If we found a pointer to function, then the resolved type
445 	 is the type of the pointed-to function.  */
446       if (resolver_ret_type->code () == TYPE_CODE_PTR)
447 	{
448 	  struct type *resolved_type
449 	    = resolver_ret_type->target_type ();
450 	  if (check_typedef (resolved_type)->code () == TYPE_CODE_FUNC)
451 	    return resolved_type;
452 	}
453     }
454 
455   return NULL;
456 }
457 
458 /* Return the innermost stack frame that is executing inside of BLOCK and is
459    at least as old as the selected frame. Return NULL if there is no
460    such frame.  If BLOCK is NULL, just return NULL.  */
461 
462 frame_info_ptr
463 block_innermost_frame (const struct block *block)
464 {
465   if (block == NULL)
466     return NULL;
467 
468   frame_info_ptr frame = get_selected_frame ();
469   while (frame != NULL)
470     {
471       const struct block *frame_block = get_frame_block (frame, NULL);
472       if (frame_block != NULL && contained_in (frame_block, block))
473 	return frame;
474 
475       frame = get_prev_frame (frame);
476     }
477 
478   return NULL;
479 }
480