xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/arm-linux-tdep.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* GNU/Linux on ARM target support.
2 
3    Copyright (C) 1999-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37 
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "arch-utils.h"
43 #include "inferior.h"
44 #include "infrun.h"
45 #include "gdbthread.h"
46 #include "symfile.h"
47 
48 #include "record-full.h"
49 #include "linux-record.h"
50 
51 #include "cli/cli-utils.h"
52 #include "stap-probe.h"
53 #include "parser-defs.h"
54 #include "user-regs.h"
55 #include <ctype.h>
56 #include "elf/common.h"
57 extern int arm_apcs_32;
58 
59 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
60    is to execute a particular software interrupt, rather than use a
61    particular undefined instruction to provoke a trap.  Upon exection
62    of the software interrupt the kernel stops the inferior with a
63    SIGTRAP, and wakes the debugger.  */
64 
65 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
66 
67 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
68 
69 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
70    the operand of the swi if old-ABI compatibility is disabled.  Therefore,
71    use an undefined instruction instead.  This is supported as of kernel
72    version 2.5.70 (May 2003), so should be a safe assumption for EABI
73    binaries.  */
74 
75 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
76 
77 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
78 
79 /* All the kernels which support Thumb support using a specific undefined
80    instruction for the Thumb breakpoint.  */
81 
82 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
83 
84 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
85 
86 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
87    we must use a length-appropriate breakpoint for 32-bit Thumb
88    instructions.  See also thumb_get_next_pc.  */
89 
90 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
91 
92 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
93 
94 /* Description of the longjmp buffer.  The buffer is treated as an array of
95    elements of size ARM_LINUX_JB_ELEMENT_SIZE.
96 
97    The location of saved registers in this buffer (in particular the PC
98    to use after longjmp is called) varies depending on the ABI (in
99    particular the FP model) and also (possibly) the C Library.
100 
101    For glibc, eglibc, and uclibc the following holds:  If the FP model is
102    SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
103    buffer.  This is also true for the SoftFPA model.  However, for the FPA
104    model the PC is at offset 21 in the buffer.  */
105 #define ARM_LINUX_JB_ELEMENT_SIZE	INT_REGISTER_SIZE
106 #define ARM_LINUX_JB_PC_FPA		21
107 #define ARM_LINUX_JB_PC_EABI		9
108 
109 /*
110    Dynamic Linking on ARM GNU/Linux
111    --------------------------------
112 
113    Note: PLT = procedure linkage table
114    GOT = global offset table
115 
116    As much as possible, ELF dynamic linking defers the resolution of
117    jump/call addresses until the last minute.  The technique used is
118    inspired by the i386 ELF design, and is based on the following
119    constraints.
120 
121    1) The calling technique should not force a change in the assembly
122    code produced for apps; it MAY cause changes in the way assembly
123    code is produced for position independent code (i.e. shared
124    libraries).
125 
126    2) The technique must be such that all executable areas must not be
127    modified; and any modified areas must not be executed.
128 
129    To do this, there are three steps involved in a typical jump:
130 
131    1) in the code
132    2) through the PLT
133    3) using a pointer from the GOT
134 
135    When the executable or library is first loaded, each GOT entry is
136    initialized to point to the code which implements dynamic name
137    resolution and code finding.  This is normally a function in the
138    program interpreter (on ARM GNU/Linux this is usually
139    ld-linux.so.2, but it does not have to be).  On the first
140    invocation, the function is located and the GOT entry is replaced
141    with the real function address.  Subsequent calls go through steps
142    1, 2 and 3 and end up calling the real code.
143 
144    1) In the code:
145 
146    b    function_call
147    bl   function_call
148 
149    This is typical ARM code using the 26 bit relative branch or branch
150    and link instructions.  The target of the instruction
151    (function_call is usually the address of the function to be called.
152    In position independent code, the target of the instruction is
153    actually an entry in the PLT when calling functions in a shared
154    library.  Note that this call is identical to a normal function
155    call, only the target differs.
156 
157    2) In the PLT:
158 
159    The PLT is a synthetic area, created by the linker.  It exists in
160    both executables and libraries.  It is an array of stubs, one per
161    imported function call.  It looks like this:
162 
163    PLT[0]:
164    str     lr, [sp, #-4]!       @push the return address (lr)
165    ldr     lr, [pc, #16]   @load from 6 words ahead
166    add     lr, pc, lr      @form an address for GOT[0]
167    ldr     pc, [lr, #8]!   @jump to the contents of that addr
168 
169    The return address (lr) is pushed on the stack and used for
170    calculations.  The load on the second line loads the lr with
171    &GOT[3] - . - 20.  The addition on the third leaves:
172 
173    lr = (&GOT[3] - . - 20) + (. + 8)
174    lr = (&GOT[3] - 12)
175    lr = &GOT[0]
176 
177    On the fourth line, the pc and lr are both updated, so that:
178 
179    pc = GOT[2]
180    lr = &GOT[0] + 8
181    = &GOT[2]
182 
183    NOTE: PLT[0] borrows an offset .word from PLT[1].  This is a little
184    "tight", but allows us to keep all the PLT entries the same size.
185 
186    PLT[n+1]:
187    ldr     ip, [pc, #4]    @load offset from gotoff
188    add     ip, pc, ip      @add the offset to the pc
189    ldr     pc, [ip]        @jump to that address
190    gotoff: .word   GOT[n+3] - .
191 
192    The load on the first line, gets an offset from the fourth word of
193    the PLT entry.  The add on the second line makes ip = &GOT[n+3],
194    which contains either a pointer to PLT[0] (the fixup trampoline) or
195    a pointer to the actual code.
196 
197    3) In the GOT:
198 
199    The GOT contains helper pointers for both code (PLT) fixups and
200    data fixups.  The first 3 entries of the GOT are special.  The next
201    M entries (where M is the number of entries in the PLT) belong to
202    the PLT fixups.  The next D (all remaining) entries belong to
203    various data fixups.  The actual size of the GOT is 3 + M + D.
204 
205    The GOT is also a synthetic area, created by the linker.  It exists
206    in both executables and libraries.  When the GOT is first
207    initialized , all the GOT entries relating to PLT fixups are
208    pointing to code back at PLT[0].
209 
210    The special entries in the GOT are:
211 
212    GOT[0] = linked list pointer used by the dynamic loader
213    GOT[1] = pointer to the reloc table for this module
214    GOT[2] = pointer to the fixup/resolver code
215 
216    The first invocation of function call comes through and uses the
217    fixup/resolver code.  On the entry to the fixup/resolver code:
218 
219    ip = &GOT[n+3]
220    lr = &GOT[2]
221    stack[0] = return address (lr) of the function call
222    [r0, r1, r2, r3] are still the arguments to the function call
223 
224    This is enough information for the fixup/resolver code to work
225    with.  Before the fixup/resolver code returns, it actually calls
226    the requested function and repairs &GOT[n+3].  */
227 
228 /* The constants below were determined by examining the following files
229    in the linux kernel sources:
230 
231       arch/arm/kernel/signal.c
232 	  - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
233       include/asm-arm/unistd.h
234 	  - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
235 
236 #define ARM_LINUX_SIGRETURN_INSTR	0xef900077
237 #define ARM_LINUX_RT_SIGRETURN_INSTR	0xef9000ad
238 
239 /* For ARM EABI, the syscall number is not in the SWI instruction
240    (instead it is loaded into r7).  We recognize the pattern that
241    glibc uses...  alternatively, we could arrange to do this by
242    function name, but they are not always exported.  */
243 #define ARM_SET_R7_SIGRETURN		0xe3a07077
244 #define ARM_SET_R7_RT_SIGRETURN		0xe3a070ad
245 #define ARM_EABI_SYSCALL		0xef000000
246 
247 /* Equivalent patterns for Thumb2.  */
248 #define THUMB2_SET_R7_SIGRETURN1	0xf04f
249 #define THUMB2_SET_R7_SIGRETURN2	0x0777
250 #define THUMB2_SET_R7_RT_SIGRETURN1	0xf04f
251 #define THUMB2_SET_R7_RT_SIGRETURN2	0x07ad
252 #define THUMB2_EABI_SYSCALL		0xdf00
253 
254 /* OABI syscall restart trampoline, used for EABI executables too
255    whenever OABI support has been enabled in the kernel.  */
256 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
257 #define ARM_LDR_PC_SP_12		0xe49df00c
258 #define ARM_LDR_PC_SP_4			0xe49df004
259 
260 static void
261 arm_linux_sigtramp_cache (struct frame_info *this_frame,
262 			  struct trad_frame_cache *this_cache,
263 			  CORE_ADDR func, int regs_offset)
264 {
265   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
266   CORE_ADDR base = sp + regs_offset;
267   int i;
268 
269   for (i = 0; i < 16; i++)
270     trad_frame_set_reg_addr (this_cache, i, base + i * 4);
271 
272   trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
273 
274   /* The VFP or iWMMXt registers may be saved on the stack, but there's
275      no reliable way to restore them (yet).  */
276 
277   /* Save a frame ID.  */
278   trad_frame_set_id (this_cache, frame_id_build (sp, func));
279 }
280 
281 /* There are a couple of different possible stack layouts that
282    we need to support.
283 
284    Before version 2.6.18, the kernel used completely independent
285    layouts for non-RT and RT signals.  For non-RT signals the stack
286    began directly with a struct sigcontext.  For RT signals the stack
287    began with two redundant pointers (to the siginfo and ucontext),
288    and then the siginfo and ucontext.
289 
290    As of version 2.6.18, the non-RT signal frame layout starts with
291    a ucontext and the RT signal frame starts with a siginfo and then
292    a ucontext.  Also, the ucontext now has a designated save area
293    for coprocessor registers.
294 
295    For RT signals, it's easy to tell the difference: we look for
296    pinfo, the pointer to the siginfo.  If it has the expected
297    value, we have an old layout.  If it doesn't, we have the new
298    layout.
299 
300    For non-RT signals, it's a bit harder.  We need something in one
301    layout or the other with a recognizable offset and value.  We can't
302    use the return trampoline, because ARM usually uses SA_RESTORER,
303    in which case the stack return trampoline is not filled in.
304    We can't use the saved stack pointer, because sigaltstack might
305    be in use.  So for now we guess the new layout...  */
306 
307 /* There are three words (trap_no, error_code, oldmask) in
308    struct sigcontext before r0.  */
309 #define ARM_SIGCONTEXT_R0 0xc
310 
311 /* There are five words (uc_flags, uc_link, and three for uc_stack)
312    in the ucontext_t before the sigcontext.  */
313 #define ARM_UCONTEXT_SIGCONTEXT 0x14
314 
315 /* There are three elements in an rt_sigframe before the ucontext:
316    pinfo, puc, and info.  The first two are pointers and the third
317    is a struct siginfo, with size 128 bytes.  We could follow puc
318    to the ucontext, but it's simpler to skip the whole thing.  */
319 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
320 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
321 
322 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
323 
324 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
325 
326 static void
327 arm_linux_sigreturn_init (const struct tramp_frame *self,
328 			  struct frame_info *this_frame,
329 			  struct trad_frame_cache *this_cache,
330 			  CORE_ADDR func)
331 {
332   struct gdbarch *gdbarch = get_frame_arch (this_frame);
333   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
335   ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
336 
337   if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
338     arm_linux_sigtramp_cache (this_frame, this_cache, func,
339 			      ARM_UCONTEXT_SIGCONTEXT
340 			      + ARM_SIGCONTEXT_R0);
341   else
342     arm_linux_sigtramp_cache (this_frame, this_cache, func,
343 			      ARM_SIGCONTEXT_R0);
344 }
345 
346 static void
347 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
348 			  struct frame_info *this_frame,
349 			  struct trad_frame_cache *this_cache,
350 			  CORE_ADDR func)
351 {
352   struct gdbarch *gdbarch = get_frame_arch (this_frame);
353   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
354   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
355   ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
356 
357   if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
358     arm_linux_sigtramp_cache (this_frame, this_cache, func,
359 			      ARM_OLD_RT_SIGFRAME_UCONTEXT
360 			      + ARM_UCONTEXT_SIGCONTEXT
361 			      + ARM_SIGCONTEXT_R0);
362   else
363     arm_linux_sigtramp_cache (this_frame, this_cache, func,
364 			      ARM_NEW_RT_SIGFRAME_UCONTEXT
365 			      + ARM_UCONTEXT_SIGCONTEXT
366 			      + ARM_SIGCONTEXT_R0);
367 }
368 
369 static void
370 arm_linux_restart_syscall_init (const struct tramp_frame *self,
371 				struct frame_info *this_frame,
372 				struct trad_frame_cache *this_cache,
373 				CORE_ADDR func)
374 {
375   struct gdbarch *gdbarch = get_frame_arch (this_frame);
376   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
377   CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
378   CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
379   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
380   int sp_offset;
381 
382   /* There are two variants of this trampoline; with older kernels, the
383      stub is placed on the stack, while newer kernels use the stub from
384      the vector page.  They are identical except that the older version
385      increments SP by 12 (to skip stored PC and the stub itself), while
386      the newer version increments SP only by 4 (just the stored PC).  */
387   if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
388     sp_offset = 4;
389   else
390     sp_offset = 12;
391 
392   /* Update Thumb bit in CPSR.  */
393   if (pc & 1)
394     cpsr |= t_bit;
395   else
396     cpsr &= ~t_bit;
397 
398   /* Remove Thumb bit from PC.  */
399   pc = gdbarch_addr_bits_remove (gdbarch, pc);
400 
401   /* Save previous register values.  */
402   trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
403   trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
404   trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
405 
406   /* Save a frame ID.  */
407   trad_frame_set_id (this_cache, frame_id_build (sp, func));
408 }
409 
410 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
411   SIGTRAMP_FRAME,
412   4,
413   {
414     { ARM_LINUX_SIGRETURN_INSTR, -1 },
415     { TRAMP_SENTINEL_INSN }
416   },
417   arm_linux_sigreturn_init
418 };
419 
420 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
421   SIGTRAMP_FRAME,
422   4,
423   {
424     { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
425     { TRAMP_SENTINEL_INSN }
426   },
427   arm_linux_rt_sigreturn_init
428 };
429 
430 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
431   SIGTRAMP_FRAME,
432   4,
433   {
434     { ARM_SET_R7_SIGRETURN, -1 },
435     { ARM_EABI_SYSCALL, -1 },
436     { TRAMP_SENTINEL_INSN }
437   },
438   arm_linux_sigreturn_init
439 };
440 
441 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
442   SIGTRAMP_FRAME,
443   4,
444   {
445     { ARM_SET_R7_RT_SIGRETURN, -1 },
446     { ARM_EABI_SYSCALL, -1 },
447     { TRAMP_SENTINEL_INSN }
448   },
449   arm_linux_rt_sigreturn_init
450 };
451 
452 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
453   SIGTRAMP_FRAME,
454   2,
455   {
456     { THUMB2_SET_R7_SIGRETURN1, -1 },
457     { THUMB2_SET_R7_SIGRETURN2, -1 },
458     { THUMB2_EABI_SYSCALL, -1 },
459     { TRAMP_SENTINEL_INSN }
460   },
461   arm_linux_sigreturn_init
462 };
463 
464 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
465   SIGTRAMP_FRAME,
466   2,
467   {
468     { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
469     { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
470     { THUMB2_EABI_SYSCALL, -1 },
471     { TRAMP_SENTINEL_INSN }
472   },
473   arm_linux_rt_sigreturn_init
474 };
475 
476 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
477   NORMAL_FRAME,
478   4,
479   {
480     { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
481     { ARM_LDR_PC_SP_12, -1 },
482     { TRAMP_SENTINEL_INSN }
483   },
484   arm_linux_restart_syscall_init
485 };
486 
487 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
488   NORMAL_FRAME,
489   4,
490   {
491     { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
492     { ARM_LDR_PC_SP_4, -1 },
493     { TRAMP_SENTINEL_INSN }
494   },
495   arm_linux_restart_syscall_init
496 };
497 
498 /* Core file and register set support.  */
499 
500 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
501 
502 void
503 arm_linux_supply_gregset (const struct regset *regset,
504 			  struct regcache *regcache,
505 			  int regnum, const void *gregs_buf, size_t len)
506 {
507   struct gdbarch *gdbarch = get_regcache_arch (regcache);
508   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
509   const gdb_byte *gregs = gregs_buf;
510   int regno;
511   CORE_ADDR reg_pc;
512   gdb_byte pc_buf[INT_REGISTER_SIZE];
513 
514   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
515     if (regnum == -1 || regnum == regno)
516       regcache_raw_supply (regcache, regno,
517 			   gregs + INT_REGISTER_SIZE * regno);
518 
519   if (regnum == ARM_PS_REGNUM || regnum == -1)
520     {
521       if (arm_apcs_32)
522 	regcache_raw_supply (regcache, ARM_PS_REGNUM,
523 			     gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
524       else
525 	regcache_raw_supply (regcache, ARM_PS_REGNUM,
526 			     gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
527     }
528 
529   if (regnum == ARM_PC_REGNUM || regnum == -1)
530     {
531       reg_pc = extract_unsigned_integer (gregs
532 					 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
533 					 INT_REGISTER_SIZE, byte_order);
534       reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
535       store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
536       regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
537     }
538 }
539 
540 void
541 arm_linux_collect_gregset (const struct regset *regset,
542 			   const struct regcache *regcache,
543 			   int regnum, void *gregs_buf, size_t len)
544 {
545   gdb_byte *gregs = gregs_buf;
546   int regno;
547 
548   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
549     if (regnum == -1 || regnum == regno)
550       regcache_raw_collect (regcache, regno,
551 			    gregs + INT_REGISTER_SIZE * regno);
552 
553   if (regnum == ARM_PS_REGNUM || regnum == -1)
554     {
555       if (arm_apcs_32)
556 	regcache_raw_collect (regcache, ARM_PS_REGNUM,
557 			      gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
558       else
559 	regcache_raw_collect (regcache, ARM_PS_REGNUM,
560 			      gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
561     }
562 
563   if (regnum == ARM_PC_REGNUM || regnum == -1)
564     regcache_raw_collect (regcache, ARM_PC_REGNUM,
565 			  gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
566 }
567 
568 /* Support for register format used by the NWFPE FPA emulator.  */
569 
570 #define typeNone		0x00
571 #define typeSingle		0x01
572 #define typeDouble		0x02
573 #define typeExtended		0x03
574 
575 void
576 supply_nwfpe_register (struct regcache *regcache, int regno,
577 		       const gdb_byte *regs)
578 {
579   const gdb_byte *reg_data;
580   gdb_byte reg_tag;
581   gdb_byte buf[FP_REGISTER_SIZE];
582 
583   reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
584   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
585   memset (buf, 0, FP_REGISTER_SIZE);
586 
587   switch (reg_tag)
588     {
589     case typeSingle:
590       memcpy (buf, reg_data, 4);
591       break;
592     case typeDouble:
593       memcpy (buf, reg_data + 4, 4);
594       memcpy (buf + 4, reg_data, 4);
595       break;
596     case typeExtended:
597       /* We want sign and exponent, then least significant bits,
598 	 then most significant.  NWFPE does sign, most, least.  */
599       memcpy (buf, reg_data, 4);
600       memcpy (buf + 4, reg_data + 8, 4);
601       memcpy (buf + 8, reg_data + 4, 4);
602       break;
603     default:
604       break;
605     }
606 
607   regcache_raw_supply (regcache, regno, buf);
608 }
609 
610 void
611 collect_nwfpe_register (const struct regcache *regcache, int regno,
612 			gdb_byte *regs)
613 {
614   gdb_byte *reg_data;
615   gdb_byte reg_tag;
616   gdb_byte buf[FP_REGISTER_SIZE];
617 
618   regcache_raw_collect (regcache, regno, buf);
619 
620   /* NOTE drow/2006-06-07: This code uses the tag already in the
621      register buffer.  I've preserved that when moving the code
622      from the native file to the target file.  But this doesn't
623      always make sense.  */
624 
625   reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
626   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
627 
628   switch (reg_tag)
629     {
630     case typeSingle:
631       memcpy (reg_data, buf, 4);
632       break;
633     case typeDouble:
634       memcpy (reg_data, buf + 4, 4);
635       memcpy (reg_data + 4, buf, 4);
636       break;
637     case typeExtended:
638       memcpy (reg_data, buf, 4);
639       memcpy (reg_data + 4, buf + 8, 4);
640       memcpy (reg_data + 8, buf + 4, 4);
641       break;
642     default:
643       break;
644     }
645 }
646 
647 void
648 arm_linux_supply_nwfpe (const struct regset *regset,
649 			struct regcache *regcache,
650 			int regnum, const void *regs_buf, size_t len)
651 {
652   const gdb_byte *regs = regs_buf;
653   int regno;
654 
655   if (regnum == ARM_FPS_REGNUM || regnum == -1)
656     regcache_raw_supply (regcache, ARM_FPS_REGNUM,
657 			 regs + NWFPE_FPSR_OFFSET);
658 
659   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
660     if (regnum == -1 || regnum == regno)
661       supply_nwfpe_register (regcache, regno, regs);
662 }
663 
664 void
665 arm_linux_collect_nwfpe (const struct regset *regset,
666 			 const struct regcache *regcache,
667 			 int regnum, void *regs_buf, size_t len)
668 {
669   gdb_byte *regs = regs_buf;
670   int regno;
671 
672   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
673     if (regnum == -1 || regnum == regno)
674       collect_nwfpe_register (regcache, regno, regs);
675 
676   if (regnum == ARM_FPS_REGNUM || regnum == -1)
677     regcache_raw_collect (regcache, ARM_FPS_REGNUM,
678 			  regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
679 }
680 
681 /* Support VFP register format.  */
682 
683 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
684 
685 static void
686 arm_linux_supply_vfp (const struct regset *regset,
687 		      struct regcache *regcache,
688 		      int regnum, const void *regs_buf, size_t len)
689 {
690   const gdb_byte *regs = regs_buf;
691   int regno;
692 
693   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
694     regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
695 
696   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
697     if (regnum == -1 || regnum == regno)
698       regcache_raw_supply (regcache, regno,
699 			   regs + (regno - ARM_D0_REGNUM) * 8);
700 }
701 
702 static void
703 arm_linux_collect_vfp (const struct regset *regset,
704 			 const struct regcache *regcache,
705 			 int regnum, void *regs_buf, size_t len)
706 {
707   gdb_byte *regs = regs_buf;
708   int regno;
709 
710   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
711     regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
712 
713   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
714     if (regnum == -1 || regnum == regno)
715       regcache_raw_collect (regcache, regno,
716 			    regs + (regno - ARM_D0_REGNUM) * 8);
717 }
718 
719 static const struct regset arm_linux_gregset =
720   {
721     NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
722   };
723 
724 static const struct regset arm_linux_fpregset =
725   {
726     NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
727   };
728 
729 static const struct regset arm_linux_vfpregset =
730   {
731     NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
732   };
733 
734 /* Iterate over core file register note sections.  */
735 
736 static void
737 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
738 					iterate_over_regset_sections_cb *cb,
739 					void *cb_data,
740 					const struct regcache *regcache)
741 {
742   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
743 
744   cb (".reg", ARM_LINUX_SIZEOF_GREGSET, &arm_linux_gregset, NULL, cb_data);
745 
746   if (tdep->have_vfp_registers)
747     cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, &arm_linux_vfpregset,
748 	"VFP floating-point", cb_data);
749   else if (tdep->have_fpa_registers)
750     cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, &arm_linux_fpregset,
751 	"FPA floating-point", cb_data);
752 }
753 
754 /* Determine target description from core file.  */
755 
756 static const struct target_desc *
757 arm_linux_core_read_description (struct gdbarch *gdbarch,
758                                  struct target_ops *target,
759                                  bfd *abfd)
760 {
761   CORE_ADDR arm_hwcap = 0;
762 
763   if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
764     return NULL;
765 
766   if (arm_hwcap & HWCAP_VFP)
767     {
768       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
769          Neon with VFPv3-D32.  */
770       if (arm_hwcap & HWCAP_NEON)
771 	return tdesc_arm_with_neon;
772       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
773 	return tdesc_arm_with_vfpv3;
774       else
775 	return tdesc_arm_with_vfpv2;
776     }
777 
778   return NULL;
779 }
780 
781 
782 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
783    return 1.  In addition, set IS_THUMB depending on whether we
784    will return to ARM or Thumb code.  Return 0 if it is not a
785    rt_sigreturn/sigreturn syscall.  */
786 static int
787 arm_linux_sigreturn_return_addr (struct frame_info *frame,
788 				 unsigned long svc_number,
789 				 CORE_ADDR *pc, int *is_thumb)
790 {
791   /* Is this a sigreturn or rt_sigreturn syscall?  */
792   if (svc_number == 119 || svc_number == 173)
793     {
794       if (get_frame_type (frame) == SIGTRAMP_FRAME)
795 	{
796 	  ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
797 	  CORE_ADDR cpsr
798 	    = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
799 
800 	  *is_thumb = (cpsr & t_bit) != 0;
801 	  *pc = frame_unwind_caller_pc (frame);
802 	  return 1;
803 	}
804     }
805   return 0;
806 }
807 
808 /* At a ptrace syscall-stop, return the syscall number.  This either
809    comes from the SWI instruction (OABI) or from r7 (EABI).
810 
811    When the function fails, it should return -1.  */
812 
813 static LONGEST
814 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
815 			      ptid_t ptid)
816 {
817   struct regcache *regs = get_thread_regcache (ptid);
818   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
819 
820   ULONGEST pc;
821   ULONGEST cpsr;
822   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
823   int is_thumb;
824   ULONGEST svc_number = -1;
825 
826   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
827   regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
828   is_thumb = (cpsr & t_bit) != 0;
829 
830   if (is_thumb)
831     {
832       regcache_cooked_read_unsigned (regs, 7, &svc_number);
833     }
834   else
835     {
836       enum bfd_endian byte_order_for_code =
837 	gdbarch_byte_order_for_code (gdbarch);
838 
839       /* PC gets incremented before the syscall-stop, so read the
840 	 previous instruction.  */
841       unsigned long this_instr =
842 	read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
843 
844       unsigned long svc_operand = (0x00ffffff & this_instr);
845 
846       if (svc_operand)
847 	{
848           /* OABI */
849 	  svc_number = svc_operand - 0x900000;
850 	}
851       else
852 	{
853           /* EABI */
854 	  regcache_cooked_read_unsigned (regs, 7, &svc_number);
855 	}
856     }
857 
858   return svc_number;
859 }
860 
861 /* When FRAME is at a syscall instruction, return the PC of the next
862    instruction to be executed.  */
863 
864 static CORE_ADDR
865 arm_linux_syscall_next_pc (struct frame_info *frame)
866 {
867   CORE_ADDR pc = get_frame_pc (frame);
868   CORE_ADDR return_addr = 0;
869   int is_thumb = arm_frame_is_thumb (frame);
870   ULONGEST svc_number = 0;
871 
872   if (is_thumb)
873     {
874       svc_number = get_frame_register_unsigned (frame, 7);
875       return_addr = pc + 2;
876     }
877   else
878     {
879       struct gdbarch *gdbarch = get_frame_arch (frame);
880       enum bfd_endian byte_order_for_code =
881 	gdbarch_byte_order_for_code (gdbarch);
882       unsigned long this_instr =
883 	read_memory_unsigned_integer (pc, 4, byte_order_for_code);
884 
885       unsigned long svc_operand = (0x00ffffff & this_instr);
886       if (svc_operand)  /* OABI.  */
887 	{
888 	  svc_number = svc_operand - 0x900000;
889 	}
890       else /* EABI.  */
891 	{
892 	  svc_number = get_frame_register_unsigned (frame, 7);
893 	}
894 
895       return_addr = pc + 4;
896     }
897 
898   arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
899 
900   /* Addresses for calling Thumb functions have the bit 0 set.  */
901   if (is_thumb)
902     return_addr |= 1;
903 
904   return return_addr;
905 }
906 
907 
908 /* Insert a single step breakpoint at the next executed instruction.  */
909 
910 static int
911 arm_linux_software_single_step (struct frame_info *frame)
912 {
913   struct gdbarch *gdbarch = get_frame_arch (frame);
914   struct address_space *aspace = get_frame_address_space (frame);
915   CORE_ADDR next_pc;
916 
917   if (arm_deal_with_atomic_sequence (frame))
918     return 1;
919 
920   next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
921 
922   /* The Linux kernel offers some user-mode helpers in a high page.  We can
923      not read this page (as of 2.6.23), and even if we could then we couldn't
924      set breakpoints in it, and even if we could then the atomic operations
925      would fail when interrupted.  They are all called as functions and return
926      to the address in LR, so step to there instead.  */
927   if (next_pc > 0xffff0000)
928     next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
929 
930   arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
931 
932   return 1;
933 }
934 
935 /* Support for displaced stepping of Linux SVC instructions.  */
936 
937 static void
938 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
939 		       struct regcache *regs,
940 		       struct displaced_step_closure *dsc)
941 {
942   CORE_ADDR from = dsc->insn_addr;
943   ULONGEST apparent_pc;
944   int within_scratch;
945 
946   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
947 
948   within_scratch = (apparent_pc >= dsc->scratch_base
949 		    && apparent_pc < (dsc->scratch_base
950 				      + DISPLACED_MODIFIED_INSNS * 4 + 4));
951 
952   if (debug_displaced)
953     {
954       fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
955 			  "SVC step ", (unsigned long) apparent_pc);
956       if (within_scratch)
957         fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
958       else
959         fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
960     }
961 
962   if (within_scratch)
963     displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
964 }
965 
966 static int
967 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
968 		    struct displaced_step_closure *dsc)
969 {
970   CORE_ADDR return_to = 0;
971 
972   struct frame_info *frame;
973   unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
974   int is_sigreturn = 0;
975   int is_thumb;
976 
977   frame = get_current_frame ();
978 
979   is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
980 						 &return_to, &is_thumb);
981   if (is_sigreturn)
982     {
983 	  struct symtab_and_line sal;
984 
985 	  if (debug_displaced)
986 	    fprintf_unfiltered (gdb_stdlog, "displaced: found "
987 	      "sigreturn/rt_sigreturn SVC call.  PC in frame = %lx\n",
988 	      (unsigned long) get_frame_pc (frame));
989 
990 	  if (debug_displaced)
991 	    fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx.  "
992 	      "Setting momentary breakpoint.\n", (unsigned long) return_to);
993 
994 	  gdb_assert (inferior_thread ()->control.step_resume_breakpoint
995 		      == NULL);
996 
997 	  sal = find_pc_line (return_to, 0);
998 	  sal.pc = return_to;
999 	  sal.section = find_pc_overlay (return_to);
1000 	  sal.explicit_pc = 1;
1001 
1002 	  frame = get_prev_frame (frame);
1003 
1004 	  if (frame)
1005 	    {
1006 	      inferior_thread ()->control.step_resume_breakpoint
1007         	= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1008 					    bp_step_resume);
1009 
1010 	      /* set_momentary_breakpoint invalidates FRAME.  */
1011 	      frame = NULL;
1012 
1013 	      /* We need to make sure we actually insert the momentary
1014 	         breakpoint set above.  */
1015 	      insert_breakpoints ();
1016 	    }
1017 	  else if (debug_displaced)
1018 	    fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1019 				"frame to set momentary breakpoint for "
1020 				"sigreturn/rt_sigreturn\n");
1021 	}
1022       else if (debug_displaced)
1023 	fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1024 			    "SVC call not in signal trampoline frame\n");
1025 
1026 
1027   /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1028 		  location, else nothing.
1029      Insn: unmodified svc.
1030      Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1031               else leave pc alone.  */
1032 
1033 
1034   dsc->cleanup = &arm_linux_cleanup_svc;
1035   /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1036      instruction.  */
1037   dsc->wrote_to_pc = 1;
1038 
1039   return 0;
1040 }
1041 
1042 
1043 /* The following two functions implement single-stepping over calls to Linux
1044    kernel helper routines, which perform e.g. atomic operations on architecture
1045    variants which don't support them natively.
1046 
1047    When this function is called, the PC will be pointing at the kernel helper
1048    (at an address inaccessible to GDB), and r14 will point to the return
1049    address.  Displaced stepping always executes code in the copy area:
1050    so, make the copy-area instruction branch back to the kernel helper (the
1051    "from" address), and make r14 point to the breakpoint in the copy area.  In
1052    that way, we regain control once the kernel helper returns, and can clean
1053    up appropriately (as if we had just returned from the kernel helper as it
1054    would have been called from the non-displaced location).  */
1055 
1056 static void
1057 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1058 			      struct regcache *regs,
1059 			      struct displaced_step_closure *dsc)
1060 {
1061   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1062   displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1063 }
1064 
1065 static void
1066 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1067 				CORE_ADDR to, struct regcache *regs,
1068 				struct displaced_step_closure *dsc)
1069 {
1070   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1071 
1072   dsc->numinsns = 1;
1073   dsc->insn_addr = from;
1074   dsc->cleanup = &cleanup_kernel_helper_return;
1075   /* Say we wrote to the PC, else cleanup will set PC to the next
1076      instruction in the helper, which isn't helpful.  */
1077   dsc->wrote_to_pc = 1;
1078 
1079   /* Preparation: tmp[0] <- r14
1080                   r14 <- <scratch space>+4
1081 		  *(<scratch space>+8) <- from
1082      Insn: ldr pc, [r14, #4]
1083      Cleanup: r14 <- tmp[0], pc <- tmp[0].  */
1084 
1085   dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1086   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1087 		       CANNOT_WRITE_PC);
1088   write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1089 
1090   dsc->modinsn[0] = 0xe59ef004;  /* ldr pc, [lr, #4].  */
1091 }
1092 
1093 /* Linux-specific displaced step instruction copying function.  Detects when
1094    the program has stepped into a Linux kernel helper routine (which must be
1095    handled as a special case), falling back to arm_displaced_step_copy_insn()
1096    if it hasn't.  */
1097 
1098 static struct displaced_step_closure *
1099 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1100 				    CORE_ADDR from, CORE_ADDR to,
1101 				    struct regcache *regs)
1102 {
1103   struct displaced_step_closure *dsc
1104     = xmalloc (sizeof (struct displaced_step_closure));
1105 
1106   /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1107      stop at the return location.  */
1108   if (from > 0xffff0000)
1109     {
1110       if (debug_displaced)
1111         fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1112 			    "at %.8lx\n", (unsigned long) from);
1113 
1114       arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1115     }
1116   else
1117     {
1118       /* Override the default handling of SVC instructions.  */
1119       dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1120 
1121       arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1122     }
1123 
1124   arm_displaced_init_closure (gdbarch, from, to, dsc);
1125 
1126   return dsc;
1127 }
1128 
1129 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1130    gdbarch.h.  */
1131 
1132 static int
1133 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1134 {
1135   return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number.  */
1136 	  || *s == '[' /* Register indirection or
1137 			  displacement.  */
1138 	  || isalpha (*s)); /* Register value.  */
1139 }
1140 
1141 /* This routine is used to parse a special token in ARM's assembly.
1142 
1143    The special tokens parsed by it are:
1144 
1145       - Register displacement (e.g, [fp, #-8])
1146 
1147    It returns one if the special token has been parsed successfully,
1148    or zero if the current token is not considered special.  */
1149 
1150 static int
1151 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1152 			      struct stap_parse_info *p)
1153 {
1154   if (*p->arg == '[')
1155     {
1156       /* Temporary holder for lookahead.  */
1157       const char *tmp = p->arg;
1158       char *endp;
1159       /* Used to save the register name.  */
1160       const char *start;
1161       char *regname;
1162       int len, offset;
1163       int got_minus = 0;
1164       long displacement;
1165       struct stoken str;
1166 
1167       ++tmp;
1168       start = tmp;
1169 
1170       /* Register name.  */
1171       while (isalnum (*tmp))
1172 	++tmp;
1173 
1174       if (*tmp != ',')
1175 	return 0;
1176 
1177       len = tmp - start;
1178       regname = alloca (len + 2);
1179 
1180       offset = 0;
1181       if (isdigit (*start))
1182 	{
1183 	  /* If we are dealing with a register whose name begins with a
1184 	     digit, it means we should prefix the name with the letter
1185 	     `r', because GDB expects this name pattern.  Otherwise (e.g.,
1186 	     we are dealing with the register `fp'), we don't need to
1187 	     add such a prefix.  */
1188 	  regname[0] = 'r';
1189 	  offset = 1;
1190 	}
1191 
1192       strncpy (regname + offset, start, len);
1193       len += offset;
1194       regname[len] = '\0';
1195 
1196       if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1197 	error (_("Invalid register name `%s' on expression `%s'."),
1198 	       regname, p->saved_arg);
1199 
1200       ++tmp;
1201       tmp = skip_spaces_const (tmp);
1202       if (*tmp == '#' || *tmp == '$')
1203 	++tmp;
1204 
1205       if (*tmp == '-')
1206 	{
1207 	  ++tmp;
1208 	  got_minus = 1;
1209 	}
1210 
1211       displacement = strtol (tmp, &endp, 10);
1212       tmp = endp;
1213 
1214       /* Skipping last `]'.  */
1215       if (*tmp++ != ']')
1216 	return 0;
1217 
1218       /* The displacement.  */
1219       write_exp_elt_opcode (&p->pstate, OP_LONG);
1220       write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1221       write_exp_elt_longcst (&p->pstate, displacement);
1222       write_exp_elt_opcode (&p->pstate, OP_LONG);
1223       if (got_minus)
1224 	write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1225 
1226       /* The register name.  */
1227       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1228       str.ptr = regname;
1229       str.length = len;
1230       write_exp_string (&p->pstate, str);
1231       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1232 
1233       write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1234 
1235       /* Casting to the expected type.  */
1236       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1237       write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1238       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1239 
1240       write_exp_elt_opcode (&p->pstate, UNOP_IND);
1241 
1242       p->arg = tmp;
1243     }
1244   else
1245     return 0;
1246 
1247   return 1;
1248 }
1249 
1250 /* ARM process record-replay constructs: syscall, signal etc.  */
1251 
1252 struct linux_record_tdep arm_linux_record_tdep;
1253 
1254 /* arm_canonicalize_syscall maps from the native arm Linux set
1255    of syscall ids into a canonical set of syscall ids used by
1256    process record.  */
1257 
1258 static enum gdb_syscall
1259 arm_canonicalize_syscall (int syscall)
1260 {
1261   enum { sys_process_vm_writev = 377 };
1262 
1263   if (syscall <= gdb_sys_sched_getaffinity)
1264     return syscall;
1265   else if (syscall >= 243 && syscall <= 247)
1266     return syscall + 2;
1267   else if (syscall >= 248 && syscall <= 253)
1268     return syscall + 4;
1269 
1270   return -1;
1271 }
1272 
1273 /* Record all registers but PC register for process-record.  */
1274 
1275 static int
1276 arm_all_but_pc_registers_record (struct regcache *regcache)
1277 {
1278   int i;
1279 
1280   for (i = 0; i < ARM_PC_REGNUM; i++)
1281     {
1282       if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1283         return -1;
1284     }
1285 
1286   if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1287     return -1;
1288 
1289   return 0;
1290 }
1291 
1292 /* Handler for arm system call instruction recording.  */
1293 
1294 static int
1295 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1296 {
1297   int ret = 0;
1298   enum gdb_syscall syscall_gdb;
1299 
1300   syscall_gdb = arm_canonicalize_syscall (svc_number);
1301 
1302   if (syscall_gdb < 0)
1303     {
1304       printf_unfiltered (_("Process record and replay target doesn't "
1305                            "support syscall number %s\n"),
1306                            plongest (svc_number));
1307       return -1;
1308     }
1309 
1310   if (syscall_gdb == gdb_sys_sigreturn
1311       || syscall_gdb == gdb_sys_rt_sigreturn)
1312    {
1313      if (arm_all_but_pc_registers_record (regcache))
1314        return -1;
1315      return 0;
1316    }
1317 
1318   ret = record_linux_system_call (syscall_gdb, regcache,
1319                                   &arm_linux_record_tdep);
1320   if (ret != 0)
1321     return ret;
1322 
1323   /* Record the return value of the system call.  */
1324   if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1325     return -1;
1326   /* Record LR.  */
1327   if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1328     return -1;
1329   /* Record CPSR.  */
1330   if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1331     return -1;
1332 
1333   return 0;
1334 }
1335 
1336 /* Implement the skip_trampoline_code gdbarch method.  */
1337 
1338 static CORE_ADDR
1339 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1340 {
1341   CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1342 
1343   if (target_pc != 0)
1344     return target_pc;
1345 
1346   return find_solib_trampoline_target (frame, pc);
1347 }
1348 
1349 static void
1350 arm_linux_init_abi (struct gdbarch_info info,
1351 		    struct gdbarch *gdbarch)
1352 {
1353   static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1354   static const char *const stap_register_prefixes[] = { "r", NULL };
1355   static const char *const stap_register_indirection_prefixes[] = { "[",
1356 								    NULL };
1357   static const char *const stap_register_indirection_suffixes[] = { "]",
1358 								    NULL };
1359   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1360 
1361   linux_init_abi (info, gdbarch);
1362 
1363   tdep->lowest_pc = 0x8000;
1364   if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1365     {
1366       if (tdep->arm_abi == ARM_ABI_AAPCS)
1367 	tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1368       else
1369 	tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1370       tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1371       tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1372     }
1373   else
1374     {
1375       if (tdep->arm_abi == ARM_ABI_AAPCS)
1376 	tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1377       else
1378 	tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1379       tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1380       tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1381     }
1382   tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1383   tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1384   tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1385 
1386   if (tdep->fp_model == ARM_FLOAT_AUTO)
1387     tdep->fp_model = ARM_FLOAT_FPA;
1388 
1389   switch (tdep->fp_model)
1390     {
1391     case ARM_FLOAT_FPA:
1392       tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1393       break;
1394     case ARM_FLOAT_SOFT_FPA:
1395     case ARM_FLOAT_SOFT_VFP:
1396     case ARM_FLOAT_VFP:
1397       tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1398       break;
1399     default:
1400       internal_error
1401 	(__FILE__, __LINE__,
1402          _("arm_linux_init_abi: Floating point model not supported"));
1403       break;
1404     }
1405   tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1406 
1407   set_solib_svr4_fetch_link_map_offsets
1408     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1409 
1410   /* Single stepping.  */
1411   set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1412 
1413   /* Shared library handling.  */
1414   set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1415   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1416 
1417   /* Enable TLS support.  */
1418   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1419                                              svr4_fetch_objfile_link_map);
1420 
1421   tramp_frame_prepend_unwinder (gdbarch,
1422 				&arm_linux_sigreturn_tramp_frame);
1423   tramp_frame_prepend_unwinder (gdbarch,
1424 				&arm_linux_rt_sigreturn_tramp_frame);
1425   tramp_frame_prepend_unwinder (gdbarch,
1426 				&arm_eabi_linux_sigreturn_tramp_frame);
1427   tramp_frame_prepend_unwinder (gdbarch,
1428 				&arm_eabi_linux_rt_sigreturn_tramp_frame);
1429   tramp_frame_prepend_unwinder (gdbarch,
1430 				&thumb2_eabi_linux_sigreturn_tramp_frame);
1431   tramp_frame_prepend_unwinder (gdbarch,
1432 				&thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1433   tramp_frame_prepend_unwinder (gdbarch,
1434 				&arm_linux_restart_syscall_tramp_frame);
1435   tramp_frame_prepend_unwinder (gdbarch,
1436 				&arm_kernel_linux_restart_syscall_tramp_frame);
1437 
1438   /* Core file support.  */
1439   set_gdbarch_iterate_over_regset_sections
1440     (gdbarch, arm_linux_iterate_over_regset_sections);
1441   set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1442 
1443   set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1444 
1445   /* Displaced stepping.  */
1446   set_gdbarch_displaced_step_copy_insn (gdbarch,
1447 					arm_linux_displaced_step_copy_insn);
1448   set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1449   set_gdbarch_displaced_step_free_closure (gdbarch,
1450 					   simple_displaced_step_free_closure);
1451   set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1452 
1453   /* Reversible debugging, process record.  */
1454   set_gdbarch_process_record (gdbarch, arm_process_record);
1455 
1456   /* SystemTap functions.  */
1457   set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1458   set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1459   set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1460 					  stap_register_indirection_prefixes);
1461   set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1462 					  stap_register_indirection_suffixes);
1463   set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1464   set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1465   set_gdbarch_stap_parse_special_token (gdbarch,
1466 					arm_stap_parse_special_token);
1467 
1468   tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1469 
1470   /* `catch syscall' */
1471   set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1472   set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1473 
1474   /* Syscall record.  */
1475   tdep->arm_syscall_record = arm_linux_syscall_record;
1476 
1477   /* Initialize the arm_linux_record_tdep.  */
1478   /* These values are the size of the type that will be used in a system
1479      call.  They are obtained from Linux Kernel source.  */
1480   arm_linux_record_tdep.size_pointer
1481     = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1482   arm_linux_record_tdep.size__old_kernel_stat = 32;
1483   arm_linux_record_tdep.size_tms = 16;
1484   arm_linux_record_tdep.size_loff_t = 8;
1485   arm_linux_record_tdep.size_flock = 16;
1486   arm_linux_record_tdep.size_oldold_utsname = 45;
1487   arm_linux_record_tdep.size_ustat = 20;
1488   arm_linux_record_tdep.size_old_sigaction = 140;
1489   arm_linux_record_tdep.size_old_sigset_t = 128;
1490   arm_linux_record_tdep.size_rlimit = 8;
1491   arm_linux_record_tdep.size_rusage = 72;
1492   arm_linux_record_tdep.size_timeval = 8;
1493   arm_linux_record_tdep.size_timezone = 8;
1494   arm_linux_record_tdep.size_old_gid_t = 2;
1495   arm_linux_record_tdep.size_old_uid_t = 2;
1496   arm_linux_record_tdep.size_fd_set = 128;
1497   arm_linux_record_tdep.size_dirent = 268;
1498   arm_linux_record_tdep.size_dirent64 = 276;
1499   arm_linux_record_tdep.size_statfs = 64;
1500   arm_linux_record_tdep.size_statfs64 = 84;
1501   arm_linux_record_tdep.size_sockaddr = 16;
1502   arm_linux_record_tdep.size_int
1503     = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1504   arm_linux_record_tdep.size_long
1505     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1506   arm_linux_record_tdep.size_ulong
1507     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1508   arm_linux_record_tdep.size_msghdr = 28;
1509   arm_linux_record_tdep.size_itimerval = 16;
1510   arm_linux_record_tdep.size_stat = 88;
1511   arm_linux_record_tdep.size_old_utsname = 325;
1512   arm_linux_record_tdep.size_sysinfo = 64;
1513   arm_linux_record_tdep.size_msqid_ds = 88;
1514   arm_linux_record_tdep.size_shmid_ds = 84;
1515   arm_linux_record_tdep.size_new_utsname = 390;
1516   arm_linux_record_tdep.size_timex = 128;
1517   arm_linux_record_tdep.size_mem_dqinfo = 24;
1518   arm_linux_record_tdep.size_if_dqblk = 68;
1519   arm_linux_record_tdep.size_fs_quota_stat = 68;
1520   arm_linux_record_tdep.size_timespec = 8;
1521   arm_linux_record_tdep.size_pollfd = 8;
1522   arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1523   arm_linux_record_tdep.size_knfsd_fh = 132;
1524   arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1525   arm_linux_record_tdep.size_sigaction = 140;
1526   arm_linux_record_tdep.size_sigset_t = 8;
1527   arm_linux_record_tdep.size_siginfo_t = 128;
1528   arm_linux_record_tdep.size_cap_user_data_t = 12;
1529   arm_linux_record_tdep.size_stack_t = 12;
1530   arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1531   arm_linux_record_tdep.size_stat64 = 96;
1532   arm_linux_record_tdep.size_gid_t = 2;
1533   arm_linux_record_tdep.size_uid_t = 2;
1534   arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1535   arm_linux_record_tdep.size_flock64 = 24;
1536   arm_linux_record_tdep.size_user_desc = 16;
1537   arm_linux_record_tdep.size_io_event = 32;
1538   arm_linux_record_tdep.size_iocb = 64;
1539   arm_linux_record_tdep.size_epoll_event = 12;
1540   arm_linux_record_tdep.size_itimerspec
1541     = arm_linux_record_tdep.size_timespec * 2;
1542   arm_linux_record_tdep.size_mq_attr = 32;
1543   arm_linux_record_tdep.size_siginfo = 128;
1544   arm_linux_record_tdep.size_termios = 36;
1545   arm_linux_record_tdep.size_termios2 = 44;
1546   arm_linux_record_tdep.size_pid_t = 4;
1547   arm_linux_record_tdep.size_winsize = 8;
1548   arm_linux_record_tdep.size_serial_struct = 60;
1549   arm_linux_record_tdep.size_serial_icounter_struct = 80;
1550   arm_linux_record_tdep.size_hayes_esp_config = 12;
1551   arm_linux_record_tdep.size_size_t = 4;
1552   arm_linux_record_tdep.size_iovec = 8;
1553 
1554   /* These values are the second argument of system call "sys_ioctl".
1555      They are obtained from Linux Kernel source.  */
1556   arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1557   arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1558   arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1559   arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1560   arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1561   arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1562   arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1563   arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1564   arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1565   arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1566   arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1567   arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1568   arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1569   arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1570   arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1571   arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1572   arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1573   arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1574   arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1575   arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1576   arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1577   arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1578   arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1579   arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1580   arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1581   arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1582   arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1583   arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1584   arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1585   arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1586   arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1587   arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1588   arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1589   arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1590   arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1591   arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1592   arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1593   arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1594   arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1595   arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1596   arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1597   arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1598   arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1599   arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1600   arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1601   arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1602   arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1603   arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1604   arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1605   arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1606   arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1607   arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1608   arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1609   arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1610   arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1611   arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1612   arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1613   arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1614   arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1615   arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1616   arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1617   arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1618   arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1619   arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1620   arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1621 
1622   /* These values are the second argument of system call "sys_fcntl"
1623      and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
1624   arm_linux_record_tdep.fcntl_F_GETLK = 5;
1625   arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1626   arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1627   arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1628 
1629   arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1630   arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1631   arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1632   arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1633 }
1634 
1635 /* Provide a prototype to silence -Wmissing-prototypes.  */
1636 extern initialize_file_ftype _initialize_arm_linux_tdep;
1637 
1638 void
1639 _initialize_arm_linux_tdep (void)
1640 {
1641   gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1642 			  arm_linux_init_abi);
1643 }
1644