xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/arm-linux-tdep.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* GNU/Linux on ARM target support.
2 
3    Copyright (C) 1999-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "regcache.h"
27 #include "solib-svr4.h"
28 #include "osabi.h"
29 #include "regset.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "breakpoint.h"
33 #include "auxv.h"
34 #include "xml-syscall.h"
35 #include "expop.h"
36 
37 #include "aarch32-tdep.h"
38 #include "arch/arm.h"
39 #include "arch/arm-get-next-pcs.h"
40 #include "arch/arm-linux.h"
41 #include "arm-tdep.h"
42 #include "arm-linux-tdep.h"
43 #include "linux-tdep.h"
44 #include "glibc-tdep.h"
45 #include "arch-utils.h"
46 #include "inferior.h"
47 #include "infrun.h"
48 #include "gdbthread.h"
49 #include "symfile.h"
50 
51 #include "record-full.h"
52 #include "linux-record.h"
53 
54 #include "cli/cli-utils.h"
55 #include "stap-probe.h"
56 #include "parser-defs.h"
57 #include "user-regs.h"
58 #include <ctype.h>
59 #include "elf/common.h"
60 
61 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
62    is to execute a particular software interrupt, rather than use a
63    particular undefined instruction to provoke a trap.  Upon exection
64    of the software interrupt the kernel stops the inferior with a
65    SIGTRAP, and wakes the debugger.  */
66 
67 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
68 
69 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
70 
71 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
72    the operand of the swi if old-ABI compatibility is disabled.  Therefore,
73    use an undefined instruction instead.  This is supported as of kernel
74    version 2.5.70 (May 2003), so should be a safe assumption for EABI
75    binaries.  */
76 
77 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
78 
79 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
80 
81 /* All the kernels which support Thumb support using a specific undefined
82    instruction for the Thumb breakpoint.  */
83 
84 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
85 
86 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
87 
88 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
89    we must use a length-appropriate breakpoint for 32-bit Thumb
90    instructions.  See also thumb_get_next_pc.  */
91 
92 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
93 
94 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
95 
96 /* Description of the longjmp buffer.  The buffer is treated as an array of
97    elements of size ARM_LINUX_JB_ELEMENT_SIZE.
98 
99    The location of saved registers in this buffer (in particular the PC
100    to use after longjmp is called) varies depending on the ABI (in
101    particular the FP model) and also (possibly) the C Library.
102 
103    For glibc, eglibc, and uclibc the following holds:  If the FP model is
104    SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
105    buffer.  This is also true for the SoftFPA model.  However, for the FPA
106    model the PC is at offset 21 in the buffer.  */
107 #define ARM_LINUX_JB_ELEMENT_SIZE	ARM_INT_REGISTER_SIZE
108 #define ARM_LINUX_JB_PC_FPA		21
109 #define ARM_LINUX_JB_PC_EABI		9
110 
111 /*
112    Dynamic Linking on ARM GNU/Linux
113    --------------------------------
114 
115    Note: PLT = procedure linkage table
116    GOT = global offset table
117 
118    As much as possible, ELF dynamic linking defers the resolution of
119    jump/call addresses until the last minute.  The technique used is
120    inspired by the i386 ELF design, and is based on the following
121    constraints.
122 
123    1) The calling technique should not force a change in the assembly
124    code produced for apps; it MAY cause changes in the way assembly
125    code is produced for position independent code (i.e. shared
126    libraries).
127 
128    2) The technique must be such that all executable areas must not be
129    modified; and any modified areas must not be executed.
130 
131    To do this, there are three steps involved in a typical jump:
132 
133    1) in the code
134    2) through the PLT
135    3) using a pointer from the GOT
136 
137    When the executable or library is first loaded, each GOT entry is
138    initialized to point to the code which implements dynamic name
139    resolution and code finding.  This is normally a function in the
140    program interpreter (on ARM GNU/Linux this is usually
141    ld-linux.so.2, but it does not have to be).  On the first
142    invocation, the function is located and the GOT entry is replaced
143    with the real function address.  Subsequent calls go through steps
144    1, 2 and 3 and end up calling the real code.
145 
146    1) In the code:
147 
148    b    function_call
149    bl   function_call
150 
151    This is typical ARM code using the 26 bit relative branch or branch
152    and link instructions.  The target of the instruction
153    (function_call is usually the address of the function to be called.
154    In position independent code, the target of the instruction is
155    actually an entry in the PLT when calling functions in a shared
156    library.  Note that this call is identical to a normal function
157    call, only the target differs.
158 
159    2) In the PLT:
160 
161    The PLT is a synthetic area, created by the linker.  It exists in
162    both executables and libraries.  It is an array of stubs, one per
163    imported function call.  It looks like this:
164 
165    PLT[0]:
166    str     lr, [sp, #-4]!       @push the return address (lr)
167    ldr     lr, [pc, #16]   @load from 6 words ahead
168    add     lr, pc, lr      @form an address for GOT[0]
169    ldr     pc, [lr, #8]!   @jump to the contents of that addr
170 
171    The return address (lr) is pushed on the stack and used for
172    calculations.  The load on the second line loads the lr with
173    &GOT[3] - . - 20.  The addition on the third leaves:
174 
175    lr = (&GOT[3] - . - 20) + (. + 8)
176    lr = (&GOT[3] - 12)
177    lr = &GOT[0]
178 
179    On the fourth line, the pc and lr are both updated, so that:
180 
181    pc = GOT[2]
182    lr = &GOT[0] + 8
183    = &GOT[2]
184 
185    NOTE: PLT[0] borrows an offset .word from PLT[1].  This is a little
186    "tight", but allows us to keep all the PLT entries the same size.
187 
188    PLT[n+1]:
189    ldr     ip, [pc, #4]    @load offset from gotoff
190    add     ip, pc, ip      @add the offset to the pc
191    ldr     pc, [ip]        @jump to that address
192    gotoff: .word   GOT[n+3] - .
193 
194    The load on the first line, gets an offset from the fourth word of
195    the PLT entry.  The add on the second line makes ip = &GOT[n+3],
196    which contains either a pointer to PLT[0] (the fixup trampoline) or
197    a pointer to the actual code.
198 
199    3) In the GOT:
200 
201    The GOT contains helper pointers for both code (PLT) fixups and
202    data fixups.  The first 3 entries of the GOT are special.  The next
203    M entries (where M is the number of entries in the PLT) belong to
204    the PLT fixups.  The next D (all remaining) entries belong to
205    various data fixups.  The actual size of the GOT is 3 + M + D.
206 
207    The GOT is also a synthetic area, created by the linker.  It exists
208    in both executables and libraries.  When the GOT is first
209    initialized , all the GOT entries relating to PLT fixups are
210    pointing to code back at PLT[0].
211 
212    The special entries in the GOT are:
213 
214    GOT[0] = linked list pointer used by the dynamic loader
215    GOT[1] = pointer to the reloc table for this module
216    GOT[2] = pointer to the fixup/resolver code
217 
218    The first invocation of function call comes through and uses the
219    fixup/resolver code.  On the entry to the fixup/resolver code:
220 
221    ip = &GOT[n+3]
222    lr = &GOT[2]
223    stack[0] = return address (lr) of the function call
224    [r0, r1, r2, r3] are still the arguments to the function call
225 
226    This is enough information for the fixup/resolver code to work
227    with.  Before the fixup/resolver code returns, it actually calls
228    the requested function and repairs &GOT[n+3].  */
229 
230 /* The constants below were determined by examining the following files
231    in the linux kernel sources:
232 
233       arch/arm/kernel/signal.c
234 	  - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
235       include/asm-arm/unistd.h
236 	  - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
237 
238 #define ARM_LINUX_SIGRETURN_INSTR	0xef900077
239 #define ARM_LINUX_RT_SIGRETURN_INSTR	0xef9000ad
240 
241 /* For ARM EABI, the syscall number is not in the SWI instruction
242    (instead it is loaded into r7).  We recognize the pattern that
243    glibc uses...  alternatively, we could arrange to do this by
244    function name, but they are not always exported.  */
245 #define ARM_SET_R7_SIGRETURN		0xe3a07077
246 #define ARM_SET_R7_RT_SIGRETURN		0xe3a070ad
247 #define ARM_EABI_SYSCALL		0xef000000
248 
249 /* Equivalent patterns for Thumb2.  */
250 #define THUMB2_SET_R7_SIGRETURN1	0xf04f
251 #define THUMB2_SET_R7_SIGRETURN2	0x0777
252 #define THUMB2_SET_R7_RT_SIGRETURN1	0xf04f
253 #define THUMB2_SET_R7_RT_SIGRETURN2	0x07ad
254 #define THUMB2_EABI_SYSCALL		0xdf00
255 
256 /* OABI syscall restart trampoline, used for EABI executables too
257    whenever OABI support has been enabled in the kernel.  */
258 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
259 #define ARM_LDR_PC_SP_12		0xe49df00c
260 #define ARM_LDR_PC_SP_4			0xe49df004
261 
262 /* Syscall number for sigreturn.  */
263 #define ARM_SIGRETURN 119
264 /* Syscall number for rt_sigreturn.  */
265 #define ARM_RT_SIGRETURN 173
266 
267 static CORE_ADDR
268   arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
269 
270 /* Operation function pointers for get_next_pcs.  */
271 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
272   arm_get_next_pcs_read_memory_unsigned_integer,
273   arm_linux_get_next_pcs_syscall_next_pc,
274   arm_get_next_pcs_addr_bits_remove,
275   arm_get_next_pcs_is_thumb,
276   arm_linux_get_next_pcs_fixup,
277 };
278 
279 static void
280 arm_linux_sigtramp_cache (frame_info_ptr this_frame,
281 			  struct trad_frame_cache *this_cache,
282 			  CORE_ADDR func, int regs_offset)
283 {
284   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
285   CORE_ADDR base = sp + regs_offset;
286   int i;
287 
288   for (i = 0; i < 16; i++)
289     trad_frame_set_reg_addr (this_cache, i, base + i * 4);
290 
291   trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
292 
293   /* The VFP or iWMMXt registers may be saved on the stack, but there's
294      no reliable way to restore them (yet).  */
295 
296   /* Save a frame ID.  */
297   trad_frame_set_id (this_cache, frame_id_build (sp, func));
298 }
299 
300 /* See arm-linux.h for stack layout details.  */
301 static void
302 arm_linux_sigreturn_init (const struct tramp_frame *self,
303 			  frame_info_ptr this_frame,
304 			  struct trad_frame_cache *this_cache,
305 			  CORE_ADDR func)
306 {
307   struct gdbarch *gdbarch = get_frame_arch (this_frame);
308   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
309   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
310   ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
311 
312   if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
313     arm_linux_sigtramp_cache (this_frame, this_cache, func,
314 			      ARM_UCONTEXT_SIGCONTEXT
315 			      + ARM_SIGCONTEXT_R0);
316   else
317     arm_linux_sigtramp_cache (this_frame, this_cache, func,
318 			      ARM_SIGCONTEXT_R0);
319 }
320 
321 static void
322 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
323 			  frame_info_ptr this_frame,
324 			  struct trad_frame_cache *this_cache,
325 			  CORE_ADDR func)
326 {
327   struct gdbarch *gdbarch = get_frame_arch (this_frame);
328   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
329   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
330   ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
331 
332   if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
333     arm_linux_sigtramp_cache (this_frame, this_cache, func,
334 			      ARM_OLD_RT_SIGFRAME_UCONTEXT
335 			      + ARM_UCONTEXT_SIGCONTEXT
336 			      + ARM_SIGCONTEXT_R0);
337   else
338     arm_linux_sigtramp_cache (this_frame, this_cache, func,
339 			      ARM_NEW_RT_SIGFRAME_UCONTEXT
340 			      + ARM_UCONTEXT_SIGCONTEXT
341 			      + ARM_SIGCONTEXT_R0);
342 }
343 
344 static void
345 arm_linux_restart_syscall_init (const struct tramp_frame *self,
346 				frame_info_ptr this_frame,
347 				struct trad_frame_cache *this_cache,
348 				CORE_ADDR func)
349 {
350   struct gdbarch *gdbarch = get_frame_arch (this_frame);
351   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
352   CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
353   CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
354   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
355   int sp_offset;
356 
357   /* There are two variants of this trampoline; with older kernels, the
358      stub is placed on the stack, while newer kernels use the stub from
359      the vector page.  They are identical except that the older version
360      increments SP by 12 (to skip stored PC and the stub itself), while
361      the newer version increments SP only by 4 (just the stored PC).  */
362   if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
363     sp_offset = 4;
364   else
365     sp_offset = 12;
366 
367   /* Update Thumb bit in CPSR.  */
368   if (pc & 1)
369     cpsr |= t_bit;
370   else
371     cpsr &= ~t_bit;
372 
373   /* Remove Thumb bit from PC.  */
374   pc = gdbarch_addr_bits_remove (gdbarch, pc);
375 
376   /* Save previous register values.  */
377   trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
378   trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
379   trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
380 
381   /* Save a frame ID.  */
382   trad_frame_set_id (this_cache, frame_id_build (sp, func));
383 }
384 
385 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
386   SIGTRAMP_FRAME,
387   4,
388   {
389     { ARM_LINUX_SIGRETURN_INSTR, ULONGEST_MAX },
390     { TRAMP_SENTINEL_INSN }
391   },
392   arm_linux_sigreturn_init
393 };
394 
395 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
396   SIGTRAMP_FRAME,
397   4,
398   {
399     { ARM_LINUX_RT_SIGRETURN_INSTR, ULONGEST_MAX },
400     { TRAMP_SENTINEL_INSN }
401   },
402   arm_linux_rt_sigreturn_init
403 };
404 
405 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
406   SIGTRAMP_FRAME,
407   4,
408   {
409     { ARM_SET_R7_SIGRETURN, ULONGEST_MAX },
410     { ARM_EABI_SYSCALL, ULONGEST_MAX },
411     { TRAMP_SENTINEL_INSN }
412   },
413   arm_linux_sigreturn_init
414 };
415 
416 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
417   SIGTRAMP_FRAME,
418   4,
419   {
420     { ARM_SET_R7_RT_SIGRETURN, ULONGEST_MAX },
421     { ARM_EABI_SYSCALL, ULONGEST_MAX },
422     { TRAMP_SENTINEL_INSN }
423   },
424   arm_linux_rt_sigreturn_init
425 };
426 
427 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
428   SIGTRAMP_FRAME,
429   2,
430   {
431     { THUMB2_SET_R7_SIGRETURN1, ULONGEST_MAX },
432     { THUMB2_SET_R7_SIGRETURN2, ULONGEST_MAX },
433     { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
434     { TRAMP_SENTINEL_INSN }
435   },
436   arm_linux_sigreturn_init
437 };
438 
439 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
440   SIGTRAMP_FRAME,
441   2,
442   {
443     { THUMB2_SET_R7_RT_SIGRETURN1, ULONGEST_MAX },
444     { THUMB2_SET_R7_RT_SIGRETURN2, ULONGEST_MAX },
445     { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
446     { TRAMP_SENTINEL_INSN }
447   },
448   arm_linux_rt_sigreturn_init
449 };
450 
451 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
452   NORMAL_FRAME,
453   4,
454   {
455     { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
456     { ARM_LDR_PC_SP_12, ULONGEST_MAX },
457     { TRAMP_SENTINEL_INSN }
458   },
459   arm_linux_restart_syscall_init
460 };
461 
462 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
463   NORMAL_FRAME,
464   4,
465   {
466     { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
467     { ARM_LDR_PC_SP_4, ULONGEST_MAX },
468     { TRAMP_SENTINEL_INSN }
469   },
470   arm_linux_restart_syscall_init
471 };
472 
473 /* Core file and register set support.  */
474 
475 #define ARM_LINUX_SIZEOF_GREGSET (18 * ARM_INT_REGISTER_SIZE)
476 
477 void
478 arm_linux_supply_gregset (const struct regset *regset,
479 			  struct regcache *regcache,
480 			  int regnum, const void *gregs_buf, size_t len)
481 {
482   struct gdbarch *gdbarch = regcache->arch ();
483   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
484   const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
485   int regno;
486   CORE_ADDR reg_pc;
487   gdb_byte pc_buf[ARM_INT_REGISTER_SIZE];
488 
489   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
490     if (regnum == -1 || regnum == regno)
491       regcache->raw_supply (regno, gregs + ARM_INT_REGISTER_SIZE * regno);
492 
493   if (regnum == ARM_PS_REGNUM || regnum == -1)
494     {
495       if (arm_apcs_32)
496 	regcache->raw_supply (ARM_PS_REGNUM,
497 			      gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
498       else
499 	regcache->raw_supply (ARM_PS_REGNUM,
500 			     gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
501     }
502 
503   if (regnum == ARM_PC_REGNUM || regnum == -1)
504     {
505       reg_pc = extract_unsigned_integer (
506 		 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM,
507 		 ARM_INT_REGISTER_SIZE, byte_order);
508       reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
509       store_unsigned_integer (pc_buf, ARM_INT_REGISTER_SIZE, byte_order,
510 			      reg_pc);
511       regcache->raw_supply (ARM_PC_REGNUM, pc_buf);
512     }
513 }
514 
515 void
516 arm_linux_collect_gregset (const struct regset *regset,
517 			   const struct regcache *regcache,
518 			   int regnum, void *gregs_buf, size_t len)
519 {
520   gdb_byte *gregs = (gdb_byte *) gregs_buf;
521   int regno;
522 
523   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
524     if (regnum == -1 || regnum == regno)
525       regcache->raw_collect (regno,
526 			    gregs + ARM_INT_REGISTER_SIZE * regno);
527 
528   if (regnum == ARM_PS_REGNUM || regnum == -1)
529     {
530       if (arm_apcs_32)
531 	regcache->raw_collect (ARM_PS_REGNUM,
532 			      gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
533       else
534 	regcache->raw_collect (ARM_PS_REGNUM,
535 			      gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
536     }
537 
538   if (regnum == ARM_PC_REGNUM || regnum == -1)
539     regcache->raw_collect (ARM_PC_REGNUM,
540 			   gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
541 }
542 
543 /* Support for register format used by the NWFPE FPA emulator.  */
544 
545 #define typeNone		0x00
546 #define typeSingle		0x01
547 #define typeDouble		0x02
548 #define typeExtended		0x03
549 
550 void
551 supply_nwfpe_register (struct regcache *regcache, int regno,
552 		       const gdb_byte *regs)
553 {
554   const gdb_byte *reg_data;
555   gdb_byte reg_tag;
556   gdb_byte buf[ARM_FP_REGISTER_SIZE];
557 
558   reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
559   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
560   memset (buf, 0, ARM_FP_REGISTER_SIZE);
561 
562   switch (reg_tag)
563     {
564     case typeSingle:
565       memcpy (buf, reg_data, 4);
566       break;
567     case typeDouble:
568       memcpy (buf, reg_data + 4, 4);
569       memcpy (buf + 4, reg_data, 4);
570       break;
571     case typeExtended:
572       /* We want sign and exponent, then least significant bits,
573 	 then most significant.  NWFPE does sign, most, least.  */
574       memcpy (buf, reg_data, 4);
575       memcpy (buf + 4, reg_data + 8, 4);
576       memcpy (buf + 8, reg_data + 4, 4);
577       break;
578     default:
579       break;
580     }
581 
582   regcache->raw_supply (regno, buf);
583 }
584 
585 void
586 collect_nwfpe_register (const struct regcache *regcache, int regno,
587 			gdb_byte *regs)
588 {
589   gdb_byte *reg_data;
590   gdb_byte reg_tag;
591   gdb_byte buf[ARM_FP_REGISTER_SIZE];
592 
593   regcache->raw_collect (regno, buf);
594 
595   /* NOTE drow/2006-06-07: This code uses the tag already in the
596      register buffer.  I've preserved that when moving the code
597      from the native file to the target file.  But this doesn't
598      always make sense.  */
599 
600   reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
601   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
602 
603   switch (reg_tag)
604     {
605     case typeSingle:
606       memcpy (reg_data, buf, 4);
607       break;
608     case typeDouble:
609       memcpy (reg_data, buf + 4, 4);
610       memcpy (reg_data + 4, buf, 4);
611       break;
612     case typeExtended:
613       memcpy (reg_data, buf, 4);
614       memcpy (reg_data + 4, buf + 8, 4);
615       memcpy (reg_data + 8, buf + 4, 4);
616       break;
617     default:
618       break;
619     }
620 }
621 
622 void
623 arm_linux_supply_nwfpe (const struct regset *regset,
624 			struct regcache *regcache,
625 			int regnum, const void *regs_buf, size_t len)
626 {
627   const gdb_byte *regs = (const gdb_byte *) regs_buf;
628   int regno;
629 
630   if (regnum == ARM_FPS_REGNUM || regnum == -1)
631     regcache->raw_supply (ARM_FPS_REGNUM,
632 			 regs + NWFPE_FPSR_OFFSET);
633 
634   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
635     if (regnum == -1 || regnum == regno)
636       supply_nwfpe_register (regcache, regno, regs);
637 }
638 
639 void
640 arm_linux_collect_nwfpe (const struct regset *regset,
641 			 const struct regcache *regcache,
642 			 int regnum, void *regs_buf, size_t len)
643 {
644   gdb_byte *regs = (gdb_byte *) regs_buf;
645   int regno;
646 
647   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
648     if (regnum == -1 || regnum == regno)
649       collect_nwfpe_register (regcache, regno, regs);
650 
651   if (regnum == ARM_FPS_REGNUM || regnum == -1)
652     regcache->raw_collect (ARM_FPS_REGNUM,
653 			   regs + ARM_INT_REGISTER_SIZE * ARM_FPS_REGNUM);
654 }
655 
656 /* Support VFP register format.  */
657 
658 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
659 
660 static void
661 arm_linux_supply_vfp (const struct regset *regset,
662 		      struct regcache *regcache,
663 		      int regnum, const void *regs_buf, size_t len)
664 {
665   const gdb_byte *regs = (const gdb_byte *) regs_buf;
666   int regno;
667 
668   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
669     regcache->raw_supply (ARM_FPSCR_REGNUM, regs + 32 * 8);
670 
671   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
672     if (regnum == -1 || regnum == regno)
673       regcache->raw_supply (regno, regs + (regno - ARM_D0_REGNUM) * 8);
674 }
675 
676 static void
677 arm_linux_collect_vfp (const struct regset *regset,
678 			 const struct regcache *regcache,
679 			 int regnum, void *regs_buf, size_t len)
680 {
681   gdb_byte *regs = (gdb_byte *) regs_buf;
682   int regno;
683 
684   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
685     regcache->raw_collect (ARM_FPSCR_REGNUM, regs + 32 * 8);
686 
687   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
688     if (regnum == -1 || regnum == regno)
689       regcache->raw_collect (regno, regs + (regno - ARM_D0_REGNUM) * 8);
690 }
691 
692 static const struct regset arm_linux_gregset =
693   {
694     NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
695   };
696 
697 static const struct regset arm_linux_fpregset =
698   {
699     NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
700   };
701 
702 static const struct regset arm_linux_vfpregset =
703   {
704     NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
705   };
706 
707 /* Iterate over core file register note sections.  */
708 
709 static void
710 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
711 					iterate_over_regset_sections_cb *cb,
712 					void *cb_data,
713 					const struct regcache *regcache)
714 {
715   arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
716 
717   cb (".reg", ARM_LINUX_SIZEOF_GREGSET, ARM_LINUX_SIZEOF_GREGSET,
718       &arm_linux_gregset, NULL, cb_data);
719 
720   if (tdep->vfp_register_count > 0)
721     cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, ARM_LINUX_SIZEOF_VFP,
722 	&arm_linux_vfpregset, "VFP floating-point", cb_data);
723   else if (tdep->have_fpa_registers)
724     cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, ARM_LINUX_SIZEOF_NWFPE,
725 	&arm_linux_fpregset, "FPA floating-point", cb_data);
726 }
727 
728 /* Determine target description from core file.  */
729 
730 static const struct target_desc *
731 arm_linux_core_read_description (struct gdbarch *gdbarch,
732 				 struct target_ops *target,
733 				 bfd *abfd)
734 {
735   gdb::optional<gdb::byte_vector> auxv = target_read_auxv_raw (target);
736   CORE_ADDR arm_hwcap = linux_get_hwcap (auxv, target, gdbarch);
737 
738   if (arm_hwcap & HWCAP_VFP)
739     {
740       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
741 	 Neon with VFPv3-D32.  */
742       if (arm_hwcap & HWCAP_NEON)
743 	return aarch32_read_description ();
744       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
745 	return arm_read_description (ARM_FP_TYPE_VFPV3, false);
746 
747       return arm_read_description (ARM_FP_TYPE_VFPV2, false);
748     }
749 
750   return nullptr;
751 }
752 
753 
754 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
755    return 1.  In addition, set IS_THUMB depending on whether we
756    will return to ARM or Thumb code.  Return 0 if it is not a
757    rt_sigreturn/sigreturn syscall.  */
758 static int
759 arm_linux_sigreturn_return_addr (frame_info_ptr frame,
760 				 unsigned long svc_number,
761 				 CORE_ADDR *pc, int *is_thumb)
762 {
763   /* Is this a sigreturn or rt_sigreturn syscall?  */
764   if (svc_number == 119 || svc_number == 173)
765     {
766       if (get_frame_type (frame) == SIGTRAMP_FRAME)
767 	{
768 	  ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
769 	  CORE_ADDR cpsr
770 	    = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
771 
772 	  *is_thumb = (cpsr & t_bit) != 0;
773 	  *pc = frame_unwind_caller_pc (frame);
774 	  return 1;
775 	}
776     }
777   return 0;
778 }
779 
780 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
781    based on current processor state.  In addition, set IS_THUMB depending
782    on whether we will return to ARM or Thumb code.  */
783 
784 static CORE_ADDR
785 arm_linux_sigreturn_next_pc (struct regcache *regcache,
786 			     unsigned long svc_number, int *is_thumb)
787 {
788   ULONGEST sp;
789   unsigned long sp_data;
790   CORE_ADDR next_pc = 0;
791   struct gdbarch *gdbarch = regcache->arch ();
792   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
793   int pc_offset = 0;
794   int is_sigreturn = 0;
795   CORE_ADDR cpsr;
796 
797   gdb_assert (svc_number == ARM_SIGRETURN
798 	      || svc_number == ARM_RT_SIGRETURN);
799 
800   is_sigreturn = (svc_number == ARM_SIGRETURN);
801   regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
802   sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
803 
804   pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
805 						  is_sigreturn);
806 
807   next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
808 
809   /* Set IS_THUMB according the CPSR saved on the stack.  */
810   cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
811   *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
812 
813   return next_pc;
814 }
815 
816 /* At a ptrace syscall-stop, return the syscall number.  This either
817    comes from the SWI instruction (OABI) or from r7 (EABI).
818 
819    When the function fails, it should return -1.  */
820 
821 static LONGEST
822 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
823 			      thread_info *thread)
824 {
825   struct regcache *regs = get_thread_regcache (thread);
826 
827   ULONGEST pc;
828   ULONGEST cpsr;
829   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
830   int is_thumb;
831   ULONGEST svc_number = -1;
832 
833   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
834   regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
835   is_thumb = (cpsr & t_bit) != 0;
836 
837   if (is_thumb)
838     {
839       regcache_cooked_read_unsigned (regs, 7, &svc_number);
840     }
841   else
842     {
843       enum bfd_endian byte_order_for_code =
844 	gdbarch_byte_order_for_code (gdbarch);
845 
846       /* PC gets incremented before the syscall-stop, so read the
847 	 previous instruction.  */
848       unsigned long this_instr =
849 	read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
850 
851       unsigned long svc_operand = (0x00ffffff & this_instr);
852 
853       if (svc_operand)
854 	{
855 	  /* OABI */
856 	  svc_number = svc_operand - 0x900000;
857 	}
858       else
859 	{
860 	  /* EABI */
861 	  regcache_cooked_read_unsigned (regs, 7, &svc_number);
862 	}
863     }
864 
865   return svc_number;
866 }
867 
868 static CORE_ADDR
869 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
870 {
871   CORE_ADDR next_pc = 0;
872   CORE_ADDR pc = regcache_read_pc (self->regcache);
873   int is_thumb = arm_is_thumb (self->regcache);
874   ULONGEST svc_number = 0;
875 
876   if (is_thumb)
877     {
878       svc_number = regcache_raw_get_unsigned (self->regcache, 7);
879       next_pc = pc + 2;
880     }
881   else
882     {
883       struct gdbarch *gdbarch = self->regcache->arch ();
884       enum bfd_endian byte_order_for_code =
885 	gdbarch_byte_order_for_code (gdbarch);
886       unsigned long this_instr =
887 	read_memory_unsigned_integer (pc, 4, byte_order_for_code);
888 
889       unsigned long svc_operand = (0x00ffffff & this_instr);
890       if (svc_operand)  /* OABI.  */
891 	{
892 	  svc_number = svc_operand - 0x900000;
893 	}
894       else /* EABI.  */
895 	{
896 	  svc_number = regcache_raw_get_unsigned (self->regcache, 7);
897 	}
898 
899       next_pc = pc + 4;
900     }
901 
902   if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
903     {
904       /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
905 	 update IS_THUMB.   */
906       next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
907 					     &is_thumb);
908     }
909 
910   /* Addresses for calling Thumb functions have the bit 0 set.  */
911   if (is_thumb)
912     next_pc = MAKE_THUMB_ADDR (next_pc);
913 
914   return next_pc;
915 }
916 
917 
918 /* Insert a single step breakpoint at the next executed instruction.  */
919 
920 static std::vector<CORE_ADDR>
921 arm_linux_software_single_step (struct regcache *regcache)
922 {
923   struct gdbarch *gdbarch = regcache->arch ();
924   struct arm_get_next_pcs next_pcs_ctx;
925 
926   /* If the target does have hardware single step, GDB doesn't have
927      to bother software single step.  */
928   if (target_can_do_single_step () == 1)
929     return {};
930 
931   arm_get_next_pcs_ctor (&next_pcs_ctx,
932 			 &arm_linux_get_next_pcs_ops,
933 			 gdbarch_byte_order (gdbarch),
934 			 gdbarch_byte_order_for_code (gdbarch),
935 			 1,
936 			 regcache);
937 
938   std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
939 
940   for (CORE_ADDR &pc_ref : next_pcs)
941     pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
942 
943   return next_pcs;
944 }
945 
946 /* Support for displaced stepping of Linux SVC instructions.  */
947 
948 static void
949 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
950 		       struct regcache *regs,
951 		       arm_displaced_step_copy_insn_closure *dsc)
952 {
953   ULONGEST apparent_pc;
954   int within_scratch;
955 
956   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
957 
958   within_scratch = (apparent_pc >= dsc->scratch_base
959 		    && apparent_pc < (dsc->scratch_base
960 				      + ARM_DISPLACED_MODIFIED_INSNS * 4 + 4));
961 
962   displaced_debug_printf ("PC is apparently %.8lx after SVC step %s",
963 			  (unsigned long) apparent_pc,
964 			  (within_scratch
965 			   ? "(within scratch space)"
966 			   : "(outside scratch space)"));
967 
968   if (within_scratch)
969     displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
970 			 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
971 }
972 
973 static int
974 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
975 		    arm_displaced_step_copy_insn_closure *dsc)
976 {
977   CORE_ADDR return_to = 0;
978 
979   frame_info_ptr frame;
980   unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
981   int is_sigreturn = 0;
982   int is_thumb;
983 
984   frame = get_current_frame ();
985 
986   is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
987 						 &return_to, &is_thumb);
988   if (is_sigreturn)
989     {
990       struct symtab_and_line sal;
991 
992       displaced_debug_printf ("found sigreturn/rt_sigreturn SVC call.  "
993 			      "PC in frame = %lx",
994 			      (unsigned long) get_frame_pc (frame));
995 
996       displaced_debug_printf ("unwind pc = %lx.  Setting momentary breakpoint.",
997 			      (unsigned long) return_to);
998 
999       gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1000 		  == NULL);
1001 
1002       sal = find_pc_line (return_to, 0);
1003       sal.pc = return_to;
1004       sal.section = find_pc_overlay (return_to);
1005       sal.explicit_pc = 1;
1006 
1007       frame = get_prev_frame (frame);
1008 
1009       if (frame)
1010 	{
1011 	  inferior_thread ()->control.step_resume_breakpoint
1012 	    = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1013 					bp_step_resume).release ();
1014 
1015 	  /* set_momentary_breakpoint invalidates FRAME.  */
1016 	  frame = NULL;
1017 
1018 	  /* We need to make sure we actually insert the momentary
1019 	     breakpoint set above.  */
1020 	  insert_breakpoints ();
1021 	}
1022       else
1023 	displaced_debug_printf ("couldn't find previous frame to set momentary "
1024 				"breakpoint for sigreturn/rt_sigreturn");
1025     }
1026   else
1027     displaced_debug_printf ("found SVC call");
1028 
1029   /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1030 		  location, else nothing.
1031      Insn: unmodified svc.
1032      Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1033 	      else leave pc alone.  */
1034 
1035 
1036   dsc->cleanup = &arm_linux_cleanup_svc;
1037   /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1038      instruction.  */
1039   dsc->wrote_to_pc = 1;
1040 
1041   return 0;
1042 }
1043 
1044 
1045 /* The following two functions implement single-stepping over calls to Linux
1046    kernel helper routines, which perform e.g. atomic operations on architecture
1047    variants which don't support them natively.
1048 
1049    When this function is called, the PC will be pointing at the kernel helper
1050    (at an address inaccessible to GDB), and r14 will point to the return
1051    address.  Displaced stepping always executes code in the copy area:
1052    so, make the copy-area instruction branch back to the kernel helper (the
1053    "from" address), and make r14 point to the breakpoint in the copy area.  In
1054    that way, we regain control once the kernel helper returns, and can clean
1055    up appropriately (as if we had just returned from the kernel helper as it
1056    would have been called from the non-displaced location).  */
1057 
1058 static void
1059 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1060 			      struct regcache *regs,
1061 			      arm_displaced_step_copy_insn_closure *dsc)
1062 {
1063   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1064   displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1065 }
1066 
1067 static void
1068 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1069 				CORE_ADDR to, struct regcache *regs,
1070 				arm_displaced_step_copy_insn_closure *dsc)
1071 {
1072   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1073 
1074   dsc->numinsns = 1;
1075   dsc->insn_addr = from;
1076   dsc->cleanup = &cleanup_kernel_helper_return;
1077   /* Say we wrote to the PC, else cleanup will set PC to the next
1078      instruction in the helper, which isn't helpful.  */
1079   dsc->wrote_to_pc = 1;
1080 
1081   /* Preparation: tmp[0] <- r14
1082 		  r14 <- <scratch space>+4
1083 		  *(<scratch space>+8) <- from
1084      Insn: ldr pc, [r14, #4]
1085      Cleanup: r14 <- tmp[0], pc <- tmp[0].  */
1086 
1087   dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1088   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1089 		       CANNOT_WRITE_PC);
1090   write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1091 
1092   dsc->modinsn[0] = 0xe59ef004;  /* ldr pc, [lr, #4].  */
1093 }
1094 
1095 /* Linux-specific displaced step instruction copying function.  Detects when
1096    the program has stepped into a Linux kernel helper routine (which must be
1097    handled as a special case).  */
1098 
1099 static displaced_step_copy_insn_closure_up
1100 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1101 				    CORE_ADDR from, CORE_ADDR to,
1102 				    struct regcache *regs)
1103 {
1104   std::unique_ptr<arm_displaced_step_copy_insn_closure> dsc
1105     (new arm_displaced_step_copy_insn_closure);
1106 
1107   /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1108      stop at the return location.  */
1109   if (from > 0xffff0000)
1110     {
1111       displaced_debug_printf ("detected kernel helper at %.8lx",
1112 			      (unsigned long) from);
1113 
1114       arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc.get ());
1115     }
1116   else
1117     {
1118       /* Override the default handling of SVC instructions.  */
1119       dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1120 
1121       arm_process_displaced_insn (gdbarch, from, to, regs, dsc.get ());
1122     }
1123 
1124   arm_displaced_init_closure (gdbarch, from, to, dsc.get ());
1125 
1126   /* This is a work around for a problem with g++ 4.8.  */
1127   return displaced_step_copy_insn_closure_up (dsc.release ());
1128 }
1129 
1130 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1131    gdbarch.h.  */
1132 
1133 static int
1134 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1135 {
1136   return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number.  */
1137 	  || *s == '[' /* Register indirection or
1138 			  displacement.  */
1139 	  || isalpha (*s)); /* Register value.  */
1140 }
1141 
1142 /* This routine is used to parse a special token in ARM's assembly.
1143 
1144    The special tokens parsed by it are:
1145 
1146       - Register displacement (e.g, [fp, #-8])
1147 
1148    It returns one if the special token has been parsed successfully,
1149    or zero if the current token is not considered special.  */
1150 
1151 static expr::operation_up
1152 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1153 			      struct stap_parse_info *p)
1154 {
1155   if (*p->arg == '[')
1156     {
1157       /* Temporary holder for lookahead.  */
1158       const char *tmp = p->arg;
1159       char *endp;
1160       /* Used to save the register name.  */
1161       const char *start;
1162       char *regname;
1163       int len, offset;
1164       int got_minus = 0;
1165       long displacement;
1166 
1167       ++tmp;
1168       start = tmp;
1169 
1170       /* Register name.  */
1171       while (isalnum (*tmp))
1172 	++tmp;
1173 
1174       if (*tmp != ',')
1175 	return {};
1176 
1177       len = tmp - start;
1178       regname = (char *) alloca (len + 2);
1179 
1180       offset = 0;
1181       if (isdigit (*start))
1182 	{
1183 	  /* If we are dealing with a register whose name begins with a
1184 	     digit, it means we should prefix the name with the letter
1185 	     `r', because GDB expects this name pattern.  Otherwise (e.g.,
1186 	     we are dealing with the register `fp'), we don't need to
1187 	     add such a prefix.  */
1188 	  regname[0] = 'r';
1189 	  offset = 1;
1190 	}
1191 
1192       strncpy (regname + offset, start, len);
1193       len += offset;
1194       regname[len] = '\0';
1195 
1196       if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1197 	error (_("Invalid register name `%s' on expression `%s'."),
1198 	       regname, p->saved_arg);
1199 
1200       ++tmp;
1201       tmp = skip_spaces (tmp);
1202       if (*tmp == '#' || *tmp == '$')
1203 	++tmp;
1204 
1205       if (*tmp == '-')
1206 	{
1207 	  ++tmp;
1208 	  got_minus = 1;
1209 	}
1210 
1211       displacement = strtol (tmp, &endp, 10);
1212       tmp = endp;
1213 
1214       /* Skipping last `]'.  */
1215       if (*tmp++ != ']')
1216 	return {};
1217       p->arg = tmp;
1218 
1219       using namespace expr;
1220 
1221       /* The displacement.  */
1222       struct type *long_type = builtin_type (gdbarch)->builtin_long;
1223       if (got_minus)
1224 	displacement = -displacement;
1225       operation_up disp = make_operation<long_const_operation> (long_type,
1226 								displacement);
1227 
1228       /* The register name.  */
1229       operation_up reg
1230 	= make_operation<register_operation> (regname);
1231 
1232       operation_up sum
1233 	= make_operation<add_operation> (std::move (reg), std::move (disp));
1234 
1235       /* Casting to the expected type.  */
1236       struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
1237       sum = make_operation<unop_cast_operation> (std::move (sum),
1238 						 arg_ptr_type);
1239       return make_operation<unop_ind_operation> (std::move (sum));
1240     }
1241 
1242   return {};
1243 }
1244 
1245 /* ARM process record-replay constructs: syscall, signal etc.  */
1246 
1247 static linux_record_tdep arm_linux_record_tdep;
1248 
1249 /* arm_canonicalize_syscall maps from the native arm Linux set
1250    of syscall ids into a canonical set of syscall ids used by
1251    process record.  */
1252 
1253 static enum gdb_syscall
1254 arm_canonicalize_syscall (int syscall)
1255 {
1256   switch (syscall)
1257     {
1258     case 0: return gdb_sys_restart_syscall;
1259     case 1: return gdb_sys_exit;
1260     case 2: return gdb_sys_fork;
1261     case 3: return gdb_sys_read;
1262     case 4: return gdb_sys_write;
1263     case 5: return gdb_sys_open;
1264     case 6: return gdb_sys_close;
1265     case 8: return gdb_sys_creat;
1266     case 9: return gdb_sys_link;
1267     case 10: return gdb_sys_unlink;
1268     case 11: return gdb_sys_execve;
1269     case 12: return gdb_sys_chdir;
1270     case 13: return gdb_sys_time;
1271     case 14: return gdb_sys_mknod;
1272     case 15: return gdb_sys_chmod;
1273     case 16: return gdb_sys_lchown16;
1274     case 19: return gdb_sys_lseek;
1275     case 20: return gdb_sys_getpid;
1276     case 21: return gdb_sys_mount;
1277     case 22: return gdb_sys_oldumount;
1278     case 23: return gdb_sys_setuid16;
1279     case 24: return gdb_sys_getuid16;
1280     case 25: return gdb_sys_stime;
1281     case 26: return gdb_sys_ptrace;
1282     case 27: return gdb_sys_alarm;
1283     case 29: return gdb_sys_pause;
1284     case 30: return gdb_sys_utime;
1285     case 33: return gdb_sys_access;
1286     case 34: return gdb_sys_nice;
1287     case 36: return gdb_sys_sync;
1288     case 37: return gdb_sys_kill;
1289     case 38: return gdb_sys_rename;
1290     case 39: return gdb_sys_mkdir;
1291     case 40: return gdb_sys_rmdir;
1292     case 41: return gdb_sys_dup;
1293     case 42: return gdb_sys_pipe;
1294     case 43: return gdb_sys_times;
1295     case 45: return gdb_sys_brk;
1296     case 46: return gdb_sys_setgid16;
1297     case 47: return gdb_sys_getgid16;
1298     case 49: return gdb_sys_geteuid16;
1299     case 50: return gdb_sys_getegid16;
1300     case 51: return gdb_sys_acct;
1301     case 52: return gdb_sys_umount;
1302     case 54: return gdb_sys_ioctl;
1303     case 55: return gdb_sys_fcntl;
1304     case 57: return gdb_sys_setpgid;
1305     case 60: return gdb_sys_umask;
1306     case 61: return gdb_sys_chroot;
1307     case 62: return gdb_sys_ustat;
1308     case 63: return gdb_sys_dup2;
1309     case 64: return gdb_sys_getppid;
1310     case 65: return gdb_sys_getpgrp;
1311     case 66: return gdb_sys_setsid;
1312     case 67: return gdb_sys_sigaction;
1313     case 70: return gdb_sys_setreuid16;
1314     case 71: return gdb_sys_setregid16;
1315     case 72: return gdb_sys_sigsuspend;
1316     case 73: return gdb_sys_sigpending;
1317     case 74: return gdb_sys_sethostname;
1318     case 75: return gdb_sys_setrlimit;
1319     case 76: return gdb_sys_getrlimit;
1320     case 77: return gdb_sys_getrusage;
1321     case 78: return gdb_sys_gettimeofday;
1322     case 79: return gdb_sys_settimeofday;
1323     case 80: return gdb_sys_getgroups16;
1324     case 81: return gdb_sys_setgroups16;
1325     case 82: return gdb_sys_select;
1326     case 83: return gdb_sys_symlink;
1327     case 85: return gdb_sys_readlink;
1328     case 86: return gdb_sys_uselib;
1329     case 87: return gdb_sys_swapon;
1330     case 88: return gdb_sys_reboot;
1331     case 89: return gdb_old_readdir;
1332     case 90: return gdb_old_mmap;
1333     case 91: return gdb_sys_munmap;
1334     case 92: return gdb_sys_truncate;
1335     case 93: return gdb_sys_ftruncate;
1336     case 94: return gdb_sys_fchmod;
1337     case 95: return gdb_sys_fchown16;
1338     case 96: return gdb_sys_getpriority;
1339     case 97: return gdb_sys_setpriority;
1340     case 99: return gdb_sys_statfs;
1341     case 100: return gdb_sys_fstatfs;
1342     case 102: return gdb_sys_socketcall;
1343     case 103: return gdb_sys_syslog;
1344     case 104: return gdb_sys_setitimer;
1345     case 105: return gdb_sys_getitimer;
1346     case 106: return gdb_sys_stat;
1347     case 107: return gdb_sys_lstat;
1348     case 108: return gdb_sys_fstat;
1349     case 111: return gdb_sys_vhangup;
1350     case 113: /* sys_syscall */
1351       return gdb_sys_no_syscall;
1352     case 114: return gdb_sys_wait4;
1353     case 115: return gdb_sys_swapoff;
1354     case 116: return gdb_sys_sysinfo;
1355     case 117: return gdb_sys_ipc;
1356     case 118: return gdb_sys_fsync;
1357     case 119: return gdb_sys_sigreturn;
1358     case 120: return gdb_sys_clone;
1359     case 121: return gdb_sys_setdomainname;
1360     case 122: return gdb_sys_uname;
1361     case 124: return gdb_sys_adjtimex;
1362     case 125: return gdb_sys_mprotect;
1363     case 126: return gdb_sys_sigprocmask;
1364     case 128: return gdb_sys_init_module;
1365     case 129: return gdb_sys_delete_module;
1366     case 131: return gdb_sys_quotactl;
1367     case 132: return gdb_sys_getpgid;
1368     case 133: return gdb_sys_fchdir;
1369     case 134: return gdb_sys_bdflush;
1370     case 135: return gdb_sys_sysfs;
1371     case 136: return gdb_sys_personality;
1372     case 138: return gdb_sys_setfsuid16;
1373     case 139: return gdb_sys_setfsgid16;
1374     case 140: return gdb_sys_llseek;
1375     case 141: return gdb_sys_getdents;
1376     case 142: return gdb_sys_select;
1377     case 143: return gdb_sys_flock;
1378     case 144: return gdb_sys_msync;
1379     case 145: return gdb_sys_readv;
1380     case 146: return gdb_sys_writev;
1381     case 147: return gdb_sys_getsid;
1382     case 148: return gdb_sys_fdatasync;
1383     case 149: return gdb_sys_sysctl;
1384     case 150: return gdb_sys_mlock;
1385     case 151: return gdb_sys_munlock;
1386     case 152: return gdb_sys_mlockall;
1387     case 153: return gdb_sys_munlockall;
1388     case 154: return gdb_sys_sched_setparam;
1389     case 155: return gdb_sys_sched_getparam;
1390     case 156: return gdb_sys_sched_setscheduler;
1391     case 157: return gdb_sys_sched_getscheduler;
1392     case 158: return gdb_sys_sched_yield;
1393     case 159: return gdb_sys_sched_get_priority_max;
1394     case 160: return gdb_sys_sched_get_priority_min;
1395     case 161: return gdb_sys_sched_rr_get_interval;
1396     case 162: return gdb_sys_nanosleep;
1397     case 163: return gdb_sys_mremap;
1398     case 164: return gdb_sys_setresuid16;
1399     case 165: return gdb_sys_getresuid16;
1400     case 168: return gdb_sys_poll;
1401     case 169: return gdb_sys_nfsservctl;
1402     case 170: return gdb_sys_setresgid;
1403     case 171: return gdb_sys_getresgid;
1404     case 172: return gdb_sys_prctl;
1405     case 173: return gdb_sys_rt_sigreturn;
1406     case 174: return gdb_sys_rt_sigaction;
1407     case 175: return gdb_sys_rt_sigprocmask;
1408     case 176: return gdb_sys_rt_sigpending;
1409     case 177: return gdb_sys_rt_sigtimedwait;
1410     case 178: return gdb_sys_rt_sigqueueinfo;
1411     case 179: return gdb_sys_rt_sigsuspend;
1412     case 180: return gdb_sys_pread64;
1413     case 181: return gdb_sys_pwrite64;
1414     case 182: return gdb_sys_chown;
1415     case 183: return gdb_sys_getcwd;
1416     case 184: return gdb_sys_capget;
1417     case 185: return gdb_sys_capset;
1418     case 186: return gdb_sys_sigaltstack;
1419     case 187: return gdb_sys_sendfile;
1420     case 190: return gdb_sys_vfork;
1421     case 191: return gdb_sys_getrlimit;
1422     case 192: return gdb_sys_mmap2;
1423     case 193: return gdb_sys_truncate64;
1424     case 194: return gdb_sys_ftruncate64;
1425     case 195: return gdb_sys_stat64;
1426     case 196: return gdb_sys_lstat64;
1427     case 197: return gdb_sys_fstat64;
1428     case 198: return gdb_sys_lchown;
1429     case 199: return gdb_sys_getuid;
1430     case 200: return gdb_sys_getgid;
1431     case 201: return gdb_sys_geteuid;
1432     case 202: return gdb_sys_getegid;
1433     case 203: return gdb_sys_setreuid;
1434     case 204: return gdb_sys_setregid;
1435     case 205: return gdb_sys_getgroups;
1436     case 206: return gdb_sys_setgroups;
1437     case 207: return gdb_sys_fchown;
1438     case 208: return gdb_sys_setresuid;
1439     case 209: return gdb_sys_getresuid;
1440     case 210: return gdb_sys_setresgid;
1441     case 211: return gdb_sys_getresgid;
1442     case 212: return gdb_sys_chown;
1443     case 213: return gdb_sys_setuid;
1444     case 214: return gdb_sys_setgid;
1445     case 215: return gdb_sys_setfsuid;
1446     case 216: return gdb_sys_setfsgid;
1447     case 217: return gdb_sys_getdents64;
1448     case 218: return gdb_sys_pivot_root;
1449     case 219: return gdb_sys_mincore;
1450     case 220: return gdb_sys_madvise;
1451     case 221: return gdb_sys_fcntl64;
1452     case 224: return gdb_sys_gettid;
1453     case 225: return gdb_sys_readahead;
1454     case 226: return gdb_sys_setxattr;
1455     case 227: return gdb_sys_lsetxattr;
1456     case 228: return gdb_sys_fsetxattr;
1457     case 229: return gdb_sys_getxattr;
1458     case 230: return gdb_sys_lgetxattr;
1459     case 231: return gdb_sys_fgetxattr;
1460     case 232: return gdb_sys_listxattr;
1461     case 233: return gdb_sys_llistxattr;
1462     case 234: return gdb_sys_flistxattr;
1463     case 235: return gdb_sys_removexattr;
1464     case 236: return gdb_sys_lremovexattr;
1465     case 237: return gdb_sys_fremovexattr;
1466     case 238: return gdb_sys_tkill;
1467     case 239: return gdb_sys_sendfile64;
1468     case 240: return gdb_sys_futex;
1469     case 241: return gdb_sys_sched_setaffinity;
1470     case 242: return gdb_sys_sched_getaffinity;
1471     case 243: return gdb_sys_io_setup;
1472     case 244: return gdb_sys_io_destroy;
1473     case 245: return gdb_sys_io_getevents;
1474     case 246: return gdb_sys_io_submit;
1475     case 247: return gdb_sys_io_cancel;
1476     case 248: return gdb_sys_exit_group;
1477     case 249: return gdb_sys_lookup_dcookie;
1478     case 250: return gdb_sys_epoll_create;
1479     case 251: return gdb_sys_epoll_ctl;
1480     case 252: return gdb_sys_epoll_wait;
1481     case 253: return gdb_sys_remap_file_pages;
1482     case 256: return gdb_sys_set_tid_address;
1483     case 257: return gdb_sys_timer_create;
1484     case 258: return gdb_sys_timer_settime;
1485     case 259: return gdb_sys_timer_gettime;
1486     case 260: return gdb_sys_timer_getoverrun;
1487     case 261: return gdb_sys_timer_delete;
1488     case 262: return gdb_sys_clock_settime;
1489     case 263: return gdb_sys_clock_gettime;
1490     case 264: return gdb_sys_clock_getres;
1491     case 265: return gdb_sys_clock_nanosleep;
1492     case 266: return gdb_sys_statfs64;
1493     case 267: return gdb_sys_fstatfs64;
1494     case 268: return gdb_sys_tgkill;
1495     case 269: return gdb_sys_utimes;
1496       /*
1497     case 270: return gdb_sys_arm_fadvise64_64;
1498     case 271: return gdb_sys_pciconfig_iobase;
1499     case 272: return gdb_sys_pciconfig_read;
1500     case 273: return gdb_sys_pciconfig_write;
1501       */
1502     case 274: return gdb_sys_mq_open;
1503     case 275: return gdb_sys_mq_unlink;
1504     case 276: return gdb_sys_mq_timedsend;
1505     case 277: return gdb_sys_mq_timedreceive;
1506     case 278: return gdb_sys_mq_notify;
1507     case 279: return gdb_sys_mq_getsetattr;
1508     case 280: return gdb_sys_waitid;
1509     case 281: return gdb_sys_socket;
1510     case 282: return gdb_sys_bind;
1511     case 283: return gdb_sys_connect;
1512     case 284: return gdb_sys_listen;
1513     case 285: return gdb_sys_accept;
1514     case 286: return gdb_sys_getsockname;
1515     case 287: return gdb_sys_getpeername;
1516     case 288: return gdb_sys_socketpair;
1517     case 289: /* send */ return gdb_sys_no_syscall;
1518     case 290: return gdb_sys_sendto;
1519     case 291: return gdb_sys_recv;
1520     case 292: return gdb_sys_recvfrom;
1521     case 293: return gdb_sys_shutdown;
1522     case 294: return gdb_sys_setsockopt;
1523     case 295: return gdb_sys_getsockopt;
1524     case 296: return gdb_sys_sendmsg;
1525     case 297: return gdb_sys_recvmsg;
1526     case 298: return gdb_sys_semop;
1527     case 299: return gdb_sys_semget;
1528     case 300: return gdb_sys_semctl;
1529     case 301: return gdb_sys_msgsnd;
1530     case 302: return gdb_sys_msgrcv;
1531     case 303: return gdb_sys_msgget;
1532     case 304: return gdb_sys_msgctl;
1533     case 305: return gdb_sys_shmat;
1534     case 306: return gdb_sys_shmdt;
1535     case 307: return gdb_sys_shmget;
1536     case 308: return gdb_sys_shmctl;
1537     case 309: return gdb_sys_add_key;
1538     case 310: return gdb_sys_request_key;
1539     case 311: return gdb_sys_keyctl;
1540     case 312: return gdb_sys_semtimedop;
1541     case 313: /* vserver */ return gdb_sys_no_syscall;
1542     case 314: return gdb_sys_ioprio_set;
1543     case 315: return gdb_sys_ioprio_get;
1544     case 316: return gdb_sys_inotify_init;
1545     case 317: return gdb_sys_inotify_add_watch;
1546     case 318: return gdb_sys_inotify_rm_watch;
1547     case 319: return gdb_sys_mbind;
1548     case 320: return gdb_sys_get_mempolicy;
1549     case 321: return gdb_sys_set_mempolicy;
1550     case 322: return gdb_sys_openat;
1551     case 323: return gdb_sys_mkdirat;
1552     case 324: return gdb_sys_mknodat;
1553     case 325: return gdb_sys_fchownat;
1554     case 326: return gdb_sys_futimesat;
1555     case 327: return gdb_sys_fstatat64;
1556     case 328: return gdb_sys_unlinkat;
1557     case 329: return gdb_sys_renameat;
1558     case 330: return gdb_sys_linkat;
1559     case 331: return gdb_sys_symlinkat;
1560     case 332: return gdb_sys_readlinkat;
1561     case 333: return gdb_sys_fchmodat;
1562     case 334: return gdb_sys_faccessat;
1563     case 335: return gdb_sys_pselect6;
1564     case 336: return gdb_sys_ppoll;
1565     case 337: return gdb_sys_unshare;
1566     case 338: return gdb_sys_set_robust_list;
1567     case 339: return gdb_sys_get_robust_list;
1568     case 340: return gdb_sys_splice;
1569     /*case 341: return gdb_sys_arm_sync_file_range;*/
1570     case 342: return gdb_sys_tee;
1571     case 343: return gdb_sys_vmsplice;
1572     case 344: return gdb_sys_move_pages;
1573     case 345: return gdb_sys_getcpu;
1574     case 346: return gdb_sys_epoll_pwait;
1575     case 347: return gdb_sys_kexec_load;
1576       /*
1577     case 348: return gdb_sys_utimensat;
1578     case 349: return gdb_sys_signalfd;
1579     case 350: return gdb_sys_timerfd_create;
1580     case 351: return gdb_sys_eventfd;
1581       */
1582     case 352: return gdb_sys_fallocate;
1583       /*
1584     case 353: return gdb_sys_timerfd_settime;
1585     case 354: return gdb_sys_timerfd_gettime;
1586     case 355: return gdb_sys_signalfd4;
1587       */
1588     case 356: return gdb_sys_eventfd2;
1589     case 357: return gdb_sys_epoll_create1;
1590     case 358: return gdb_sys_dup3;
1591     case 359: return gdb_sys_pipe2;
1592     case 360: return gdb_sys_inotify_init1;
1593       /*
1594     case 361: return gdb_sys_preadv;
1595     case 362: return gdb_sys_pwritev;
1596     case 363: return gdb_sys_rt_tgsigqueueinfo;
1597     case 364: return gdb_sys_perf_event_open;
1598     case 365: return gdb_sys_recvmmsg;
1599     case 366: return gdb_sys_accept4;
1600     case 367: return gdb_sys_fanotify_init;
1601     case 368: return gdb_sys_fanotify_mark;
1602     case 369: return gdb_sys_prlimit64;
1603     case 370: return gdb_sys_name_to_handle_at;
1604     case 371: return gdb_sys_open_by_handle_at;
1605     case 372: return gdb_sys_clock_adjtime;
1606     case 373: return gdb_sys_syncfs;
1607     case 374: return gdb_sys_sendmmsg;
1608     case 375: return gdb_sys_setns;
1609     case 376: return gdb_sys_process_vm_readv;
1610     case 377: return gdb_sys_process_vm_writev;
1611     case 378: return gdb_sys_kcmp;
1612     case 379: return gdb_sys_finit_module;
1613       */
1614     case 384: return gdb_sys_getrandom;
1615     case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1616     case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1617     case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1618     case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1619     case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1620     default: return gdb_sys_no_syscall;
1621     }
1622 }
1623 
1624 /* Record all registers but PC register for process-record.  */
1625 
1626 static int
1627 arm_all_but_pc_registers_record (struct regcache *regcache)
1628 {
1629   int i;
1630 
1631   for (i = 0; i < ARM_PC_REGNUM; i++)
1632     {
1633       if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1634 	return -1;
1635     }
1636 
1637   if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1638     return -1;
1639 
1640   return 0;
1641 }
1642 
1643 /* Handler for arm system call instruction recording.  */
1644 
1645 static int
1646 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1647 {
1648   int ret = 0;
1649   enum gdb_syscall syscall_gdb;
1650 
1651   syscall_gdb = arm_canonicalize_syscall (svc_number);
1652 
1653   if (syscall_gdb == gdb_sys_no_syscall)
1654     {
1655       gdb_printf (gdb_stderr,
1656 		  _("Process record and replay target doesn't "
1657 		    "support syscall number %s\n"),
1658 		  plongest (svc_number));
1659       return -1;
1660     }
1661 
1662   if (syscall_gdb == gdb_sys_sigreturn
1663       || syscall_gdb == gdb_sys_rt_sigreturn)
1664    {
1665      if (arm_all_but_pc_registers_record (regcache))
1666        return -1;
1667      return 0;
1668    }
1669 
1670   ret = record_linux_system_call (syscall_gdb, regcache,
1671 				  &arm_linux_record_tdep);
1672   if (ret != 0)
1673     return ret;
1674 
1675   /* Record the return value of the system call.  */
1676   if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1677     return -1;
1678   /* Record LR.  */
1679   if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1680     return -1;
1681   /* Record CPSR.  */
1682   if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1683     return -1;
1684 
1685   return 0;
1686 }
1687 
1688 /* Implement the skip_trampoline_code gdbarch method.  */
1689 
1690 static CORE_ADDR
1691 arm_linux_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc)
1692 {
1693   CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1694 
1695   if (target_pc != 0)
1696     return target_pc;
1697 
1698   return find_solib_trampoline_target (frame, pc);
1699 }
1700 
1701 /* Implement the gcc_target_options gdbarch method.  */
1702 
1703 static std::string
1704 arm_linux_gcc_target_options (struct gdbarch *gdbarch)
1705 {
1706   /* GCC doesn't know "-m32".  */
1707   return {};
1708 }
1709 
1710 static void
1711 arm_linux_init_abi (struct gdbarch_info info,
1712 		    struct gdbarch *gdbarch)
1713 {
1714   static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1715   static const char *const stap_register_prefixes[] = { "r", NULL };
1716   static const char *const stap_register_indirection_prefixes[] = { "[",
1717 								    NULL };
1718   static const char *const stap_register_indirection_suffixes[] = { "]",
1719 								    NULL };
1720   arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
1721 
1722   linux_init_abi (info, gdbarch, 1);
1723 
1724   tdep->lowest_pc = 0x8000;
1725   if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1726     {
1727       if (tdep->arm_abi == ARM_ABI_AAPCS)
1728 	tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1729       else
1730 	tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1731       tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1732       tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1733     }
1734   else
1735     {
1736       if (tdep->arm_abi == ARM_ABI_AAPCS)
1737 	tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1738       else
1739 	tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1740       tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1741       tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1742     }
1743   tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1744   tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1745   tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1746 
1747   if (tdep->fp_model == ARM_FLOAT_AUTO)
1748     tdep->fp_model = ARM_FLOAT_FPA;
1749 
1750   switch (tdep->fp_model)
1751     {
1752     case ARM_FLOAT_FPA:
1753       tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1754       break;
1755     case ARM_FLOAT_SOFT_FPA:
1756     case ARM_FLOAT_SOFT_VFP:
1757     case ARM_FLOAT_VFP:
1758       tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1759       break;
1760     default:
1761       internal_error
1762 	(_("arm_linux_init_abi: Floating point model not supported"));
1763       break;
1764     }
1765   tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1766 
1767   set_solib_svr4_fetch_link_map_offsets
1768     (gdbarch, linux_ilp32_fetch_link_map_offsets);
1769 
1770   /* Single stepping.  */
1771   set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1772 
1773   /* Shared library handling.  */
1774   set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1775   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1776 
1777   /* Enable TLS support.  */
1778   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1779 					     svr4_fetch_objfile_link_map);
1780 
1781   tramp_frame_prepend_unwinder (gdbarch,
1782 				&arm_linux_sigreturn_tramp_frame);
1783   tramp_frame_prepend_unwinder (gdbarch,
1784 				&arm_linux_rt_sigreturn_tramp_frame);
1785   tramp_frame_prepend_unwinder (gdbarch,
1786 				&arm_eabi_linux_sigreturn_tramp_frame);
1787   tramp_frame_prepend_unwinder (gdbarch,
1788 				&arm_eabi_linux_rt_sigreturn_tramp_frame);
1789   tramp_frame_prepend_unwinder (gdbarch,
1790 				&thumb2_eabi_linux_sigreturn_tramp_frame);
1791   tramp_frame_prepend_unwinder (gdbarch,
1792 				&thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1793   tramp_frame_prepend_unwinder (gdbarch,
1794 				&arm_linux_restart_syscall_tramp_frame);
1795   tramp_frame_prepend_unwinder (gdbarch,
1796 				&arm_kernel_linux_restart_syscall_tramp_frame);
1797 
1798   /* Core file support.  */
1799   set_gdbarch_iterate_over_regset_sections
1800     (gdbarch, arm_linux_iterate_over_regset_sections);
1801   set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1802 
1803   /* Displaced stepping.  */
1804   set_gdbarch_displaced_step_copy_insn (gdbarch,
1805 					arm_linux_displaced_step_copy_insn);
1806   set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1807 
1808   /* Reversible debugging, process record.  */
1809   set_gdbarch_process_record (gdbarch, arm_process_record);
1810 
1811   /* SystemTap functions.  */
1812   set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1813   set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1814   set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1815 					  stap_register_indirection_prefixes);
1816   set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1817 					  stap_register_indirection_suffixes);
1818   set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1819   set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1820   set_gdbarch_stap_parse_special_token (gdbarch,
1821 					arm_stap_parse_special_token);
1822 
1823   /* `catch syscall' */
1824   set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1825   set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1826 
1827   /* Syscall record.  */
1828   tdep->arm_syscall_record = arm_linux_syscall_record;
1829 
1830   /* Initialize the arm_linux_record_tdep.  */
1831   /* These values are the size of the type that will be used in a system
1832      call.  They are obtained from Linux Kernel source.  */
1833   arm_linux_record_tdep.size_pointer
1834     = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1835   arm_linux_record_tdep.size__old_kernel_stat = 32;
1836   arm_linux_record_tdep.size_tms = 16;
1837   arm_linux_record_tdep.size_loff_t = 8;
1838   arm_linux_record_tdep.size_flock = 16;
1839   arm_linux_record_tdep.size_oldold_utsname = 45;
1840   arm_linux_record_tdep.size_ustat = 20;
1841   arm_linux_record_tdep.size_old_sigaction = 16;
1842   arm_linux_record_tdep.size_old_sigset_t = 4;
1843   arm_linux_record_tdep.size_rlimit = 8;
1844   arm_linux_record_tdep.size_rusage = 72;
1845   arm_linux_record_tdep.size_timeval = 8;
1846   arm_linux_record_tdep.size_timezone = 8;
1847   arm_linux_record_tdep.size_old_gid_t = 2;
1848   arm_linux_record_tdep.size_old_uid_t = 2;
1849   arm_linux_record_tdep.size_fd_set = 128;
1850   arm_linux_record_tdep.size_old_dirent = 268;
1851   arm_linux_record_tdep.size_statfs = 64;
1852   arm_linux_record_tdep.size_statfs64 = 84;
1853   arm_linux_record_tdep.size_sockaddr = 16;
1854   arm_linux_record_tdep.size_int
1855     = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1856   arm_linux_record_tdep.size_long
1857     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1858   arm_linux_record_tdep.size_ulong
1859     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1860   arm_linux_record_tdep.size_msghdr = 28;
1861   arm_linux_record_tdep.size_itimerval = 16;
1862   arm_linux_record_tdep.size_stat = 88;
1863   arm_linux_record_tdep.size_old_utsname = 325;
1864   arm_linux_record_tdep.size_sysinfo = 64;
1865   arm_linux_record_tdep.size_msqid_ds = 88;
1866   arm_linux_record_tdep.size_shmid_ds = 84;
1867   arm_linux_record_tdep.size_new_utsname = 390;
1868   arm_linux_record_tdep.size_timex = 128;
1869   arm_linux_record_tdep.size_mem_dqinfo = 24;
1870   arm_linux_record_tdep.size_if_dqblk = 68;
1871   arm_linux_record_tdep.size_fs_quota_stat = 68;
1872   arm_linux_record_tdep.size_timespec = 8;
1873   arm_linux_record_tdep.size_pollfd = 8;
1874   arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1875   arm_linux_record_tdep.size_knfsd_fh = 132;
1876   arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1877   arm_linux_record_tdep.size_sigaction = 20;
1878   arm_linux_record_tdep.size_sigset_t = 8;
1879   arm_linux_record_tdep.size_siginfo_t = 128;
1880   arm_linux_record_tdep.size_cap_user_data_t = 12;
1881   arm_linux_record_tdep.size_stack_t = 12;
1882   arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1883   arm_linux_record_tdep.size_stat64 = 96;
1884   arm_linux_record_tdep.size_gid_t = 4;
1885   arm_linux_record_tdep.size_uid_t = 4;
1886   arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1887   arm_linux_record_tdep.size_flock64 = 24;
1888   arm_linux_record_tdep.size_user_desc = 16;
1889   arm_linux_record_tdep.size_io_event = 32;
1890   arm_linux_record_tdep.size_iocb = 64;
1891   arm_linux_record_tdep.size_epoll_event = 12;
1892   arm_linux_record_tdep.size_itimerspec
1893     = arm_linux_record_tdep.size_timespec * 2;
1894   arm_linux_record_tdep.size_mq_attr = 32;
1895   arm_linux_record_tdep.size_termios = 36;
1896   arm_linux_record_tdep.size_termios2 = 44;
1897   arm_linux_record_tdep.size_pid_t = 4;
1898   arm_linux_record_tdep.size_winsize = 8;
1899   arm_linux_record_tdep.size_serial_struct = 60;
1900   arm_linux_record_tdep.size_serial_icounter_struct = 80;
1901   arm_linux_record_tdep.size_hayes_esp_config = 12;
1902   arm_linux_record_tdep.size_size_t = 4;
1903   arm_linux_record_tdep.size_iovec = 8;
1904   arm_linux_record_tdep.size_time_t = 4;
1905 
1906   /* These values are the second argument of system call "sys_ioctl".
1907      They are obtained from Linux Kernel source.  */
1908   arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1909   arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1910   arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1911   arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1912   arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1913   arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1914   arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1915   arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1916   arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1917   arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1918   arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1919   arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1920   arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1921   arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1922   arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1923   arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1924   arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1925   arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1926   arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1927   arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1928   arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1929   arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1930   arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1931   arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1932   arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1933   arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1934   arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1935   arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1936   arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1937   arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1938   arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1939   arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1940   arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1941   arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1942   arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1943   arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1944   arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1945   arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1946   arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1947   arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1948   arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1949   arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1950   arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1951   arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1952   arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1953   arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1954   arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1955   arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1956   arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1957   arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1958   arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1959   arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1960   arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1961   arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1962   arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1963   arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1964   arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1965   arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1966   arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1967   arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1968   arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1969   arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1970   arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1971   arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1972   arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1973 
1974   /* These values are the second argument of system call "sys_fcntl"
1975      and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
1976   arm_linux_record_tdep.fcntl_F_GETLK = 5;
1977   arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1978   arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1979   arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1980 
1981   arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
1982   arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
1983   arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
1984   arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1985   arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
1986   arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
1987   arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
1988 
1989   set_gdbarch_gcc_target_options (gdbarch, arm_linux_gcc_target_options);
1990 }
1991 
1992 void _initialize_arm_linux_tdep ();
1993 void
1994 _initialize_arm_linux_tdep ()
1995 {
1996   gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1997 			  arm_linux_init_abi);
1998 }
1999