xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/arm-linux-tdep.c (revision 0ab5b340411a90c5db2463a3bd38d565fa784c5c)
1 /* GNU/Linux on ARM target support.
2 
3    Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37 
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "arch-utils.h"
43 #include "inferior.h"
44 #include "gdbthread.h"
45 #include "symfile.h"
46 
47 #include "cli/cli-utils.h"
48 #include "stap-probe.h"
49 #include "parser-defs.h"
50 #include "user-regs.h"
51 #include <ctype.h>
52 #include "elf/common.h"
53 #include <string.h>
54 
55 extern int arm_apcs_32;
56 
57 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
58    is to execute a particular software interrupt, rather than use a
59    particular undefined instruction to provoke a trap.  Upon exection
60    of the software interrupt the kernel stops the inferior with a
61    SIGTRAP, and wakes the debugger.  */
62 
63 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
64 
65 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66 
67 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
68    the operand of the swi if old-ABI compatibility is disabled.  Therefore,
69    use an undefined instruction instead.  This is supported as of kernel
70    version 2.5.70 (May 2003), so should be a safe assumption for EABI
71    binaries.  */
72 
73 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
74 
75 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
76 
77 /* All the kernels which support Thumb support using a specific undefined
78    instruction for the Thumb breakpoint.  */
79 
80 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
81 
82 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
83 
84 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
85    we must use a length-appropriate breakpoint for 32-bit Thumb
86    instructions.  See also thumb_get_next_pc.  */
87 
88 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
89 
90 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
91 
92 /* Description of the longjmp buffer.  The buffer is treated as an array of
93    elements of size ARM_LINUX_JB_ELEMENT_SIZE.
94 
95    The location of saved registers in this buffer (in particular the PC
96    to use after longjmp is called) varies depending on the ABI (in
97    particular the FP model) and also (possibly) the C Library.
98 
99    For glibc, eglibc, and uclibc the following holds:  If the FP model is
100    SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
101    buffer.  This is also true for the SoftFPA model.  However, for the FPA
102    model the PC is at offset 21 in the buffer.  */
103 #define ARM_LINUX_JB_ELEMENT_SIZE	INT_REGISTER_SIZE
104 #define ARM_LINUX_JB_PC_FPA		21
105 #define ARM_LINUX_JB_PC_EABI		9
106 
107 /*
108    Dynamic Linking on ARM GNU/Linux
109    --------------------------------
110 
111    Note: PLT = procedure linkage table
112    GOT = global offset table
113 
114    As much as possible, ELF dynamic linking defers the resolution of
115    jump/call addresses until the last minute.  The technique used is
116    inspired by the i386 ELF design, and is based on the following
117    constraints.
118 
119    1) The calling technique should not force a change in the assembly
120    code produced for apps; it MAY cause changes in the way assembly
121    code is produced for position independent code (i.e. shared
122    libraries).
123 
124    2) The technique must be such that all executable areas must not be
125    modified; and any modified areas must not be executed.
126 
127    To do this, there are three steps involved in a typical jump:
128 
129    1) in the code
130    2) through the PLT
131    3) using a pointer from the GOT
132 
133    When the executable or library is first loaded, each GOT entry is
134    initialized to point to the code which implements dynamic name
135    resolution and code finding.  This is normally a function in the
136    program interpreter (on ARM GNU/Linux this is usually
137    ld-linux.so.2, but it does not have to be).  On the first
138    invocation, the function is located and the GOT entry is replaced
139    with the real function address.  Subsequent calls go through steps
140    1, 2 and 3 and end up calling the real code.
141 
142    1) In the code:
143 
144    b    function_call
145    bl   function_call
146 
147    This is typical ARM code using the 26 bit relative branch or branch
148    and link instructions.  The target of the instruction
149    (function_call is usually the address of the function to be called.
150    In position independent code, the target of the instruction is
151    actually an entry in the PLT when calling functions in a shared
152    library.  Note that this call is identical to a normal function
153    call, only the target differs.
154 
155    2) In the PLT:
156 
157    The PLT is a synthetic area, created by the linker.  It exists in
158    both executables and libraries.  It is an array of stubs, one per
159    imported function call.  It looks like this:
160 
161    PLT[0]:
162    str     lr, [sp, #-4]!       @push the return address (lr)
163    ldr     lr, [pc, #16]   @load from 6 words ahead
164    add     lr, pc, lr      @form an address for GOT[0]
165    ldr     pc, [lr, #8]!   @jump to the contents of that addr
166 
167    The return address (lr) is pushed on the stack and used for
168    calculations.  The load on the second line loads the lr with
169    &GOT[3] - . - 20.  The addition on the third leaves:
170 
171    lr = (&GOT[3] - . - 20) + (. + 8)
172    lr = (&GOT[3] - 12)
173    lr = &GOT[0]
174 
175    On the fourth line, the pc and lr are both updated, so that:
176 
177    pc = GOT[2]
178    lr = &GOT[0] + 8
179    = &GOT[2]
180 
181    NOTE: PLT[0] borrows an offset .word from PLT[1].  This is a little
182    "tight", but allows us to keep all the PLT entries the same size.
183 
184    PLT[n+1]:
185    ldr     ip, [pc, #4]    @load offset from gotoff
186    add     ip, pc, ip      @add the offset to the pc
187    ldr     pc, [ip]        @jump to that address
188    gotoff: .word   GOT[n+3] - .
189 
190    The load on the first line, gets an offset from the fourth word of
191    the PLT entry.  The add on the second line makes ip = &GOT[n+3],
192    which contains either a pointer to PLT[0] (the fixup trampoline) or
193    a pointer to the actual code.
194 
195    3) In the GOT:
196 
197    The GOT contains helper pointers for both code (PLT) fixups and
198    data fixups.  The first 3 entries of the GOT are special.  The next
199    M entries (where M is the number of entries in the PLT) belong to
200    the PLT fixups.  The next D (all remaining) entries belong to
201    various data fixups.  The actual size of the GOT is 3 + M + D.
202 
203    The GOT is also a synthetic area, created by the linker.  It exists
204    in both executables and libraries.  When the GOT is first
205    initialized , all the GOT entries relating to PLT fixups are
206    pointing to code back at PLT[0].
207 
208    The special entries in the GOT are:
209 
210    GOT[0] = linked list pointer used by the dynamic loader
211    GOT[1] = pointer to the reloc table for this module
212    GOT[2] = pointer to the fixup/resolver code
213 
214    The first invocation of function call comes through and uses the
215    fixup/resolver code.  On the entry to the fixup/resolver code:
216 
217    ip = &GOT[n+3]
218    lr = &GOT[2]
219    stack[0] = return address (lr) of the function call
220    [r0, r1, r2, r3] are still the arguments to the function call
221 
222    This is enough information for the fixup/resolver code to work
223    with.  Before the fixup/resolver code returns, it actually calls
224    the requested function and repairs &GOT[n+3].  */
225 
226 /* The constants below were determined by examining the following files
227    in the linux kernel sources:
228 
229       arch/arm/kernel/signal.c
230 	  - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
231       include/asm-arm/unistd.h
232 	  - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
233 
234 #define ARM_LINUX_SIGRETURN_INSTR	0xef900077
235 #define ARM_LINUX_RT_SIGRETURN_INSTR	0xef9000ad
236 
237 /* For ARM EABI, the syscall number is not in the SWI instruction
238    (instead it is loaded into r7).  We recognize the pattern that
239    glibc uses...  alternatively, we could arrange to do this by
240    function name, but they are not always exported.  */
241 #define ARM_SET_R7_SIGRETURN		0xe3a07077
242 #define ARM_SET_R7_RT_SIGRETURN		0xe3a070ad
243 #define ARM_EABI_SYSCALL		0xef000000
244 
245 /* OABI syscall restart trampoline, used for EABI executables too
246    whenever OABI support has been enabled in the kernel.  */
247 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
248 #define ARM_LDR_PC_SP_12		0xe49df00c
249 #define ARM_LDR_PC_SP_4			0xe49df004
250 
251 static void
252 arm_linux_sigtramp_cache (struct frame_info *this_frame,
253 			  struct trad_frame_cache *this_cache,
254 			  CORE_ADDR func, int regs_offset)
255 {
256   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
257   CORE_ADDR base = sp + regs_offset;
258   int i;
259 
260   for (i = 0; i < 16; i++)
261     trad_frame_set_reg_addr (this_cache, i, base + i * 4);
262 
263   trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
264 
265   /* The VFP or iWMMXt registers may be saved on the stack, but there's
266      no reliable way to restore them (yet).  */
267 
268   /* Save a frame ID.  */
269   trad_frame_set_id (this_cache, frame_id_build (sp, func));
270 }
271 
272 /* There are a couple of different possible stack layouts that
273    we need to support.
274 
275    Before version 2.6.18, the kernel used completely independent
276    layouts for non-RT and RT signals.  For non-RT signals the stack
277    began directly with a struct sigcontext.  For RT signals the stack
278    began with two redundant pointers (to the siginfo and ucontext),
279    and then the siginfo and ucontext.
280 
281    As of version 2.6.18, the non-RT signal frame layout starts with
282    a ucontext and the RT signal frame starts with a siginfo and then
283    a ucontext.  Also, the ucontext now has a designated save area
284    for coprocessor registers.
285 
286    For RT signals, it's easy to tell the difference: we look for
287    pinfo, the pointer to the siginfo.  If it has the expected
288    value, we have an old layout.  If it doesn't, we have the new
289    layout.
290 
291    For non-RT signals, it's a bit harder.  We need something in one
292    layout or the other with a recognizable offset and value.  We can't
293    use the return trampoline, because ARM usually uses SA_RESTORER,
294    in which case the stack return trampoline is not filled in.
295    We can't use the saved stack pointer, because sigaltstack might
296    be in use.  So for now we guess the new layout...  */
297 
298 /* There are three words (trap_no, error_code, oldmask) in
299    struct sigcontext before r0.  */
300 #define ARM_SIGCONTEXT_R0 0xc
301 
302 /* There are five words (uc_flags, uc_link, and three for uc_stack)
303    in the ucontext_t before the sigcontext.  */
304 #define ARM_UCONTEXT_SIGCONTEXT 0x14
305 
306 /* There are three elements in an rt_sigframe before the ucontext:
307    pinfo, puc, and info.  The first two are pointers and the third
308    is a struct siginfo, with size 128 bytes.  We could follow puc
309    to the ucontext, but it's simpler to skip the whole thing.  */
310 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
311 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
312 
313 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
314 
315 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
316 
317 static void
318 arm_linux_sigreturn_init (const struct tramp_frame *self,
319 			  struct frame_info *this_frame,
320 			  struct trad_frame_cache *this_cache,
321 			  CORE_ADDR func)
322 {
323   struct gdbarch *gdbarch = get_frame_arch (this_frame);
324   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
326   ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
327 
328   if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
329     arm_linux_sigtramp_cache (this_frame, this_cache, func,
330 			      ARM_UCONTEXT_SIGCONTEXT
331 			      + ARM_SIGCONTEXT_R0);
332   else
333     arm_linux_sigtramp_cache (this_frame, this_cache, func,
334 			      ARM_SIGCONTEXT_R0);
335 }
336 
337 static void
338 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
339 			  struct frame_info *this_frame,
340 			  struct trad_frame_cache *this_cache,
341 			  CORE_ADDR func)
342 {
343   struct gdbarch *gdbarch = get_frame_arch (this_frame);
344   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
346   ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
347 
348   if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
349     arm_linux_sigtramp_cache (this_frame, this_cache, func,
350 			      ARM_OLD_RT_SIGFRAME_UCONTEXT
351 			      + ARM_UCONTEXT_SIGCONTEXT
352 			      + ARM_SIGCONTEXT_R0);
353   else
354     arm_linux_sigtramp_cache (this_frame, this_cache, func,
355 			      ARM_NEW_RT_SIGFRAME_UCONTEXT
356 			      + ARM_UCONTEXT_SIGCONTEXT
357 			      + ARM_SIGCONTEXT_R0);
358 }
359 
360 static void
361 arm_linux_restart_syscall_init (const struct tramp_frame *self,
362 				struct frame_info *this_frame,
363 				struct trad_frame_cache *this_cache,
364 				CORE_ADDR func)
365 {
366   struct gdbarch *gdbarch = get_frame_arch (this_frame);
367   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
368   CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
369   CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
370   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
371   int sp_offset;
372 
373   /* There are two variants of this trampoline; with older kernels, the
374      stub is placed on the stack, while newer kernels use the stub from
375      the vector page.  They are identical except that the older version
376      increments SP by 12 (to skip stored PC and the stub itself), while
377      the newer version increments SP only by 4 (just the stored PC).  */
378   if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
379     sp_offset = 4;
380   else
381     sp_offset = 12;
382 
383   /* Update Thumb bit in CPSR.  */
384   if (pc & 1)
385     cpsr |= t_bit;
386   else
387     cpsr &= ~t_bit;
388 
389   /* Remove Thumb bit from PC.  */
390   pc = gdbarch_addr_bits_remove (gdbarch, pc);
391 
392   /* Save previous register values.  */
393   trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
394   trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
395   trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
396 
397   /* Save a frame ID.  */
398   trad_frame_set_id (this_cache, frame_id_build (sp, func));
399 }
400 
401 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
402   SIGTRAMP_FRAME,
403   4,
404   {
405     { ARM_LINUX_SIGRETURN_INSTR, -1 },
406     { TRAMP_SENTINEL_INSN }
407   },
408   arm_linux_sigreturn_init
409 };
410 
411 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
412   SIGTRAMP_FRAME,
413   4,
414   {
415     { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
416     { TRAMP_SENTINEL_INSN }
417   },
418   arm_linux_rt_sigreturn_init
419 };
420 
421 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
422   SIGTRAMP_FRAME,
423   4,
424   {
425     { ARM_SET_R7_SIGRETURN, -1 },
426     { ARM_EABI_SYSCALL, -1 },
427     { TRAMP_SENTINEL_INSN }
428   },
429   arm_linux_sigreturn_init
430 };
431 
432 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
433   SIGTRAMP_FRAME,
434   4,
435   {
436     { ARM_SET_R7_RT_SIGRETURN, -1 },
437     { ARM_EABI_SYSCALL, -1 },
438     { TRAMP_SENTINEL_INSN }
439   },
440   arm_linux_rt_sigreturn_init
441 };
442 
443 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
444   NORMAL_FRAME,
445   4,
446   {
447     { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
448     { ARM_LDR_PC_SP_12, -1 },
449     { TRAMP_SENTINEL_INSN }
450   },
451   arm_linux_restart_syscall_init
452 };
453 
454 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
455   NORMAL_FRAME,
456   4,
457   {
458     { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
459     { ARM_LDR_PC_SP_4, -1 },
460     { TRAMP_SENTINEL_INSN }
461   },
462   arm_linux_restart_syscall_init
463 };
464 
465 /* Core file and register set support.  */
466 
467 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
468 
469 void
470 arm_linux_supply_gregset (const struct regset *regset,
471 			  struct regcache *regcache,
472 			  int regnum, const void *gregs_buf, size_t len)
473 {
474   struct gdbarch *gdbarch = get_regcache_arch (regcache);
475   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476   const gdb_byte *gregs = gregs_buf;
477   int regno;
478   CORE_ADDR reg_pc;
479   gdb_byte pc_buf[INT_REGISTER_SIZE];
480 
481   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
482     if (regnum == -1 || regnum == regno)
483       regcache_raw_supply (regcache, regno,
484 			   gregs + INT_REGISTER_SIZE * regno);
485 
486   if (regnum == ARM_PS_REGNUM || regnum == -1)
487     {
488       if (arm_apcs_32)
489 	regcache_raw_supply (regcache, ARM_PS_REGNUM,
490 			     gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
491       else
492 	regcache_raw_supply (regcache, ARM_PS_REGNUM,
493 			     gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
494     }
495 
496   if (regnum == ARM_PC_REGNUM || regnum == -1)
497     {
498       reg_pc = extract_unsigned_integer (gregs
499 					 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
500 					 INT_REGISTER_SIZE, byte_order);
501       reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
502       store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
503       regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
504     }
505 }
506 
507 void
508 arm_linux_collect_gregset (const struct regset *regset,
509 			   const struct regcache *regcache,
510 			   int regnum, void *gregs_buf, size_t len)
511 {
512   gdb_byte *gregs = gregs_buf;
513   int regno;
514 
515   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
516     if (regnum == -1 || regnum == regno)
517       regcache_raw_collect (regcache, regno,
518 			    gregs + INT_REGISTER_SIZE * regno);
519 
520   if (regnum == ARM_PS_REGNUM || regnum == -1)
521     {
522       if (arm_apcs_32)
523 	regcache_raw_collect (regcache, ARM_PS_REGNUM,
524 			      gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
525       else
526 	regcache_raw_collect (regcache, ARM_PS_REGNUM,
527 			      gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
528     }
529 
530   if (regnum == ARM_PC_REGNUM || regnum == -1)
531     regcache_raw_collect (regcache, ARM_PC_REGNUM,
532 			  gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
533 }
534 
535 /* Support for register format used by the NWFPE FPA emulator.  */
536 
537 #define typeNone		0x00
538 #define typeSingle		0x01
539 #define typeDouble		0x02
540 #define typeExtended		0x03
541 
542 void
543 supply_nwfpe_register (struct regcache *regcache, int regno,
544 		       const gdb_byte *regs)
545 {
546   const gdb_byte *reg_data;
547   gdb_byte reg_tag;
548   gdb_byte buf[FP_REGISTER_SIZE];
549 
550   reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
551   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
552   memset (buf, 0, FP_REGISTER_SIZE);
553 
554   switch (reg_tag)
555     {
556     case typeSingle:
557       memcpy (buf, reg_data, 4);
558       break;
559     case typeDouble:
560       memcpy (buf, reg_data + 4, 4);
561       memcpy (buf + 4, reg_data, 4);
562       break;
563     case typeExtended:
564       /* We want sign and exponent, then least significant bits,
565 	 then most significant.  NWFPE does sign, most, least.  */
566       memcpy (buf, reg_data, 4);
567       memcpy (buf + 4, reg_data + 8, 4);
568       memcpy (buf + 8, reg_data + 4, 4);
569       break;
570     default:
571       break;
572     }
573 
574   regcache_raw_supply (regcache, regno, buf);
575 }
576 
577 void
578 collect_nwfpe_register (const struct regcache *regcache, int regno,
579 			gdb_byte *regs)
580 {
581   gdb_byte *reg_data;
582   gdb_byte reg_tag;
583   gdb_byte buf[FP_REGISTER_SIZE];
584 
585   regcache_raw_collect (regcache, regno, buf);
586 
587   /* NOTE drow/2006-06-07: This code uses the tag already in the
588      register buffer.  I've preserved that when moving the code
589      from the native file to the target file.  But this doesn't
590      always make sense.  */
591 
592   reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
593   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
594 
595   switch (reg_tag)
596     {
597     case typeSingle:
598       memcpy (reg_data, buf, 4);
599       break;
600     case typeDouble:
601       memcpy (reg_data, buf + 4, 4);
602       memcpy (reg_data + 4, buf, 4);
603       break;
604     case typeExtended:
605       memcpy (reg_data, buf, 4);
606       memcpy (reg_data + 4, buf + 8, 4);
607       memcpy (reg_data + 8, buf + 4, 4);
608       break;
609     default:
610       break;
611     }
612 }
613 
614 void
615 arm_linux_supply_nwfpe (const struct regset *regset,
616 			struct regcache *regcache,
617 			int regnum, const void *regs_buf, size_t len)
618 {
619   const gdb_byte *regs = regs_buf;
620   int regno;
621 
622   if (regnum == ARM_FPS_REGNUM || regnum == -1)
623     regcache_raw_supply (regcache, ARM_FPS_REGNUM,
624 			 regs + NWFPE_FPSR_OFFSET);
625 
626   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
627     if (regnum == -1 || regnum == regno)
628       supply_nwfpe_register (regcache, regno, regs);
629 }
630 
631 void
632 arm_linux_collect_nwfpe (const struct regset *regset,
633 			 const struct regcache *regcache,
634 			 int regnum, void *regs_buf, size_t len)
635 {
636   gdb_byte *regs = regs_buf;
637   int regno;
638 
639   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
640     if (regnum == -1 || regnum == regno)
641       collect_nwfpe_register (regcache, regno, regs);
642 
643   if (regnum == ARM_FPS_REGNUM || regnum == -1)
644     regcache_raw_collect (regcache, ARM_FPS_REGNUM,
645 			  regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
646 }
647 
648 /* Support VFP register format.  */
649 
650 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
651 
652 static void
653 arm_linux_supply_vfp (const struct regset *regset,
654 		      struct regcache *regcache,
655 		      int regnum, const void *regs_buf, size_t len)
656 {
657   const gdb_byte *regs = regs_buf;
658   int regno;
659 
660   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
661     regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
662 
663   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
664     if (regnum == -1 || regnum == regno)
665       regcache_raw_supply (regcache, regno,
666 			   regs + (regno - ARM_D0_REGNUM) * 8);
667 }
668 
669 static void
670 arm_linux_collect_vfp (const struct regset *regset,
671 			 const struct regcache *regcache,
672 			 int regnum, void *regs_buf, size_t len)
673 {
674   gdb_byte *regs = regs_buf;
675   int regno;
676 
677   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
678     regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
679 
680   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
681     if (regnum == -1 || regnum == regno)
682       regcache_raw_collect (regcache, regno,
683 			    regs + (regno - ARM_D0_REGNUM) * 8);
684 }
685 
686 /* Return the appropriate register set for the core section identified
687    by SECT_NAME and SECT_SIZE.  */
688 
689 static const struct regset *
690 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
691 				    const char *sect_name, size_t sect_size)
692 {
693   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
694 
695   if (strcmp (sect_name, ".reg") == 0
696       && sect_size == ARM_LINUX_SIZEOF_GREGSET)
697     {
698       if (tdep->gregset == NULL)
699         tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
700                                       arm_linux_collect_gregset);
701       return tdep->gregset;
702     }
703 
704   if (strcmp (sect_name, ".reg2") == 0
705       && sect_size == ARM_LINUX_SIZEOF_NWFPE)
706     {
707       if (tdep->fpregset == NULL)
708         tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
709                                        arm_linux_collect_nwfpe);
710       return tdep->fpregset;
711     }
712 
713   if (strcmp (sect_name, ".reg-arm-vfp") == 0
714       && sect_size == ARM_LINUX_SIZEOF_VFP)
715     {
716       if (tdep->vfpregset == NULL)
717         tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
718 					arm_linux_collect_vfp);
719       return tdep->vfpregset;
720     }
721 
722   return NULL;
723 }
724 
725 /* Core file register set sections.  */
726 
727 static struct core_regset_section arm_linux_fpa_regset_sections[] =
728 {
729   { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
730   { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
731   { NULL, 0}
732 };
733 
734 static struct core_regset_section arm_linux_vfp_regset_sections[] =
735 {
736   { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
737   { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
738   { NULL, 0}
739 };
740 
741 /* Determine target description from core file.  */
742 
743 static const struct target_desc *
744 arm_linux_core_read_description (struct gdbarch *gdbarch,
745                                  struct target_ops *target,
746                                  bfd *abfd)
747 {
748   CORE_ADDR arm_hwcap = 0;
749 
750   if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
751     return NULL;
752 
753   if (arm_hwcap & HWCAP_VFP)
754     {
755       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
756          Neon with VFPv3-D32.  */
757       if (arm_hwcap & HWCAP_NEON)
758 	return tdesc_arm_with_neon;
759       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
760 	return tdesc_arm_with_vfpv3;
761       else
762 	return tdesc_arm_with_vfpv2;
763     }
764 
765   return NULL;
766 }
767 
768 
769 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
770    return 1.  In addition, set IS_THUMB depending on whether we
771    will return to ARM or Thumb code.  Return 0 if it is not a
772    rt_sigreturn/sigreturn syscall.  */
773 static int
774 arm_linux_sigreturn_return_addr (struct frame_info *frame,
775 				 unsigned long svc_number,
776 				 CORE_ADDR *pc, int *is_thumb)
777 {
778   /* Is this a sigreturn or rt_sigreturn syscall?  */
779   if (svc_number == 119 || svc_number == 173)
780     {
781       if (get_frame_type (frame) == SIGTRAMP_FRAME)
782 	{
783 	  ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
784 	  CORE_ADDR cpsr
785 	    = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
786 
787 	  *is_thumb = (cpsr & t_bit) != 0;
788 	  *pc = frame_unwind_caller_pc (frame);
789 	  return 1;
790 	}
791     }
792   return 0;
793 }
794 
795 /* At a ptrace syscall-stop, return the syscall number.  This either
796    comes from the SWI instruction (OABI) or from r7 (EABI).
797 
798    When the function fails, it should return -1.  */
799 
800 static LONGEST
801 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
802 			      ptid_t ptid)
803 {
804   struct regcache *regs = get_thread_regcache (ptid);
805   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
806 
807   ULONGEST pc;
808   ULONGEST cpsr;
809   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
810   int is_thumb;
811   ULONGEST svc_number = -1;
812 
813   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
814   regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
815   is_thumb = (cpsr & t_bit) != 0;
816 
817   if (is_thumb)
818     {
819       regcache_cooked_read_unsigned (regs, 7, &svc_number);
820     }
821   else
822     {
823       enum bfd_endian byte_order_for_code =
824 	gdbarch_byte_order_for_code (gdbarch);
825 
826       /* PC gets incremented before the syscall-stop, so read the
827 	 previous instruction.  */
828       unsigned long this_instr =
829 	read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
830 
831       unsigned long svc_operand = (0x00ffffff & this_instr);
832 
833       if (svc_operand)
834 	{
835           /* OABI */
836 	  svc_number = svc_operand - 0x900000;
837 	}
838       else
839 	{
840           /* EABI */
841 	  regcache_cooked_read_unsigned (regs, 7, &svc_number);
842 	}
843     }
844 
845   return svc_number;
846 }
847 
848 /* When FRAME is at a syscall instruction, return the PC of the next
849    instruction to be executed.  */
850 
851 static CORE_ADDR
852 arm_linux_syscall_next_pc (struct frame_info *frame)
853 {
854   CORE_ADDR pc = get_frame_pc (frame);
855   CORE_ADDR return_addr = 0;
856   int is_thumb = arm_frame_is_thumb (frame);
857   ULONGEST svc_number = 0;
858 
859   if (is_thumb)
860     {
861       svc_number = get_frame_register_unsigned (frame, 7);
862       return_addr = pc + 2;
863     }
864   else
865     {
866       struct gdbarch *gdbarch = get_frame_arch (frame);
867       enum bfd_endian byte_order_for_code =
868 	gdbarch_byte_order_for_code (gdbarch);
869       unsigned long this_instr =
870 	read_memory_unsigned_integer (pc, 4, byte_order_for_code);
871 
872       unsigned long svc_operand = (0x00ffffff & this_instr);
873       if (svc_operand)  /* OABI.  */
874 	{
875 	  svc_number = svc_operand - 0x900000;
876 	}
877       else /* EABI.  */
878 	{
879 	  svc_number = get_frame_register_unsigned (frame, 7);
880 	}
881 
882       return_addr = pc + 4;
883     }
884 
885   arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
886 
887   /* Addresses for calling Thumb functions have the bit 0 set.  */
888   if (is_thumb)
889     return_addr |= 1;
890 
891   return return_addr;
892 }
893 
894 
895 /* Insert a single step breakpoint at the next executed instruction.  */
896 
897 static int
898 arm_linux_software_single_step (struct frame_info *frame)
899 {
900   struct gdbarch *gdbarch = get_frame_arch (frame);
901   struct address_space *aspace = get_frame_address_space (frame);
902   CORE_ADDR next_pc;
903 
904   if (arm_deal_with_atomic_sequence (frame))
905     return 1;
906 
907   next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
908 
909   /* The Linux kernel offers some user-mode helpers in a high page.  We can
910      not read this page (as of 2.6.23), and even if we could then we couldn't
911      set breakpoints in it, and even if we could then the atomic operations
912      would fail when interrupted.  They are all called as functions and return
913      to the address in LR, so step to there instead.  */
914   if (next_pc > 0xffff0000)
915     next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
916 
917   arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
918 
919   return 1;
920 }
921 
922 /* Support for displaced stepping of Linux SVC instructions.  */
923 
924 static void
925 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
926 		       struct regcache *regs,
927 		       struct displaced_step_closure *dsc)
928 {
929   CORE_ADDR from = dsc->insn_addr;
930   ULONGEST apparent_pc;
931   int within_scratch;
932 
933   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
934 
935   within_scratch = (apparent_pc >= dsc->scratch_base
936 		    && apparent_pc < (dsc->scratch_base
937 				      + DISPLACED_MODIFIED_INSNS * 4 + 4));
938 
939   if (debug_displaced)
940     {
941       fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
942 			  "SVC step ", (unsigned long) apparent_pc);
943       if (within_scratch)
944         fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
945       else
946         fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
947     }
948 
949   if (within_scratch)
950     displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
951 }
952 
953 static int
954 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
955 		    struct displaced_step_closure *dsc)
956 {
957   CORE_ADDR return_to = 0;
958 
959   struct frame_info *frame;
960   unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
961   int is_sigreturn = 0;
962   int is_thumb;
963 
964   frame = get_current_frame ();
965 
966   is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
967 						 &return_to, &is_thumb);
968   if (is_sigreturn)
969     {
970 	  struct symtab_and_line sal;
971 
972 	  if (debug_displaced)
973 	    fprintf_unfiltered (gdb_stdlog, "displaced: found "
974 	      "sigreturn/rt_sigreturn SVC call.  PC in frame = %lx\n",
975 	      (unsigned long) get_frame_pc (frame));
976 
977 	  if (debug_displaced)
978 	    fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx.  "
979 	      "Setting momentary breakpoint.\n", (unsigned long) return_to);
980 
981 	  gdb_assert (inferior_thread ()->control.step_resume_breakpoint
982 		      == NULL);
983 
984 	  sal = find_pc_line (return_to, 0);
985 	  sal.pc = return_to;
986 	  sal.section = find_pc_overlay (return_to);
987 	  sal.explicit_pc = 1;
988 
989 	  frame = get_prev_frame (frame);
990 
991 	  if (frame)
992 	    {
993 	      inferior_thread ()->control.step_resume_breakpoint
994         	= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
995 					    bp_step_resume);
996 
997 	      /* set_momentary_breakpoint invalidates FRAME.  */
998 	      frame = NULL;
999 
1000 	      /* We need to make sure we actually insert the momentary
1001 	         breakpoint set above.  */
1002 	      insert_breakpoints ();
1003 	    }
1004 	  else if (debug_displaced)
1005 	    fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1006 				"frame to set momentary breakpoint for "
1007 				"sigreturn/rt_sigreturn\n");
1008 	}
1009       else if (debug_displaced)
1010 	fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1011 			    "SVC call not in signal trampoline frame\n");
1012 
1013 
1014   /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1015 		  location, else nothing.
1016      Insn: unmodified svc.
1017      Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1018               else leave pc alone.  */
1019 
1020 
1021   dsc->cleanup = &arm_linux_cleanup_svc;
1022   /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1023      instruction.  */
1024   dsc->wrote_to_pc = 1;
1025 
1026   return 0;
1027 }
1028 
1029 
1030 /* The following two functions implement single-stepping over calls to Linux
1031    kernel helper routines, which perform e.g. atomic operations on architecture
1032    variants which don't support them natively.
1033 
1034    When this function is called, the PC will be pointing at the kernel helper
1035    (at an address inaccessible to GDB), and r14 will point to the return
1036    address.  Displaced stepping always executes code in the copy area:
1037    so, make the copy-area instruction branch back to the kernel helper (the
1038    "from" address), and make r14 point to the breakpoint in the copy area.  In
1039    that way, we regain control once the kernel helper returns, and can clean
1040    up appropriately (as if we had just returned from the kernel helper as it
1041    would have been called from the non-displaced location).  */
1042 
1043 static void
1044 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1045 			      struct regcache *regs,
1046 			      struct displaced_step_closure *dsc)
1047 {
1048   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1049   displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1050 }
1051 
1052 static void
1053 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1054 				CORE_ADDR to, struct regcache *regs,
1055 				struct displaced_step_closure *dsc)
1056 {
1057   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1058 
1059   dsc->numinsns = 1;
1060   dsc->insn_addr = from;
1061   dsc->cleanup = &cleanup_kernel_helper_return;
1062   /* Say we wrote to the PC, else cleanup will set PC to the next
1063      instruction in the helper, which isn't helpful.  */
1064   dsc->wrote_to_pc = 1;
1065 
1066   /* Preparation: tmp[0] <- r14
1067                   r14 <- <scratch space>+4
1068 		  *(<scratch space>+8) <- from
1069      Insn: ldr pc, [r14, #4]
1070      Cleanup: r14 <- tmp[0], pc <- tmp[0].  */
1071 
1072   dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1073   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1074 		       CANNOT_WRITE_PC);
1075   write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1076 
1077   dsc->modinsn[0] = 0xe59ef004;  /* ldr pc, [lr, #4].  */
1078 }
1079 
1080 /* Linux-specific displaced step instruction copying function.  Detects when
1081    the program has stepped into a Linux kernel helper routine (which must be
1082    handled as a special case), falling back to arm_displaced_step_copy_insn()
1083    if it hasn't.  */
1084 
1085 static struct displaced_step_closure *
1086 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1087 				    CORE_ADDR from, CORE_ADDR to,
1088 				    struct regcache *regs)
1089 {
1090   struct displaced_step_closure *dsc
1091     = xmalloc (sizeof (struct displaced_step_closure));
1092 
1093   /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1094      stop at the return location.  */
1095   if (from > 0xffff0000)
1096     {
1097       if (debug_displaced)
1098         fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1099 			    "at %.8lx\n", (unsigned long) from);
1100 
1101       arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1102     }
1103   else
1104     {
1105       /* Override the default handling of SVC instructions.  */
1106       dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1107 
1108       arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1109     }
1110 
1111   arm_displaced_init_closure (gdbarch, from, to, dsc);
1112 
1113   return dsc;
1114 }
1115 
1116 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1117    gdbarch.h.  */
1118 
1119 static int
1120 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1121 {
1122   return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number.  */
1123 	  || *s == '[' /* Register indirection or
1124 			  displacement.  */
1125 	  || isalpha (*s)); /* Register value.  */
1126 }
1127 
1128 /* This routine is used to parse a special token in ARM's assembly.
1129 
1130    The special tokens parsed by it are:
1131 
1132       - Register displacement (e.g, [fp, #-8])
1133 
1134    It returns one if the special token has been parsed successfully,
1135    or zero if the current token is not considered special.  */
1136 
1137 static int
1138 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1139 			      struct stap_parse_info *p)
1140 {
1141   if (*p->arg == '[')
1142     {
1143       /* Temporary holder for lookahead.  */
1144       const char *tmp = p->arg;
1145       char *endp;
1146       /* Used to save the register name.  */
1147       const char *start;
1148       char *regname;
1149       int len, offset;
1150       int got_minus = 0;
1151       long displacement;
1152       struct stoken str;
1153 
1154       ++tmp;
1155       start = tmp;
1156 
1157       /* Register name.  */
1158       while (isalnum (*tmp))
1159 	++tmp;
1160 
1161       if (*tmp != ',')
1162 	return 0;
1163 
1164       len = tmp - start;
1165       regname = alloca (len + 2);
1166 
1167       offset = 0;
1168       if (isdigit (*start))
1169 	{
1170 	  /* If we are dealing with a register whose name begins with a
1171 	     digit, it means we should prefix the name with the letter
1172 	     `r', because GDB expects this name pattern.  Otherwise (e.g.,
1173 	     we are dealing with the register `fp'), we don't need to
1174 	     add such a prefix.  */
1175 	  regname[0] = 'r';
1176 	  offset = 1;
1177 	}
1178 
1179       strncpy (regname + offset, start, len);
1180       len += offset;
1181       regname[len] = '\0';
1182 
1183       if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1184 	error (_("Invalid register name `%s' on expression `%s'."),
1185 	       regname, p->saved_arg);
1186 
1187       ++tmp;
1188       tmp = skip_spaces_const (tmp);
1189       if (*tmp == '#' || *tmp == '$')
1190 	++tmp;
1191 
1192       if (*tmp == '-')
1193 	{
1194 	  ++tmp;
1195 	  got_minus = 1;
1196 	}
1197 
1198       displacement = strtol (tmp, &endp, 10);
1199       tmp = endp;
1200 
1201       /* Skipping last `]'.  */
1202       if (*tmp++ != ']')
1203 	return 0;
1204 
1205       /* The displacement.  */
1206       write_exp_elt_opcode (OP_LONG);
1207       write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
1208       write_exp_elt_longcst (displacement);
1209       write_exp_elt_opcode (OP_LONG);
1210       if (got_minus)
1211 	write_exp_elt_opcode (UNOP_NEG);
1212 
1213       /* The register name.  */
1214       write_exp_elt_opcode (OP_REGISTER);
1215       str.ptr = regname;
1216       str.length = len;
1217       write_exp_string (str);
1218       write_exp_elt_opcode (OP_REGISTER);
1219 
1220       write_exp_elt_opcode (BINOP_ADD);
1221 
1222       /* Casting to the expected type.  */
1223       write_exp_elt_opcode (UNOP_CAST);
1224       write_exp_elt_type (lookup_pointer_type (p->arg_type));
1225       write_exp_elt_opcode (UNOP_CAST);
1226 
1227       write_exp_elt_opcode (UNOP_IND);
1228 
1229       p->arg = tmp;
1230     }
1231   else
1232     return 0;
1233 
1234   return 1;
1235 }
1236 
1237 static void
1238 arm_linux_init_abi (struct gdbarch_info info,
1239 		    struct gdbarch *gdbarch)
1240 {
1241   static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1242   static const char *const stap_register_prefixes[] = { "r", NULL };
1243   static const char *const stap_register_indirection_prefixes[] = { "[",
1244 								    NULL };
1245   static const char *const stap_register_indirection_suffixes[] = { "]",
1246 								    NULL };
1247   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1248 
1249   linux_init_abi (info, gdbarch);
1250 
1251   tdep->lowest_pc = 0x8000;
1252   if (info.byte_order == BFD_ENDIAN_BIG)
1253     {
1254       if (tdep->arm_abi == ARM_ABI_AAPCS)
1255 	tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1256       else
1257 	tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1258       tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1259       tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1260     }
1261   else
1262     {
1263       if (tdep->arm_abi == ARM_ABI_AAPCS)
1264 	tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1265       else
1266 	tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1267       tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1268       tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1269     }
1270   tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1271   tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1272   tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1273 
1274   if (tdep->fp_model == ARM_FLOAT_AUTO)
1275     tdep->fp_model = ARM_FLOAT_FPA;
1276 
1277   switch (tdep->fp_model)
1278     {
1279     case ARM_FLOAT_FPA:
1280       tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1281       break;
1282     case ARM_FLOAT_SOFT_FPA:
1283     case ARM_FLOAT_SOFT_VFP:
1284     case ARM_FLOAT_VFP:
1285       tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1286       break;
1287     default:
1288       internal_error
1289 	(__FILE__, __LINE__,
1290          _("arm_linux_init_abi: Floating point model not supported"));
1291       break;
1292     }
1293   tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1294 
1295   set_solib_svr4_fetch_link_map_offsets
1296     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1297 
1298   /* Single stepping.  */
1299   set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1300 
1301   /* Shared library handling.  */
1302   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1303   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1304 
1305   /* Enable TLS support.  */
1306   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1307                                              svr4_fetch_objfile_link_map);
1308 
1309   tramp_frame_prepend_unwinder (gdbarch,
1310 				&arm_linux_sigreturn_tramp_frame);
1311   tramp_frame_prepend_unwinder (gdbarch,
1312 				&arm_linux_rt_sigreturn_tramp_frame);
1313   tramp_frame_prepend_unwinder (gdbarch,
1314 				&arm_eabi_linux_sigreturn_tramp_frame);
1315   tramp_frame_prepend_unwinder (gdbarch,
1316 				&arm_eabi_linux_rt_sigreturn_tramp_frame);
1317   tramp_frame_prepend_unwinder (gdbarch,
1318 				&arm_linux_restart_syscall_tramp_frame);
1319   tramp_frame_prepend_unwinder (gdbarch,
1320 				&arm_kernel_linux_restart_syscall_tramp_frame);
1321 
1322   /* Core file support.  */
1323   set_gdbarch_regset_from_core_section (gdbarch,
1324 					arm_linux_regset_from_core_section);
1325   set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1326 
1327   if (tdep->have_vfp_registers)
1328     set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1329   else if (tdep->have_fpa_registers)
1330     set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1331 
1332   set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1333 
1334   /* Displaced stepping.  */
1335   set_gdbarch_displaced_step_copy_insn (gdbarch,
1336 					arm_linux_displaced_step_copy_insn);
1337   set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1338   set_gdbarch_displaced_step_free_closure (gdbarch,
1339 					   simple_displaced_step_free_closure);
1340   set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1341 
1342   /* Reversible debugging, process record.  */
1343   set_gdbarch_process_record (gdbarch, arm_process_record);
1344 
1345   /* SystemTap functions.  */
1346   set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1347   set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1348   set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1349 					  stap_register_indirection_prefixes);
1350   set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1351 					  stap_register_indirection_suffixes);
1352   set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1353   set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1354   set_gdbarch_stap_parse_special_token (gdbarch,
1355 					arm_stap_parse_special_token);
1356 
1357   tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1358 
1359   /* `catch syscall' */
1360   set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1361   set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1362 
1363   /* Syscall record.  */
1364   tdep->arm_swi_record = NULL;
1365 }
1366 
1367 /* Provide a prototype to silence -Wmissing-prototypes.  */
1368 extern initialize_file_ftype _initialize_arm_linux_tdep;
1369 
1370 void
1371 _initialize_arm_linux_tdep (void)
1372 {
1373   gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1374 			  arm_linux_init_abi);
1375 }
1376