1 /* Copyright (C) 2009-2016 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "osabi.h" 20 #include "amd64-tdep.h" 21 #include "gdbtypes.h" 22 #include "gdbcore.h" 23 #include "regcache.h" 24 #include "windows-tdep.h" 25 #include "frame.h" 26 #include "objfiles.h" 27 #include "frame-unwind.h" 28 #include "coff/internal.h" 29 #include "coff/i386.h" 30 #include "coff/pe.h" 31 #include "libcoff.h" 32 #include "value.h" 33 34 /* The registers used to pass integer arguments during a function call. */ 35 static int amd64_windows_dummy_call_integer_regs[] = 36 { 37 AMD64_RCX_REGNUM, /* %rcx */ 38 AMD64_RDX_REGNUM, /* %rdx */ 39 AMD64_R8_REGNUM, /* %r8 */ 40 AMD64_R9_REGNUM /* %r9 */ 41 }; 42 43 /* Return nonzero if an argument of type TYPE should be passed 44 via one of the integer registers. */ 45 46 static int 47 amd64_windows_passed_by_integer_register (struct type *type) 48 { 49 switch (TYPE_CODE (type)) 50 { 51 case TYPE_CODE_INT: 52 case TYPE_CODE_ENUM: 53 case TYPE_CODE_BOOL: 54 case TYPE_CODE_RANGE: 55 case TYPE_CODE_CHAR: 56 case TYPE_CODE_PTR: 57 case TYPE_CODE_REF: 58 case TYPE_CODE_STRUCT: 59 case TYPE_CODE_UNION: 60 return (TYPE_LENGTH (type) == 1 61 || TYPE_LENGTH (type) == 2 62 || TYPE_LENGTH (type) == 4 63 || TYPE_LENGTH (type) == 8); 64 65 default: 66 return 0; 67 } 68 } 69 70 /* Return nonzero if an argument of type TYPE should be passed 71 via one of the XMM registers. */ 72 73 static int 74 amd64_windows_passed_by_xmm_register (struct type *type) 75 { 76 return ((TYPE_CODE (type) == TYPE_CODE_FLT 77 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) 78 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8)); 79 } 80 81 /* Return non-zero iff an argument of the given TYPE should be passed 82 by pointer. */ 83 84 static int 85 amd64_windows_passed_by_pointer (struct type *type) 86 { 87 if (amd64_windows_passed_by_integer_register (type)) 88 return 0; 89 90 if (amd64_windows_passed_by_xmm_register (type)) 91 return 0; 92 93 return 1; 94 } 95 96 /* For each argument that should be passed by pointer, reserve some 97 stack space, store a copy of the argument on the stack, and replace 98 the argument by its address. Return the new Stack Pointer value. 99 100 NARGS is the number of arguments. ARGS is the array containing 101 the value of each argument. SP is value of the Stack Pointer. */ 102 103 static CORE_ADDR 104 amd64_windows_adjust_args_passed_by_pointer (struct value **args, 105 int nargs, CORE_ADDR sp) 106 { 107 int i; 108 109 for (i = 0; i < nargs; i++) 110 if (amd64_windows_passed_by_pointer (value_type (args[i]))) 111 { 112 struct type *type = value_type (args[i]); 113 const gdb_byte *valbuf = value_contents (args[i]); 114 const int len = TYPE_LENGTH (type); 115 116 /* Store a copy of that argument on the stack, aligned to 117 a 16 bytes boundary, and then use the copy's address as 118 the argument. */ 119 120 sp -= len; 121 sp &= ~0xf; 122 write_memory (sp, valbuf, len); 123 124 args[i] 125 = value_addr (value_from_contents_and_address (type, valbuf, sp)); 126 } 127 128 return sp; 129 } 130 131 /* Store the value of ARG in register REGNO (right-justified). 132 REGCACHE is the register cache. */ 133 134 static void 135 amd64_windows_store_arg_in_reg (struct regcache *regcache, 136 struct value *arg, int regno) 137 { 138 struct type *type = value_type (arg); 139 const gdb_byte *valbuf = value_contents (arg); 140 gdb_byte buf[8]; 141 142 gdb_assert (TYPE_LENGTH (type) <= 8); 143 memset (buf, 0, sizeof buf); 144 memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8)); 145 regcache_cooked_write (regcache, regno, buf); 146 } 147 148 /* Push the arguments for an inferior function call, and return 149 the updated value of the SP (Stack Pointer). 150 151 All arguments are identical to the arguments used in 152 amd64_windows_push_dummy_call. */ 153 154 static CORE_ADDR 155 amd64_windows_push_arguments (struct regcache *regcache, int nargs, 156 struct value **args, CORE_ADDR sp, 157 int struct_return) 158 { 159 int reg_idx = 0; 160 int i; 161 struct value **stack_args = XALLOCAVEC (struct value *, nargs); 162 int num_stack_args = 0; 163 int num_elements = 0; 164 int element = 0; 165 166 /* First, handle the arguments passed by pointer. 167 168 These arguments are replaced by pointers to a copy we are making 169 in inferior memory. So use a copy of the ARGS table, to avoid 170 modifying the original one. */ 171 { 172 struct value **args1 = XALLOCAVEC (struct value *, nargs); 173 174 memcpy (args1, args, nargs * sizeof (struct value *)); 175 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp); 176 args = args1; 177 } 178 179 /* Reserve a register for the "hidden" argument. */ 180 if (struct_return) 181 reg_idx++; 182 183 for (i = 0; i < nargs; i++) 184 { 185 struct type *type = value_type (args[i]); 186 int len = TYPE_LENGTH (type); 187 int on_stack_p = 1; 188 189 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs)) 190 { 191 if (amd64_windows_passed_by_integer_register (type)) 192 { 193 amd64_windows_store_arg_in_reg 194 (regcache, args[i], 195 amd64_windows_dummy_call_integer_regs[reg_idx]); 196 on_stack_p = 0; 197 reg_idx++; 198 } 199 else if (amd64_windows_passed_by_xmm_register (type)) 200 { 201 amd64_windows_store_arg_in_reg 202 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx); 203 /* In case of varargs, these parameters must also be 204 passed via the integer registers. */ 205 amd64_windows_store_arg_in_reg 206 (regcache, args[i], 207 amd64_windows_dummy_call_integer_regs[reg_idx]); 208 on_stack_p = 0; 209 reg_idx++; 210 } 211 } 212 213 if (on_stack_p) 214 { 215 num_elements += ((len + 7) / 8); 216 stack_args[num_stack_args++] = args[i]; 217 } 218 } 219 220 /* Allocate space for the arguments on the stack, keeping it 221 aligned on a 16 byte boundary. */ 222 sp -= num_elements * 8; 223 sp &= ~0xf; 224 225 /* Write out the arguments to the stack. */ 226 for (i = 0; i < num_stack_args; i++) 227 { 228 struct type *type = value_type (stack_args[i]); 229 const gdb_byte *valbuf = value_contents (stack_args[i]); 230 231 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type)); 232 element += ((TYPE_LENGTH (type) + 7) / 8); 233 } 234 235 return sp; 236 } 237 238 /* Implement the "push_dummy_call" gdbarch method. */ 239 240 static CORE_ADDR 241 amd64_windows_push_dummy_call 242 (struct gdbarch *gdbarch, struct value *function, 243 struct regcache *regcache, CORE_ADDR bp_addr, 244 int nargs, struct value **args, 245 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) 246 { 247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 248 gdb_byte buf[8]; 249 250 /* Pass arguments. */ 251 sp = amd64_windows_push_arguments (regcache, nargs, args, sp, 252 struct_return); 253 254 /* Pass "hidden" argument". */ 255 if (struct_return) 256 { 257 /* The "hidden" argument is passed throught the first argument 258 register. */ 259 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0]; 260 261 store_unsigned_integer (buf, 8, byte_order, struct_addr); 262 regcache_cooked_write (regcache, arg_regnum, buf); 263 } 264 265 /* Reserve some memory on the stack for the integer-parameter 266 registers, as required by the ABI. */ 267 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8; 268 269 /* Store return address. */ 270 sp -= 8; 271 store_unsigned_integer (buf, 8, byte_order, bp_addr); 272 write_memory (sp, buf, 8); 273 274 /* Update the stack pointer... */ 275 store_unsigned_integer (buf, 8, byte_order, sp); 276 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); 277 278 /* ...and fake a frame pointer. */ 279 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); 280 281 return sp + 16; 282 } 283 284 /* Implement the "return_value" gdbarch method for amd64-windows. */ 285 286 static enum return_value_convention 287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function, 288 struct type *type, struct regcache *regcache, 289 gdb_byte *readbuf, const gdb_byte *writebuf) 290 { 291 int len = TYPE_LENGTH (type); 292 int regnum = -1; 293 294 /* See if our value is returned through a register. If it is, then 295 store the associated register number in REGNUM. */ 296 switch (TYPE_CODE (type)) 297 { 298 case TYPE_CODE_FLT: 299 case TYPE_CODE_DECFLOAT: 300 /* __m128, __m128i, __m128d, floats, and doubles are returned 301 via XMM0. */ 302 if (len == 4 || len == 8 || len == 16) 303 regnum = AMD64_XMM0_REGNUM; 304 break; 305 default: 306 /* All other values that are 1, 2, 4 or 8 bytes long are returned 307 via RAX. */ 308 if (len == 1 || len == 2 || len == 4 || len == 8) 309 regnum = AMD64_RAX_REGNUM; 310 break; 311 } 312 313 if (regnum < 0) 314 { 315 /* RAX contains the address where the return value has been stored. */ 316 if (readbuf) 317 { 318 ULONGEST addr; 319 320 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); 321 read_memory (addr, readbuf, TYPE_LENGTH (type)); 322 } 323 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 324 } 325 else 326 { 327 /* Extract the return value from the register where it was stored. */ 328 if (readbuf) 329 regcache_raw_read_part (regcache, regnum, 0, len, readbuf); 330 if (writebuf) 331 regcache_raw_write_part (regcache, regnum, 0, len, writebuf); 332 return RETURN_VALUE_REGISTER_CONVENTION; 333 } 334 } 335 336 /* Check that the code pointed to by PC corresponds to a call to 337 __main, skip it if so. Return PC otherwise. */ 338 339 static CORE_ADDR 340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 341 { 342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 343 gdb_byte op; 344 345 target_read_memory (pc, &op, 1); 346 if (op == 0xe8) 347 { 348 gdb_byte buf[4]; 349 350 if (target_read_memory (pc + 1, buf, sizeof buf) == 0) 351 { 352 struct bound_minimal_symbol s; 353 CORE_ADDR call_dest; 354 355 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order); 356 s = lookup_minimal_symbol_by_pc (call_dest); 357 if (s.minsym != NULL 358 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL 359 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0) 360 pc += 5; 361 } 362 } 363 364 return pc; 365 } 366 367 struct amd64_windows_frame_cache 368 { 369 /* ImageBase for the module. */ 370 CORE_ADDR image_base; 371 372 /* Function start and end rva. */ 373 CORE_ADDR start_rva; 374 CORE_ADDR end_rva; 375 376 /* Next instruction to be executed. */ 377 CORE_ADDR pc; 378 379 /* Current sp. */ 380 CORE_ADDR sp; 381 382 /* Address of saved integer and xmm registers. */ 383 CORE_ADDR prev_reg_addr[16]; 384 CORE_ADDR prev_xmm_addr[16]; 385 386 /* These two next fields are set only for machine info frames. */ 387 388 /* Likewise for RIP. */ 389 CORE_ADDR prev_rip_addr; 390 391 /* Likewise for RSP. */ 392 CORE_ADDR prev_rsp_addr; 393 394 /* Address of the previous frame. */ 395 CORE_ADDR prev_sp; 396 }; 397 398 /* Convert a Windows register number to gdb. */ 399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] = 400 { 401 AMD64_RAX_REGNUM, 402 AMD64_RCX_REGNUM, 403 AMD64_RDX_REGNUM, 404 AMD64_RBX_REGNUM, 405 AMD64_RSP_REGNUM, 406 AMD64_RBP_REGNUM, 407 AMD64_RSI_REGNUM, 408 AMD64_RDI_REGNUM, 409 AMD64_R8_REGNUM, 410 AMD64_R9_REGNUM, 411 AMD64_R10_REGNUM, 412 AMD64_R11_REGNUM, 413 AMD64_R12_REGNUM, 414 AMD64_R13_REGNUM, 415 AMD64_R14_REGNUM, 416 AMD64_R15_REGNUM 417 }; 418 419 /* Return TRUE iff PC is the the range of the function corresponding to 420 CACHE. */ 421 422 static int 423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache) 424 { 425 return (pc >= cache->image_base + cache->start_rva 426 && pc < cache->image_base + cache->end_rva); 427 } 428 429 /* Try to recognize and decode an epilogue sequence. 430 431 Return -1 if we fail to read the instructions for any reason. 432 Return 1 if an epilogue sequence was recognized, 0 otherwise. */ 433 434 static int 435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame, 436 struct amd64_windows_frame_cache *cache) 437 { 438 /* According to MSDN an epilogue "must consist of either an add RSP,constant 439 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte 440 register pops and a return or a jmp". 441 442 Furthermore, according to RtlVirtualUnwind, the complete list of 443 epilog marker is: 444 - ret [c3] 445 - ret n [c2 imm16] 446 - rep ret [f3 c3] 447 - jmp imm8 | imm32 [eb rel8] or [e9 rel32] 448 - jmp qword ptr imm32 - not handled 449 - rex.w jmp reg [4X ff eY] 450 */ 451 452 CORE_ADDR pc = cache->pc; 453 CORE_ADDR cur_sp = cache->sp; 454 struct gdbarch *gdbarch = get_frame_arch (this_frame); 455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 456 gdb_byte op; 457 gdb_byte rex; 458 459 /* We don't care about the instruction deallocating the frame: 460 if it hasn't been executed, the pc is still in the body, 461 if it has been executed, the following epilog decoding will work. */ 462 463 /* First decode: 464 - pop reg [41 58-5f] or [58-5f]. */ 465 466 while (1) 467 { 468 /* Read opcode. */ 469 if (target_read_memory (pc, &op, 1) != 0) 470 return -1; 471 472 if (op >= 0x40 && op <= 0x4f) 473 { 474 /* REX prefix. */ 475 rex = op; 476 477 /* Read opcode. */ 478 if (target_read_memory (pc + 1, &op, 1) != 0) 479 return -1; 480 } 481 else 482 rex = 0; 483 484 if (op >= 0x58 && op <= 0x5f) 485 { 486 /* pop reg */ 487 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3); 488 489 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp; 490 cur_sp += 8; 491 pc += rex ? 2 : 1; 492 } 493 else 494 break; 495 496 /* Allow the user to break this loop. This shouldn't happen as the 497 number of consecutive pop should be small. */ 498 QUIT; 499 } 500 501 /* Then decode the marker. */ 502 503 /* Read opcode. */ 504 if (target_read_memory (pc, &op, 1) != 0) 505 return -1; 506 507 switch (op) 508 { 509 case 0xc3: 510 /* Ret. */ 511 cache->prev_rip_addr = cur_sp; 512 cache->prev_sp = cur_sp + 8; 513 return 1; 514 515 case 0xeb: 516 { 517 /* jmp rel8 */ 518 gdb_byte rel8; 519 CORE_ADDR npc; 520 521 if (target_read_memory (pc + 1, &rel8, 1) != 0) 522 return -1; 523 npc = pc + 2 + (signed char) rel8; 524 525 /* If the jump is within the function, then this is not a marker, 526 otherwise this is a tail-call. */ 527 return !pc_in_range (npc, cache); 528 } 529 530 case 0xec: 531 { 532 /* jmp rel32 */ 533 gdb_byte rel32[4]; 534 CORE_ADDR npc; 535 536 if (target_read_memory (pc + 1, rel32, 4) != 0) 537 return -1; 538 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order); 539 540 /* If the jump is within the function, then this is not a marker, 541 otherwise this is a tail-call. */ 542 return !pc_in_range (npc, cache); 543 } 544 545 case 0xc2: 546 { 547 /* ret n */ 548 gdb_byte imm16[2]; 549 550 if (target_read_memory (pc + 1, imm16, 2) != 0) 551 return -1; 552 cache->prev_rip_addr = cur_sp; 553 cache->prev_sp = cur_sp 554 + extract_unsigned_integer (imm16, 4, byte_order); 555 return 1; 556 } 557 558 case 0xf3: 559 { 560 /* rep; ret */ 561 gdb_byte op1; 562 563 if (target_read_memory (pc + 2, &op1, 1) != 0) 564 return -1; 565 if (op1 != 0xc3) 566 return 0; 567 568 cache->prev_rip_addr = cur_sp; 569 cache->prev_sp = cur_sp + 8; 570 return 1; 571 } 572 573 case 0x40: 574 case 0x41: 575 case 0x42: 576 case 0x43: 577 case 0x44: 578 case 0x45: 579 case 0x46: 580 case 0x47: 581 case 0x48: 582 case 0x49: 583 case 0x4a: 584 case 0x4b: 585 case 0x4c: 586 case 0x4d: 587 case 0x4e: 588 case 0x4f: 589 /* Got a REX prefix, read next byte. */ 590 rex = op; 591 if (target_read_memory (pc + 1, &op, 1) != 0) 592 return -1; 593 594 if (op == 0xff) 595 { 596 /* rex jmp reg */ 597 gdb_byte op1; 598 599 if (target_read_memory (pc + 2, &op1, 1) != 0) 600 return -1; 601 return (op1 & 0xf8) == 0xe0; 602 } 603 else 604 return 0; 605 606 default: 607 /* Not REX, so unknown. */ 608 return 0; 609 } 610 } 611 612 /* Decode and execute unwind insns at UNWIND_INFO. */ 613 614 static void 615 amd64_windows_frame_decode_insns (struct frame_info *this_frame, 616 struct amd64_windows_frame_cache *cache, 617 CORE_ADDR unwind_info) 618 { 619 CORE_ADDR save_addr = 0; 620 CORE_ADDR cur_sp = cache->sp; 621 struct gdbarch *gdbarch = get_frame_arch (this_frame); 622 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 623 int first = 1; 624 625 /* There are at least 3 possibilities to share an unwind info entry: 626 1. Two different runtime_function entries (in .pdata) can point to the 627 same unwind info entry. There is no such indication while unwinding, 628 so we don't really care about that case. We suppose this scheme is 629 used to save memory when the unwind entries are exactly the same. 630 2. Chained unwind_info entries, with no unwind codes (no prologue). 631 There is a major difference with the previous case: the pc range for 632 the function is different (in case 1, the pc range comes from the 633 runtime_function entry; in case 2, the pc range for the chained entry 634 comes from the first unwind entry). Case 1 cannot be used instead as 635 the pc is not in the prologue. This case is officially documented. 636 (There might be unwind code in the first unwind entry to handle 637 additional unwinding). GCC (at least until gcc 5.0) doesn't chain 638 entries. 639 3. Undocumented unwind info redirection. Hard to know the exact purpose, 640 so it is considered as a memory optimization of case 2. 641 */ 642 643 if (unwind_info & 1) 644 { 645 /* Unofficially documented unwind info redirection, when UNWIND_INFO 646 address is odd (http://www.codemachine.com/article_x64deepdive.html). 647 */ 648 struct external_pex64_runtime_function d; 649 650 if (target_read_memory (cache->image_base + (unwind_info & ~1), 651 (gdb_byte *) &d, sizeof (d)) != 0) 652 return; 653 654 cache->start_rva 655 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 656 cache->end_rva 657 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 658 unwind_info 659 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 660 } 661 662 while (1) 663 { 664 struct external_pex64_unwind_info ex_ui; 665 /* There are at most 256 16-bit unwind insns. */ 666 gdb_byte insns[2 * 256]; 667 gdb_byte *p; 668 gdb_byte *end_insns; 669 unsigned char codes_count; 670 unsigned char frame_reg; 671 CORE_ADDR start; 672 673 /* Read and decode header. */ 674 if (target_read_memory (cache->image_base + unwind_info, 675 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0) 676 return; 677 678 if (frame_debug) 679 fprintf_unfiltered 680 (gdb_stdlog, 681 "amd64_windows_frame_decodes_insn: " 682 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n", 683 paddress (gdbarch, unwind_info), 684 ex_ui.Version_Flags, ex_ui.SizeOfPrologue, 685 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset); 686 687 /* Check version. */ 688 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1 689 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2) 690 return; 691 692 start = cache->image_base + cache->start_rva; 693 if (first 694 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue)) 695 { 696 /* We want to detect if the PC points to an epilogue. This needs 697 to be checked only once, and an epilogue can be anywhere but in 698 the prologue. If so, the epilogue detection+decoding function is 699 sufficient. Otherwise, the unwinder will consider that the PC 700 is in the body of the function and will need to decode unwind 701 info. */ 702 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1) 703 return; 704 705 /* Not in an epilog. Clear possible side effects. */ 706 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr)); 707 } 708 709 codes_count = ex_ui.CountOfCodes; 710 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset); 711 712 if (frame_reg != 0) 713 { 714 /* According to msdn: 715 If an FP reg is used, then any unwind code taking an offset must 716 only be used after the FP reg is established in the prolog. */ 717 gdb_byte buf[8]; 718 int frreg = amd64_windows_w2gdb_regnum[frame_reg]; 719 720 get_frame_register (this_frame, frreg, buf); 721 save_addr = extract_unsigned_integer (buf, 8, byte_order); 722 723 if (frame_debug) 724 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n", 725 gdbarch_register_name (gdbarch, frreg), 726 paddress (gdbarch, save_addr)); 727 } 728 729 /* Read opcodes. */ 730 if (codes_count != 0 731 && target_read_memory (cache->image_base + unwind_info 732 + sizeof (ex_ui), 733 insns, codes_count * 2) != 0) 734 return; 735 736 end_insns = &insns[codes_count * 2]; 737 p = insns; 738 739 /* Skip opcodes 6 of version 2. This opcode is not documented. */ 740 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2) 741 { 742 for (; p < end_insns; p += 2) 743 if (PEX64_UNWCODE_CODE (p[1]) != 6) 744 break; 745 } 746 747 for (; p < end_insns; p += 2) 748 { 749 int reg; 750 751 /* Virtually execute the operation if the pc is after the 752 corresponding instruction (that does matter in case of break 753 within the prologue). Note that for chained info (!first), the 754 prologue has been fully executed. */ 755 if (cache->pc >= start + p[0] || cache->pc < start) 756 { 757 if (frame_debug) 758 fprintf_unfiltered 759 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n", 760 (unsigned) (p - insns), p[0], p[1]); 761 762 /* If there is no frame registers defined, the current value of 763 rsp is used instead. */ 764 if (frame_reg == 0) 765 save_addr = cur_sp; 766 767 reg = -1; 768 769 switch (PEX64_UNWCODE_CODE (p[1])) 770 { 771 case UWOP_PUSH_NONVOL: 772 /* Push pre-decrements RSP. */ 773 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 774 cache->prev_reg_addr[reg] = cur_sp; 775 cur_sp += 8; 776 break; 777 case UWOP_ALLOC_LARGE: 778 if (PEX64_UNWCODE_INFO (p[1]) == 0) 779 cur_sp += 780 8 * extract_unsigned_integer (p + 2, 2, byte_order); 781 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 782 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order); 783 else 784 return; 785 break; 786 case UWOP_ALLOC_SMALL: 787 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]); 788 break; 789 case UWOP_SET_FPREG: 790 cur_sp = save_addr 791 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16; 792 break; 793 case UWOP_SAVE_NONVOL: 794 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 795 cache->prev_reg_addr[reg] = save_addr 796 + 8 * extract_unsigned_integer (p + 2, 2, byte_order); 797 break; 798 case UWOP_SAVE_NONVOL_FAR: 799 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 800 cache->prev_reg_addr[reg] = save_addr 801 + 8 * extract_unsigned_integer (p + 2, 4, byte_order); 802 break; 803 case UWOP_SAVE_XMM128: 804 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 805 save_addr 806 - 16 * extract_unsigned_integer (p + 2, 2, byte_order); 807 break; 808 case UWOP_SAVE_XMM128_FAR: 809 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 810 save_addr 811 - 16 * extract_unsigned_integer (p + 2, 4, byte_order); 812 break; 813 case UWOP_PUSH_MACHFRAME: 814 if (PEX64_UNWCODE_INFO (p[1]) == 0) 815 { 816 cache->prev_rip_addr = cur_sp + 0; 817 cache->prev_rsp_addr = cur_sp + 24; 818 cur_sp += 40; 819 } 820 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 821 { 822 cache->prev_rip_addr = cur_sp + 8; 823 cache->prev_rsp_addr = cur_sp + 32; 824 cur_sp += 48; 825 } 826 else 827 return; 828 break; 829 default: 830 return; 831 } 832 833 /* Display address where the register was saved. */ 834 if (frame_debug && reg >= 0) 835 fprintf_unfiltered 836 (gdb_stdlog, " [reg %s at %s]\n", 837 gdbarch_register_name (gdbarch, reg), 838 paddress (gdbarch, cache->prev_reg_addr[reg])); 839 } 840 841 /* Adjust with the length of the opcode. */ 842 switch (PEX64_UNWCODE_CODE (p[1])) 843 { 844 case UWOP_PUSH_NONVOL: 845 case UWOP_ALLOC_SMALL: 846 case UWOP_SET_FPREG: 847 case UWOP_PUSH_MACHFRAME: 848 break; 849 case UWOP_ALLOC_LARGE: 850 if (PEX64_UNWCODE_INFO (p[1]) == 0) 851 p += 2; 852 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 853 p += 4; 854 else 855 return; 856 break; 857 case UWOP_SAVE_NONVOL: 858 case UWOP_SAVE_XMM128: 859 p += 2; 860 break; 861 case UWOP_SAVE_NONVOL_FAR: 862 case UWOP_SAVE_XMM128_FAR: 863 p += 4; 864 break; 865 default: 866 return; 867 } 868 } 869 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO) 870 { 871 /* End of unwind info. */ 872 break; 873 } 874 else 875 { 876 /* Read the chained unwind info. */ 877 struct external_pex64_runtime_function d; 878 CORE_ADDR chain_vma; 879 880 /* Not anymore the first entry. */ 881 first = 0; 882 883 /* Stay aligned on word boundary. */ 884 chain_vma = cache->image_base + unwind_info 885 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2; 886 887 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0) 888 return; 889 890 /* Decode begin/end. This may be different from .pdata index, as 891 an unwind info may be shared by several functions (in particular 892 if many functions have the same prolog and handler. */ 893 cache->start_rva = 894 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 895 cache->end_rva = 896 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 897 unwind_info = 898 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 899 900 if (frame_debug) 901 fprintf_unfiltered 902 (gdb_stdlog, 903 "amd64_windows_frame_decodes_insn (next in chain):" 904 " unwind_data=%s, start_rva=%s, end_rva=%s\n", 905 paddress (gdbarch, unwind_info), 906 paddress (gdbarch, cache->start_rva), 907 paddress (gdbarch, cache->end_rva)); 908 } 909 910 /* Allow the user to break this loop. */ 911 QUIT; 912 } 913 /* PC is saved by the call. */ 914 if (cache->prev_rip_addr == 0) 915 cache->prev_rip_addr = cur_sp; 916 cache->prev_sp = cur_sp + 8; 917 918 if (frame_debug) 919 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n", 920 paddress (gdbarch, cache->prev_sp), 921 paddress (gdbarch, cache->prev_rip_addr)); 922 } 923 924 /* Find SEH unwind info for PC, returning 0 on success. 925 926 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE 927 to the base address of the corresponding image, and START_RVA 928 to the rva of the function containing PC. */ 929 930 static int 931 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc, 932 CORE_ADDR *unwind_info, 933 CORE_ADDR *image_base, 934 CORE_ADDR *start_rva, 935 CORE_ADDR *end_rva) 936 { 937 struct obj_section *sec; 938 pe_data_type *pe; 939 IMAGE_DATA_DIRECTORY *dir; 940 struct objfile *objfile; 941 unsigned long lo, hi; 942 CORE_ADDR base; 943 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 944 945 /* Get the corresponding exception directory. */ 946 sec = find_pc_section (pc); 947 if (sec == NULL) 948 return -1; 949 objfile = sec->objfile; 950 pe = pe_data (sec->objfile->obfd); 951 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE]; 952 953 base = pe->pe_opthdr.ImageBase 954 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 955 *image_base = base; 956 957 /* Find the entry. 958 959 Note: This does not handle dynamically added entries (for JIT 960 engines). For this, we would need to ask the kernel directly, 961 which means getting some info from the native layer. For the 962 rest of the code, however, it's probably faster to search 963 the entry ourselves. */ 964 lo = 0; 965 hi = dir->Size / sizeof (struct external_pex64_runtime_function); 966 *unwind_info = 0; 967 while (lo <= hi) 968 { 969 unsigned long mid = lo + (hi - lo) / 2; 970 struct external_pex64_runtime_function d; 971 CORE_ADDR sa, ea; 972 973 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d), 974 (gdb_byte *) &d, sizeof (d)) != 0) 975 return -1; 976 977 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 978 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 979 if (pc < base + sa) 980 hi = mid - 1; 981 else if (pc >= base + ea) 982 lo = mid + 1; 983 else if (pc >= base + sa && pc < base + ea) 984 { 985 /* Got it. */ 986 *start_rva = sa; 987 *end_rva = ea; 988 *unwind_info = 989 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 990 break; 991 } 992 else 993 break; 994 } 995 996 if (frame_debug) 997 fprintf_unfiltered 998 (gdb_stdlog, 999 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n", 1000 paddress (gdbarch, base), paddress (gdbarch, *unwind_info)); 1001 1002 return 0; 1003 } 1004 1005 /* Fill THIS_CACHE using the native amd64-windows unwinding data 1006 for THIS_FRAME. */ 1007 1008 static struct amd64_windows_frame_cache * 1009 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache) 1010 { 1011 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1013 struct amd64_windows_frame_cache *cache; 1014 gdb_byte buf[8]; 1015 CORE_ADDR pc; 1016 CORE_ADDR unwind_info = 0; 1017 1018 if (*this_cache) 1019 return (struct amd64_windows_frame_cache *) *this_cache; 1020 1021 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache); 1022 *this_cache = cache; 1023 1024 /* Get current PC and SP. */ 1025 pc = get_frame_pc (this_frame); 1026 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 1027 cache->sp = extract_unsigned_integer (buf, 8, byte_order); 1028 cache->pc = pc; 1029 1030 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1031 &cache->image_base, 1032 &cache->start_rva, 1033 &cache->end_rva)) 1034 return cache; 1035 1036 if (unwind_info == 0) 1037 { 1038 /* Assume a leaf function. */ 1039 cache->prev_sp = cache->sp + 8; 1040 cache->prev_rip_addr = cache->sp; 1041 } 1042 else 1043 { 1044 /* Decode unwind insns to compute saved addresses. */ 1045 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info); 1046 } 1047 return cache; 1048 } 1049 1050 /* Implement the "prev_register" method of struct frame_unwind 1051 using the standard Windows x64 SEH info. */ 1052 1053 static struct value * 1054 amd64_windows_frame_prev_register (struct frame_info *this_frame, 1055 void **this_cache, int regnum) 1056 { 1057 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1058 struct amd64_windows_frame_cache *cache = 1059 amd64_windows_frame_cache (this_frame, this_cache); 1060 CORE_ADDR prev; 1061 1062 if (frame_debug) 1063 fprintf_unfiltered (gdb_stdlog, 1064 "amd64_windows_frame_prev_register %s for sp=%s\n", 1065 gdbarch_register_name (gdbarch, regnum), 1066 paddress (gdbarch, cache->prev_sp)); 1067 1068 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) 1069 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM]; 1070 else if (regnum == AMD64_RSP_REGNUM) 1071 { 1072 prev = cache->prev_rsp_addr; 1073 if (prev == 0) 1074 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); 1075 } 1076 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM) 1077 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM]; 1078 else if (regnum == AMD64_RIP_REGNUM) 1079 prev = cache->prev_rip_addr; 1080 else 1081 prev = 0; 1082 1083 if (prev && frame_debug) 1084 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev)); 1085 1086 if (prev) 1087 { 1088 /* Register was saved. */ 1089 return frame_unwind_got_memory (this_frame, regnum, prev); 1090 } 1091 else 1092 { 1093 /* Register is either volatile or not modified. */ 1094 return frame_unwind_got_register (this_frame, regnum, regnum); 1095 } 1096 } 1097 1098 /* Implement the "this_id" method of struct frame_unwind using 1099 the standard Windows x64 SEH info. */ 1100 1101 static void 1102 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache, 1103 struct frame_id *this_id) 1104 { 1105 struct amd64_windows_frame_cache *cache = 1106 amd64_windows_frame_cache (this_frame, this_cache); 1107 1108 *this_id = frame_id_build (cache->prev_sp, 1109 cache->image_base + cache->start_rva); 1110 } 1111 1112 /* Windows x64 SEH unwinder. */ 1113 1114 static const struct frame_unwind amd64_windows_frame_unwind = 1115 { 1116 NORMAL_FRAME, 1117 default_frame_unwind_stop_reason, 1118 &amd64_windows_frame_this_id, 1119 &amd64_windows_frame_prev_register, 1120 NULL, 1121 default_frame_sniffer 1122 }; 1123 1124 /* Implement the "skip_prologue" gdbarch method. */ 1125 1126 static CORE_ADDR 1127 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1128 { 1129 CORE_ADDR func_addr; 1130 CORE_ADDR unwind_info = 0; 1131 CORE_ADDR image_base, start_rva, end_rva; 1132 struct external_pex64_unwind_info ex_ui; 1133 1134 /* Use prologue size from unwind info. */ 1135 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1136 &image_base, &start_rva, &end_rva) == 0) 1137 { 1138 if (unwind_info == 0) 1139 { 1140 /* Leaf function. */ 1141 return pc; 1142 } 1143 else if (target_read_memory (image_base + unwind_info, 1144 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0 1145 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1) 1146 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue); 1147 } 1148 1149 /* See if we can determine the end of the prologue via the symbol 1150 table. If so, then return either the PC, or the PC after 1151 the prologue, whichever is greater. */ 1152 if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) 1153 { 1154 CORE_ADDR post_prologue_pc 1155 = skip_prologue_using_sal (gdbarch, func_addr); 1156 1157 if (post_prologue_pc != 0) 1158 return max (pc, post_prologue_pc); 1159 } 1160 1161 return pc; 1162 } 1163 1164 /* Check Win64 DLL jmp trampolines and find jump destination. */ 1165 1166 static CORE_ADDR 1167 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 1168 { 1169 CORE_ADDR destination = 0; 1170 struct gdbarch *gdbarch = get_frame_arch (frame); 1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1172 1173 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */ 1174 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff) 1175 { 1176 /* Get opcode offset and see if we can find a reference in our data. */ 1177 ULONGEST offset 1178 = read_memory_unsigned_integer (pc + 2, 4, byte_order); 1179 1180 /* Get address of function pointer at end of pc. */ 1181 CORE_ADDR indirect_addr = pc + offset + 6; 1182 1183 struct minimal_symbol *indsym 1184 = (indirect_addr 1185 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym 1186 : NULL); 1187 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL; 1188 1189 if (symname) 1190 { 1191 if (startswith (symname, "__imp_") 1192 || startswith (symname, "_imp_")) 1193 destination 1194 = read_memory_unsigned_integer (indirect_addr, 8, byte_order); 1195 } 1196 } 1197 1198 return destination; 1199 } 1200 1201 /* Implement the "auto_wide_charset" gdbarch method. */ 1202 1203 static const char * 1204 amd64_windows_auto_wide_charset (void) 1205 { 1206 return "UTF-16"; 1207 } 1208 1209 static void 1210 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1211 { 1212 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is 1213 preferred over the SEH one. The reasons are: 1214 - binaries without SEH but with dwarf2 debug info are correcly handled 1215 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH 1216 info). 1217 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be 1218 handled if the dwarf2 unwinder is used). 1219 1220 The call to amd64_init_abi appends default unwinders, that aren't 1221 compatible with the SEH one. 1222 */ 1223 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind); 1224 1225 amd64_init_abi (info, gdbarch); 1226 1227 windows_init_abi (info, gdbarch); 1228 1229 /* On Windows, "long"s are only 32bit. */ 1230 set_gdbarch_long_bit (gdbarch, 32); 1231 1232 /* Function calls. */ 1233 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call); 1234 set_gdbarch_return_value (gdbarch, amd64_windows_return_value); 1235 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue); 1236 set_gdbarch_skip_trampoline_code (gdbarch, 1237 amd64_windows_skip_trampoline_code); 1238 1239 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue); 1240 1241 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset); 1242 } 1243 1244 /* -Wmissing-prototypes */ 1245 extern initialize_file_ftype _initialize_amd64_windows_tdep; 1246 1247 void 1248 _initialize_amd64_windows_tdep (void) 1249 { 1250 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN, 1251 amd64_windows_init_abi); 1252 } 1253