1 /* Copyright (C) 2009-2023 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "osabi.h" 20 #include "amd64-tdep.h" 21 #include "gdbsupport/x86-xstate.h" 22 #include "gdbtypes.h" 23 #include "gdbcore.h" 24 #include "regcache.h" 25 #include "windows-tdep.h" 26 #include "frame.h" 27 #include "objfiles.h" 28 #include "frame-unwind.h" 29 #include "coff/internal.h" 30 #include "coff/i386.h" 31 #include "coff/pe.h" 32 #include "libcoff.h" 33 #include "value.h" 34 #include <algorithm> 35 36 /* The registers used to pass integer arguments during a function call. */ 37 static int amd64_windows_dummy_call_integer_regs[] = 38 { 39 AMD64_RCX_REGNUM, /* %rcx */ 40 AMD64_RDX_REGNUM, /* %rdx */ 41 AMD64_R8_REGNUM, /* %r8 */ 42 AMD64_R9_REGNUM /* %r9 */ 43 }; 44 45 /* This vector maps GDB's idea of a register's number into an offset into 46 the Windows API CONTEXT structure. */ 47 static int amd64_windows_gregset_reg_offset[] = 48 { 49 120, /* Rax */ 50 144, /* Rbx */ 51 128, /* Rcx */ 52 136, /* Rdx */ 53 168, /* Rsi */ 54 176, /* Rdi */ 55 160, /* Rbp */ 56 152, /* Rsp */ 57 184, /* R8 */ 58 192, /* R9 */ 59 200, /* R10 */ 60 208, /* R11 */ 61 216, /* R12 */ 62 224, /* R13 */ 63 232, /* R14 */ 64 240, /* R15 */ 65 248, /* Rip */ 66 68, /* EFlags */ 67 56, /* SegCs */ 68 66, /* SegSs */ 69 58, /* SegDs */ 70 60, /* SegEs */ 71 62, /* SegFs */ 72 64, /* SegGs */ 73 288, /* FloatSave.FloatRegisters[0] */ 74 304, /* FloatSave.FloatRegisters[1] */ 75 320, /* FloatSave.FloatRegisters[2] */ 76 336, /* FloatSave.FloatRegisters[3] */ 77 352, /* FloatSave.FloatRegisters[4] */ 78 368, /* FloatSave.FloatRegisters[5] */ 79 384, /* FloatSave.FloatRegisters[6] */ 80 400, /* FloatSave.FloatRegisters[7] */ 81 256, /* FloatSave.ControlWord */ 82 258, /* FloatSave.StatusWord */ 83 260, /* FloatSave.TagWord */ 84 268, /* FloatSave.ErrorSelector */ 85 264, /* FloatSave.ErrorOffset */ 86 276, /* FloatSave.DataSelector */ 87 272, /* FloatSave.DataOffset */ 88 268, /* FloatSave.ErrorSelector */ 89 416, /* Xmm0 */ 90 432, /* Xmm1 */ 91 448, /* Xmm2 */ 92 464, /* Xmm3 */ 93 480, /* Xmm4 */ 94 496, /* Xmm5 */ 95 512, /* Xmm6 */ 96 528, /* Xmm7 */ 97 544, /* Xmm8 */ 98 560, /* Xmm9 */ 99 576, /* Xmm10 */ 100 592, /* Xmm11 */ 101 608, /* Xmm12 */ 102 624, /* Xmm13 */ 103 640, /* Xmm14 */ 104 656, /* Xmm15 */ 105 280, /* FloatSave.MxCsr */ 106 }; 107 108 #define AMD64_WINDOWS_SIZEOF_GREGSET 1232 109 110 /* Return nonzero if an argument of type TYPE should be passed 111 via one of the integer registers. */ 112 113 static int 114 amd64_windows_passed_by_integer_register (struct type *type) 115 { 116 switch (type->code ()) 117 { 118 case TYPE_CODE_INT: 119 case TYPE_CODE_ENUM: 120 case TYPE_CODE_BOOL: 121 case TYPE_CODE_RANGE: 122 case TYPE_CODE_CHAR: 123 case TYPE_CODE_PTR: 124 case TYPE_CODE_REF: 125 case TYPE_CODE_RVALUE_REF: 126 case TYPE_CODE_STRUCT: 127 case TYPE_CODE_UNION: 128 case TYPE_CODE_COMPLEX: 129 return (type->length () == 1 130 || type->length () == 2 131 || type->length () == 4 132 || type->length () == 8); 133 134 default: 135 return 0; 136 } 137 } 138 139 /* Return nonzero if an argument of type TYPE should be passed 140 via one of the XMM registers. */ 141 142 static int 143 amd64_windows_passed_by_xmm_register (struct type *type) 144 { 145 return ((type->code () == TYPE_CODE_FLT 146 || type->code () == TYPE_CODE_DECFLOAT) 147 && (type->length () == 4 || type->length () == 8)); 148 } 149 150 /* Return non-zero iff an argument of the given TYPE should be passed 151 by pointer. */ 152 153 static int 154 amd64_windows_passed_by_pointer (struct type *type) 155 { 156 if (amd64_windows_passed_by_integer_register (type)) 157 return 0; 158 159 if (amd64_windows_passed_by_xmm_register (type)) 160 return 0; 161 162 return 1; 163 } 164 165 /* For each argument that should be passed by pointer, reserve some 166 stack space, store a copy of the argument on the stack, and replace 167 the argument by its address. Return the new Stack Pointer value. 168 169 NARGS is the number of arguments. ARGS is the array containing 170 the value of each argument. SP is value of the Stack Pointer. */ 171 172 static CORE_ADDR 173 amd64_windows_adjust_args_passed_by_pointer (struct value **args, 174 int nargs, CORE_ADDR sp) 175 { 176 int i; 177 178 for (i = 0; i < nargs; i++) 179 if (amd64_windows_passed_by_pointer (value_type (args[i]))) 180 { 181 struct type *type = value_type (args[i]); 182 const gdb_byte *valbuf = value_contents (args[i]).data (); 183 const int len = type->length (); 184 185 /* Store a copy of that argument on the stack, aligned to 186 a 16 bytes boundary, and then use the copy's address as 187 the argument. */ 188 189 sp -= len; 190 sp &= ~0xf; 191 write_memory (sp, valbuf, len); 192 193 args[i] 194 = value_addr (value_from_contents_and_address (type, valbuf, sp)); 195 } 196 197 return sp; 198 } 199 200 /* Store the value of ARG in register REGNO (right-justified). 201 REGCACHE is the register cache. */ 202 203 static void 204 amd64_windows_store_arg_in_reg (struct regcache *regcache, 205 struct value *arg, int regno) 206 { 207 struct type *type = value_type (arg); 208 const gdb_byte *valbuf = value_contents (arg).data (); 209 gdb_byte buf[8]; 210 211 gdb_assert (type->length () <= 8); 212 memset (buf, 0, sizeof buf); 213 memcpy (buf, valbuf, std::min (type->length (), (ULONGEST) 8)); 214 regcache->cooked_write (regno, buf); 215 } 216 217 /* Push the arguments for an inferior function call, and return 218 the updated value of the SP (Stack Pointer). 219 220 All arguments are identical to the arguments used in 221 amd64_windows_push_dummy_call. */ 222 223 static CORE_ADDR 224 amd64_windows_push_arguments (struct regcache *regcache, int nargs, 225 struct value **args, CORE_ADDR sp, 226 function_call_return_method return_method) 227 { 228 int reg_idx = 0; 229 int i; 230 struct value **stack_args = XALLOCAVEC (struct value *, nargs); 231 int num_stack_args = 0; 232 int num_elements = 0; 233 int element = 0; 234 235 /* First, handle the arguments passed by pointer. 236 237 These arguments are replaced by pointers to a copy we are making 238 in inferior memory. So use a copy of the ARGS table, to avoid 239 modifying the original one. */ 240 { 241 struct value **args1 = XALLOCAVEC (struct value *, nargs); 242 243 memcpy (args1, args, nargs * sizeof (struct value *)); 244 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp); 245 args = args1; 246 } 247 248 /* Reserve a register for the "hidden" argument. */ 249 if (return_method == return_method_struct) 250 reg_idx++; 251 252 for (i = 0; i < nargs; i++) 253 { 254 struct type *type = value_type (args[i]); 255 int len = type->length (); 256 int on_stack_p = 1; 257 258 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs)) 259 { 260 if (amd64_windows_passed_by_integer_register (type)) 261 { 262 amd64_windows_store_arg_in_reg 263 (regcache, args[i], 264 amd64_windows_dummy_call_integer_regs[reg_idx]); 265 on_stack_p = 0; 266 reg_idx++; 267 } 268 else if (amd64_windows_passed_by_xmm_register (type)) 269 { 270 amd64_windows_store_arg_in_reg 271 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx); 272 /* In case of varargs, these parameters must also be 273 passed via the integer registers. */ 274 amd64_windows_store_arg_in_reg 275 (regcache, args[i], 276 amd64_windows_dummy_call_integer_regs[reg_idx]); 277 on_stack_p = 0; 278 reg_idx++; 279 } 280 } 281 282 if (on_stack_p) 283 { 284 num_elements += ((len + 7) / 8); 285 stack_args[num_stack_args++] = args[i]; 286 } 287 } 288 289 /* Allocate space for the arguments on the stack, keeping it 290 aligned on a 16 byte boundary. */ 291 sp -= num_elements * 8; 292 sp &= ~0xf; 293 294 /* Write out the arguments to the stack. */ 295 for (i = 0; i < num_stack_args; i++) 296 { 297 struct type *type = value_type (stack_args[i]); 298 const gdb_byte *valbuf = value_contents (stack_args[i]).data (); 299 300 write_memory (sp + element * 8, valbuf, type->length ()); 301 element += ((type->length () + 7) / 8); 302 } 303 304 return sp; 305 } 306 307 /* Implement the "push_dummy_call" gdbarch method. */ 308 309 static CORE_ADDR 310 amd64_windows_push_dummy_call 311 (struct gdbarch *gdbarch, struct value *function, 312 struct regcache *regcache, CORE_ADDR bp_addr, 313 int nargs, struct value **args, CORE_ADDR sp, 314 function_call_return_method return_method, CORE_ADDR struct_addr) 315 { 316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 317 gdb_byte buf[8]; 318 319 /* Pass arguments. */ 320 sp = amd64_windows_push_arguments (regcache, nargs, args, sp, 321 return_method); 322 323 /* Pass "hidden" argument". */ 324 if (return_method == return_method_struct) 325 { 326 /* The "hidden" argument is passed throught the first argument 327 register. */ 328 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0]; 329 330 store_unsigned_integer (buf, 8, byte_order, struct_addr); 331 regcache->cooked_write (arg_regnum, buf); 332 } 333 334 /* Reserve some memory on the stack for the integer-parameter 335 registers, as required by the ABI. */ 336 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8; 337 338 /* Store return address. */ 339 sp -= 8; 340 store_unsigned_integer (buf, 8, byte_order, bp_addr); 341 write_memory (sp, buf, 8); 342 343 /* Update the stack pointer... */ 344 store_unsigned_integer (buf, 8, byte_order, sp); 345 regcache->cooked_write (AMD64_RSP_REGNUM, buf); 346 347 /* ...and fake a frame pointer. */ 348 regcache->cooked_write (AMD64_RBP_REGNUM, buf); 349 350 return sp + 16; 351 } 352 353 /* Implement the "return_value" gdbarch method for amd64-windows. */ 354 355 static enum return_value_convention 356 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function, 357 struct type *type, struct regcache *regcache, 358 gdb_byte *readbuf, const gdb_byte *writebuf) 359 { 360 int len = type->length (); 361 int regnum = -1; 362 363 /* See if our value is returned through a register. If it is, then 364 store the associated register number in REGNUM. */ 365 switch (type->code ()) 366 { 367 case TYPE_CODE_FLT: 368 /* floats, and doubles are returned via XMM0. */ 369 if (len == 4 || len == 8) 370 regnum = AMD64_XMM0_REGNUM; 371 break; 372 case TYPE_CODE_ARRAY: 373 /* __m128, __m128i and __m128d are returned via XMM0. */ 374 if (type->is_vector () && len == 16) 375 { 376 enum type_code code = type->target_type ()->code (); 377 if (code == TYPE_CODE_INT || code == TYPE_CODE_FLT) 378 { 379 regnum = AMD64_XMM0_REGNUM; 380 break; 381 } 382 } 383 /* fall through */ 384 default: 385 /* All other values that are 1, 2, 4 or 8 bytes long are returned 386 via RAX. */ 387 if (len == 1 || len == 2 || len == 4 || len == 8) 388 regnum = AMD64_RAX_REGNUM; 389 else if (len == 16 && type->code () == TYPE_CODE_INT) 390 regnum = AMD64_XMM0_REGNUM; 391 break; 392 } 393 394 if (regnum < 0) 395 { 396 /* RAX contains the address where the return value has been stored. */ 397 if (readbuf) 398 { 399 ULONGEST addr; 400 401 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); 402 read_memory (addr, readbuf, type->length ()); 403 } 404 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 405 } 406 else 407 { 408 /* Extract the return value from the register where it was stored. */ 409 if (readbuf) 410 regcache->raw_read_part (regnum, 0, len, readbuf); 411 if (writebuf) 412 regcache->raw_write_part (regnum, 0, len, writebuf); 413 return RETURN_VALUE_REGISTER_CONVENTION; 414 } 415 } 416 417 /* Check that the code pointed to by PC corresponds to a call to 418 __main, skip it if so. Return PC otherwise. */ 419 420 static CORE_ADDR 421 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 422 { 423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 424 gdb_byte op; 425 426 target_read_memory (pc, &op, 1); 427 if (op == 0xe8) 428 { 429 gdb_byte buf[4]; 430 431 if (target_read_memory (pc + 1, buf, sizeof buf) == 0) 432 { 433 struct bound_minimal_symbol s; 434 CORE_ADDR call_dest; 435 436 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order); 437 s = lookup_minimal_symbol_by_pc (call_dest); 438 if (s.minsym != NULL 439 && s.minsym->linkage_name () != NULL 440 && strcmp (s.minsym->linkage_name (), "__main") == 0) 441 pc += 5; 442 } 443 } 444 445 return pc; 446 } 447 448 struct amd64_windows_frame_cache 449 { 450 /* ImageBase for the module. */ 451 CORE_ADDR image_base; 452 453 /* Function start and end rva. */ 454 CORE_ADDR start_rva; 455 CORE_ADDR end_rva; 456 457 /* Next instruction to be executed. */ 458 CORE_ADDR pc; 459 460 /* Current sp. */ 461 CORE_ADDR sp; 462 463 /* Address of saved integer and xmm registers. */ 464 CORE_ADDR prev_reg_addr[16]; 465 CORE_ADDR prev_xmm_addr[16]; 466 467 /* These two next fields are set only for machine info frames. */ 468 469 /* Likewise for RIP. */ 470 CORE_ADDR prev_rip_addr; 471 472 /* Likewise for RSP. */ 473 CORE_ADDR prev_rsp_addr; 474 475 /* Address of the previous frame. */ 476 CORE_ADDR prev_sp; 477 }; 478 479 /* Convert a Windows register number to gdb. */ 480 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] = 481 { 482 AMD64_RAX_REGNUM, 483 AMD64_RCX_REGNUM, 484 AMD64_RDX_REGNUM, 485 AMD64_RBX_REGNUM, 486 AMD64_RSP_REGNUM, 487 AMD64_RBP_REGNUM, 488 AMD64_RSI_REGNUM, 489 AMD64_RDI_REGNUM, 490 AMD64_R8_REGNUM, 491 AMD64_R9_REGNUM, 492 AMD64_R10_REGNUM, 493 AMD64_R11_REGNUM, 494 AMD64_R12_REGNUM, 495 AMD64_R13_REGNUM, 496 AMD64_R14_REGNUM, 497 AMD64_R15_REGNUM 498 }; 499 500 /* Return TRUE iff PC is the range of the function corresponding to 501 CACHE. */ 502 503 static int 504 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache) 505 { 506 return (pc >= cache->image_base + cache->start_rva 507 && pc < cache->image_base + cache->end_rva); 508 } 509 510 /* Try to recognize and decode an epilogue sequence. 511 512 Return -1 if we fail to read the instructions for any reason. 513 Return 1 if an epilogue sequence was recognized, 0 otherwise. */ 514 515 static int 516 amd64_windows_frame_decode_epilogue (frame_info_ptr this_frame, 517 struct amd64_windows_frame_cache *cache) 518 { 519 /* According to MSDN an epilogue "must consist of either an add RSP,constant 520 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte 521 register pops and a return or a jmp". 522 523 Furthermore, according to RtlVirtualUnwind, the complete list of 524 epilog marker is: 525 - ret [c3] 526 - ret n [c2 imm16] 527 - rep ret [f3 c3] 528 - jmp imm8 | imm32 [eb rel8] or [e9 rel32] 529 - jmp qword ptr imm32 - not handled 530 - rex.w jmp reg [4X ff eY] 531 */ 532 533 CORE_ADDR pc = cache->pc; 534 CORE_ADDR cur_sp = cache->sp; 535 struct gdbarch *gdbarch = get_frame_arch (this_frame); 536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 537 gdb_byte op; 538 gdb_byte rex; 539 540 /* We don't care about the instruction deallocating the frame: 541 if it hasn't been executed, the pc is still in the body, 542 if it has been executed, the following epilog decoding will work. */ 543 544 /* First decode: 545 - pop reg [41 58-5f] or [58-5f]. */ 546 547 while (1) 548 { 549 /* Read opcode. */ 550 if (target_read_memory (pc, &op, 1) != 0) 551 return -1; 552 553 if (op >= 0x40 && op <= 0x4f) 554 { 555 /* REX prefix. */ 556 rex = op; 557 558 /* Read opcode. */ 559 if (target_read_memory (pc + 1, &op, 1) != 0) 560 return -1; 561 } 562 else 563 rex = 0; 564 565 if (op >= 0x58 && op <= 0x5f) 566 { 567 /* pop reg */ 568 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3); 569 570 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp; 571 cur_sp += 8; 572 pc += rex ? 2 : 1; 573 } 574 else 575 break; 576 577 /* Allow the user to break this loop. This shouldn't happen as the 578 number of consecutive pop should be small. */ 579 QUIT; 580 } 581 582 /* Then decode the marker. */ 583 584 /* Read opcode. */ 585 if (target_read_memory (pc, &op, 1) != 0) 586 return -1; 587 588 switch (op) 589 { 590 case 0xc3: 591 /* Ret. */ 592 cache->prev_rip_addr = cur_sp; 593 cache->prev_sp = cur_sp + 8; 594 return 1; 595 596 case 0xeb: 597 { 598 /* jmp rel8 */ 599 gdb_byte rel8; 600 CORE_ADDR npc; 601 602 if (target_read_memory (pc + 1, &rel8, 1) != 0) 603 return -1; 604 npc = pc + 2 + (signed char) rel8; 605 606 /* If the jump is within the function, then this is not a marker, 607 otherwise this is a tail-call. */ 608 return !pc_in_range (npc, cache); 609 } 610 611 case 0xec: 612 { 613 /* jmp rel32 */ 614 gdb_byte rel32[4]; 615 CORE_ADDR npc; 616 617 if (target_read_memory (pc + 1, rel32, 4) != 0) 618 return -1; 619 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order); 620 621 /* If the jump is within the function, then this is not a marker, 622 otherwise this is a tail-call. */ 623 return !pc_in_range (npc, cache); 624 } 625 626 case 0xc2: 627 { 628 /* ret n */ 629 gdb_byte imm16[2]; 630 631 if (target_read_memory (pc + 1, imm16, 2) != 0) 632 return -1; 633 cache->prev_rip_addr = cur_sp; 634 cache->prev_sp = cur_sp 635 + extract_unsigned_integer (imm16, 4, byte_order); 636 return 1; 637 } 638 639 case 0xf3: 640 { 641 /* rep; ret */ 642 gdb_byte op1; 643 644 if (target_read_memory (pc + 2, &op1, 1) != 0) 645 return -1; 646 if (op1 != 0xc3) 647 return 0; 648 649 cache->prev_rip_addr = cur_sp; 650 cache->prev_sp = cur_sp + 8; 651 return 1; 652 } 653 654 case 0x40: 655 case 0x41: 656 case 0x42: 657 case 0x43: 658 case 0x44: 659 case 0x45: 660 case 0x46: 661 case 0x47: 662 case 0x48: 663 case 0x49: 664 case 0x4a: 665 case 0x4b: 666 case 0x4c: 667 case 0x4d: 668 case 0x4e: 669 case 0x4f: 670 /* Got a REX prefix, read next byte. */ 671 rex = op; 672 if (target_read_memory (pc + 1, &op, 1) != 0) 673 return -1; 674 675 if (op == 0xff) 676 { 677 /* rex jmp reg */ 678 gdb_byte op1; 679 680 if (target_read_memory (pc + 2, &op1, 1) != 0) 681 return -1; 682 return (op1 & 0xf8) == 0xe0; 683 } 684 else 685 return 0; 686 687 default: 688 /* Not REX, so unknown. */ 689 return 0; 690 } 691 } 692 693 /* Decode and execute unwind insns at UNWIND_INFO. */ 694 695 static void 696 amd64_windows_frame_decode_insns (frame_info_ptr this_frame, 697 struct amd64_windows_frame_cache *cache, 698 CORE_ADDR unwind_info) 699 { 700 CORE_ADDR save_addr = 0; 701 CORE_ADDR cur_sp = cache->sp; 702 struct gdbarch *gdbarch = get_frame_arch (this_frame); 703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 704 int first = 1; 705 706 /* There are at least 3 possibilities to share an unwind info entry: 707 1. Two different runtime_function entries (in .pdata) can point to the 708 same unwind info entry. There is no such indication while unwinding, 709 so we don't really care about that case. We suppose this scheme is 710 used to save memory when the unwind entries are exactly the same. 711 2. Chained unwind_info entries, with no unwind codes (no prologue). 712 There is a major difference with the previous case: the pc range for 713 the function is different (in case 1, the pc range comes from the 714 runtime_function entry; in case 2, the pc range for the chained entry 715 comes from the first unwind entry). Case 1 cannot be used instead as 716 the pc is not in the prologue. This case is officially documented. 717 (There might be unwind code in the first unwind entry to handle 718 additional unwinding). GCC (at least until gcc 5.0) doesn't chain 719 entries. 720 3. Undocumented unwind info redirection. Hard to know the exact purpose, 721 so it is considered as a memory optimization of case 2. 722 */ 723 724 if (unwind_info & 1) 725 { 726 /* Unofficially documented unwind info redirection, when UNWIND_INFO 727 address is odd (http://www.codemachine.com/article_x64deepdive.html). 728 */ 729 struct external_pex64_runtime_function d; 730 731 if (target_read_memory (cache->image_base + (unwind_info & ~1), 732 (gdb_byte *) &d, sizeof (d)) != 0) 733 return; 734 735 cache->start_rva 736 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 737 cache->end_rva 738 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 739 unwind_info 740 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 741 } 742 743 while (1) 744 { 745 struct external_pex64_unwind_info ex_ui; 746 /* There are at most 256 16-bit unwind insns. */ 747 gdb_byte insns[2 * 256]; 748 gdb_byte *p; 749 gdb_byte *end_insns; 750 unsigned char codes_count; 751 unsigned char frame_reg; 752 CORE_ADDR start; 753 754 /* Read and decode header. */ 755 if (target_read_memory (cache->image_base + unwind_info, 756 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0) 757 return; 758 759 frame_debug_printf ("%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x", 760 paddress (gdbarch, unwind_info), 761 ex_ui.Version_Flags, ex_ui.SizeOfPrologue, 762 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset); 763 764 /* Check version. */ 765 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1 766 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2) 767 return; 768 769 start = cache->image_base + cache->start_rva; 770 if (first 771 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue)) 772 { 773 /* We want to detect if the PC points to an epilogue. This needs 774 to be checked only once, and an epilogue can be anywhere but in 775 the prologue. If so, the epilogue detection+decoding function is 776 sufficient. Otherwise, the unwinder will consider that the PC 777 is in the body of the function and will need to decode unwind 778 info. */ 779 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1) 780 return; 781 782 /* Not in an epilog. Clear possible side effects. */ 783 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr)); 784 } 785 786 codes_count = ex_ui.CountOfCodes; 787 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset); 788 789 if (frame_reg != 0) 790 { 791 /* According to msdn: 792 If an FP reg is used, then any unwind code taking an offset must 793 only be used after the FP reg is established in the prolog. */ 794 gdb_byte buf[8]; 795 int frreg = amd64_windows_w2gdb_regnum[frame_reg]; 796 797 get_frame_register (this_frame, frreg, buf); 798 save_addr = extract_unsigned_integer (buf, 8, byte_order); 799 800 frame_debug_printf (" frame_reg=%s, val=%s", 801 gdbarch_register_name (gdbarch, frreg), 802 paddress (gdbarch, save_addr)); 803 } 804 805 /* Read opcodes. */ 806 if (codes_count != 0 807 && target_read_memory (cache->image_base + unwind_info 808 + sizeof (ex_ui), 809 insns, codes_count * 2) != 0) 810 return; 811 812 end_insns = &insns[codes_count * 2]; 813 p = insns; 814 815 /* Skip opcodes 6 of version 2. This opcode is not documented. */ 816 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2) 817 { 818 for (; p < end_insns; p += 2) 819 if (PEX64_UNWCODE_CODE (p[1]) != 6) 820 break; 821 } 822 823 for (; p < end_insns; p += 2) 824 { 825 int reg; 826 827 /* Virtually execute the operation if the pc is after the 828 corresponding instruction (that does matter in case of break 829 within the prologue). Note that for chained info (!first), the 830 prologue has been fully executed. */ 831 if (cache->pc >= start + p[0] || cache->pc < start) 832 { 833 frame_debug_printf (" op #%u: off=0x%02x, insn=0x%02x", 834 (unsigned) (p - insns), p[0], p[1]); 835 836 /* If there is no frame registers defined, the current value of 837 rsp is used instead. */ 838 if (frame_reg == 0) 839 save_addr = cur_sp; 840 841 reg = -1; 842 843 switch (PEX64_UNWCODE_CODE (p[1])) 844 { 845 case UWOP_PUSH_NONVOL: 846 /* Push pre-decrements RSP. */ 847 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 848 cache->prev_reg_addr[reg] = cur_sp; 849 cur_sp += 8; 850 break; 851 case UWOP_ALLOC_LARGE: 852 if (PEX64_UNWCODE_INFO (p[1]) == 0) 853 cur_sp += 854 8 * extract_unsigned_integer (p + 2, 2, byte_order); 855 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 856 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order); 857 else 858 return; 859 break; 860 case UWOP_ALLOC_SMALL: 861 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]); 862 break; 863 case UWOP_SET_FPREG: 864 cur_sp = save_addr 865 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16; 866 break; 867 case UWOP_SAVE_NONVOL: 868 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 869 cache->prev_reg_addr[reg] = save_addr 870 + 8 * extract_unsigned_integer (p + 2, 2, byte_order); 871 break; 872 case UWOP_SAVE_NONVOL_FAR: 873 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 874 cache->prev_reg_addr[reg] = save_addr 875 + 8 * extract_unsigned_integer (p + 2, 4, byte_order); 876 break; 877 case UWOP_SAVE_XMM128: 878 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 879 save_addr 880 - 16 * extract_unsigned_integer (p + 2, 2, byte_order); 881 break; 882 case UWOP_SAVE_XMM128_FAR: 883 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 884 save_addr 885 - 16 * extract_unsigned_integer (p + 2, 4, byte_order); 886 break; 887 case UWOP_PUSH_MACHFRAME: 888 if (PEX64_UNWCODE_INFO (p[1]) == 0) 889 { 890 cache->prev_rip_addr = cur_sp + 0; 891 cache->prev_rsp_addr = cur_sp + 24; 892 cur_sp += 40; 893 } 894 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 895 { 896 cache->prev_rip_addr = cur_sp + 8; 897 cache->prev_rsp_addr = cur_sp + 32; 898 cur_sp += 48; 899 } 900 else 901 return; 902 break; 903 default: 904 return; 905 } 906 907 /* Display address where the register was saved. */ 908 if (reg >= 0) 909 frame_debug_printf (" [reg %s at %s]", 910 gdbarch_register_name (gdbarch, reg), 911 paddress (gdbarch, 912 cache->prev_reg_addr[reg])); 913 } 914 915 /* Adjust with the length of the opcode. */ 916 switch (PEX64_UNWCODE_CODE (p[1])) 917 { 918 case UWOP_PUSH_NONVOL: 919 case UWOP_ALLOC_SMALL: 920 case UWOP_SET_FPREG: 921 case UWOP_PUSH_MACHFRAME: 922 break; 923 case UWOP_ALLOC_LARGE: 924 if (PEX64_UNWCODE_INFO (p[1]) == 0) 925 p += 2; 926 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 927 p += 4; 928 else 929 return; 930 break; 931 case UWOP_SAVE_NONVOL: 932 case UWOP_SAVE_XMM128: 933 p += 2; 934 break; 935 case UWOP_SAVE_NONVOL_FAR: 936 case UWOP_SAVE_XMM128_FAR: 937 p += 4; 938 break; 939 default: 940 return; 941 } 942 } 943 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO) 944 { 945 /* End of unwind info. */ 946 break; 947 } 948 else 949 { 950 /* Read the chained unwind info. */ 951 struct external_pex64_runtime_function d; 952 CORE_ADDR chain_vma; 953 954 /* Not anymore the first entry. */ 955 first = 0; 956 957 /* Stay aligned on word boundary. */ 958 chain_vma = cache->image_base + unwind_info 959 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2; 960 961 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0) 962 return; 963 964 /* Decode begin/end. This may be different from .pdata index, as 965 an unwind info may be shared by several functions (in particular 966 if many functions have the same prolog and handler. */ 967 cache->start_rva = 968 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 969 cache->end_rva = 970 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 971 unwind_info = 972 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 973 974 frame_debug_printf ("next in chain: unwind_data=%s, start_rva=%s, " 975 "end_rva=%s", 976 paddress (gdbarch, unwind_info), 977 paddress (gdbarch, cache->start_rva), 978 paddress (gdbarch, cache->end_rva)); 979 } 980 981 /* Allow the user to break this loop. */ 982 QUIT; 983 } 984 /* PC is saved by the call. */ 985 if (cache->prev_rip_addr == 0) 986 cache->prev_rip_addr = cur_sp; 987 cache->prev_sp = cur_sp + 8; 988 989 frame_debug_printf (" prev_sp: %s, prev_pc @%s", 990 paddress (gdbarch, cache->prev_sp), 991 paddress (gdbarch, cache->prev_rip_addr)); 992 } 993 994 /* Find SEH unwind info for PC, returning 0 on success. 995 996 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE 997 to the base address of the corresponding image, and START_RVA 998 to the rva of the function containing PC. */ 999 1000 static int 1001 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc, 1002 CORE_ADDR *unwind_info, 1003 CORE_ADDR *image_base, 1004 CORE_ADDR *start_rva, 1005 CORE_ADDR *end_rva) 1006 { 1007 struct obj_section *sec; 1008 pe_data_type *pe; 1009 IMAGE_DATA_DIRECTORY *dir; 1010 struct objfile *objfile; 1011 unsigned long lo, hi; 1012 CORE_ADDR base; 1013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1014 1015 /* Get the corresponding exception directory. */ 1016 sec = find_pc_section (pc); 1017 if (sec == NULL) 1018 return -1; 1019 objfile = sec->objfile; 1020 pe = pe_data (sec->objfile->obfd); 1021 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE]; 1022 1023 base = pe->pe_opthdr.ImageBase + objfile->text_section_offset (); 1024 *image_base = base; 1025 1026 /* Find the entry. 1027 1028 Note: This does not handle dynamically added entries (for JIT 1029 engines). For this, we would need to ask the kernel directly, 1030 which means getting some info from the native layer. For the 1031 rest of the code, however, it's probably faster to search 1032 the entry ourselves. */ 1033 lo = 0; 1034 hi = dir->Size / sizeof (struct external_pex64_runtime_function); 1035 *unwind_info = 0; 1036 while (lo <= hi) 1037 { 1038 unsigned long mid = lo + (hi - lo) / 2; 1039 struct external_pex64_runtime_function d; 1040 CORE_ADDR sa, ea; 1041 1042 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d), 1043 (gdb_byte *) &d, sizeof (d)) != 0) 1044 return -1; 1045 1046 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 1047 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 1048 if (pc < base + sa) 1049 hi = mid - 1; 1050 else if (pc >= base + ea) 1051 lo = mid + 1; 1052 else if (pc >= base + sa && pc < base + ea) 1053 { 1054 /* Got it. */ 1055 *start_rva = sa; 1056 *end_rva = ea; 1057 *unwind_info = 1058 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 1059 break; 1060 } 1061 else 1062 break; 1063 } 1064 1065 frame_debug_printf ("image_base=%s, unwind_data=%s", 1066 paddress (gdbarch, base), 1067 paddress (gdbarch, *unwind_info)); 1068 1069 return 0; 1070 } 1071 1072 /* Fill THIS_CACHE using the native amd64-windows unwinding data 1073 for THIS_FRAME. */ 1074 1075 static struct amd64_windows_frame_cache * 1076 amd64_windows_frame_cache (frame_info_ptr this_frame, void **this_cache) 1077 { 1078 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1079 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1080 struct amd64_windows_frame_cache *cache; 1081 gdb_byte buf[8]; 1082 CORE_ADDR pc; 1083 CORE_ADDR unwind_info = 0; 1084 1085 if (*this_cache) 1086 return (struct amd64_windows_frame_cache *) *this_cache; 1087 1088 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache); 1089 *this_cache = cache; 1090 1091 /* Get current PC and SP. */ 1092 pc = get_frame_pc (this_frame); 1093 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 1094 cache->sp = extract_unsigned_integer (buf, 8, byte_order); 1095 cache->pc = pc; 1096 1097 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1098 &cache->image_base, 1099 &cache->start_rva, 1100 &cache->end_rva)) 1101 return cache; 1102 1103 if (unwind_info == 0) 1104 { 1105 /* Assume a leaf function. */ 1106 cache->prev_sp = cache->sp + 8; 1107 cache->prev_rip_addr = cache->sp; 1108 } 1109 else 1110 { 1111 /* Decode unwind insns to compute saved addresses. */ 1112 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info); 1113 } 1114 return cache; 1115 } 1116 1117 /* Implement the "prev_register" method of struct frame_unwind 1118 using the standard Windows x64 SEH info. */ 1119 1120 static struct value * 1121 amd64_windows_frame_prev_register (frame_info_ptr this_frame, 1122 void **this_cache, int regnum) 1123 { 1124 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1125 struct amd64_windows_frame_cache *cache = 1126 amd64_windows_frame_cache (this_frame, this_cache); 1127 CORE_ADDR prev; 1128 1129 frame_debug_printf ("%s for sp=%s", 1130 gdbarch_register_name (gdbarch, regnum), 1131 paddress (gdbarch, cache->prev_sp)); 1132 1133 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) 1134 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM]; 1135 else if (regnum == AMD64_RSP_REGNUM) 1136 { 1137 prev = cache->prev_rsp_addr; 1138 if (prev == 0) 1139 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); 1140 } 1141 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM) 1142 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM]; 1143 else if (regnum == AMD64_RIP_REGNUM) 1144 prev = cache->prev_rip_addr; 1145 else 1146 prev = 0; 1147 1148 if (prev != 0) 1149 frame_debug_printf (" -> at %s", paddress (gdbarch, prev)); 1150 1151 if (prev) 1152 { 1153 /* Register was saved. */ 1154 return frame_unwind_got_memory (this_frame, regnum, prev); 1155 } 1156 else 1157 { 1158 /* Register is either volatile or not modified. */ 1159 return frame_unwind_got_register (this_frame, regnum, regnum); 1160 } 1161 } 1162 1163 /* Implement the "this_id" method of struct frame_unwind using 1164 the standard Windows x64 SEH info. */ 1165 1166 static void 1167 amd64_windows_frame_this_id (frame_info_ptr this_frame, void **this_cache, 1168 struct frame_id *this_id) 1169 { 1170 struct amd64_windows_frame_cache *cache = 1171 amd64_windows_frame_cache (this_frame, this_cache); 1172 1173 *this_id = frame_id_build (cache->prev_sp, 1174 cache->image_base + cache->start_rva); 1175 } 1176 1177 /* Windows x64 SEH unwinder. */ 1178 1179 static const struct frame_unwind amd64_windows_frame_unwind = 1180 { 1181 "amd64 windows", 1182 NORMAL_FRAME, 1183 default_frame_unwind_stop_reason, 1184 &amd64_windows_frame_this_id, 1185 &amd64_windows_frame_prev_register, 1186 NULL, 1187 default_frame_sniffer 1188 }; 1189 1190 /* Implement the "skip_prologue" gdbarch method. */ 1191 1192 static CORE_ADDR 1193 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1194 { 1195 CORE_ADDR func_addr; 1196 CORE_ADDR unwind_info = 0; 1197 CORE_ADDR image_base, start_rva, end_rva; 1198 struct external_pex64_unwind_info ex_ui; 1199 1200 /* Use prologue size from unwind info. */ 1201 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1202 &image_base, &start_rva, &end_rva) == 0) 1203 { 1204 if (unwind_info == 0) 1205 { 1206 /* Leaf function. */ 1207 return pc; 1208 } 1209 else if (target_read_memory (image_base + unwind_info, 1210 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0 1211 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1) 1212 return std::max (pc, image_base + start_rva + ex_ui.SizeOfPrologue); 1213 } 1214 1215 /* See if we can determine the end of the prologue via the symbol 1216 table. If so, then return either the PC, or the PC after 1217 the prologue, whichever is greater. */ 1218 if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) 1219 { 1220 CORE_ADDR post_prologue_pc 1221 = skip_prologue_using_sal (gdbarch, func_addr); 1222 1223 if (post_prologue_pc != 0) 1224 return std::max (pc, post_prologue_pc); 1225 } 1226 1227 return pc; 1228 } 1229 1230 /* Check Win64 DLL jmp trampolines and find jump destination. */ 1231 1232 static CORE_ADDR 1233 amd64_windows_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc) 1234 { 1235 CORE_ADDR destination = 0; 1236 struct gdbarch *gdbarch = get_frame_arch (frame); 1237 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1238 1239 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */ 1240 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff) 1241 { 1242 /* Get opcode offset and see if we can find a reference in our data. */ 1243 ULONGEST offset 1244 = read_memory_unsigned_integer (pc + 2, 4, byte_order); 1245 1246 /* Get address of function pointer at end of pc. */ 1247 CORE_ADDR indirect_addr = pc + offset + 6; 1248 1249 struct minimal_symbol *indsym 1250 = (indirect_addr 1251 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym 1252 : NULL); 1253 const char *symname = indsym ? indsym->linkage_name () : NULL; 1254 1255 if (symname) 1256 { 1257 if (startswith (symname, "__imp_") 1258 || startswith (symname, "_imp_")) 1259 destination 1260 = read_memory_unsigned_integer (indirect_addr, 8, byte_order); 1261 } 1262 } 1263 1264 return destination; 1265 } 1266 1267 /* Implement the "auto_wide_charset" gdbarch method. */ 1268 1269 static const char * 1270 amd64_windows_auto_wide_charset (void) 1271 { 1272 return "UTF-16"; 1273 } 1274 1275 /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */ 1276 1277 static void 1278 amd64_windows_init_abi_common (gdbarch_info info, struct gdbarch *gdbarch) 1279 { 1280 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 1281 1282 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is 1283 preferred over the SEH one. The reasons are: 1284 - binaries without SEH but with dwarf2 debug info are correctly handled 1285 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH 1286 info). 1287 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be 1288 handled if the dwarf2 unwinder is used). 1289 1290 The call to amd64_init_abi appends default unwinders, that aren't 1291 compatible with the SEH one. 1292 */ 1293 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind); 1294 1295 amd64_init_abi (info, gdbarch, 1296 amd64_target_description (X86_XSTATE_SSE_MASK, false)); 1297 1298 /* Function calls. */ 1299 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call); 1300 set_gdbarch_return_value (gdbarch, amd64_windows_return_value); 1301 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue); 1302 set_gdbarch_skip_trampoline_code (gdbarch, 1303 amd64_windows_skip_trampoline_code); 1304 1305 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue); 1306 1307 tdep->gregset_reg_offset = amd64_windows_gregset_reg_offset; 1308 tdep->gregset_num_regs = ARRAY_SIZE (amd64_windows_gregset_reg_offset); 1309 tdep->sizeof_gregset = AMD64_WINDOWS_SIZEOF_GREGSET; 1310 tdep->sizeof_fpregset = 0; 1311 1312 /* Core file support. */ 1313 set_gdbarch_core_xfer_shared_libraries 1314 (gdbarch, windows_core_xfer_shared_libraries); 1315 set_gdbarch_core_pid_to_str (gdbarch, windows_core_pid_to_str); 1316 1317 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset); 1318 } 1319 1320 /* gdbarch initialization for Windows on AMD64. */ 1321 1322 static void 1323 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1324 { 1325 amd64_windows_init_abi_common (info, gdbarch); 1326 windows_init_abi (info, gdbarch); 1327 1328 /* On Windows, "long"s are only 32bit. */ 1329 set_gdbarch_long_bit (gdbarch, 32); 1330 } 1331 1332 /* gdbarch initialization for Cygwin on AMD64. */ 1333 1334 static void 1335 amd64_cygwin_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1336 { 1337 amd64_windows_init_abi_common (info, gdbarch); 1338 cygwin_init_abi (info, gdbarch); 1339 } 1340 1341 static gdb_osabi 1342 amd64_windows_osabi_sniffer (bfd *abfd) 1343 { 1344 const char *target_name = bfd_get_target (abfd); 1345 1346 if (!streq (target_name, "pei-x86-64")) 1347 return GDB_OSABI_UNKNOWN; 1348 1349 if (is_linked_with_cygwin_dll (abfd)) 1350 return GDB_OSABI_CYGWIN; 1351 1352 return GDB_OSABI_WINDOWS; 1353 } 1354 1355 static enum gdb_osabi 1356 amd64_cygwin_core_osabi_sniffer (bfd *abfd) 1357 { 1358 const char *target_name = bfd_get_target (abfd); 1359 1360 /* Cygwin uses elf core dumps. Do not claim all ELF executables, 1361 check whether there is a .reg section of proper size. */ 1362 if (strcmp (target_name, "elf64-x86-64") == 0) 1363 { 1364 asection *section = bfd_get_section_by_name (abfd, ".reg"); 1365 if (section != nullptr 1366 && bfd_section_size (section) == AMD64_WINDOWS_SIZEOF_GREGSET) 1367 return GDB_OSABI_CYGWIN; 1368 } 1369 1370 return GDB_OSABI_UNKNOWN; 1371 } 1372 1373 void _initialize_amd64_windows_tdep (); 1374 void 1375 _initialize_amd64_windows_tdep () 1376 { 1377 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_WINDOWS, 1378 amd64_windows_init_abi); 1379 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN, 1380 amd64_cygwin_init_abi); 1381 1382 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour, 1383 amd64_windows_osabi_sniffer); 1384 1385 /* Cygwin uses elf core dumps. */ 1386 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour, 1387 amd64_cygwin_core_osabi_sniffer); 1388 1389 } 1390