xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/amd64-windows-tdep.c (revision a5a4af3bd380a7b58b758d9b311cef9f7c34aeb4)
1 /* Copyright (C) 2009-2015 Free Software Foundation, Inc.
2 
3    This file is part of GDB.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "osabi.h"
20 #include "amd64-tdep.h"
21 #include "gdbtypes.h"
22 #include "gdbcore.h"
23 #include "regcache.h"
24 #include "windows-tdep.h"
25 #include "frame.h"
26 #include "objfiles.h"
27 #include "frame-unwind.h"
28 #include "coff/internal.h"
29 #include "coff/i386.h"
30 #include "coff/pe.h"
31 #include "libcoff.h"
32 #include "value.h"
33 
34 /* The registers used to pass integer arguments during a function call.  */
35 static int amd64_windows_dummy_call_integer_regs[] =
36 {
37   AMD64_RCX_REGNUM,          /* %rcx */
38   AMD64_RDX_REGNUM,          /* %rdx */
39   AMD64_R8_REGNUM,           /* %r8 */
40   AMD64_R9_REGNUM            /* %r9 */
41 };
42 
43 /* Return nonzero if an argument of type TYPE should be passed
44    via one of the integer registers.  */
45 
46 static int
47 amd64_windows_passed_by_integer_register (struct type *type)
48 {
49   switch (TYPE_CODE (type))
50     {
51       case TYPE_CODE_INT:
52       case TYPE_CODE_ENUM:
53       case TYPE_CODE_BOOL:
54       case TYPE_CODE_RANGE:
55       case TYPE_CODE_CHAR:
56       case TYPE_CODE_PTR:
57       case TYPE_CODE_REF:
58       case TYPE_CODE_STRUCT:
59       case TYPE_CODE_UNION:
60 	return (TYPE_LENGTH (type) == 1
61 		|| TYPE_LENGTH (type) == 2
62 		|| TYPE_LENGTH (type) == 4
63 		|| TYPE_LENGTH (type) == 8);
64 
65       default:
66 	return 0;
67     }
68 }
69 
70 /* Return nonzero if an argument of type TYPE should be passed
71    via one of the XMM registers.  */
72 
73 static int
74 amd64_windows_passed_by_xmm_register (struct type *type)
75 {
76   return ((TYPE_CODE (type) == TYPE_CODE_FLT
77 	   || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78           && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
79 }
80 
81 /* Return non-zero iff an argument of the given TYPE should be passed
82    by pointer.  */
83 
84 static int
85 amd64_windows_passed_by_pointer (struct type *type)
86 {
87   if (amd64_windows_passed_by_integer_register (type))
88     return 0;
89 
90   if (amd64_windows_passed_by_xmm_register (type))
91     return 0;
92 
93   return 1;
94 }
95 
96 /* For each argument that should be passed by pointer, reserve some
97    stack space, store a copy of the argument on the stack, and replace
98    the argument by its address.  Return the new Stack Pointer value.
99 
100    NARGS is the number of arguments. ARGS is the array containing
101    the value of each argument.  SP is value of the Stack Pointer.  */
102 
103 static CORE_ADDR
104 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
105 					     int nargs, CORE_ADDR sp)
106 {
107   int i;
108 
109   for (i = 0; i < nargs; i++)
110     if (amd64_windows_passed_by_pointer (value_type (args[i])))
111       {
112 	struct type *type = value_type (args[i]);
113 	const gdb_byte *valbuf = value_contents (args[i]);
114 	const int len = TYPE_LENGTH (type);
115 
116 	/* Store a copy of that argument on the stack, aligned to
117 	   a 16 bytes boundary, and then use the copy's address as
118 	   the argument.  */
119 
120 	sp -= len;
121 	sp &= ~0xf;
122 	write_memory (sp, valbuf, len);
123 
124 	args[i]
125 	  = value_addr (value_from_contents_and_address (type, valbuf, sp));
126       }
127 
128   return sp;
129 }
130 
131 /* Store the value of ARG in register REGNO (right-justified).
132    REGCACHE is the register cache.  */
133 
134 static void
135 amd64_windows_store_arg_in_reg (struct regcache *regcache,
136 				struct value *arg, int regno)
137 {
138   struct type *type = value_type (arg);
139   const gdb_byte *valbuf = value_contents (arg);
140   gdb_byte buf[8];
141 
142   gdb_assert (TYPE_LENGTH (type) <= 8);
143   memset (buf, 0, sizeof buf);
144   memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
145   regcache_cooked_write (regcache, regno, buf);
146 }
147 
148 /* Push the arguments for an inferior function call, and return
149    the updated value of the SP (Stack Pointer).
150 
151    All arguments are identical to the arguments used in
152    amd64_windows_push_dummy_call.  */
153 
154 static CORE_ADDR
155 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
156 			      struct value **args, CORE_ADDR sp,
157 			      int struct_return)
158 {
159   int reg_idx = 0;
160   int i;
161   struct value **stack_args = alloca (nargs * sizeof (struct value *));
162   int num_stack_args = 0;
163   int num_elements = 0;
164   int element = 0;
165 
166   /* First, handle the arguments passed by pointer.
167 
168      These arguments are replaced by pointers to a copy we are making
169      in inferior memory.  So use a copy of the ARGS table, to avoid
170      modifying the original one.  */
171   {
172     struct value **args1 = alloca (nargs * sizeof (struct value *));
173 
174     memcpy (args1, args, nargs * sizeof (struct value *));
175     sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
176     args = args1;
177   }
178 
179   /* Reserve a register for the "hidden" argument.  */
180   if (struct_return)
181     reg_idx++;
182 
183   for (i = 0; i < nargs; i++)
184     {
185       struct type *type = value_type (args[i]);
186       int len = TYPE_LENGTH (type);
187       int on_stack_p = 1;
188 
189       if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
190 	{
191 	  if (amd64_windows_passed_by_integer_register (type))
192 	    {
193 	      amd64_windows_store_arg_in_reg
194 		(regcache, args[i],
195 		 amd64_windows_dummy_call_integer_regs[reg_idx]);
196 	      on_stack_p = 0;
197 	      reg_idx++;
198 	    }
199 	  else if (amd64_windows_passed_by_xmm_register (type))
200 	    {
201 	      amd64_windows_store_arg_in_reg
202 	        (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
203 	      /* In case of varargs, these parameters must also be
204 		 passed via the integer registers.  */
205 	      amd64_windows_store_arg_in_reg
206 		(regcache, args[i],
207 		 amd64_windows_dummy_call_integer_regs[reg_idx]);
208 	      on_stack_p = 0;
209 	      reg_idx++;
210 	    }
211 	}
212 
213       if (on_stack_p)
214 	{
215 	  num_elements += ((len + 7) / 8);
216 	  stack_args[num_stack_args++] = args[i];
217 	}
218     }
219 
220   /* Allocate space for the arguments on the stack, keeping it
221      aligned on a 16 byte boundary.  */
222   sp -= num_elements * 8;
223   sp &= ~0xf;
224 
225   /* Write out the arguments to the stack.  */
226   for (i = 0; i < num_stack_args; i++)
227     {
228       struct type *type = value_type (stack_args[i]);
229       const gdb_byte *valbuf = value_contents (stack_args[i]);
230 
231       write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
232       element += ((TYPE_LENGTH (type) + 7) / 8);
233     }
234 
235   return sp;
236 }
237 
238 /* Implement the "push_dummy_call" gdbarch method.  */
239 
240 static CORE_ADDR
241 amd64_windows_push_dummy_call
242   (struct gdbarch *gdbarch, struct value *function,
243    struct regcache *regcache, CORE_ADDR bp_addr,
244    int nargs, struct value **args,
245    CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
246 {
247   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248   gdb_byte buf[8];
249 
250   /* Pass arguments.  */
251   sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
252 				     struct_return);
253 
254   /* Pass "hidden" argument".  */
255   if (struct_return)
256     {
257       /* The "hidden" argument is passed throught the first argument
258          register.  */
259       const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
260 
261       store_unsigned_integer (buf, 8, byte_order, struct_addr);
262       regcache_cooked_write (regcache, arg_regnum, buf);
263     }
264 
265   /* Reserve some memory on the stack for the integer-parameter
266      registers, as required by the ABI.  */
267   sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
268 
269   /* Store return address.  */
270   sp -= 8;
271   store_unsigned_integer (buf, 8, byte_order, bp_addr);
272   write_memory (sp, buf, 8);
273 
274   /* Update the stack pointer...  */
275   store_unsigned_integer (buf, 8, byte_order, sp);
276   regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
277 
278   /* ...and fake a frame pointer.  */
279   regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
280 
281   return sp + 16;
282 }
283 
284 /* Implement the "return_value" gdbarch method for amd64-windows.  */
285 
286 static enum return_value_convention
287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
288 			    struct type *type, struct regcache *regcache,
289 			    gdb_byte *readbuf, const gdb_byte *writebuf)
290 {
291   int len = TYPE_LENGTH (type);
292   int regnum = -1;
293 
294   /* See if our value is returned through a register.  If it is, then
295      store the associated register number in REGNUM.  */
296   switch (TYPE_CODE (type))
297     {
298       case TYPE_CODE_FLT:
299       case TYPE_CODE_DECFLOAT:
300         /* __m128, __m128i, __m128d, floats, and doubles are returned
301            via XMM0.  */
302         if (len == 4 || len == 8 || len == 16)
303           regnum = AMD64_XMM0_REGNUM;
304         break;
305       default:
306         /* All other values that are 1, 2, 4 or 8 bytes long are returned
307            via RAX.  */
308         if (len == 1 || len == 2 || len == 4 || len == 8)
309           regnum = AMD64_RAX_REGNUM;
310         break;
311     }
312 
313   if (regnum < 0)
314     {
315       /* RAX contains the address where the return value has been stored.  */
316       if (readbuf)
317         {
318 	  ULONGEST addr;
319 
320 	  regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
321 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
322 	}
323       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
324     }
325   else
326     {
327       /* Extract the return value from the register where it was stored.  */
328       if (readbuf)
329 	regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
330       if (writebuf)
331 	regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
332       return RETURN_VALUE_REGISTER_CONVENTION;
333     }
334 }
335 
336 /* Check that the code pointed to by PC corresponds to a call to
337    __main, skip it if so.  Return PC otherwise.  */
338 
339 static CORE_ADDR
340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
341 {
342   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343   gdb_byte op;
344 
345   target_read_memory (pc, &op, 1);
346   if (op == 0xe8)
347     {
348       gdb_byte buf[4];
349 
350       if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
351  	{
352  	  struct bound_minimal_symbol s;
353  	  CORE_ADDR call_dest;
354 
355 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
356  	  s = lookup_minimal_symbol_by_pc (call_dest);
357  	  if (s.minsym != NULL
358  	      && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
359  	      && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
360  	    pc += 5;
361  	}
362     }
363 
364   return pc;
365 }
366 
367 struct amd64_windows_frame_cache
368 {
369   /* ImageBase for the module.  */
370   CORE_ADDR image_base;
371 
372   /* Function start and end rva.  */
373   CORE_ADDR start_rva;
374   CORE_ADDR end_rva;
375 
376   /* Next instruction to be executed.  */
377   CORE_ADDR pc;
378 
379   /* Current sp.  */
380   CORE_ADDR sp;
381 
382   /* Address of saved integer and xmm registers.  */
383   CORE_ADDR prev_reg_addr[16];
384   CORE_ADDR prev_xmm_addr[16];
385 
386   /* These two next fields are set only for machine info frames.  */
387 
388   /* Likewise for RIP.  */
389   CORE_ADDR prev_rip_addr;
390 
391   /* Likewise for RSP.  */
392   CORE_ADDR prev_rsp_addr;
393 
394   /* Address of the previous frame.  */
395   CORE_ADDR prev_sp;
396 };
397 
398 /* Convert a Windows register number to gdb.  */
399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
400 {
401   AMD64_RAX_REGNUM,
402   AMD64_RCX_REGNUM,
403   AMD64_RDX_REGNUM,
404   AMD64_RBX_REGNUM,
405   AMD64_RSP_REGNUM,
406   AMD64_RBP_REGNUM,
407   AMD64_RSI_REGNUM,
408   AMD64_RDI_REGNUM,
409   AMD64_R8_REGNUM,
410   AMD64_R9_REGNUM,
411   AMD64_R10_REGNUM,
412   AMD64_R11_REGNUM,
413   AMD64_R12_REGNUM,
414   AMD64_R13_REGNUM,
415   AMD64_R14_REGNUM,
416   AMD64_R15_REGNUM
417 };
418 
419 /* Return TRUE iff PC is the the range of the function corresponding to
420    CACHE.  */
421 
422 static int
423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
424 {
425   return (pc >= cache->image_base + cache->start_rva
426 	  && pc < cache->image_base + cache->end_rva);
427 }
428 
429 /* Try to recognize and decode an epilogue sequence.
430 
431    Return -1 if we fail to read the instructions for any reason.
432    Return 1 if an epilogue sequence was recognized, 0 otherwise.  */
433 
434 static int
435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
436 				     struct amd64_windows_frame_cache *cache)
437 {
438   /* According to MSDN an epilogue "must consist of either an add RSP,constant
439      or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
440      register pops and a return or a jmp".
441 
442      Furthermore, according to RtlVirtualUnwind, the complete list of
443      epilog marker is:
444      - ret                      [c3]
445      - ret n                    [c2 imm16]
446      - rep ret                  [f3 c3]
447      - jmp imm8 | imm32         [eb rel8] or [e9 rel32]
448      - jmp qword ptr imm32                 - not handled
449      - rex.w jmp reg            [4X ff eY]
450   */
451 
452   CORE_ADDR pc = cache->pc;
453   CORE_ADDR cur_sp = cache->sp;
454   struct gdbarch *gdbarch = get_frame_arch (this_frame);
455   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456   gdb_byte op;
457   gdb_byte rex;
458 
459   /* We don't care about the instruction deallocating the frame:
460      if it hasn't been executed, the pc is still in the body,
461      if it has been executed, the following epilog decoding will work.  */
462 
463   /* First decode:
464      -  pop reg                 [41 58-5f] or [58-5f].  */
465 
466   while (1)
467     {
468       /* Read opcode. */
469       if (target_read_memory (pc, &op, 1) != 0)
470 	return -1;
471 
472       if (op >= 0x40 && op <= 0x4f)
473 	{
474 	  /* REX prefix.  */
475 	  rex = op;
476 
477 	  /* Read opcode. */
478 	  if (target_read_memory (pc + 1, &op, 1) != 0)
479 	    return -1;
480 	}
481       else
482 	rex = 0;
483 
484       if (op >= 0x58 && op <= 0x5f)
485 	{
486 	  /* pop reg  */
487 	  gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
488 
489 	  cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
490 	  cur_sp += 8;
491 	}
492       else
493 	break;
494 
495       /* Allow the user to break this loop.  This shouldn't happen as the
496 	 number of consecutive pop should be small.  */
497       QUIT;
498     }
499 
500   /* Then decode the marker.  */
501 
502   /* Read opcode.  */
503   if (target_read_memory (pc, &op, 1) != 0)
504     return -1;
505 
506   switch (op)
507     {
508     case 0xc3:
509       /* Ret.  */
510       cache->prev_rip_addr = cur_sp;
511       cache->prev_sp = cur_sp + 8;
512       return 1;
513 
514     case 0xeb:
515       {
516 	/* jmp rel8  */
517 	gdb_byte rel8;
518 	CORE_ADDR npc;
519 
520 	if (target_read_memory (pc + 1, &rel8, 1) != 0)
521 	  return -1;
522 	npc = pc + 2 + (signed char) rel8;
523 
524 	/* If the jump is within the function, then this is not a marker,
525 	   otherwise this is a tail-call.  */
526 	return !pc_in_range (npc, cache);
527       }
528 
529     case 0xec:
530       {
531 	/* jmp rel32  */
532 	gdb_byte rel32[4];
533 	CORE_ADDR npc;
534 
535 	if (target_read_memory (pc + 1, rel32, 4) != 0)
536 	  return -1;
537 	npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
538 
539 	/* If the jump is within the function, then this is not a marker,
540 	   otherwise this is a tail-call.  */
541 	return !pc_in_range (npc, cache);
542       }
543 
544     case 0xc2:
545       {
546 	/* ret n  */
547 	gdb_byte imm16[2];
548 
549 	if (target_read_memory (pc + 1, imm16, 2) != 0)
550 	  return -1;
551 	cache->prev_rip_addr = cur_sp;
552 	cache->prev_sp = cur_sp
553 	  + extract_unsigned_integer (imm16, 4, byte_order);
554 	return 1;
555       }
556 
557     case 0xf3:
558       {
559 	/* rep; ret  */
560 	gdb_byte op1;
561 
562 	if (target_read_memory (pc + 2, &op1, 1) != 0)
563 	  return -1;
564 	if (op1 != 0xc3)
565 	  return 0;
566 
567 	cache->prev_rip_addr = cur_sp;
568 	cache->prev_sp = cur_sp + 8;
569 	return 1;
570       }
571 
572     case 0x40:
573     case 0x41:
574     case 0x42:
575     case 0x43:
576     case 0x44:
577     case 0x45:
578     case 0x46:
579     case 0x47:
580     case 0x48:
581     case 0x49:
582     case 0x4a:
583     case 0x4b:
584     case 0x4c:
585     case 0x4d:
586     case 0x4e:
587     case 0x4f:
588       /* Got a REX prefix, read next byte.  */
589       rex = op;
590       if (target_read_memory (pc + 1, &op, 1) != 0)
591 	return -1;
592 
593       if (op == 0xff)
594 	{
595 	  /* rex jmp reg  */
596 	  gdb_byte op1;
597 	  unsigned int reg;
598 	  gdb_byte buf[8];
599 
600 	  if (target_read_memory (pc + 2, &op1, 1) != 0)
601 	    return -1;
602 	  return (op1 & 0xf8) == 0xe0;
603 	}
604       else
605 	return 0;
606 
607     default:
608       /* Not REX, so unknown.  */
609       return 0;
610     }
611 }
612 
613 /* Decode and execute unwind insns at UNWIND_INFO.  */
614 
615 static void
616 amd64_windows_frame_decode_insns (struct frame_info *this_frame,
617 				  struct amd64_windows_frame_cache *cache,
618 				  CORE_ADDR unwind_info)
619 {
620   CORE_ADDR save_addr = 0;
621   CORE_ADDR cur_sp = cache->sp;
622   struct gdbarch *gdbarch = get_frame_arch (this_frame);
623   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624   int first = 1;
625 
626   /* There are at least 3 possibilities to share an unwind info entry:
627      1. Two different runtime_function entries (in .pdata) can point to the
628 	same unwind info entry.  There is no such indication while unwinding,
629 	so we don't really care about that case.  We suppose this scheme is
630 	used to save memory when the unwind entries are exactly the same.
631      2. Chained unwind_info entries, with no unwind codes (no prologue).
632 	There is a major difference with the previous case: the pc range for
633 	the function is different (in case 1, the pc range comes from the
634 	runtime_function entry; in case 2, the pc range for the chained entry
635 	comes from the first unwind entry).  Case 1 cannot be used instead as
636 	the pc is not in the prologue.  This case is officially documented.
637 	(There might be unwind code in the first unwind entry to handle
638 	additional unwinding).  GCC (at least until gcc 5.0) doesn't chain
639 	entries.
640      3. Undocumented unwind info redirection.  Hard to know the exact purpose,
641 	so it is considered as a memory optimization of case 2.
642   */
643 
644   if (unwind_info & 1)
645     {
646       /* Unofficially documented unwind info redirection, when UNWIND_INFO
647 	 address is odd (http://www.codemachine.com/article_x64deepdive.html).
648       */
649       struct external_pex64_runtime_function d;
650       CORE_ADDR sa, ea;
651 
652       if (target_read_memory (cache->image_base + (unwind_info & ~1),
653 			      (gdb_byte *) &d, sizeof (d)) != 0)
654 	return;
655 
656       cache->start_rva
657 	= extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
658       cache->end_rva
659 	= extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
660       unwind_info
661 	= extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
662     }
663 
664   while (1)
665     {
666       struct external_pex64_unwind_info ex_ui;
667       /* There are at most 256 16-bit unwind insns.  */
668       gdb_byte insns[2 * 256];
669       gdb_byte *p;
670       gdb_byte *end_insns;
671       unsigned char codes_count;
672       unsigned char frame_reg;
673       unsigned char frame_off;
674       CORE_ADDR start;
675 
676       /* Read and decode header.  */
677       if (target_read_memory (cache->image_base + unwind_info,
678 			      (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
679 	return;
680 
681       if (frame_debug)
682 	fprintf_unfiltered
683 	  (gdb_stdlog,
684 	   "amd64_windows_frame_decodes_insn: "
685 	   "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
686 	   paddress (gdbarch, unwind_info),
687 	   ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
688 	   ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
689 
690       /* Check version.  */
691       if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
692 	  && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
693 	return;
694 
695       start = cache->image_base + cache->start_rva;
696       if (first
697 	  && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
698 	{
699 	  /* We want to detect if the PC points to an epilogue.  This needs
700 	     to be checked only once, and an epilogue can be anywhere but in
701 	     the prologue.  If so, the epilogue detection+decoding function is
702 	     sufficient.  Otherwise, the unwinder will consider that the PC
703 	     is in the body of the function and will need to decode unwind
704 	     info.  */
705 	  if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
706 	    return;
707 
708 	  /* Not in an epilog.  Clear possible side effects.  */
709 	  memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
710 	}
711 
712       codes_count = ex_ui.CountOfCodes;
713       frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
714 
715       if (frame_reg != 0)
716 	{
717 	  /* According to msdn:
718 	     If an FP reg is used, then any unwind code taking an offset must
719 	     only be used after the FP reg is established in the prolog.  */
720 	  gdb_byte buf[8];
721 	  int frreg = amd64_windows_w2gdb_regnum[frame_reg];
722 
723 	  get_frame_register (this_frame, frreg, buf);
724 	  save_addr = extract_unsigned_integer (buf, 8, byte_order);
725 
726 	  if (frame_debug)
727 	    fprintf_unfiltered (gdb_stdlog, "   frame_reg=%s, val=%s\n",
728 				gdbarch_register_name (gdbarch, frreg),
729 				paddress (gdbarch, save_addr));
730 	}
731 
732       /* Read opcodes.  */
733       if (codes_count != 0
734 	  && target_read_memory (cache->image_base + unwind_info
735 				 + sizeof (ex_ui),
736 				 insns, codes_count * 2) != 0)
737 	return;
738 
739       end_insns = &insns[codes_count * 2];
740       p = insns;
741 
742       /* Skip opcodes 6 of version 2.  This opcode is not documented.  */
743       if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
744 	{
745 	  for (; p < end_insns; p += 2)
746 	    if (PEX64_UNWCODE_CODE (p[1]) != 6)
747 	      break;
748 	}
749 
750       for (; p < end_insns; p += 2)
751 	{
752 	  int reg;
753 
754 	  /* Virtually execute the operation if the pc is after the
755 	     corresponding instruction (that does matter in case of break
756 	     within the prologue).  Note that for chained info (!first), the
757 	     prologue has been fully executed.  */
758 	  if (cache->pc >= start + p[0] || cache->pc < start)
759 	    {
760 	      if (frame_debug)
761 		fprintf_unfiltered
762 		  (gdb_stdlog, "   op #%u: off=0x%02x, insn=0x%02x\n",
763 		   (unsigned) (p - insns), p[0], p[1]);
764 
765 	      /* If there is no frame registers defined, the current value of
766 		 rsp is used instead.  */
767 	      if (frame_reg == 0)
768 		save_addr = cur_sp;
769 
770 	      reg = -1;
771 
772 	      switch (PEX64_UNWCODE_CODE (p[1]))
773 		{
774 		case UWOP_PUSH_NONVOL:
775 		  /* Push pre-decrements RSP.  */
776 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
777 		  cache->prev_reg_addr[reg] = cur_sp;
778 		  cur_sp += 8;
779 		  break;
780 		case UWOP_ALLOC_LARGE:
781 		  if (PEX64_UNWCODE_INFO (p[1]) == 0)
782 		    cur_sp +=
783 		      8 * extract_unsigned_integer (p + 2, 2, byte_order);
784 		  else if (PEX64_UNWCODE_INFO (p[1]) == 1)
785 		    cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
786 		  else
787 		    return;
788 		  break;
789 		case UWOP_ALLOC_SMALL:
790 		  cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
791 		  break;
792 		case UWOP_SET_FPREG:
793 		  cur_sp = save_addr
794 		    - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
795 		  break;
796 		case UWOP_SAVE_NONVOL:
797 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
798 		  cache->prev_reg_addr[reg] = save_addr
799 		    + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
800 		  break;
801 		case UWOP_SAVE_NONVOL_FAR:
802 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
803 		  cache->prev_reg_addr[reg] = save_addr
804 		    + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
805 		  break;
806 		case UWOP_SAVE_XMM128:
807 		  cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
808 		    save_addr
809 		    - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
810 		  break;
811 		case UWOP_SAVE_XMM128_FAR:
812 		  cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
813 		    save_addr
814 		    - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
815 		  break;
816 		case UWOP_PUSH_MACHFRAME:
817 		  if (PEX64_UNWCODE_INFO (p[1]) == 0)
818 		    {
819 		      cache->prev_rip_addr = cur_sp + 0;
820 		      cache->prev_rsp_addr = cur_sp + 24;
821 		      cur_sp += 40;
822 		    }
823 		  else if (PEX64_UNWCODE_INFO (p[1]) == 1)
824 		    {
825 		      cache->prev_rip_addr = cur_sp + 8;
826 		      cache->prev_rsp_addr = cur_sp + 32;
827 		      cur_sp += 48;
828 		    }
829 		  else
830 		    return;
831 		  break;
832 		default:
833 		  return;
834 		}
835 
836 	      /* Display address where the register was saved.  */
837 	      if (frame_debug && reg >= 0)
838 		fprintf_unfiltered
839 		  (gdb_stdlog, "     [reg %s at %s]\n",
840 		   gdbarch_register_name (gdbarch, reg),
841 		   paddress (gdbarch, cache->prev_reg_addr[reg]));
842 	    }
843 
844 	  /* Adjust with the length of the opcode.  */
845 	  switch (PEX64_UNWCODE_CODE (p[1]))
846 	    {
847 	    case UWOP_PUSH_NONVOL:
848 	    case UWOP_ALLOC_SMALL:
849 	    case UWOP_SET_FPREG:
850 	    case UWOP_PUSH_MACHFRAME:
851 	      break;
852 	    case UWOP_ALLOC_LARGE:
853 	      if (PEX64_UNWCODE_INFO (p[1]) == 0)
854 		p += 2;
855 	      else if (PEX64_UNWCODE_INFO (p[1]) == 1)
856 		p += 4;
857 	      else
858 		return;
859 	      break;
860 	    case UWOP_SAVE_NONVOL:
861 	    case UWOP_SAVE_XMM128:
862 	      p += 2;
863 	      break;
864 	    case UWOP_SAVE_NONVOL_FAR:
865 	    case UWOP_SAVE_XMM128_FAR:
866 	      p += 4;
867 	      break;
868 	    default:
869 	      return;
870 	    }
871 	}
872       if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
873 	{
874 	  /* End of unwind info.  */
875 	  break;
876 	}
877       else
878 	{
879 	  /* Read the chained unwind info.  */
880 	  struct external_pex64_runtime_function d;
881 	  CORE_ADDR chain_vma;
882 
883 	  /* Not anymore the first entry.  */
884 	  first = 0;
885 
886 	  /* Stay aligned on word boundary.  */
887 	  chain_vma = cache->image_base + unwind_info
888 	    + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
889 
890 	  if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
891 	    return;
892 
893 	  /* Decode begin/end.  This may be different from .pdata index, as
894 	     an unwind info may be shared by several functions (in particular
895 	     if many functions have the same prolog and handler.  */
896 	  cache->start_rva =
897 	    extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
898 	  cache->end_rva =
899 	    extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
900 	  unwind_info =
901 	    extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
902 
903 	  if (frame_debug)
904 	    fprintf_unfiltered
905 	      (gdb_stdlog,
906 	       "amd64_windows_frame_decodes_insn (next in chain):"
907 	       " unwind_data=%s, start_rva=%s, end_rva=%s\n",
908 	       paddress (gdbarch, unwind_info),
909 	       paddress (gdbarch, cache->start_rva),
910 	       paddress (gdbarch, cache->end_rva));
911 	}
912 
913       /* Allow the user to break this loop.  */
914       QUIT;
915     }
916   /* PC is saved by the call.  */
917   if (cache->prev_rip_addr == 0)
918     cache->prev_rip_addr = cur_sp;
919   cache->prev_sp = cur_sp + 8;
920 
921   if (frame_debug)
922     fprintf_unfiltered (gdb_stdlog, "   prev_sp: %s, prev_pc @%s\n",
923 			paddress (gdbarch, cache->prev_sp),
924 			paddress (gdbarch, cache->prev_rip_addr));
925 }
926 
927 /* Find SEH unwind info for PC, returning 0 on success.
928 
929    UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
930    to the base address of the corresponding image, and START_RVA
931    to the rva of the function containing PC.  */
932 
933 static int
934 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
935 				CORE_ADDR *unwind_info,
936 				CORE_ADDR *image_base,
937 				CORE_ADDR *start_rva,
938 				CORE_ADDR *end_rva)
939 {
940   struct obj_section *sec;
941   pe_data_type *pe;
942   IMAGE_DATA_DIRECTORY *dir;
943   struct objfile *objfile;
944   unsigned long lo, hi;
945   CORE_ADDR base;
946   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
947 
948   /* Get the corresponding exception directory.  */
949   sec = find_pc_section (pc);
950   if (sec == NULL)
951     return -1;
952   objfile = sec->objfile;
953   pe = pe_data (sec->objfile->obfd);
954   dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
955 
956   base = pe->pe_opthdr.ImageBase
957     + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
958   *image_base = base;
959 
960   /* Find the entry.
961 
962      Note: This does not handle dynamically added entries (for JIT
963      engines).  For this, we would need to ask the kernel directly,
964      which means getting some info from the native layer.  For the
965      rest of the code, however, it's probably faster to search
966      the entry ourselves.  */
967   lo = 0;
968   hi = dir->Size / sizeof (struct external_pex64_runtime_function);
969   *unwind_info = 0;
970   while (lo <= hi)
971     {
972       unsigned long mid = lo + (hi - lo) / 2;
973       struct external_pex64_runtime_function d;
974       CORE_ADDR sa, ea;
975 
976       if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
977 			      (gdb_byte *) &d, sizeof (d)) != 0)
978 	return -1;
979 
980       sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
981       ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
982       if (pc < base + sa)
983 	hi = mid - 1;
984       else if (pc >= base + ea)
985 	lo = mid + 1;
986       else if (pc >= base + sa && pc < base + ea)
987 	{
988 	  /* Got it.  */
989 	  *start_rva = sa;
990 	  *end_rva = ea;
991 	  *unwind_info =
992 	    extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
993 	  break;
994 	}
995       else
996 	break;
997     }
998 
999   if (frame_debug)
1000     fprintf_unfiltered
1001       (gdb_stdlog,
1002        "amd64_windows_find_unwind_data:  image_base=%s, unwind_data=%s\n",
1003        paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
1004 
1005   return 0;
1006 }
1007 
1008 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1009    for THIS_FRAME.  */
1010 
1011 static struct amd64_windows_frame_cache *
1012 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
1013 {
1014   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1015   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1016   struct amd64_windows_frame_cache *cache;
1017   gdb_byte buf[8];
1018   struct obj_section *sec;
1019   pe_data_type *pe;
1020   IMAGE_DATA_DIRECTORY *dir;
1021   CORE_ADDR image_base;
1022   CORE_ADDR pc;
1023   struct objfile *objfile;
1024   unsigned long lo, hi;
1025   CORE_ADDR unwind_info = 0;
1026 
1027   if (*this_cache)
1028     return *this_cache;
1029 
1030   cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1031   *this_cache = cache;
1032 
1033   /* Get current PC and SP.  */
1034   pc = get_frame_pc (this_frame);
1035   get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1036   cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1037   cache->pc = pc;
1038 
1039   if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1040 				      &cache->image_base,
1041 				      &cache->start_rva,
1042 				      &cache->end_rva))
1043     return cache;
1044 
1045   if (unwind_info == 0)
1046     {
1047       /* Assume a leaf function.  */
1048       cache->prev_sp = cache->sp + 8;
1049       cache->prev_rip_addr = cache->sp;
1050     }
1051   else
1052     {
1053       /* Decode unwind insns to compute saved addresses.  */
1054       amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1055     }
1056   return cache;
1057 }
1058 
1059 /* Implement the "prev_register" method of struct frame_unwind
1060    using the standard Windows x64 SEH info.  */
1061 
1062 static struct value *
1063 amd64_windows_frame_prev_register (struct frame_info *this_frame,
1064 				   void **this_cache, int regnum)
1065 {
1066   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1067   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1068   struct amd64_windows_frame_cache *cache =
1069     amd64_windows_frame_cache (this_frame, this_cache);
1070   struct value *val;
1071   CORE_ADDR prev;
1072 
1073   if (frame_debug)
1074     fprintf_unfiltered (gdb_stdlog,
1075 			"amd64_windows_frame_prev_register %s for sp=%s\n",
1076 			gdbarch_register_name (gdbarch, regnum),
1077 			paddress (gdbarch, cache->prev_sp));
1078 
1079   if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1080       prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1081   else if (regnum == AMD64_RSP_REGNUM)
1082     {
1083       prev = cache->prev_rsp_addr;
1084       if (prev == 0)
1085 	return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1086     }
1087   else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1088     prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1089   else if (regnum == AMD64_RIP_REGNUM)
1090     prev = cache->prev_rip_addr;
1091   else
1092     prev = 0;
1093 
1094   if (prev && frame_debug)
1095     fprintf_unfiltered (gdb_stdlog, "  -> at %s\n", paddress (gdbarch, prev));
1096 
1097   if (prev)
1098     {
1099       /* Register was saved.  */
1100       return frame_unwind_got_memory (this_frame, regnum, prev);
1101     }
1102   else
1103     {
1104       /* Register is either volatile or not modified.  */
1105       return frame_unwind_got_register (this_frame, regnum, regnum);
1106     }
1107 }
1108 
1109 /* Implement the "this_id" method of struct frame_unwind using
1110    the standard Windows x64 SEH info.  */
1111 
1112 static void
1113 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1114 		   struct frame_id *this_id)
1115 {
1116   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1117   struct amd64_windows_frame_cache *cache =
1118     amd64_windows_frame_cache (this_frame, this_cache);
1119 
1120   *this_id = frame_id_build (cache->prev_sp,
1121 			     cache->image_base + cache->start_rva);
1122 }
1123 
1124 /* Windows x64 SEH unwinder.  */
1125 
1126 static const struct frame_unwind amd64_windows_frame_unwind =
1127 {
1128   NORMAL_FRAME,
1129   default_frame_unwind_stop_reason,
1130   &amd64_windows_frame_this_id,
1131   &amd64_windows_frame_prev_register,
1132   NULL,
1133   default_frame_sniffer
1134 };
1135 
1136 /* Implement the "skip_prologue" gdbarch method.  */
1137 
1138 static CORE_ADDR
1139 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1140 {
1141   CORE_ADDR func_addr;
1142   CORE_ADDR unwind_info = 0;
1143   CORE_ADDR image_base, start_rva, end_rva;
1144   struct external_pex64_unwind_info ex_ui;
1145 
1146   /* Use prologue size from unwind info.  */
1147   if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1148 				      &image_base, &start_rva, &end_rva) == 0)
1149     {
1150       if (unwind_info == 0)
1151 	{
1152 	  /* Leaf function.  */
1153 	  return pc;
1154 	}
1155       else if (target_read_memory (image_base + unwind_info,
1156 				   (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1157 	       && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1158 	return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1159     }
1160 
1161   /* See if we can determine the end of the prologue via the symbol
1162      table.  If so, then return either the PC, or the PC after
1163      the prologue, whichever is greater.  */
1164   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1165     {
1166       CORE_ADDR post_prologue_pc
1167 	= skip_prologue_using_sal (gdbarch, func_addr);
1168 
1169       if (post_prologue_pc != 0)
1170 	return max (pc, post_prologue_pc);
1171     }
1172 
1173   return pc;
1174 }
1175 
1176 /* Check Win64 DLL jmp trampolines and find jump destination.  */
1177 
1178 static CORE_ADDR
1179 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1180 {
1181   CORE_ADDR destination = 0;
1182   struct gdbarch *gdbarch = get_frame_arch (frame);
1183   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1184 
1185   /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)).  */
1186   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1187     {
1188       /* Get opcode offset and see if we can find a reference in our data.  */
1189       ULONGEST offset
1190 	= read_memory_unsigned_integer (pc + 2, 4, byte_order);
1191 
1192       /* Get address of function pointer at end of pc.  */
1193       CORE_ADDR indirect_addr = pc + offset + 6;
1194 
1195       struct minimal_symbol *indsym
1196 	= (indirect_addr
1197 	   ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1198 	   : NULL);
1199       const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
1200 
1201       if (symname)
1202 	{
1203 	  if (startswith (symname, "__imp_")
1204 	      || startswith (symname, "_imp_"))
1205 	    destination
1206 	      = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1207 	}
1208     }
1209 
1210   return destination;
1211 }
1212 
1213 /* Implement the "auto_wide_charset" gdbarch method.  */
1214 
1215 static const char *
1216 amd64_windows_auto_wide_charset (void)
1217 {
1218   return "UTF-16";
1219 }
1220 
1221 static void
1222 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1223 {
1224   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1225 
1226   /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1227      preferred over the SEH one.  The reasons are:
1228      - binaries without SEH but with dwarf2 debug info are correcly handled
1229        (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1230        info).
1231      - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1232        handled if the dwarf2 unwinder is used).
1233 
1234     The call to amd64_init_abi appends default unwinders, that aren't
1235     compatible with the SEH one.
1236   */
1237   frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1238 
1239   amd64_init_abi (info, gdbarch);
1240 
1241   windows_init_abi (info, gdbarch);
1242 
1243   /* On Windows, "long"s are only 32bit.  */
1244   set_gdbarch_long_bit (gdbarch, 32);
1245 
1246   /* Function calls.  */
1247   set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1248   set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
1249   set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1250   set_gdbarch_skip_trampoline_code (gdbarch,
1251 				    amd64_windows_skip_trampoline_code);
1252 
1253   set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1254 
1255   set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1256 }
1257 
1258 /* -Wmissing-prototypes */
1259 extern initialize_file_ftype _initialize_amd64_windows_tdep;
1260 
1261 void
1262 _initialize_amd64_windows_tdep (void)
1263 {
1264   gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1265                           amd64_windows_init_abi);
1266 }
1267