xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/amd64-windows-tdep.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* Copyright (C) 2009-2015 Free Software Foundation, Inc.
2 
3    This file is part of GDB.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "osabi.h"
20 #include "amd64-tdep.h"
21 #include "gdbtypes.h"
22 #include "gdbcore.h"
23 #include "regcache.h"
24 #include "windows-tdep.h"
25 #include "frame.h"
26 #include "objfiles.h"
27 #include "frame-unwind.h"
28 #include "coff/internal.h"
29 #include "coff/i386.h"
30 #include "coff/pe.h"
31 #include "libcoff.h"
32 #include "value.h"
33 
34 /* The registers used to pass integer arguments during a function call.  */
35 static int amd64_windows_dummy_call_integer_regs[] =
36 {
37   AMD64_RCX_REGNUM,          /* %rcx */
38   AMD64_RDX_REGNUM,          /* %rdx */
39   AMD64_R8_REGNUM,           /* %r8 */
40   AMD64_R9_REGNUM            /* %r9 */
41 };
42 
43 /* Return nonzero if an argument of type TYPE should be passed
44    via one of the integer registers.  */
45 
46 static int
47 amd64_windows_passed_by_integer_register (struct type *type)
48 {
49   switch (TYPE_CODE (type))
50     {
51       case TYPE_CODE_INT:
52       case TYPE_CODE_ENUM:
53       case TYPE_CODE_BOOL:
54       case TYPE_CODE_RANGE:
55       case TYPE_CODE_CHAR:
56       case TYPE_CODE_PTR:
57       case TYPE_CODE_REF:
58       case TYPE_CODE_STRUCT:
59       case TYPE_CODE_UNION:
60 	return (TYPE_LENGTH (type) == 1
61 		|| TYPE_LENGTH (type) == 2
62 		|| TYPE_LENGTH (type) == 4
63 		|| TYPE_LENGTH (type) == 8);
64 
65       default:
66 	return 0;
67     }
68 }
69 
70 /* Return nonzero if an argument of type TYPE should be passed
71    via one of the XMM registers.  */
72 
73 static int
74 amd64_windows_passed_by_xmm_register (struct type *type)
75 {
76   return ((TYPE_CODE (type) == TYPE_CODE_FLT
77 	   || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78           && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
79 }
80 
81 /* Return non-zero iff an argument of the given TYPE should be passed
82    by pointer.  */
83 
84 static int
85 amd64_windows_passed_by_pointer (struct type *type)
86 {
87   if (amd64_windows_passed_by_integer_register (type))
88     return 0;
89 
90   if (amd64_windows_passed_by_xmm_register (type))
91     return 0;
92 
93   return 1;
94 }
95 
96 /* For each argument that should be passed by pointer, reserve some
97    stack space, store a copy of the argument on the stack, and replace
98    the argument by its address.  Return the new Stack Pointer value.
99 
100    NARGS is the number of arguments. ARGS is the array containing
101    the value of each argument.  SP is value of the Stack Pointer.  */
102 
103 static CORE_ADDR
104 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
105 					     int nargs, CORE_ADDR sp)
106 {
107   int i;
108 
109   for (i = 0; i < nargs; i++)
110     if (amd64_windows_passed_by_pointer (value_type (args[i])))
111       {
112 	struct type *type = value_type (args[i]);
113 	const gdb_byte *valbuf = value_contents (args[i]);
114 	const int len = TYPE_LENGTH (type);
115 
116 	/* Store a copy of that argument on the stack, aligned to
117 	   a 16 bytes boundary, and then use the copy's address as
118 	   the argument.  */
119 
120 	sp -= len;
121 	sp &= ~0xf;
122 	write_memory (sp, valbuf, len);
123 
124 	args[i]
125 	  = value_addr (value_from_contents_and_address (type, valbuf, sp));
126       }
127 
128   return sp;
129 }
130 
131 /* Store the value of ARG in register REGNO (right-justified).
132    REGCACHE is the register cache.  */
133 
134 static void
135 amd64_windows_store_arg_in_reg (struct regcache *regcache,
136 				struct value *arg, int regno)
137 {
138   struct type *type = value_type (arg);
139   const gdb_byte *valbuf = value_contents (arg);
140   gdb_byte buf[8];
141 
142   gdb_assert (TYPE_LENGTH (type) <= 8);
143   memset (buf, 0, sizeof buf);
144   memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
145   regcache_cooked_write (regcache, regno, buf);
146 }
147 
148 /* Push the arguments for an inferior function call, and return
149    the updated value of the SP (Stack Pointer).
150 
151    All arguments are identical to the arguments used in
152    amd64_windows_push_dummy_call.  */
153 
154 static CORE_ADDR
155 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
156 			      struct value **args, CORE_ADDR sp,
157 			      int struct_return)
158 {
159   int reg_idx = 0;
160   int i;
161   struct value **stack_args = alloca (nargs * sizeof (struct value *));
162   int num_stack_args = 0;
163   int num_elements = 0;
164   int element = 0;
165 
166   /* First, handle the arguments passed by pointer.
167 
168      These arguments are replaced by pointers to a copy we are making
169      in inferior memory.  So use a copy of the ARGS table, to avoid
170      modifying the original one.  */
171   {
172     struct value **args1 = alloca (nargs * sizeof (struct value *));
173 
174     memcpy (args1, args, nargs * sizeof (struct value *));
175     sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
176     args = args1;
177   }
178 
179   /* Reserve a register for the "hidden" argument.  */
180   if (struct_return)
181     reg_idx++;
182 
183   for (i = 0; i < nargs; i++)
184     {
185       struct type *type = value_type (args[i]);
186       int len = TYPE_LENGTH (type);
187       int on_stack_p = 1;
188 
189       if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
190 	{
191 	  if (amd64_windows_passed_by_integer_register (type))
192 	    {
193 	      amd64_windows_store_arg_in_reg
194 		(regcache, args[i],
195 		 amd64_windows_dummy_call_integer_regs[reg_idx]);
196 	      on_stack_p = 0;
197 	      reg_idx++;
198 	    }
199 	  else if (amd64_windows_passed_by_xmm_register (type))
200 	    {
201 	      amd64_windows_store_arg_in_reg
202 	        (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
203 	      /* In case of varargs, these parameters must also be
204 		 passed via the integer registers.  */
205 	      amd64_windows_store_arg_in_reg
206 		(regcache, args[i],
207 		 amd64_windows_dummy_call_integer_regs[reg_idx]);
208 	      on_stack_p = 0;
209 	      reg_idx++;
210 	    }
211 	}
212 
213       if (on_stack_p)
214 	{
215 	  num_elements += ((len + 7) / 8);
216 	  stack_args[num_stack_args++] = args[i];
217 	}
218     }
219 
220   /* Allocate space for the arguments on the stack, keeping it
221      aligned on a 16 byte boundary.  */
222   sp -= num_elements * 8;
223   sp &= ~0xf;
224 
225   /* Write out the arguments to the stack.  */
226   for (i = 0; i < num_stack_args; i++)
227     {
228       struct type *type = value_type (stack_args[i]);
229       const gdb_byte *valbuf = value_contents (stack_args[i]);
230 
231       write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
232       element += ((TYPE_LENGTH (type) + 7) / 8);
233     }
234 
235   return sp;
236 }
237 
238 /* Implement the "push_dummy_call" gdbarch method.  */
239 
240 static CORE_ADDR
241 amd64_windows_push_dummy_call
242   (struct gdbarch *gdbarch, struct value *function,
243    struct regcache *regcache, CORE_ADDR bp_addr,
244    int nargs, struct value **args,
245    CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
246 {
247   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248   gdb_byte buf[8];
249 
250   /* Pass arguments.  */
251   sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
252 				     struct_return);
253 
254   /* Pass "hidden" argument".  */
255   if (struct_return)
256     {
257       /* The "hidden" argument is passed throught the first argument
258          register.  */
259       const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
260 
261       store_unsigned_integer (buf, 8, byte_order, struct_addr);
262       regcache_cooked_write (regcache, arg_regnum, buf);
263     }
264 
265   /* Reserve some memory on the stack for the integer-parameter
266      registers, as required by the ABI.  */
267   sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
268 
269   /* Store return address.  */
270   sp -= 8;
271   store_unsigned_integer (buf, 8, byte_order, bp_addr);
272   write_memory (sp, buf, 8);
273 
274   /* Update the stack pointer...  */
275   store_unsigned_integer (buf, 8, byte_order, sp);
276   regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
277 
278   /* ...and fake a frame pointer.  */
279   regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
280 
281   return sp + 16;
282 }
283 
284 /* Implement the "return_value" gdbarch method for amd64-windows.  */
285 
286 static enum return_value_convention
287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
288 			    struct type *type, struct regcache *regcache,
289 			    gdb_byte *readbuf, const gdb_byte *writebuf)
290 {
291   int len = TYPE_LENGTH (type);
292   int regnum = -1;
293 
294   /* See if our value is returned through a register.  If it is, then
295      store the associated register number in REGNUM.  */
296   switch (TYPE_CODE (type))
297     {
298       case TYPE_CODE_FLT:
299       case TYPE_CODE_DECFLOAT:
300         /* __m128, __m128i, __m128d, floats, and doubles are returned
301            via XMM0.  */
302         if (len == 4 || len == 8 || len == 16)
303           regnum = AMD64_XMM0_REGNUM;
304         break;
305       default:
306         /* All other values that are 1, 2, 4 or 8 bytes long are returned
307            via RAX.  */
308         if (len == 1 || len == 2 || len == 4 || len == 8)
309           regnum = AMD64_RAX_REGNUM;
310         break;
311     }
312 
313   if (regnum < 0)
314     {
315       /* RAX contains the address where the return value has been stored.  */
316       if (readbuf)
317         {
318 	  ULONGEST addr;
319 
320 	  regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
321 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
322 	}
323       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
324     }
325   else
326     {
327       /* Extract the return value from the register where it was stored.  */
328       if (readbuf)
329 	regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
330       if (writebuf)
331 	regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
332       return RETURN_VALUE_REGISTER_CONVENTION;
333     }
334 }
335 
336 /* Check that the code pointed to by PC corresponds to a call to
337    __main, skip it if so.  Return PC otherwise.  */
338 
339 static CORE_ADDR
340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
341 {
342   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343   gdb_byte op;
344 
345   target_read_memory (pc, &op, 1);
346   if (op == 0xe8)
347     {
348       gdb_byte buf[4];
349 
350       if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
351  	{
352  	  struct bound_minimal_symbol s;
353  	  CORE_ADDR call_dest;
354 
355 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
356  	  s = lookup_minimal_symbol_by_pc (call_dest);
357  	  if (s.minsym != NULL
358  	      && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
359  	      && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
360  	    pc += 5;
361  	}
362     }
363 
364   return pc;
365 }
366 
367 struct amd64_windows_frame_cache
368 {
369   /* ImageBase for the module.  */
370   CORE_ADDR image_base;
371 
372   /* Function start and end rva.  */
373   CORE_ADDR start_rva;
374   CORE_ADDR end_rva;
375 
376   /* Next instruction to be executed.  */
377   CORE_ADDR pc;
378 
379   /* Current sp.  */
380   CORE_ADDR sp;
381 
382   /* Address of saved integer and xmm registers.  */
383   CORE_ADDR prev_reg_addr[16];
384   CORE_ADDR prev_xmm_addr[16];
385 
386   /* These two next fields are set only for machine info frames.  */
387 
388   /* Likewise for RIP.  */
389   CORE_ADDR prev_rip_addr;
390 
391   /* Likewise for RSP.  */
392   CORE_ADDR prev_rsp_addr;
393 
394   /* Address of the previous frame.  */
395   CORE_ADDR prev_sp;
396 };
397 
398 /* Convert a Windows register number to gdb.  */
399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
400 {
401   AMD64_RAX_REGNUM,
402   AMD64_RCX_REGNUM,
403   AMD64_RDX_REGNUM,
404   AMD64_RBX_REGNUM,
405   AMD64_RSP_REGNUM,
406   AMD64_RBP_REGNUM,
407   AMD64_RSI_REGNUM,
408   AMD64_RDI_REGNUM,
409   AMD64_R8_REGNUM,
410   AMD64_R9_REGNUM,
411   AMD64_R10_REGNUM,
412   AMD64_R11_REGNUM,
413   AMD64_R12_REGNUM,
414   AMD64_R13_REGNUM,
415   AMD64_R14_REGNUM,
416   AMD64_R15_REGNUM
417 };
418 
419 /* Return TRUE iff PC is the the range of the function corresponding to
420    CACHE.  */
421 
422 static int
423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
424 {
425   return (pc >= cache->image_base + cache->start_rva
426 	  && pc < cache->image_base + cache->end_rva);
427 }
428 
429 /* Try to recognize and decode an epilogue sequence.
430 
431    Return -1 if we fail to read the instructions for any reason.
432    Return 1 if an epilogue sequence was recognized, 0 otherwise.  */
433 
434 static int
435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
436 				     struct amd64_windows_frame_cache *cache)
437 {
438   /* According to MSDN an epilogue "must consist of either an add RSP,constant
439      or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
440      register pops and a return or a jmp".
441 
442      Furthermore, according to RtlVirtualUnwind, the complete list of
443      epilog marker is:
444      - ret                      [c3]
445      - ret n                    [c2 imm16]
446      - rep ret                  [f3 c3]
447      - jmp imm8 | imm32         [eb rel8] or [e9 rel32]
448      - jmp qword ptr imm32                 - not handled
449      - rex.w jmp reg            [4X ff eY]
450   */
451 
452   CORE_ADDR pc = cache->pc;
453   CORE_ADDR cur_sp = cache->sp;
454   struct gdbarch *gdbarch = get_frame_arch (this_frame);
455   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456   gdb_byte op;
457   gdb_byte rex;
458 
459   /* We don't care about the instruction deallocating the frame:
460      if it hasn't been executed, the pc is still in the body,
461      if it has been executed, the following epilog decoding will work.  */
462 
463   /* First decode:
464      -  pop reg                 [41 58-5f] or [58-5f].  */
465 
466   while (1)
467     {
468       /* Read opcode. */
469       if (target_read_memory (pc, &op, 1) != 0)
470 	return -1;
471 
472       if (op >= 0x40 && op <= 0x4f)
473 	{
474 	  /* REX prefix.  */
475 	  rex = op;
476 
477 	  /* Read opcode. */
478 	  if (target_read_memory (pc + 1, &op, 1) != 0)
479 	    return -1;
480 	}
481       else
482 	rex = 0;
483 
484       if (op >= 0x58 && op <= 0x5f)
485 	{
486 	  /* pop reg  */
487 	  gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
488 
489 	  cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
490 	  cur_sp += 8;
491 	}
492       else
493 	break;
494 
495       /* Allow the user to break this loop.  This shouldn't happen as the
496 	 number of consecutive pop should be small.  */
497       QUIT;
498     }
499 
500   /* Then decode the marker.  */
501 
502   /* Read opcode.  */
503   if (target_read_memory (pc, &op, 1) != 0)
504     return -1;
505 
506   switch (op)
507     {
508     case 0xc3:
509       /* Ret.  */
510       cache->prev_rip_addr = cur_sp;
511       cache->prev_sp = cur_sp + 8;
512       return 1;
513 
514     case 0xeb:
515       {
516 	/* jmp rel8  */
517 	gdb_byte rel8;
518 	CORE_ADDR npc;
519 
520 	if (target_read_memory (pc + 1, &rel8, 1) != 0)
521 	  return -1;
522 	npc = pc + 2 + (signed char) rel8;
523 
524 	/* If the jump is within the function, then this is not a marker,
525 	   otherwise this is a tail-call.  */
526 	return !pc_in_range (npc, cache);
527       }
528 
529     case 0xec:
530       {
531 	/* jmp rel32  */
532 	gdb_byte rel32[4];
533 	CORE_ADDR npc;
534 
535 	if (target_read_memory (pc + 1, rel32, 4) != 0)
536 	  return -1;
537 	npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
538 
539 	/* If the jump is within the function, then this is not a marker,
540 	   otherwise this is a tail-call.  */
541 	return !pc_in_range (npc, cache);
542       }
543 
544     case 0xc2:
545       {
546 	/* ret n  */
547 	gdb_byte imm16[2];
548 
549 	if (target_read_memory (pc + 1, imm16, 2) != 0)
550 	  return -1;
551 	cache->prev_rip_addr = cur_sp;
552 	cache->prev_sp = cur_sp
553 	  + extract_unsigned_integer (imm16, 4, byte_order);
554 	return 1;
555       }
556 
557     case 0xf3:
558       {
559 	/* rep; ret  */
560 	gdb_byte op1;
561 
562 	if (target_read_memory (pc + 2, &op1, 1) != 0)
563 	  return -1;
564 	if (op1 != 0xc3)
565 	  return 0;
566 
567 	cache->prev_rip_addr = cur_sp;
568 	cache->prev_sp = cur_sp + 8;
569 	return 1;
570       }
571 
572     case 0x40:
573     case 0x41:
574     case 0x42:
575     case 0x43:
576     case 0x44:
577     case 0x45:
578     case 0x46:
579     case 0x47:
580     case 0x48:
581     case 0x49:
582     case 0x4a:
583     case 0x4b:
584     case 0x4c:
585     case 0x4d:
586     case 0x4e:
587     case 0x4f:
588       /* Got a REX prefix, read next byte.  */
589       rex = op;
590       if (target_read_memory (pc + 1, &op, 1) != 0)
591 	return -1;
592 
593       if (op == 0xff)
594 	{
595 	  /* rex jmp reg  */
596 	  gdb_byte op1;
597 	  unsigned int reg;
598 	  gdb_byte buf[8];
599 
600 	  if (target_read_memory (pc + 2, &op1, 1) != 0)
601 	    return -1;
602 	  return (op1 & 0xf8) == 0xe0;
603 	}
604       else
605 	return 0;
606 
607     default:
608       /* Not REX, so unknown.  */
609       return 0;
610     }
611 }
612 
613 /* Decode and execute unwind insns at UNWIND_INFO.  */
614 
615 static void
616 amd64_windows_frame_decode_insns (struct frame_info *this_frame,
617 				  struct amd64_windows_frame_cache *cache,
618 				  CORE_ADDR unwind_info)
619 {
620   CORE_ADDR save_addr = 0;
621   CORE_ADDR cur_sp = cache->sp;
622   struct gdbarch *gdbarch = get_frame_arch (this_frame);
623   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624   int j;
625 
626   for (j = 0; ; j++)
627     {
628       struct external_pex64_unwind_info ex_ui;
629       /* There are at most 256 16-bit unwind insns.  */
630       gdb_byte insns[2 * 256];
631       gdb_byte *p;
632       gdb_byte *end_insns;
633       unsigned char codes_count;
634       unsigned char frame_reg;
635       unsigned char frame_off;
636 
637       /* Read and decode header.  */
638       if (target_read_memory (cache->image_base + unwind_info,
639 			      (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
640 	return;
641 
642       if (frame_debug)
643 	fprintf_unfiltered
644 	  (gdb_stdlog,
645 	   "amd64_windows_frame_decodes_insn: "
646 	   "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
647 	   paddress (gdbarch, unwind_info),
648 	   ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
649 	   ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
650 
651       /* Check version.  */
652       if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
653 	  && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
654 	return;
655 
656       if (j == 0
657 	  && (cache->pc >=
658 	      cache->image_base + cache->start_rva + ex_ui.SizeOfPrologue))
659 	{
660 	  /* Not in the prologue.  We want to detect if the PC points to an
661 	     epilogue. If so, the epilogue detection+decoding function is
662 	     sufficient.  Otherwise, the unwinder will consider that the PC
663 	     is in the body of the function and will need to decode unwind
664 	     info.  */
665 	  if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
666 	    return;
667 
668 	  /* Not in an epilog.  Clear possible side effects.  */
669 	  memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
670 	}
671 
672       codes_count = ex_ui.CountOfCodes;
673       frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
674 
675       if (frame_reg != 0)
676 	{
677 	  /* According to msdn:
678 	     If an FP reg is used, then any unwind code taking an offset must
679 	     only be used after the FP reg is established in the prolog.  */
680 	  gdb_byte buf[8];
681 	  int frreg = amd64_windows_w2gdb_regnum[frame_reg];
682 
683 	  get_frame_register (this_frame, frreg, buf);
684 	  save_addr = extract_unsigned_integer (buf, 8, byte_order);
685 
686 	  if (frame_debug)
687 	    fprintf_unfiltered (gdb_stdlog, "   frame_reg=%s, val=%s\n",
688 				gdbarch_register_name (gdbarch, frreg),
689 				paddress (gdbarch, save_addr));
690 	}
691 
692       /* Read opcodes.  */
693       if (codes_count != 0
694 	  && target_read_memory (cache->image_base + unwind_info
695 				 + sizeof (ex_ui),
696 				 insns, codes_count * 2) != 0)
697 	return;
698 
699       end_insns = &insns[codes_count * 2];
700       p = insns;
701 
702       /* Skip opcodes 6 of version 2.  This opcode is not documented.  */
703       if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
704 	{
705 	  for (; p < end_insns; p += 2)
706 	    if (PEX64_UNWCODE_CODE (p[1]) != 6)
707 	      break;
708 	}
709 
710       for (; p < end_insns; p += 2)
711 	{
712 	  int reg;
713 
714 	  if (frame_debug)
715 	    fprintf_unfiltered
716 	      (gdb_stdlog, "   op #%u: off=0x%02x, insn=0x%02x\n",
717 	       (unsigned) (p - insns), p[0], p[1]);
718 
719 	  /* Virtually execute the operation.  */
720 	  if (cache->pc >= cache->image_base + cache->start_rva + p[0])
721 	    {
722 	      /* If there is no frame registers defined, the current value of
723 		 rsp is used instead.  */
724 	      if (frame_reg == 0)
725 		save_addr = cur_sp;
726 
727 	      switch (PEX64_UNWCODE_CODE (p[1]))
728 		{
729 		case UWOP_PUSH_NONVOL:
730 		  /* Push pre-decrements RSP.  */
731 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
732 		  cache->prev_reg_addr[reg] = cur_sp;
733 		  cur_sp += 8;
734 		  break;
735 		case UWOP_ALLOC_LARGE:
736 		  if (PEX64_UNWCODE_INFO (p[1]) == 0)
737 		    cur_sp +=
738 		      8 * extract_unsigned_integer (p + 2, 2, byte_order);
739 		  else if (PEX64_UNWCODE_INFO (p[1]) == 1)
740 		    cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
741 		  else
742 		    return;
743 		  break;
744 		case UWOP_ALLOC_SMALL:
745 		  cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
746 		  break;
747 		case UWOP_SET_FPREG:
748 		  cur_sp = save_addr
749 		    - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
750 		  break;
751 		case UWOP_SAVE_NONVOL:
752 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
753 		  cache->prev_reg_addr[reg] = save_addr
754 		    - 8 * extract_unsigned_integer (p + 2, 2, byte_order);
755 		  break;
756 		case UWOP_SAVE_NONVOL_FAR:
757 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
758 		  cache->prev_reg_addr[reg] = save_addr
759 		    - 8 * extract_unsigned_integer (p + 2, 4, byte_order);
760 		  break;
761 		case UWOP_SAVE_XMM128:
762 		  cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
763 		    save_addr
764 		    - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
765 		  break;
766 		case UWOP_SAVE_XMM128_FAR:
767 		  cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
768 		    save_addr
769 		    - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
770 		  break;
771 		case UWOP_PUSH_MACHFRAME:
772 		  if (PEX64_UNWCODE_INFO (p[1]) == 0)
773 		    {
774 		      cache->prev_rip_addr = cur_sp + 0;
775 		      cache->prev_rsp_addr = cur_sp + 24;
776 		      cur_sp += 40;
777 		    }
778 		  else if (PEX64_UNWCODE_INFO (p[1]) == 1)
779 		    {
780 		      cache->prev_rip_addr = cur_sp + 8;
781 		      cache->prev_rsp_addr = cur_sp + 32;
782 		      cur_sp += 48;
783 		    }
784 		  else
785 		    return;
786 		  break;
787 		default:
788 		  return;
789 		}
790 	    }
791 
792 	  /* Adjust with the length of the opcode.  */
793 	  switch (PEX64_UNWCODE_CODE (p[1]))
794 	    {
795 	    case UWOP_PUSH_NONVOL:
796 	    case UWOP_ALLOC_SMALL:
797 	    case UWOP_SET_FPREG:
798 	    case UWOP_PUSH_MACHFRAME:
799 	      break;
800 	    case UWOP_ALLOC_LARGE:
801 	      if (PEX64_UNWCODE_INFO (p[1]) == 0)
802 		p += 2;
803 	      else if (PEX64_UNWCODE_INFO (p[1]) == 1)
804 		p += 4;
805 	      else
806 		return;
807 	      break;
808 	    case UWOP_SAVE_NONVOL:
809 	    case UWOP_SAVE_XMM128:
810 	      p += 2;
811 	      break;
812 	    case UWOP_SAVE_NONVOL_FAR:
813 	    case UWOP_SAVE_XMM128_FAR:
814 	      p += 4;
815 	      break;
816 	    default:
817 	      return;
818 	    }
819 	}
820       if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
821 	break;
822       else
823 	{
824 	  /* Read the chained unwind info.  */
825 	  struct external_pex64_runtime_function d;
826 	  CORE_ADDR chain_vma;
827 
828 	  chain_vma = cache->image_base + unwind_info
829 	    + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
830 
831 	  if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
832 	    return;
833 
834 	  cache->start_rva =
835 	    extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
836 	  cache->end_rva =
837 	    extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
838 	  unwind_info =
839 	    extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
840 
841 	  if (frame_debug)
842 	    fprintf_unfiltered
843 	      (gdb_stdlog,
844 	       "amd64_windows_frame_decodes_insn (next in chain):"
845 	       " unwind_data=%s, start_rva=%s, end_rva=%s\n",
846 	       paddress (gdbarch, unwind_info),
847 	       paddress (gdbarch, cache->start_rva),
848 	       paddress (gdbarch, cache->end_rva));
849 	}
850 
851       /* Allow the user to break this loop.  */
852       QUIT;
853     }
854   /* PC is saved by the call.  */
855   if (cache->prev_rip_addr == 0)
856     cache->prev_rip_addr = cur_sp;
857   cache->prev_sp = cur_sp + 8;
858 
859   if (frame_debug)
860     fprintf_unfiltered (gdb_stdlog, "   prev_sp: %s, prev_pc @%s\n",
861 			paddress (gdbarch, cache->prev_sp),
862 			paddress (gdbarch, cache->prev_rip_addr));
863 }
864 
865 /* Find SEH unwind info for PC, returning 0 on success.
866 
867    UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
868    to the base address of the corresponding image, and START_RVA
869    to the rva of the function containing PC.  */
870 
871 static int
872 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
873 				CORE_ADDR *unwind_info,
874 				CORE_ADDR *image_base,
875 				CORE_ADDR *start_rva,
876 				CORE_ADDR *end_rva)
877 {
878   struct obj_section *sec;
879   pe_data_type *pe;
880   IMAGE_DATA_DIRECTORY *dir;
881   struct objfile *objfile;
882   unsigned long lo, hi;
883   CORE_ADDR base;
884   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
885 
886   /* Get the corresponding exception directory.  */
887   sec = find_pc_section (pc);
888   if (sec == NULL)
889     return -1;
890   objfile = sec->objfile;
891   pe = pe_data (sec->objfile->obfd);
892   dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
893 
894   base = pe->pe_opthdr.ImageBase
895     + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
896   *image_base = base;
897 
898   /* Find the entry.
899 
900      Note: This does not handle dynamically added entries (for JIT
901      engines).  For this, we would need to ask the kernel directly,
902      which means getting some info from the native layer.  For the
903      rest of the code, however, it's probably faster to search
904      the entry ourselves.  */
905   lo = 0;
906   hi = dir->Size / sizeof (struct external_pex64_runtime_function);
907   *unwind_info = 0;
908   while (lo <= hi)
909     {
910       unsigned long mid = lo + (hi - lo) / 2;
911       struct external_pex64_runtime_function d;
912       CORE_ADDR sa, ea;
913 
914       if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
915 			      (gdb_byte *) &d, sizeof (d)) != 0)
916 	return -1;
917 
918       sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
919       ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
920       if (pc < base + sa)
921 	hi = mid - 1;
922       else if (pc >= base + ea)
923 	lo = mid + 1;
924       else if (pc >= base + sa && pc < base + ea)
925 	{
926 	  /* Got it.  */
927 	  *start_rva = sa;
928 	  *end_rva = ea;
929 	  *unwind_info =
930 	    extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
931 	  break;
932 	}
933       else
934 	break;
935     }
936 
937   if (frame_debug)
938     fprintf_unfiltered
939       (gdb_stdlog,
940        "amd64_windows_find_unwind_data:  image_base=%s, unwind_data=%s\n",
941        paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
942 
943   if (*unwind_info & 1)
944     {
945       /* Unofficially documented unwind info redirection, when UNWIND_INFO
946 	 address is odd (http://www.codemachine.com/article_x64deepdive.html).
947       */
948       struct external_pex64_runtime_function d;
949       CORE_ADDR sa, ea;
950 
951       if (target_read_memory (base + (*unwind_info & ~1),
952 			      (gdb_byte *) &d, sizeof (d)) != 0)
953 	return -1;
954 
955       *start_rva =
956 	extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
957       *end_rva = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
958       *unwind_info =
959 	extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
960 
961     }
962   return 0;
963 }
964 
965 /* Fill THIS_CACHE using the native amd64-windows unwinding data
966    for THIS_FRAME.  */
967 
968 static struct amd64_windows_frame_cache *
969 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
970 {
971   struct gdbarch *gdbarch = get_frame_arch (this_frame);
972   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973   struct amd64_windows_frame_cache *cache;
974   gdb_byte buf[8];
975   struct obj_section *sec;
976   pe_data_type *pe;
977   IMAGE_DATA_DIRECTORY *dir;
978   CORE_ADDR image_base;
979   CORE_ADDR pc;
980   struct objfile *objfile;
981   unsigned long lo, hi;
982   CORE_ADDR unwind_info = 0;
983 
984   if (*this_cache)
985     return *this_cache;
986 
987   cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
988   *this_cache = cache;
989 
990   /* Get current PC and SP.  */
991   pc = get_frame_pc (this_frame);
992   get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
993   cache->sp = extract_unsigned_integer (buf, 8, byte_order);
994   cache->pc = pc;
995 
996   if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
997 				      &cache->image_base,
998 				      &cache->start_rva,
999 				      &cache->end_rva))
1000     return cache;
1001 
1002   if (unwind_info == 0)
1003     {
1004       /* Assume a leaf function.  */
1005       cache->prev_sp = cache->sp + 8;
1006       cache->prev_rip_addr = cache->sp;
1007     }
1008   else
1009     {
1010       /* Decode unwind insns to compute saved addresses.  */
1011       amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1012     }
1013   return cache;
1014 }
1015 
1016 /* Implement the "prev_register" method of struct frame_unwind
1017    using the standard Windows x64 SEH info.  */
1018 
1019 static struct value *
1020 amd64_windows_frame_prev_register (struct frame_info *this_frame,
1021 				   void **this_cache, int regnum)
1022 {
1023   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1024   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1025   struct amd64_windows_frame_cache *cache =
1026     amd64_windows_frame_cache (this_frame, this_cache);
1027   struct value *val;
1028   CORE_ADDR prev;
1029 
1030   if (frame_debug)
1031     fprintf_unfiltered (gdb_stdlog,
1032 			"amd64_windows_frame_prev_register %s for sp=%s\n",
1033 			gdbarch_register_name (gdbarch, regnum),
1034 			paddress (gdbarch, cache->prev_sp));
1035 
1036   if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1037       prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1038   else if (regnum == AMD64_RSP_REGNUM)
1039     {
1040       prev = cache->prev_rsp_addr;
1041       if (prev == 0)
1042 	return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1043     }
1044   else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1045     prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1046   else if (regnum == AMD64_RIP_REGNUM)
1047     prev = cache->prev_rip_addr;
1048   else
1049     prev = 0;
1050 
1051   if (prev && frame_debug)
1052     fprintf_unfiltered (gdb_stdlog, "  -> at %s\n", paddress (gdbarch, prev));
1053 
1054   if (prev)
1055     {
1056       /* Register was saved.  */
1057       return frame_unwind_got_memory (this_frame, regnum, prev);
1058     }
1059   else
1060     {
1061       /* Register is either volatile or not modified.  */
1062       return frame_unwind_got_register (this_frame, regnum, regnum);
1063     }
1064 }
1065 
1066 /* Implement the "this_id" method of struct frame_unwind using
1067    the standard Windows x64 SEH info.  */
1068 
1069 static void
1070 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1071 		   struct frame_id *this_id)
1072 {
1073   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1074   struct amd64_windows_frame_cache *cache =
1075     amd64_windows_frame_cache (this_frame, this_cache);
1076 
1077   *this_id = frame_id_build (cache->prev_sp,
1078 			     cache->image_base + cache->start_rva);
1079 }
1080 
1081 /* Windows x64 SEH unwinder.  */
1082 
1083 static const struct frame_unwind amd64_windows_frame_unwind =
1084 {
1085   NORMAL_FRAME,
1086   default_frame_unwind_stop_reason,
1087   &amd64_windows_frame_this_id,
1088   &amd64_windows_frame_prev_register,
1089   NULL,
1090   default_frame_sniffer
1091 };
1092 
1093 /* Implement the "skip_prologue" gdbarch method.  */
1094 
1095 static CORE_ADDR
1096 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1097 {
1098   CORE_ADDR func_addr;
1099   CORE_ADDR unwind_info = 0;
1100   CORE_ADDR image_base, start_rva, end_rva;
1101   struct external_pex64_unwind_info ex_ui;
1102 
1103   /* Use prologue size from unwind info.  */
1104   if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1105 				      &image_base, &start_rva, &end_rva) == 0)
1106     {
1107       if (unwind_info == 0)
1108 	{
1109 	  /* Leaf function.  */
1110 	  return pc;
1111 	}
1112       else if (target_read_memory (image_base + unwind_info,
1113 				   (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1114 	       && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1115 	return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1116     }
1117 
1118   /* See if we can determine the end of the prologue via the symbol
1119      table.  If so, then return either the PC, or the PC after
1120      the prologue, whichever is greater.  */
1121   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1122     {
1123       CORE_ADDR post_prologue_pc
1124 	= skip_prologue_using_sal (gdbarch, func_addr);
1125 
1126       if (post_prologue_pc != 0)
1127 	return max (pc, post_prologue_pc);
1128     }
1129 
1130   return pc;
1131 }
1132 
1133 /* Check Win64 DLL jmp trampolines and find jump destination.  */
1134 
1135 static CORE_ADDR
1136 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1137 {
1138   CORE_ADDR destination = 0;
1139   struct gdbarch *gdbarch = get_frame_arch (frame);
1140   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1141 
1142   /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)).  */
1143   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1144     {
1145       /* Get opcode offset and see if we can find a reference in our data.  */
1146       ULONGEST offset
1147 	= read_memory_unsigned_integer (pc + 2, 4, byte_order);
1148 
1149       /* Get address of function pointer at end of pc.  */
1150       CORE_ADDR indirect_addr = pc + offset + 6;
1151 
1152       struct minimal_symbol *indsym
1153 	= (indirect_addr
1154 	   ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1155 	   : NULL);
1156       const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
1157 
1158       if (symname)
1159 	{
1160 	  if (strncmp (symname, "__imp_", 6) == 0
1161 	      || strncmp (symname, "_imp_", 5) == 0)
1162 	    destination
1163 	      = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1164 	}
1165     }
1166 
1167   return destination;
1168 }
1169 
1170 /* Implement the "auto_wide_charset" gdbarch method.  */
1171 
1172 static const char *
1173 amd64_windows_auto_wide_charset (void)
1174 {
1175   return "UTF-16";
1176 }
1177 
1178 static void
1179 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1180 {
1181   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1182 
1183   /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1184      preferred over the SEH one.  The reasons are:
1185      - binaries without SEH but with dwarf2 debug info are correcly handled
1186        (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1187        info).
1188      - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1189        handled if the dwarf2 unwinder is used).
1190 
1191     The call to amd64_init_abi appends default unwinders, that aren't
1192     compatible with the SEH one.
1193   */
1194   frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1195 
1196   amd64_init_abi (info, gdbarch);
1197 
1198   windows_init_abi (info, gdbarch);
1199 
1200   /* On Windows, "long"s are only 32bit.  */
1201   set_gdbarch_long_bit (gdbarch, 32);
1202 
1203   /* Function calls.  */
1204   set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1205   set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
1206   set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1207   set_gdbarch_skip_trampoline_code (gdbarch,
1208 				    amd64_windows_skip_trampoline_code);
1209 
1210   set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1211 
1212   set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1213 }
1214 
1215 /* -Wmissing-prototypes */
1216 extern initialize_file_ftype _initialize_amd64_windows_tdep;
1217 
1218 void
1219 _initialize_amd64_windows_tdep (void)
1220 {
1221   gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1222                           amd64_windows_init_abi);
1223 }
1224