1 /* Copyright (C) 2009-2015 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "osabi.h" 20 #include "amd64-tdep.h" 21 #include "gdbtypes.h" 22 #include "gdbcore.h" 23 #include "regcache.h" 24 #include "windows-tdep.h" 25 #include "frame.h" 26 #include "objfiles.h" 27 #include "frame-unwind.h" 28 #include "coff/internal.h" 29 #include "coff/i386.h" 30 #include "coff/pe.h" 31 #include "libcoff.h" 32 #include "value.h" 33 34 /* The registers used to pass integer arguments during a function call. */ 35 static int amd64_windows_dummy_call_integer_regs[] = 36 { 37 AMD64_RCX_REGNUM, /* %rcx */ 38 AMD64_RDX_REGNUM, /* %rdx */ 39 AMD64_R8_REGNUM, /* %r8 */ 40 AMD64_R9_REGNUM /* %r9 */ 41 }; 42 43 /* Return nonzero if an argument of type TYPE should be passed 44 via one of the integer registers. */ 45 46 static int 47 amd64_windows_passed_by_integer_register (struct type *type) 48 { 49 switch (TYPE_CODE (type)) 50 { 51 case TYPE_CODE_INT: 52 case TYPE_CODE_ENUM: 53 case TYPE_CODE_BOOL: 54 case TYPE_CODE_RANGE: 55 case TYPE_CODE_CHAR: 56 case TYPE_CODE_PTR: 57 case TYPE_CODE_REF: 58 case TYPE_CODE_STRUCT: 59 case TYPE_CODE_UNION: 60 return (TYPE_LENGTH (type) == 1 61 || TYPE_LENGTH (type) == 2 62 || TYPE_LENGTH (type) == 4 63 || TYPE_LENGTH (type) == 8); 64 65 default: 66 return 0; 67 } 68 } 69 70 /* Return nonzero if an argument of type TYPE should be passed 71 via one of the XMM registers. */ 72 73 static int 74 amd64_windows_passed_by_xmm_register (struct type *type) 75 { 76 return ((TYPE_CODE (type) == TYPE_CODE_FLT 77 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) 78 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8)); 79 } 80 81 /* Return non-zero iff an argument of the given TYPE should be passed 82 by pointer. */ 83 84 static int 85 amd64_windows_passed_by_pointer (struct type *type) 86 { 87 if (amd64_windows_passed_by_integer_register (type)) 88 return 0; 89 90 if (amd64_windows_passed_by_xmm_register (type)) 91 return 0; 92 93 return 1; 94 } 95 96 /* For each argument that should be passed by pointer, reserve some 97 stack space, store a copy of the argument on the stack, and replace 98 the argument by its address. Return the new Stack Pointer value. 99 100 NARGS is the number of arguments. ARGS is the array containing 101 the value of each argument. SP is value of the Stack Pointer. */ 102 103 static CORE_ADDR 104 amd64_windows_adjust_args_passed_by_pointer (struct value **args, 105 int nargs, CORE_ADDR sp) 106 { 107 int i; 108 109 for (i = 0; i < nargs; i++) 110 if (amd64_windows_passed_by_pointer (value_type (args[i]))) 111 { 112 struct type *type = value_type (args[i]); 113 const gdb_byte *valbuf = value_contents (args[i]); 114 const int len = TYPE_LENGTH (type); 115 116 /* Store a copy of that argument on the stack, aligned to 117 a 16 bytes boundary, and then use the copy's address as 118 the argument. */ 119 120 sp -= len; 121 sp &= ~0xf; 122 write_memory (sp, valbuf, len); 123 124 args[i] 125 = value_addr (value_from_contents_and_address (type, valbuf, sp)); 126 } 127 128 return sp; 129 } 130 131 /* Store the value of ARG in register REGNO (right-justified). 132 REGCACHE is the register cache. */ 133 134 static void 135 amd64_windows_store_arg_in_reg (struct regcache *regcache, 136 struct value *arg, int regno) 137 { 138 struct type *type = value_type (arg); 139 const gdb_byte *valbuf = value_contents (arg); 140 gdb_byte buf[8]; 141 142 gdb_assert (TYPE_LENGTH (type) <= 8); 143 memset (buf, 0, sizeof buf); 144 memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8)); 145 regcache_cooked_write (regcache, regno, buf); 146 } 147 148 /* Push the arguments for an inferior function call, and return 149 the updated value of the SP (Stack Pointer). 150 151 All arguments are identical to the arguments used in 152 amd64_windows_push_dummy_call. */ 153 154 static CORE_ADDR 155 amd64_windows_push_arguments (struct regcache *regcache, int nargs, 156 struct value **args, CORE_ADDR sp, 157 int struct_return) 158 { 159 int reg_idx = 0; 160 int i; 161 struct value **stack_args = alloca (nargs * sizeof (struct value *)); 162 int num_stack_args = 0; 163 int num_elements = 0; 164 int element = 0; 165 166 /* First, handle the arguments passed by pointer. 167 168 These arguments are replaced by pointers to a copy we are making 169 in inferior memory. So use a copy of the ARGS table, to avoid 170 modifying the original one. */ 171 { 172 struct value **args1 = alloca (nargs * sizeof (struct value *)); 173 174 memcpy (args1, args, nargs * sizeof (struct value *)); 175 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp); 176 args = args1; 177 } 178 179 /* Reserve a register for the "hidden" argument. */ 180 if (struct_return) 181 reg_idx++; 182 183 for (i = 0; i < nargs; i++) 184 { 185 struct type *type = value_type (args[i]); 186 int len = TYPE_LENGTH (type); 187 int on_stack_p = 1; 188 189 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs)) 190 { 191 if (amd64_windows_passed_by_integer_register (type)) 192 { 193 amd64_windows_store_arg_in_reg 194 (regcache, args[i], 195 amd64_windows_dummy_call_integer_regs[reg_idx]); 196 on_stack_p = 0; 197 reg_idx++; 198 } 199 else if (amd64_windows_passed_by_xmm_register (type)) 200 { 201 amd64_windows_store_arg_in_reg 202 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx); 203 /* In case of varargs, these parameters must also be 204 passed via the integer registers. */ 205 amd64_windows_store_arg_in_reg 206 (regcache, args[i], 207 amd64_windows_dummy_call_integer_regs[reg_idx]); 208 on_stack_p = 0; 209 reg_idx++; 210 } 211 } 212 213 if (on_stack_p) 214 { 215 num_elements += ((len + 7) / 8); 216 stack_args[num_stack_args++] = args[i]; 217 } 218 } 219 220 /* Allocate space for the arguments on the stack, keeping it 221 aligned on a 16 byte boundary. */ 222 sp -= num_elements * 8; 223 sp &= ~0xf; 224 225 /* Write out the arguments to the stack. */ 226 for (i = 0; i < num_stack_args; i++) 227 { 228 struct type *type = value_type (stack_args[i]); 229 const gdb_byte *valbuf = value_contents (stack_args[i]); 230 231 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type)); 232 element += ((TYPE_LENGTH (type) + 7) / 8); 233 } 234 235 return sp; 236 } 237 238 /* Implement the "push_dummy_call" gdbarch method. */ 239 240 static CORE_ADDR 241 amd64_windows_push_dummy_call 242 (struct gdbarch *gdbarch, struct value *function, 243 struct regcache *regcache, CORE_ADDR bp_addr, 244 int nargs, struct value **args, 245 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) 246 { 247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 248 gdb_byte buf[8]; 249 250 /* Pass arguments. */ 251 sp = amd64_windows_push_arguments (regcache, nargs, args, sp, 252 struct_return); 253 254 /* Pass "hidden" argument". */ 255 if (struct_return) 256 { 257 /* The "hidden" argument is passed throught the first argument 258 register. */ 259 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0]; 260 261 store_unsigned_integer (buf, 8, byte_order, struct_addr); 262 regcache_cooked_write (regcache, arg_regnum, buf); 263 } 264 265 /* Reserve some memory on the stack for the integer-parameter 266 registers, as required by the ABI. */ 267 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8; 268 269 /* Store return address. */ 270 sp -= 8; 271 store_unsigned_integer (buf, 8, byte_order, bp_addr); 272 write_memory (sp, buf, 8); 273 274 /* Update the stack pointer... */ 275 store_unsigned_integer (buf, 8, byte_order, sp); 276 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); 277 278 /* ...and fake a frame pointer. */ 279 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); 280 281 return sp + 16; 282 } 283 284 /* Implement the "return_value" gdbarch method for amd64-windows. */ 285 286 static enum return_value_convention 287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function, 288 struct type *type, struct regcache *regcache, 289 gdb_byte *readbuf, const gdb_byte *writebuf) 290 { 291 int len = TYPE_LENGTH (type); 292 int regnum = -1; 293 294 /* See if our value is returned through a register. If it is, then 295 store the associated register number in REGNUM. */ 296 switch (TYPE_CODE (type)) 297 { 298 case TYPE_CODE_FLT: 299 case TYPE_CODE_DECFLOAT: 300 /* __m128, __m128i, __m128d, floats, and doubles are returned 301 via XMM0. */ 302 if (len == 4 || len == 8 || len == 16) 303 regnum = AMD64_XMM0_REGNUM; 304 break; 305 default: 306 /* All other values that are 1, 2, 4 or 8 bytes long are returned 307 via RAX. */ 308 if (len == 1 || len == 2 || len == 4 || len == 8) 309 regnum = AMD64_RAX_REGNUM; 310 break; 311 } 312 313 if (regnum < 0) 314 { 315 /* RAX contains the address where the return value has been stored. */ 316 if (readbuf) 317 { 318 ULONGEST addr; 319 320 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); 321 read_memory (addr, readbuf, TYPE_LENGTH (type)); 322 } 323 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 324 } 325 else 326 { 327 /* Extract the return value from the register where it was stored. */ 328 if (readbuf) 329 regcache_raw_read_part (regcache, regnum, 0, len, readbuf); 330 if (writebuf) 331 regcache_raw_write_part (regcache, regnum, 0, len, writebuf); 332 return RETURN_VALUE_REGISTER_CONVENTION; 333 } 334 } 335 336 /* Check that the code pointed to by PC corresponds to a call to 337 __main, skip it if so. Return PC otherwise. */ 338 339 static CORE_ADDR 340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 341 { 342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 343 gdb_byte op; 344 345 target_read_memory (pc, &op, 1); 346 if (op == 0xe8) 347 { 348 gdb_byte buf[4]; 349 350 if (target_read_memory (pc + 1, buf, sizeof buf) == 0) 351 { 352 struct bound_minimal_symbol s; 353 CORE_ADDR call_dest; 354 355 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order); 356 s = lookup_minimal_symbol_by_pc (call_dest); 357 if (s.minsym != NULL 358 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL 359 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0) 360 pc += 5; 361 } 362 } 363 364 return pc; 365 } 366 367 struct amd64_windows_frame_cache 368 { 369 /* ImageBase for the module. */ 370 CORE_ADDR image_base; 371 372 /* Function start and end rva. */ 373 CORE_ADDR start_rva; 374 CORE_ADDR end_rva; 375 376 /* Next instruction to be executed. */ 377 CORE_ADDR pc; 378 379 /* Current sp. */ 380 CORE_ADDR sp; 381 382 /* Address of saved integer and xmm registers. */ 383 CORE_ADDR prev_reg_addr[16]; 384 CORE_ADDR prev_xmm_addr[16]; 385 386 /* These two next fields are set only for machine info frames. */ 387 388 /* Likewise for RIP. */ 389 CORE_ADDR prev_rip_addr; 390 391 /* Likewise for RSP. */ 392 CORE_ADDR prev_rsp_addr; 393 394 /* Address of the previous frame. */ 395 CORE_ADDR prev_sp; 396 }; 397 398 /* Convert a Windows register number to gdb. */ 399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] = 400 { 401 AMD64_RAX_REGNUM, 402 AMD64_RCX_REGNUM, 403 AMD64_RDX_REGNUM, 404 AMD64_RBX_REGNUM, 405 AMD64_RSP_REGNUM, 406 AMD64_RBP_REGNUM, 407 AMD64_RSI_REGNUM, 408 AMD64_RDI_REGNUM, 409 AMD64_R8_REGNUM, 410 AMD64_R9_REGNUM, 411 AMD64_R10_REGNUM, 412 AMD64_R11_REGNUM, 413 AMD64_R12_REGNUM, 414 AMD64_R13_REGNUM, 415 AMD64_R14_REGNUM, 416 AMD64_R15_REGNUM 417 }; 418 419 /* Return TRUE iff PC is the the range of the function corresponding to 420 CACHE. */ 421 422 static int 423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache) 424 { 425 return (pc >= cache->image_base + cache->start_rva 426 && pc < cache->image_base + cache->end_rva); 427 } 428 429 /* Try to recognize and decode an epilogue sequence. 430 431 Return -1 if we fail to read the instructions for any reason. 432 Return 1 if an epilogue sequence was recognized, 0 otherwise. */ 433 434 static int 435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame, 436 struct amd64_windows_frame_cache *cache) 437 { 438 /* According to MSDN an epilogue "must consist of either an add RSP,constant 439 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte 440 register pops and a return or a jmp". 441 442 Furthermore, according to RtlVirtualUnwind, the complete list of 443 epilog marker is: 444 - ret [c3] 445 - ret n [c2 imm16] 446 - rep ret [f3 c3] 447 - jmp imm8 | imm32 [eb rel8] or [e9 rel32] 448 - jmp qword ptr imm32 - not handled 449 - rex.w jmp reg [4X ff eY] 450 */ 451 452 CORE_ADDR pc = cache->pc; 453 CORE_ADDR cur_sp = cache->sp; 454 struct gdbarch *gdbarch = get_frame_arch (this_frame); 455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 456 gdb_byte op; 457 gdb_byte rex; 458 459 /* We don't care about the instruction deallocating the frame: 460 if it hasn't been executed, the pc is still in the body, 461 if it has been executed, the following epilog decoding will work. */ 462 463 /* First decode: 464 - pop reg [41 58-5f] or [58-5f]. */ 465 466 while (1) 467 { 468 /* Read opcode. */ 469 if (target_read_memory (pc, &op, 1) != 0) 470 return -1; 471 472 if (op >= 0x40 && op <= 0x4f) 473 { 474 /* REX prefix. */ 475 rex = op; 476 477 /* Read opcode. */ 478 if (target_read_memory (pc + 1, &op, 1) != 0) 479 return -1; 480 } 481 else 482 rex = 0; 483 484 if (op >= 0x58 && op <= 0x5f) 485 { 486 /* pop reg */ 487 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3); 488 489 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp; 490 cur_sp += 8; 491 } 492 else 493 break; 494 495 /* Allow the user to break this loop. This shouldn't happen as the 496 number of consecutive pop should be small. */ 497 QUIT; 498 } 499 500 /* Then decode the marker. */ 501 502 /* Read opcode. */ 503 if (target_read_memory (pc, &op, 1) != 0) 504 return -1; 505 506 switch (op) 507 { 508 case 0xc3: 509 /* Ret. */ 510 cache->prev_rip_addr = cur_sp; 511 cache->prev_sp = cur_sp + 8; 512 return 1; 513 514 case 0xeb: 515 { 516 /* jmp rel8 */ 517 gdb_byte rel8; 518 CORE_ADDR npc; 519 520 if (target_read_memory (pc + 1, &rel8, 1) != 0) 521 return -1; 522 npc = pc + 2 + (signed char) rel8; 523 524 /* If the jump is within the function, then this is not a marker, 525 otherwise this is a tail-call. */ 526 return !pc_in_range (npc, cache); 527 } 528 529 case 0xec: 530 { 531 /* jmp rel32 */ 532 gdb_byte rel32[4]; 533 CORE_ADDR npc; 534 535 if (target_read_memory (pc + 1, rel32, 4) != 0) 536 return -1; 537 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order); 538 539 /* If the jump is within the function, then this is not a marker, 540 otherwise this is a tail-call. */ 541 return !pc_in_range (npc, cache); 542 } 543 544 case 0xc2: 545 { 546 /* ret n */ 547 gdb_byte imm16[2]; 548 549 if (target_read_memory (pc + 1, imm16, 2) != 0) 550 return -1; 551 cache->prev_rip_addr = cur_sp; 552 cache->prev_sp = cur_sp 553 + extract_unsigned_integer (imm16, 4, byte_order); 554 return 1; 555 } 556 557 case 0xf3: 558 { 559 /* rep; ret */ 560 gdb_byte op1; 561 562 if (target_read_memory (pc + 2, &op1, 1) != 0) 563 return -1; 564 if (op1 != 0xc3) 565 return 0; 566 567 cache->prev_rip_addr = cur_sp; 568 cache->prev_sp = cur_sp + 8; 569 return 1; 570 } 571 572 case 0x40: 573 case 0x41: 574 case 0x42: 575 case 0x43: 576 case 0x44: 577 case 0x45: 578 case 0x46: 579 case 0x47: 580 case 0x48: 581 case 0x49: 582 case 0x4a: 583 case 0x4b: 584 case 0x4c: 585 case 0x4d: 586 case 0x4e: 587 case 0x4f: 588 /* Got a REX prefix, read next byte. */ 589 rex = op; 590 if (target_read_memory (pc + 1, &op, 1) != 0) 591 return -1; 592 593 if (op == 0xff) 594 { 595 /* rex jmp reg */ 596 gdb_byte op1; 597 unsigned int reg; 598 gdb_byte buf[8]; 599 600 if (target_read_memory (pc + 2, &op1, 1) != 0) 601 return -1; 602 return (op1 & 0xf8) == 0xe0; 603 } 604 else 605 return 0; 606 607 default: 608 /* Not REX, so unknown. */ 609 return 0; 610 } 611 } 612 613 /* Decode and execute unwind insns at UNWIND_INFO. */ 614 615 static void 616 amd64_windows_frame_decode_insns (struct frame_info *this_frame, 617 struct amd64_windows_frame_cache *cache, 618 CORE_ADDR unwind_info) 619 { 620 CORE_ADDR save_addr = 0; 621 CORE_ADDR cur_sp = cache->sp; 622 struct gdbarch *gdbarch = get_frame_arch (this_frame); 623 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 624 int j; 625 626 for (j = 0; ; j++) 627 { 628 struct external_pex64_unwind_info ex_ui; 629 /* There are at most 256 16-bit unwind insns. */ 630 gdb_byte insns[2 * 256]; 631 gdb_byte *p; 632 gdb_byte *end_insns; 633 unsigned char codes_count; 634 unsigned char frame_reg; 635 unsigned char frame_off; 636 637 /* Read and decode header. */ 638 if (target_read_memory (cache->image_base + unwind_info, 639 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0) 640 return; 641 642 if (frame_debug) 643 fprintf_unfiltered 644 (gdb_stdlog, 645 "amd64_windows_frame_decodes_insn: " 646 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n", 647 paddress (gdbarch, unwind_info), 648 ex_ui.Version_Flags, ex_ui.SizeOfPrologue, 649 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset); 650 651 /* Check version. */ 652 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1 653 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2) 654 return; 655 656 if (j == 0 657 && (cache->pc >= 658 cache->image_base + cache->start_rva + ex_ui.SizeOfPrologue)) 659 { 660 /* Not in the prologue. We want to detect if the PC points to an 661 epilogue. If so, the epilogue detection+decoding function is 662 sufficient. Otherwise, the unwinder will consider that the PC 663 is in the body of the function and will need to decode unwind 664 info. */ 665 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1) 666 return; 667 668 /* Not in an epilog. Clear possible side effects. */ 669 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr)); 670 } 671 672 codes_count = ex_ui.CountOfCodes; 673 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset); 674 675 if (frame_reg != 0) 676 { 677 /* According to msdn: 678 If an FP reg is used, then any unwind code taking an offset must 679 only be used after the FP reg is established in the prolog. */ 680 gdb_byte buf[8]; 681 int frreg = amd64_windows_w2gdb_regnum[frame_reg]; 682 683 get_frame_register (this_frame, frreg, buf); 684 save_addr = extract_unsigned_integer (buf, 8, byte_order); 685 686 if (frame_debug) 687 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n", 688 gdbarch_register_name (gdbarch, frreg), 689 paddress (gdbarch, save_addr)); 690 } 691 692 /* Read opcodes. */ 693 if (codes_count != 0 694 && target_read_memory (cache->image_base + unwind_info 695 + sizeof (ex_ui), 696 insns, codes_count * 2) != 0) 697 return; 698 699 end_insns = &insns[codes_count * 2]; 700 p = insns; 701 702 /* Skip opcodes 6 of version 2. This opcode is not documented. */ 703 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2) 704 { 705 for (; p < end_insns; p += 2) 706 if (PEX64_UNWCODE_CODE (p[1]) != 6) 707 break; 708 } 709 710 for (; p < end_insns; p += 2) 711 { 712 int reg; 713 714 if (frame_debug) 715 fprintf_unfiltered 716 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n", 717 (unsigned) (p - insns), p[0], p[1]); 718 719 /* Virtually execute the operation. */ 720 if (cache->pc >= cache->image_base + cache->start_rva + p[0]) 721 { 722 /* If there is no frame registers defined, the current value of 723 rsp is used instead. */ 724 if (frame_reg == 0) 725 save_addr = cur_sp; 726 727 switch (PEX64_UNWCODE_CODE (p[1])) 728 { 729 case UWOP_PUSH_NONVOL: 730 /* Push pre-decrements RSP. */ 731 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 732 cache->prev_reg_addr[reg] = cur_sp; 733 cur_sp += 8; 734 break; 735 case UWOP_ALLOC_LARGE: 736 if (PEX64_UNWCODE_INFO (p[1]) == 0) 737 cur_sp += 738 8 * extract_unsigned_integer (p + 2, 2, byte_order); 739 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 740 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order); 741 else 742 return; 743 break; 744 case UWOP_ALLOC_SMALL: 745 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]); 746 break; 747 case UWOP_SET_FPREG: 748 cur_sp = save_addr 749 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16; 750 break; 751 case UWOP_SAVE_NONVOL: 752 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 753 cache->prev_reg_addr[reg] = save_addr 754 - 8 * extract_unsigned_integer (p + 2, 2, byte_order); 755 break; 756 case UWOP_SAVE_NONVOL_FAR: 757 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 758 cache->prev_reg_addr[reg] = save_addr 759 - 8 * extract_unsigned_integer (p + 2, 4, byte_order); 760 break; 761 case UWOP_SAVE_XMM128: 762 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 763 save_addr 764 - 16 * extract_unsigned_integer (p + 2, 2, byte_order); 765 break; 766 case UWOP_SAVE_XMM128_FAR: 767 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 768 save_addr 769 - 16 * extract_unsigned_integer (p + 2, 4, byte_order); 770 break; 771 case UWOP_PUSH_MACHFRAME: 772 if (PEX64_UNWCODE_INFO (p[1]) == 0) 773 { 774 cache->prev_rip_addr = cur_sp + 0; 775 cache->prev_rsp_addr = cur_sp + 24; 776 cur_sp += 40; 777 } 778 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 779 { 780 cache->prev_rip_addr = cur_sp + 8; 781 cache->prev_rsp_addr = cur_sp + 32; 782 cur_sp += 48; 783 } 784 else 785 return; 786 break; 787 default: 788 return; 789 } 790 } 791 792 /* Adjust with the length of the opcode. */ 793 switch (PEX64_UNWCODE_CODE (p[1])) 794 { 795 case UWOP_PUSH_NONVOL: 796 case UWOP_ALLOC_SMALL: 797 case UWOP_SET_FPREG: 798 case UWOP_PUSH_MACHFRAME: 799 break; 800 case UWOP_ALLOC_LARGE: 801 if (PEX64_UNWCODE_INFO (p[1]) == 0) 802 p += 2; 803 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 804 p += 4; 805 else 806 return; 807 break; 808 case UWOP_SAVE_NONVOL: 809 case UWOP_SAVE_XMM128: 810 p += 2; 811 break; 812 case UWOP_SAVE_NONVOL_FAR: 813 case UWOP_SAVE_XMM128_FAR: 814 p += 4; 815 break; 816 default: 817 return; 818 } 819 } 820 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO) 821 break; 822 else 823 { 824 /* Read the chained unwind info. */ 825 struct external_pex64_runtime_function d; 826 CORE_ADDR chain_vma; 827 828 chain_vma = cache->image_base + unwind_info 829 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2; 830 831 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0) 832 return; 833 834 cache->start_rva = 835 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 836 cache->end_rva = 837 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 838 unwind_info = 839 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 840 841 if (frame_debug) 842 fprintf_unfiltered 843 (gdb_stdlog, 844 "amd64_windows_frame_decodes_insn (next in chain):" 845 " unwind_data=%s, start_rva=%s, end_rva=%s\n", 846 paddress (gdbarch, unwind_info), 847 paddress (gdbarch, cache->start_rva), 848 paddress (gdbarch, cache->end_rva)); 849 } 850 851 /* Allow the user to break this loop. */ 852 QUIT; 853 } 854 /* PC is saved by the call. */ 855 if (cache->prev_rip_addr == 0) 856 cache->prev_rip_addr = cur_sp; 857 cache->prev_sp = cur_sp + 8; 858 859 if (frame_debug) 860 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n", 861 paddress (gdbarch, cache->prev_sp), 862 paddress (gdbarch, cache->prev_rip_addr)); 863 } 864 865 /* Find SEH unwind info for PC, returning 0 on success. 866 867 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE 868 to the base address of the corresponding image, and START_RVA 869 to the rva of the function containing PC. */ 870 871 static int 872 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc, 873 CORE_ADDR *unwind_info, 874 CORE_ADDR *image_base, 875 CORE_ADDR *start_rva, 876 CORE_ADDR *end_rva) 877 { 878 struct obj_section *sec; 879 pe_data_type *pe; 880 IMAGE_DATA_DIRECTORY *dir; 881 struct objfile *objfile; 882 unsigned long lo, hi; 883 CORE_ADDR base; 884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 885 886 /* Get the corresponding exception directory. */ 887 sec = find_pc_section (pc); 888 if (sec == NULL) 889 return -1; 890 objfile = sec->objfile; 891 pe = pe_data (sec->objfile->obfd); 892 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE]; 893 894 base = pe->pe_opthdr.ImageBase 895 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 896 *image_base = base; 897 898 /* Find the entry. 899 900 Note: This does not handle dynamically added entries (for JIT 901 engines). For this, we would need to ask the kernel directly, 902 which means getting some info from the native layer. For the 903 rest of the code, however, it's probably faster to search 904 the entry ourselves. */ 905 lo = 0; 906 hi = dir->Size / sizeof (struct external_pex64_runtime_function); 907 *unwind_info = 0; 908 while (lo <= hi) 909 { 910 unsigned long mid = lo + (hi - lo) / 2; 911 struct external_pex64_runtime_function d; 912 CORE_ADDR sa, ea; 913 914 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d), 915 (gdb_byte *) &d, sizeof (d)) != 0) 916 return -1; 917 918 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 919 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 920 if (pc < base + sa) 921 hi = mid - 1; 922 else if (pc >= base + ea) 923 lo = mid + 1; 924 else if (pc >= base + sa && pc < base + ea) 925 { 926 /* Got it. */ 927 *start_rva = sa; 928 *end_rva = ea; 929 *unwind_info = 930 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 931 break; 932 } 933 else 934 break; 935 } 936 937 if (frame_debug) 938 fprintf_unfiltered 939 (gdb_stdlog, 940 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n", 941 paddress (gdbarch, base), paddress (gdbarch, *unwind_info)); 942 943 if (*unwind_info & 1) 944 { 945 /* Unofficially documented unwind info redirection, when UNWIND_INFO 946 address is odd (http://www.codemachine.com/article_x64deepdive.html). 947 */ 948 struct external_pex64_runtime_function d; 949 CORE_ADDR sa, ea; 950 951 if (target_read_memory (base + (*unwind_info & ~1), 952 (gdb_byte *) &d, sizeof (d)) != 0) 953 return -1; 954 955 *start_rva = 956 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 957 *end_rva = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 958 *unwind_info = 959 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 960 961 } 962 return 0; 963 } 964 965 /* Fill THIS_CACHE using the native amd64-windows unwinding data 966 for THIS_FRAME. */ 967 968 static struct amd64_windows_frame_cache * 969 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache) 970 { 971 struct gdbarch *gdbarch = get_frame_arch (this_frame); 972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 973 struct amd64_windows_frame_cache *cache; 974 gdb_byte buf[8]; 975 struct obj_section *sec; 976 pe_data_type *pe; 977 IMAGE_DATA_DIRECTORY *dir; 978 CORE_ADDR image_base; 979 CORE_ADDR pc; 980 struct objfile *objfile; 981 unsigned long lo, hi; 982 CORE_ADDR unwind_info = 0; 983 984 if (*this_cache) 985 return *this_cache; 986 987 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache); 988 *this_cache = cache; 989 990 /* Get current PC and SP. */ 991 pc = get_frame_pc (this_frame); 992 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 993 cache->sp = extract_unsigned_integer (buf, 8, byte_order); 994 cache->pc = pc; 995 996 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 997 &cache->image_base, 998 &cache->start_rva, 999 &cache->end_rva)) 1000 return cache; 1001 1002 if (unwind_info == 0) 1003 { 1004 /* Assume a leaf function. */ 1005 cache->prev_sp = cache->sp + 8; 1006 cache->prev_rip_addr = cache->sp; 1007 } 1008 else 1009 { 1010 /* Decode unwind insns to compute saved addresses. */ 1011 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info); 1012 } 1013 return cache; 1014 } 1015 1016 /* Implement the "prev_register" method of struct frame_unwind 1017 using the standard Windows x64 SEH info. */ 1018 1019 static struct value * 1020 amd64_windows_frame_prev_register (struct frame_info *this_frame, 1021 void **this_cache, int regnum) 1022 { 1023 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1025 struct amd64_windows_frame_cache *cache = 1026 amd64_windows_frame_cache (this_frame, this_cache); 1027 struct value *val; 1028 CORE_ADDR prev; 1029 1030 if (frame_debug) 1031 fprintf_unfiltered (gdb_stdlog, 1032 "amd64_windows_frame_prev_register %s for sp=%s\n", 1033 gdbarch_register_name (gdbarch, regnum), 1034 paddress (gdbarch, cache->prev_sp)); 1035 1036 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) 1037 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM]; 1038 else if (regnum == AMD64_RSP_REGNUM) 1039 { 1040 prev = cache->prev_rsp_addr; 1041 if (prev == 0) 1042 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); 1043 } 1044 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM) 1045 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM]; 1046 else if (regnum == AMD64_RIP_REGNUM) 1047 prev = cache->prev_rip_addr; 1048 else 1049 prev = 0; 1050 1051 if (prev && frame_debug) 1052 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev)); 1053 1054 if (prev) 1055 { 1056 /* Register was saved. */ 1057 return frame_unwind_got_memory (this_frame, regnum, prev); 1058 } 1059 else 1060 { 1061 /* Register is either volatile or not modified. */ 1062 return frame_unwind_got_register (this_frame, regnum, regnum); 1063 } 1064 } 1065 1066 /* Implement the "this_id" method of struct frame_unwind using 1067 the standard Windows x64 SEH info. */ 1068 1069 static void 1070 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache, 1071 struct frame_id *this_id) 1072 { 1073 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1074 struct amd64_windows_frame_cache *cache = 1075 amd64_windows_frame_cache (this_frame, this_cache); 1076 1077 *this_id = frame_id_build (cache->prev_sp, 1078 cache->image_base + cache->start_rva); 1079 } 1080 1081 /* Windows x64 SEH unwinder. */ 1082 1083 static const struct frame_unwind amd64_windows_frame_unwind = 1084 { 1085 NORMAL_FRAME, 1086 default_frame_unwind_stop_reason, 1087 &amd64_windows_frame_this_id, 1088 &amd64_windows_frame_prev_register, 1089 NULL, 1090 default_frame_sniffer 1091 }; 1092 1093 /* Implement the "skip_prologue" gdbarch method. */ 1094 1095 static CORE_ADDR 1096 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1097 { 1098 CORE_ADDR func_addr; 1099 CORE_ADDR unwind_info = 0; 1100 CORE_ADDR image_base, start_rva, end_rva; 1101 struct external_pex64_unwind_info ex_ui; 1102 1103 /* Use prologue size from unwind info. */ 1104 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1105 &image_base, &start_rva, &end_rva) == 0) 1106 { 1107 if (unwind_info == 0) 1108 { 1109 /* Leaf function. */ 1110 return pc; 1111 } 1112 else if (target_read_memory (image_base + unwind_info, 1113 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0 1114 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1) 1115 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue); 1116 } 1117 1118 /* See if we can determine the end of the prologue via the symbol 1119 table. If so, then return either the PC, or the PC after 1120 the prologue, whichever is greater. */ 1121 if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) 1122 { 1123 CORE_ADDR post_prologue_pc 1124 = skip_prologue_using_sal (gdbarch, func_addr); 1125 1126 if (post_prologue_pc != 0) 1127 return max (pc, post_prologue_pc); 1128 } 1129 1130 return pc; 1131 } 1132 1133 /* Check Win64 DLL jmp trampolines and find jump destination. */ 1134 1135 static CORE_ADDR 1136 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 1137 { 1138 CORE_ADDR destination = 0; 1139 struct gdbarch *gdbarch = get_frame_arch (frame); 1140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1141 1142 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */ 1143 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff) 1144 { 1145 /* Get opcode offset and see if we can find a reference in our data. */ 1146 ULONGEST offset 1147 = read_memory_unsigned_integer (pc + 2, 4, byte_order); 1148 1149 /* Get address of function pointer at end of pc. */ 1150 CORE_ADDR indirect_addr = pc + offset + 6; 1151 1152 struct minimal_symbol *indsym 1153 = (indirect_addr 1154 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym 1155 : NULL); 1156 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL; 1157 1158 if (symname) 1159 { 1160 if (strncmp (symname, "__imp_", 6) == 0 1161 || strncmp (symname, "_imp_", 5) == 0) 1162 destination 1163 = read_memory_unsigned_integer (indirect_addr, 8, byte_order); 1164 } 1165 } 1166 1167 return destination; 1168 } 1169 1170 /* Implement the "auto_wide_charset" gdbarch method. */ 1171 1172 static const char * 1173 amd64_windows_auto_wide_charset (void) 1174 { 1175 return "UTF-16"; 1176 } 1177 1178 static void 1179 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1180 { 1181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1182 1183 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is 1184 preferred over the SEH one. The reasons are: 1185 - binaries without SEH but with dwarf2 debug info are correcly handled 1186 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH 1187 info). 1188 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be 1189 handled if the dwarf2 unwinder is used). 1190 1191 The call to amd64_init_abi appends default unwinders, that aren't 1192 compatible with the SEH one. 1193 */ 1194 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind); 1195 1196 amd64_init_abi (info, gdbarch); 1197 1198 windows_init_abi (info, gdbarch); 1199 1200 /* On Windows, "long"s are only 32bit. */ 1201 set_gdbarch_long_bit (gdbarch, 32); 1202 1203 /* Function calls. */ 1204 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call); 1205 set_gdbarch_return_value (gdbarch, amd64_windows_return_value); 1206 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue); 1207 set_gdbarch_skip_trampoline_code (gdbarch, 1208 amd64_windows_skip_trampoline_code); 1209 1210 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue); 1211 1212 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset); 1213 } 1214 1215 /* -Wmissing-prototypes */ 1216 extern initialize_file_ftype _initialize_amd64_windows_tdep; 1217 1218 void 1219 _initialize_amd64_windows_tdep (void) 1220 { 1221 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN, 1222 amd64_windows_init_abi); 1223 } 1224