1 /* Copyright (C) 2009-2019 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "osabi.h" 20 #include "amd64-tdep.h" 21 #include "common/x86-xstate.h" 22 #include "gdbtypes.h" 23 #include "gdbcore.h" 24 #include "regcache.h" 25 #include "windows-tdep.h" 26 #include "frame.h" 27 #include "objfiles.h" 28 #include "frame-unwind.h" 29 #include "coff/internal.h" 30 #include "coff/i386.h" 31 #include "coff/pe.h" 32 #include "libcoff.h" 33 #include "value.h" 34 #include <algorithm> 35 36 /* The registers used to pass integer arguments during a function call. */ 37 static int amd64_windows_dummy_call_integer_regs[] = 38 { 39 AMD64_RCX_REGNUM, /* %rcx */ 40 AMD64_RDX_REGNUM, /* %rdx */ 41 AMD64_R8_REGNUM, /* %r8 */ 42 AMD64_R9_REGNUM /* %r9 */ 43 }; 44 45 /* Return nonzero if an argument of type TYPE should be passed 46 via one of the integer registers. */ 47 48 static int 49 amd64_windows_passed_by_integer_register (struct type *type) 50 { 51 switch (TYPE_CODE (type)) 52 { 53 case TYPE_CODE_INT: 54 case TYPE_CODE_ENUM: 55 case TYPE_CODE_BOOL: 56 case TYPE_CODE_RANGE: 57 case TYPE_CODE_CHAR: 58 case TYPE_CODE_PTR: 59 case TYPE_CODE_REF: 60 case TYPE_CODE_RVALUE_REF: 61 case TYPE_CODE_STRUCT: 62 case TYPE_CODE_UNION: 63 return (TYPE_LENGTH (type) == 1 64 || TYPE_LENGTH (type) == 2 65 || TYPE_LENGTH (type) == 4 66 || TYPE_LENGTH (type) == 8); 67 68 default: 69 return 0; 70 } 71 } 72 73 /* Return nonzero if an argument of type TYPE should be passed 74 via one of the XMM registers. */ 75 76 static int 77 amd64_windows_passed_by_xmm_register (struct type *type) 78 { 79 return ((TYPE_CODE (type) == TYPE_CODE_FLT 80 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) 81 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8)); 82 } 83 84 /* Return non-zero iff an argument of the given TYPE should be passed 85 by pointer. */ 86 87 static int 88 amd64_windows_passed_by_pointer (struct type *type) 89 { 90 if (amd64_windows_passed_by_integer_register (type)) 91 return 0; 92 93 if (amd64_windows_passed_by_xmm_register (type)) 94 return 0; 95 96 return 1; 97 } 98 99 /* For each argument that should be passed by pointer, reserve some 100 stack space, store a copy of the argument on the stack, and replace 101 the argument by its address. Return the new Stack Pointer value. 102 103 NARGS is the number of arguments. ARGS is the array containing 104 the value of each argument. SP is value of the Stack Pointer. */ 105 106 static CORE_ADDR 107 amd64_windows_adjust_args_passed_by_pointer (struct value **args, 108 int nargs, CORE_ADDR sp) 109 { 110 int i; 111 112 for (i = 0; i < nargs; i++) 113 if (amd64_windows_passed_by_pointer (value_type (args[i]))) 114 { 115 struct type *type = value_type (args[i]); 116 const gdb_byte *valbuf = value_contents (args[i]); 117 const int len = TYPE_LENGTH (type); 118 119 /* Store a copy of that argument on the stack, aligned to 120 a 16 bytes boundary, and then use the copy's address as 121 the argument. */ 122 123 sp -= len; 124 sp &= ~0xf; 125 write_memory (sp, valbuf, len); 126 127 args[i] 128 = value_addr (value_from_contents_and_address (type, valbuf, sp)); 129 } 130 131 return sp; 132 } 133 134 /* Store the value of ARG in register REGNO (right-justified). 135 REGCACHE is the register cache. */ 136 137 static void 138 amd64_windows_store_arg_in_reg (struct regcache *regcache, 139 struct value *arg, int regno) 140 { 141 struct type *type = value_type (arg); 142 const gdb_byte *valbuf = value_contents (arg); 143 gdb_byte buf[8]; 144 145 gdb_assert (TYPE_LENGTH (type) <= 8); 146 memset (buf, 0, sizeof buf); 147 memcpy (buf, valbuf, std::min (TYPE_LENGTH (type), (unsigned int) 8)); 148 regcache->cooked_write (regno, buf); 149 } 150 151 /* Push the arguments for an inferior function call, and return 152 the updated value of the SP (Stack Pointer). 153 154 All arguments are identical to the arguments used in 155 amd64_windows_push_dummy_call. */ 156 157 static CORE_ADDR 158 amd64_windows_push_arguments (struct regcache *regcache, int nargs, 159 struct value **args, CORE_ADDR sp, 160 function_call_return_method return_method) 161 { 162 int reg_idx = 0; 163 int i; 164 struct value **stack_args = XALLOCAVEC (struct value *, nargs); 165 int num_stack_args = 0; 166 int num_elements = 0; 167 int element = 0; 168 169 /* First, handle the arguments passed by pointer. 170 171 These arguments are replaced by pointers to a copy we are making 172 in inferior memory. So use a copy of the ARGS table, to avoid 173 modifying the original one. */ 174 { 175 struct value **args1 = XALLOCAVEC (struct value *, nargs); 176 177 memcpy (args1, args, nargs * sizeof (struct value *)); 178 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp); 179 args = args1; 180 } 181 182 /* Reserve a register for the "hidden" argument. */ 183 if (return_method == return_method_struct) 184 reg_idx++; 185 186 for (i = 0; i < nargs; i++) 187 { 188 struct type *type = value_type (args[i]); 189 int len = TYPE_LENGTH (type); 190 int on_stack_p = 1; 191 192 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs)) 193 { 194 if (amd64_windows_passed_by_integer_register (type)) 195 { 196 amd64_windows_store_arg_in_reg 197 (regcache, args[i], 198 amd64_windows_dummy_call_integer_regs[reg_idx]); 199 on_stack_p = 0; 200 reg_idx++; 201 } 202 else if (amd64_windows_passed_by_xmm_register (type)) 203 { 204 amd64_windows_store_arg_in_reg 205 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx); 206 /* In case of varargs, these parameters must also be 207 passed via the integer registers. */ 208 amd64_windows_store_arg_in_reg 209 (regcache, args[i], 210 amd64_windows_dummy_call_integer_regs[reg_idx]); 211 on_stack_p = 0; 212 reg_idx++; 213 } 214 } 215 216 if (on_stack_p) 217 { 218 num_elements += ((len + 7) / 8); 219 stack_args[num_stack_args++] = args[i]; 220 } 221 } 222 223 /* Allocate space for the arguments on the stack, keeping it 224 aligned on a 16 byte boundary. */ 225 sp -= num_elements * 8; 226 sp &= ~0xf; 227 228 /* Write out the arguments to the stack. */ 229 for (i = 0; i < num_stack_args; i++) 230 { 231 struct type *type = value_type (stack_args[i]); 232 const gdb_byte *valbuf = value_contents (stack_args[i]); 233 234 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type)); 235 element += ((TYPE_LENGTH (type) + 7) / 8); 236 } 237 238 return sp; 239 } 240 241 /* Implement the "push_dummy_call" gdbarch method. */ 242 243 static CORE_ADDR 244 amd64_windows_push_dummy_call 245 (struct gdbarch *gdbarch, struct value *function, 246 struct regcache *regcache, CORE_ADDR bp_addr, 247 int nargs, struct value **args, CORE_ADDR sp, 248 function_call_return_method return_method, CORE_ADDR struct_addr) 249 { 250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 251 gdb_byte buf[8]; 252 253 /* Pass arguments. */ 254 sp = amd64_windows_push_arguments (regcache, nargs, args, sp, 255 return_method); 256 257 /* Pass "hidden" argument". */ 258 if (return_method == return_method_struct) 259 { 260 /* The "hidden" argument is passed throught the first argument 261 register. */ 262 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0]; 263 264 store_unsigned_integer (buf, 8, byte_order, struct_addr); 265 regcache->cooked_write (arg_regnum, buf); 266 } 267 268 /* Reserve some memory on the stack for the integer-parameter 269 registers, as required by the ABI. */ 270 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8; 271 272 /* Store return address. */ 273 sp -= 8; 274 store_unsigned_integer (buf, 8, byte_order, bp_addr); 275 write_memory (sp, buf, 8); 276 277 /* Update the stack pointer... */ 278 store_unsigned_integer (buf, 8, byte_order, sp); 279 regcache->cooked_write (AMD64_RSP_REGNUM, buf); 280 281 /* ...and fake a frame pointer. */ 282 regcache->cooked_write (AMD64_RBP_REGNUM, buf); 283 284 return sp + 16; 285 } 286 287 /* Implement the "return_value" gdbarch method for amd64-windows. */ 288 289 static enum return_value_convention 290 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function, 291 struct type *type, struct regcache *regcache, 292 gdb_byte *readbuf, const gdb_byte *writebuf) 293 { 294 int len = TYPE_LENGTH (type); 295 int regnum = -1; 296 297 /* See if our value is returned through a register. If it is, then 298 store the associated register number in REGNUM. */ 299 switch (TYPE_CODE (type)) 300 { 301 case TYPE_CODE_FLT: 302 case TYPE_CODE_DECFLOAT: 303 /* __m128, __m128i, __m128d, floats, and doubles are returned 304 via XMM0. */ 305 if (len == 4 || len == 8 || len == 16) 306 regnum = AMD64_XMM0_REGNUM; 307 break; 308 default: 309 /* All other values that are 1, 2, 4 or 8 bytes long are returned 310 via RAX. */ 311 if (len == 1 || len == 2 || len == 4 || len == 8) 312 regnum = AMD64_RAX_REGNUM; 313 break; 314 } 315 316 if (regnum < 0) 317 { 318 /* RAX contains the address where the return value has been stored. */ 319 if (readbuf) 320 { 321 ULONGEST addr; 322 323 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); 324 read_memory (addr, readbuf, TYPE_LENGTH (type)); 325 } 326 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 327 } 328 else 329 { 330 /* Extract the return value from the register where it was stored. */ 331 if (readbuf) 332 regcache->raw_read_part (regnum, 0, len, readbuf); 333 if (writebuf) 334 regcache->raw_write_part (regnum, 0, len, writebuf); 335 return RETURN_VALUE_REGISTER_CONVENTION; 336 } 337 } 338 339 /* Check that the code pointed to by PC corresponds to a call to 340 __main, skip it if so. Return PC otherwise. */ 341 342 static CORE_ADDR 343 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 344 { 345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 346 gdb_byte op; 347 348 target_read_memory (pc, &op, 1); 349 if (op == 0xe8) 350 { 351 gdb_byte buf[4]; 352 353 if (target_read_memory (pc + 1, buf, sizeof buf) == 0) 354 { 355 struct bound_minimal_symbol s; 356 CORE_ADDR call_dest; 357 358 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order); 359 s = lookup_minimal_symbol_by_pc (call_dest); 360 if (s.minsym != NULL 361 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL 362 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0) 363 pc += 5; 364 } 365 } 366 367 return pc; 368 } 369 370 struct amd64_windows_frame_cache 371 { 372 /* ImageBase for the module. */ 373 CORE_ADDR image_base; 374 375 /* Function start and end rva. */ 376 CORE_ADDR start_rva; 377 CORE_ADDR end_rva; 378 379 /* Next instruction to be executed. */ 380 CORE_ADDR pc; 381 382 /* Current sp. */ 383 CORE_ADDR sp; 384 385 /* Address of saved integer and xmm registers. */ 386 CORE_ADDR prev_reg_addr[16]; 387 CORE_ADDR prev_xmm_addr[16]; 388 389 /* These two next fields are set only for machine info frames. */ 390 391 /* Likewise for RIP. */ 392 CORE_ADDR prev_rip_addr; 393 394 /* Likewise for RSP. */ 395 CORE_ADDR prev_rsp_addr; 396 397 /* Address of the previous frame. */ 398 CORE_ADDR prev_sp; 399 }; 400 401 /* Convert a Windows register number to gdb. */ 402 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] = 403 { 404 AMD64_RAX_REGNUM, 405 AMD64_RCX_REGNUM, 406 AMD64_RDX_REGNUM, 407 AMD64_RBX_REGNUM, 408 AMD64_RSP_REGNUM, 409 AMD64_RBP_REGNUM, 410 AMD64_RSI_REGNUM, 411 AMD64_RDI_REGNUM, 412 AMD64_R8_REGNUM, 413 AMD64_R9_REGNUM, 414 AMD64_R10_REGNUM, 415 AMD64_R11_REGNUM, 416 AMD64_R12_REGNUM, 417 AMD64_R13_REGNUM, 418 AMD64_R14_REGNUM, 419 AMD64_R15_REGNUM 420 }; 421 422 /* Return TRUE iff PC is the range of the function corresponding to 423 CACHE. */ 424 425 static int 426 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache) 427 { 428 return (pc >= cache->image_base + cache->start_rva 429 && pc < cache->image_base + cache->end_rva); 430 } 431 432 /* Try to recognize and decode an epilogue sequence. 433 434 Return -1 if we fail to read the instructions for any reason. 435 Return 1 if an epilogue sequence was recognized, 0 otherwise. */ 436 437 static int 438 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame, 439 struct amd64_windows_frame_cache *cache) 440 { 441 /* According to MSDN an epilogue "must consist of either an add RSP,constant 442 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte 443 register pops and a return or a jmp". 444 445 Furthermore, according to RtlVirtualUnwind, the complete list of 446 epilog marker is: 447 - ret [c3] 448 - ret n [c2 imm16] 449 - rep ret [f3 c3] 450 - jmp imm8 | imm32 [eb rel8] or [e9 rel32] 451 - jmp qword ptr imm32 - not handled 452 - rex.w jmp reg [4X ff eY] 453 */ 454 455 CORE_ADDR pc = cache->pc; 456 CORE_ADDR cur_sp = cache->sp; 457 struct gdbarch *gdbarch = get_frame_arch (this_frame); 458 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 459 gdb_byte op; 460 gdb_byte rex; 461 462 /* We don't care about the instruction deallocating the frame: 463 if it hasn't been executed, the pc is still in the body, 464 if it has been executed, the following epilog decoding will work. */ 465 466 /* First decode: 467 - pop reg [41 58-5f] or [58-5f]. */ 468 469 while (1) 470 { 471 /* Read opcode. */ 472 if (target_read_memory (pc, &op, 1) != 0) 473 return -1; 474 475 if (op >= 0x40 && op <= 0x4f) 476 { 477 /* REX prefix. */ 478 rex = op; 479 480 /* Read opcode. */ 481 if (target_read_memory (pc + 1, &op, 1) != 0) 482 return -1; 483 } 484 else 485 rex = 0; 486 487 if (op >= 0x58 && op <= 0x5f) 488 { 489 /* pop reg */ 490 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3); 491 492 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp; 493 cur_sp += 8; 494 pc += rex ? 2 : 1; 495 } 496 else 497 break; 498 499 /* Allow the user to break this loop. This shouldn't happen as the 500 number of consecutive pop should be small. */ 501 QUIT; 502 } 503 504 /* Then decode the marker. */ 505 506 /* Read opcode. */ 507 if (target_read_memory (pc, &op, 1) != 0) 508 return -1; 509 510 switch (op) 511 { 512 case 0xc3: 513 /* Ret. */ 514 cache->prev_rip_addr = cur_sp; 515 cache->prev_sp = cur_sp + 8; 516 return 1; 517 518 case 0xeb: 519 { 520 /* jmp rel8 */ 521 gdb_byte rel8; 522 CORE_ADDR npc; 523 524 if (target_read_memory (pc + 1, &rel8, 1) != 0) 525 return -1; 526 npc = pc + 2 + (signed char) rel8; 527 528 /* If the jump is within the function, then this is not a marker, 529 otherwise this is a tail-call. */ 530 return !pc_in_range (npc, cache); 531 } 532 533 case 0xec: 534 { 535 /* jmp rel32 */ 536 gdb_byte rel32[4]; 537 CORE_ADDR npc; 538 539 if (target_read_memory (pc + 1, rel32, 4) != 0) 540 return -1; 541 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order); 542 543 /* If the jump is within the function, then this is not a marker, 544 otherwise this is a tail-call. */ 545 return !pc_in_range (npc, cache); 546 } 547 548 case 0xc2: 549 { 550 /* ret n */ 551 gdb_byte imm16[2]; 552 553 if (target_read_memory (pc + 1, imm16, 2) != 0) 554 return -1; 555 cache->prev_rip_addr = cur_sp; 556 cache->prev_sp = cur_sp 557 + extract_unsigned_integer (imm16, 4, byte_order); 558 return 1; 559 } 560 561 case 0xf3: 562 { 563 /* rep; ret */ 564 gdb_byte op1; 565 566 if (target_read_memory (pc + 2, &op1, 1) != 0) 567 return -1; 568 if (op1 != 0xc3) 569 return 0; 570 571 cache->prev_rip_addr = cur_sp; 572 cache->prev_sp = cur_sp + 8; 573 return 1; 574 } 575 576 case 0x40: 577 case 0x41: 578 case 0x42: 579 case 0x43: 580 case 0x44: 581 case 0x45: 582 case 0x46: 583 case 0x47: 584 case 0x48: 585 case 0x49: 586 case 0x4a: 587 case 0x4b: 588 case 0x4c: 589 case 0x4d: 590 case 0x4e: 591 case 0x4f: 592 /* Got a REX prefix, read next byte. */ 593 rex = op; 594 if (target_read_memory (pc + 1, &op, 1) != 0) 595 return -1; 596 597 if (op == 0xff) 598 { 599 /* rex jmp reg */ 600 gdb_byte op1; 601 602 if (target_read_memory (pc + 2, &op1, 1) != 0) 603 return -1; 604 return (op1 & 0xf8) == 0xe0; 605 } 606 else 607 return 0; 608 609 default: 610 /* Not REX, so unknown. */ 611 return 0; 612 } 613 } 614 615 /* Decode and execute unwind insns at UNWIND_INFO. */ 616 617 static void 618 amd64_windows_frame_decode_insns (struct frame_info *this_frame, 619 struct amd64_windows_frame_cache *cache, 620 CORE_ADDR unwind_info) 621 { 622 CORE_ADDR save_addr = 0; 623 CORE_ADDR cur_sp = cache->sp; 624 struct gdbarch *gdbarch = get_frame_arch (this_frame); 625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 626 int first = 1; 627 628 /* There are at least 3 possibilities to share an unwind info entry: 629 1. Two different runtime_function entries (in .pdata) can point to the 630 same unwind info entry. There is no such indication while unwinding, 631 so we don't really care about that case. We suppose this scheme is 632 used to save memory when the unwind entries are exactly the same. 633 2. Chained unwind_info entries, with no unwind codes (no prologue). 634 There is a major difference with the previous case: the pc range for 635 the function is different (in case 1, the pc range comes from the 636 runtime_function entry; in case 2, the pc range for the chained entry 637 comes from the first unwind entry). Case 1 cannot be used instead as 638 the pc is not in the prologue. This case is officially documented. 639 (There might be unwind code in the first unwind entry to handle 640 additional unwinding). GCC (at least until gcc 5.0) doesn't chain 641 entries. 642 3. Undocumented unwind info redirection. Hard to know the exact purpose, 643 so it is considered as a memory optimization of case 2. 644 */ 645 646 if (unwind_info & 1) 647 { 648 /* Unofficially documented unwind info redirection, when UNWIND_INFO 649 address is odd (http://www.codemachine.com/article_x64deepdive.html). 650 */ 651 struct external_pex64_runtime_function d; 652 653 if (target_read_memory (cache->image_base + (unwind_info & ~1), 654 (gdb_byte *) &d, sizeof (d)) != 0) 655 return; 656 657 cache->start_rva 658 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 659 cache->end_rva 660 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 661 unwind_info 662 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 663 } 664 665 while (1) 666 { 667 struct external_pex64_unwind_info ex_ui; 668 /* There are at most 256 16-bit unwind insns. */ 669 gdb_byte insns[2 * 256]; 670 gdb_byte *p; 671 gdb_byte *end_insns; 672 unsigned char codes_count; 673 unsigned char frame_reg; 674 CORE_ADDR start; 675 676 /* Read and decode header. */ 677 if (target_read_memory (cache->image_base + unwind_info, 678 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0) 679 return; 680 681 if (frame_debug) 682 fprintf_unfiltered 683 (gdb_stdlog, 684 "amd64_windows_frame_decodes_insn: " 685 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n", 686 paddress (gdbarch, unwind_info), 687 ex_ui.Version_Flags, ex_ui.SizeOfPrologue, 688 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset); 689 690 /* Check version. */ 691 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1 692 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2) 693 return; 694 695 start = cache->image_base + cache->start_rva; 696 if (first 697 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue)) 698 { 699 /* We want to detect if the PC points to an epilogue. This needs 700 to be checked only once, and an epilogue can be anywhere but in 701 the prologue. If so, the epilogue detection+decoding function is 702 sufficient. Otherwise, the unwinder will consider that the PC 703 is in the body of the function and will need to decode unwind 704 info. */ 705 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1) 706 return; 707 708 /* Not in an epilog. Clear possible side effects. */ 709 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr)); 710 } 711 712 codes_count = ex_ui.CountOfCodes; 713 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset); 714 715 if (frame_reg != 0) 716 { 717 /* According to msdn: 718 If an FP reg is used, then any unwind code taking an offset must 719 only be used after the FP reg is established in the prolog. */ 720 gdb_byte buf[8]; 721 int frreg = amd64_windows_w2gdb_regnum[frame_reg]; 722 723 get_frame_register (this_frame, frreg, buf); 724 save_addr = extract_unsigned_integer (buf, 8, byte_order); 725 726 if (frame_debug) 727 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n", 728 gdbarch_register_name (gdbarch, frreg), 729 paddress (gdbarch, save_addr)); 730 } 731 732 /* Read opcodes. */ 733 if (codes_count != 0 734 && target_read_memory (cache->image_base + unwind_info 735 + sizeof (ex_ui), 736 insns, codes_count * 2) != 0) 737 return; 738 739 end_insns = &insns[codes_count * 2]; 740 p = insns; 741 742 /* Skip opcodes 6 of version 2. This opcode is not documented. */ 743 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2) 744 { 745 for (; p < end_insns; p += 2) 746 if (PEX64_UNWCODE_CODE (p[1]) != 6) 747 break; 748 } 749 750 for (; p < end_insns; p += 2) 751 { 752 int reg; 753 754 /* Virtually execute the operation if the pc is after the 755 corresponding instruction (that does matter in case of break 756 within the prologue). Note that for chained info (!first), the 757 prologue has been fully executed. */ 758 if (cache->pc >= start + p[0] || cache->pc < start) 759 { 760 if (frame_debug) 761 fprintf_unfiltered 762 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n", 763 (unsigned) (p - insns), p[0], p[1]); 764 765 /* If there is no frame registers defined, the current value of 766 rsp is used instead. */ 767 if (frame_reg == 0) 768 save_addr = cur_sp; 769 770 reg = -1; 771 772 switch (PEX64_UNWCODE_CODE (p[1])) 773 { 774 case UWOP_PUSH_NONVOL: 775 /* Push pre-decrements RSP. */ 776 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 777 cache->prev_reg_addr[reg] = cur_sp; 778 cur_sp += 8; 779 break; 780 case UWOP_ALLOC_LARGE: 781 if (PEX64_UNWCODE_INFO (p[1]) == 0) 782 cur_sp += 783 8 * extract_unsigned_integer (p + 2, 2, byte_order); 784 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 785 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order); 786 else 787 return; 788 break; 789 case UWOP_ALLOC_SMALL: 790 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]); 791 break; 792 case UWOP_SET_FPREG: 793 cur_sp = save_addr 794 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16; 795 break; 796 case UWOP_SAVE_NONVOL: 797 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 798 cache->prev_reg_addr[reg] = save_addr 799 + 8 * extract_unsigned_integer (p + 2, 2, byte_order); 800 break; 801 case UWOP_SAVE_NONVOL_FAR: 802 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; 803 cache->prev_reg_addr[reg] = save_addr 804 + 8 * extract_unsigned_integer (p + 2, 4, byte_order); 805 break; 806 case UWOP_SAVE_XMM128: 807 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 808 save_addr 809 - 16 * extract_unsigned_integer (p + 2, 2, byte_order); 810 break; 811 case UWOP_SAVE_XMM128_FAR: 812 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = 813 save_addr 814 - 16 * extract_unsigned_integer (p + 2, 4, byte_order); 815 break; 816 case UWOP_PUSH_MACHFRAME: 817 if (PEX64_UNWCODE_INFO (p[1]) == 0) 818 { 819 cache->prev_rip_addr = cur_sp + 0; 820 cache->prev_rsp_addr = cur_sp + 24; 821 cur_sp += 40; 822 } 823 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 824 { 825 cache->prev_rip_addr = cur_sp + 8; 826 cache->prev_rsp_addr = cur_sp + 32; 827 cur_sp += 48; 828 } 829 else 830 return; 831 break; 832 default: 833 return; 834 } 835 836 /* Display address where the register was saved. */ 837 if (frame_debug && reg >= 0) 838 fprintf_unfiltered 839 (gdb_stdlog, " [reg %s at %s]\n", 840 gdbarch_register_name (gdbarch, reg), 841 paddress (gdbarch, cache->prev_reg_addr[reg])); 842 } 843 844 /* Adjust with the length of the opcode. */ 845 switch (PEX64_UNWCODE_CODE (p[1])) 846 { 847 case UWOP_PUSH_NONVOL: 848 case UWOP_ALLOC_SMALL: 849 case UWOP_SET_FPREG: 850 case UWOP_PUSH_MACHFRAME: 851 break; 852 case UWOP_ALLOC_LARGE: 853 if (PEX64_UNWCODE_INFO (p[1]) == 0) 854 p += 2; 855 else if (PEX64_UNWCODE_INFO (p[1]) == 1) 856 p += 4; 857 else 858 return; 859 break; 860 case UWOP_SAVE_NONVOL: 861 case UWOP_SAVE_XMM128: 862 p += 2; 863 break; 864 case UWOP_SAVE_NONVOL_FAR: 865 case UWOP_SAVE_XMM128_FAR: 866 p += 4; 867 break; 868 default: 869 return; 870 } 871 } 872 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO) 873 { 874 /* End of unwind info. */ 875 break; 876 } 877 else 878 { 879 /* Read the chained unwind info. */ 880 struct external_pex64_runtime_function d; 881 CORE_ADDR chain_vma; 882 883 /* Not anymore the first entry. */ 884 first = 0; 885 886 /* Stay aligned on word boundary. */ 887 chain_vma = cache->image_base + unwind_info 888 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2; 889 890 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0) 891 return; 892 893 /* Decode begin/end. This may be different from .pdata index, as 894 an unwind info may be shared by several functions (in particular 895 if many functions have the same prolog and handler. */ 896 cache->start_rva = 897 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 898 cache->end_rva = 899 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 900 unwind_info = 901 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 902 903 if (frame_debug) 904 fprintf_unfiltered 905 (gdb_stdlog, 906 "amd64_windows_frame_decodes_insn (next in chain):" 907 " unwind_data=%s, start_rva=%s, end_rva=%s\n", 908 paddress (gdbarch, unwind_info), 909 paddress (gdbarch, cache->start_rva), 910 paddress (gdbarch, cache->end_rva)); 911 } 912 913 /* Allow the user to break this loop. */ 914 QUIT; 915 } 916 /* PC is saved by the call. */ 917 if (cache->prev_rip_addr == 0) 918 cache->prev_rip_addr = cur_sp; 919 cache->prev_sp = cur_sp + 8; 920 921 if (frame_debug) 922 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n", 923 paddress (gdbarch, cache->prev_sp), 924 paddress (gdbarch, cache->prev_rip_addr)); 925 } 926 927 /* Find SEH unwind info for PC, returning 0 on success. 928 929 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE 930 to the base address of the corresponding image, and START_RVA 931 to the rva of the function containing PC. */ 932 933 static int 934 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc, 935 CORE_ADDR *unwind_info, 936 CORE_ADDR *image_base, 937 CORE_ADDR *start_rva, 938 CORE_ADDR *end_rva) 939 { 940 struct obj_section *sec; 941 pe_data_type *pe; 942 IMAGE_DATA_DIRECTORY *dir; 943 struct objfile *objfile; 944 unsigned long lo, hi; 945 CORE_ADDR base; 946 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 947 948 /* Get the corresponding exception directory. */ 949 sec = find_pc_section (pc); 950 if (sec == NULL) 951 return -1; 952 objfile = sec->objfile; 953 pe = pe_data (sec->objfile->obfd); 954 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE]; 955 956 base = pe->pe_opthdr.ImageBase 957 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 958 *image_base = base; 959 960 /* Find the entry. 961 962 Note: This does not handle dynamically added entries (for JIT 963 engines). For this, we would need to ask the kernel directly, 964 which means getting some info from the native layer. For the 965 rest of the code, however, it's probably faster to search 966 the entry ourselves. */ 967 lo = 0; 968 hi = dir->Size / sizeof (struct external_pex64_runtime_function); 969 *unwind_info = 0; 970 while (lo <= hi) 971 { 972 unsigned long mid = lo + (hi - lo) / 2; 973 struct external_pex64_runtime_function d; 974 CORE_ADDR sa, ea; 975 976 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d), 977 (gdb_byte *) &d, sizeof (d)) != 0) 978 return -1; 979 980 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); 981 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); 982 if (pc < base + sa) 983 hi = mid - 1; 984 else if (pc >= base + ea) 985 lo = mid + 1; 986 else if (pc >= base + sa && pc < base + ea) 987 { 988 /* Got it. */ 989 *start_rva = sa; 990 *end_rva = ea; 991 *unwind_info = 992 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); 993 break; 994 } 995 else 996 break; 997 } 998 999 if (frame_debug) 1000 fprintf_unfiltered 1001 (gdb_stdlog, 1002 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n", 1003 paddress (gdbarch, base), paddress (gdbarch, *unwind_info)); 1004 1005 return 0; 1006 } 1007 1008 /* Fill THIS_CACHE using the native amd64-windows unwinding data 1009 for THIS_FRAME. */ 1010 1011 static struct amd64_windows_frame_cache * 1012 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache) 1013 { 1014 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1015 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1016 struct amd64_windows_frame_cache *cache; 1017 gdb_byte buf[8]; 1018 CORE_ADDR pc; 1019 CORE_ADDR unwind_info = 0; 1020 1021 if (*this_cache) 1022 return (struct amd64_windows_frame_cache *) *this_cache; 1023 1024 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache); 1025 *this_cache = cache; 1026 1027 /* Get current PC and SP. */ 1028 pc = get_frame_pc (this_frame); 1029 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 1030 cache->sp = extract_unsigned_integer (buf, 8, byte_order); 1031 cache->pc = pc; 1032 1033 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1034 &cache->image_base, 1035 &cache->start_rva, 1036 &cache->end_rva)) 1037 return cache; 1038 1039 if (unwind_info == 0) 1040 { 1041 /* Assume a leaf function. */ 1042 cache->prev_sp = cache->sp + 8; 1043 cache->prev_rip_addr = cache->sp; 1044 } 1045 else 1046 { 1047 /* Decode unwind insns to compute saved addresses. */ 1048 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info); 1049 } 1050 return cache; 1051 } 1052 1053 /* Implement the "prev_register" method of struct frame_unwind 1054 using the standard Windows x64 SEH info. */ 1055 1056 static struct value * 1057 amd64_windows_frame_prev_register (struct frame_info *this_frame, 1058 void **this_cache, int regnum) 1059 { 1060 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1061 struct amd64_windows_frame_cache *cache = 1062 amd64_windows_frame_cache (this_frame, this_cache); 1063 CORE_ADDR prev; 1064 1065 if (frame_debug) 1066 fprintf_unfiltered (gdb_stdlog, 1067 "amd64_windows_frame_prev_register %s for sp=%s\n", 1068 gdbarch_register_name (gdbarch, regnum), 1069 paddress (gdbarch, cache->prev_sp)); 1070 1071 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) 1072 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM]; 1073 else if (regnum == AMD64_RSP_REGNUM) 1074 { 1075 prev = cache->prev_rsp_addr; 1076 if (prev == 0) 1077 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); 1078 } 1079 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM) 1080 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM]; 1081 else if (regnum == AMD64_RIP_REGNUM) 1082 prev = cache->prev_rip_addr; 1083 else 1084 prev = 0; 1085 1086 if (prev && frame_debug) 1087 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev)); 1088 1089 if (prev) 1090 { 1091 /* Register was saved. */ 1092 return frame_unwind_got_memory (this_frame, regnum, prev); 1093 } 1094 else 1095 { 1096 /* Register is either volatile or not modified. */ 1097 return frame_unwind_got_register (this_frame, regnum, regnum); 1098 } 1099 } 1100 1101 /* Implement the "this_id" method of struct frame_unwind using 1102 the standard Windows x64 SEH info. */ 1103 1104 static void 1105 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache, 1106 struct frame_id *this_id) 1107 { 1108 struct amd64_windows_frame_cache *cache = 1109 amd64_windows_frame_cache (this_frame, this_cache); 1110 1111 *this_id = frame_id_build (cache->prev_sp, 1112 cache->image_base + cache->start_rva); 1113 } 1114 1115 /* Windows x64 SEH unwinder. */ 1116 1117 static const struct frame_unwind amd64_windows_frame_unwind = 1118 { 1119 NORMAL_FRAME, 1120 default_frame_unwind_stop_reason, 1121 &amd64_windows_frame_this_id, 1122 &amd64_windows_frame_prev_register, 1123 NULL, 1124 default_frame_sniffer 1125 }; 1126 1127 /* Implement the "skip_prologue" gdbarch method. */ 1128 1129 static CORE_ADDR 1130 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1131 { 1132 CORE_ADDR func_addr; 1133 CORE_ADDR unwind_info = 0; 1134 CORE_ADDR image_base, start_rva, end_rva; 1135 struct external_pex64_unwind_info ex_ui; 1136 1137 /* Use prologue size from unwind info. */ 1138 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, 1139 &image_base, &start_rva, &end_rva) == 0) 1140 { 1141 if (unwind_info == 0) 1142 { 1143 /* Leaf function. */ 1144 return pc; 1145 } 1146 else if (target_read_memory (image_base + unwind_info, 1147 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0 1148 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1) 1149 return std::max (pc, image_base + start_rva + ex_ui.SizeOfPrologue); 1150 } 1151 1152 /* See if we can determine the end of the prologue via the symbol 1153 table. If so, then return either the PC, or the PC after 1154 the prologue, whichever is greater. */ 1155 if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) 1156 { 1157 CORE_ADDR post_prologue_pc 1158 = skip_prologue_using_sal (gdbarch, func_addr); 1159 1160 if (post_prologue_pc != 0) 1161 return std::max (pc, post_prologue_pc); 1162 } 1163 1164 return pc; 1165 } 1166 1167 /* Check Win64 DLL jmp trampolines and find jump destination. */ 1168 1169 static CORE_ADDR 1170 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 1171 { 1172 CORE_ADDR destination = 0; 1173 struct gdbarch *gdbarch = get_frame_arch (frame); 1174 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1175 1176 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */ 1177 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff) 1178 { 1179 /* Get opcode offset and see if we can find a reference in our data. */ 1180 ULONGEST offset 1181 = read_memory_unsigned_integer (pc + 2, 4, byte_order); 1182 1183 /* Get address of function pointer at end of pc. */ 1184 CORE_ADDR indirect_addr = pc + offset + 6; 1185 1186 struct minimal_symbol *indsym 1187 = (indirect_addr 1188 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym 1189 : NULL); 1190 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL; 1191 1192 if (symname) 1193 { 1194 if (startswith (symname, "__imp_") 1195 || startswith (symname, "_imp_")) 1196 destination 1197 = read_memory_unsigned_integer (indirect_addr, 8, byte_order); 1198 } 1199 } 1200 1201 return destination; 1202 } 1203 1204 /* Implement the "auto_wide_charset" gdbarch method. */ 1205 1206 static const char * 1207 amd64_windows_auto_wide_charset (void) 1208 { 1209 return "UTF-16"; 1210 } 1211 1212 static void 1213 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1214 { 1215 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is 1216 preferred over the SEH one. The reasons are: 1217 - binaries without SEH but with dwarf2 debug info are correcly handled 1218 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH 1219 info). 1220 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be 1221 handled if the dwarf2 unwinder is used). 1222 1223 The call to amd64_init_abi appends default unwinders, that aren't 1224 compatible with the SEH one. 1225 */ 1226 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind); 1227 1228 amd64_init_abi (info, gdbarch, 1229 amd64_target_description (X86_XSTATE_SSE_MASK, false)); 1230 1231 windows_init_abi (info, gdbarch); 1232 1233 /* On Windows, "long"s are only 32bit. */ 1234 set_gdbarch_long_bit (gdbarch, 32); 1235 1236 /* Function calls. */ 1237 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call); 1238 set_gdbarch_return_value (gdbarch, amd64_windows_return_value); 1239 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue); 1240 set_gdbarch_skip_trampoline_code (gdbarch, 1241 amd64_windows_skip_trampoline_code); 1242 1243 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue); 1244 1245 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset); 1246 } 1247 1248 void 1249 _initialize_amd64_windows_tdep (void) 1250 { 1251 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN, 1252 amd64_windows_init_abi); 1253 } 1254