xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/amd64-windows-tdep.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /* Copyright (C) 2009-2019 Free Software Foundation, Inc.
2 
3    This file is part of GDB.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "osabi.h"
20 #include "amd64-tdep.h"
21 #include "common/x86-xstate.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "regcache.h"
25 #include "windows-tdep.h"
26 #include "frame.h"
27 #include "objfiles.h"
28 #include "frame-unwind.h"
29 #include "coff/internal.h"
30 #include "coff/i386.h"
31 #include "coff/pe.h"
32 #include "libcoff.h"
33 #include "value.h"
34 #include <algorithm>
35 
36 /* The registers used to pass integer arguments during a function call.  */
37 static int amd64_windows_dummy_call_integer_regs[] =
38 {
39   AMD64_RCX_REGNUM,          /* %rcx */
40   AMD64_RDX_REGNUM,          /* %rdx */
41   AMD64_R8_REGNUM,           /* %r8 */
42   AMD64_R9_REGNUM            /* %r9 */
43 };
44 
45 /* Return nonzero if an argument of type TYPE should be passed
46    via one of the integer registers.  */
47 
48 static int
49 amd64_windows_passed_by_integer_register (struct type *type)
50 {
51   switch (TYPE_CODE (type))
52     {
53       case TYPE_CODE_INT:
54       case TYPE_CODE_ENUM:
55       case TYPE_CODE_BOOL:
56       case TYPE_CODE_RANGE:
57       case TYPE_CODE_CHAR:
58       case TYPE_CODE_PTR:
59       case TYPE_CODE_REF:
60       case TYPE_CODE_RVALUE_REF:
61       case TYPE_CODE_STRUCT:
62       case TYPE_CODE_UNION:
63 	return (TYPE_LENGTH (type) == 1
64 		|| TYPE_LENGTH (type) == 2
65 		|| TYPE_LENGTH (type) == 4
66 		|| TYPE_LENGTH (type) == 8);
67 
68       default:
69 	return 0;
70     }
71 }
72 
73 /* Return nonzero if an argument of type TYPE should be passed
74    via one of the XMM registers.  */
75 
76 static int
77 amd64_windows_passed_by_xmm_register (struct type *type)
78 {
79   return ((TYPE_CODE (type) == TYPE_CODE_FLT
80 	   || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
81           && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
82 }
83 
84 /* Return non-zero iff an argument of the given TYPE should be passed
85    by pointer.  */
86 
87 static int
88 amd64_windows_passed_by_pointer (struct type *type)
89 {
90   if (amd64_windows_passed_by_integer_register (type))
91     return 0;
92 
93   if (amd64_windows_passed_by_xmm_register (type))
94     return 0;
95 
96   return 1;
97 }
98 
99 /* For each argument that should be passed by pointer, reserve some
100    stack space, store a copy of the argument on the stack, and replace
101    the argument by its address.  Return the new Stack Pointer value.
102 
103    NARGS is the number of arguments. ARGS is the array containing
104    the value of each argument.  SP is value of the Stack Pointer.  */
105 
106 static CORE_ADDR
107 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
108 					     int nargs, CORE_ADDR sp)
109 {
110   int i;
111 
112   for (i = 0; i < nargs; i++)
113     if (amd64_windows_passed_by_pointer (value_type (args[i])))
114       {
115 	struct type *type = value_type (args[i]);
116 	const gdb_byte *valbuf = value_contents (args[i]);
117 	const int len = TYPE_LENGTH (type);
118 
119 	/* Store a copy of that argument on the stack, aligned to
120 	   a 16 bytes boundary, and then use the copy's address as
121 	   the argument.  */
122 
123 	sp -= len;
124 	sp &= ~0xf;
125 	write_memory (sp, valbuf, len);
126 
127 	args[i]
128 	  = value_addr (value_from_contents_and_address (type, valbuf, sp));
129       }
130 
131   return sp;
132 }
133 
134 /* Store the value of ARG in register REGNO (right-justified).
135    REGCACHE is the register cache.  */
136 
137 static void
138 amd64_windows_store_arg_in_reg (struct regcache *regcache,
139 				struct value *arg, int regno)
140 {
141   struct type *type = value_type (arg);
142   const gdb_byte *valbuf = value_contents (arg);
143   gdb_byte buf[8];
144 
145   gdb_assert (TYPE_LENGTH (type) <= 8);
146   memset (buf, 0, sizeof buf);
147   memcpy (buf, valbuf, std::min (TYPE_LENGTH (type), (unsigned int) 8));
148   regcache->cooked_write (regno, buf);
149 }
150 
151 /* Push the arguments for an inferior function call, and return
152    the updated value of the SP (Stack Pointer).
153 
154    All arguments are identical to the arguments used in
155    amd64_windows_push_dummy_call.  */
156 
157 static CORE_ADDR
158 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
159 			      struct value **args, CORE_ADDR sp,
160 			      function_call_return_method return_method)
161 {
162   int reg_idx = 0;
163   int i;
164   struct value **stack_args = XALLOCAVEC (struct value *, nargs);
165   int num_stack_args = 0;
166   int num_elements = 0;
167   int element = 0;
168 
169   /* First, handle the arguments passed by pointer.
170 
171      These arguments are replaced by pointers to a copy we are making
172      in inferior memory.  So use a copy of the ARGS table, to avoid
173      modifying the original one.  */
174   {
175     struct value **args1 = XALLOCAVEC (struct value *, nargs);
176 
177     memcpy (args1, args, nargs * sizeof (struct value *));
178     sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
179     args = args1;
180   }
181 
182   /* Reserve a register for the "hidden" argument.  */
183   if (return_method == return_method_struct)
184     reg_idx++;
185 
186   for (i = 0; i < nargs; i++)
187     {
188       struct type *type = value_type (args[i]);
189       int len = TYPE_LENGTH (type);
190       int on_stack_p = 1;
191 
192       if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
193 	{
194 	  if (amd64_windows_passed_by_integer_register (type))
195 	    {
196 	      amd64_windows_store_arg_in_reg
197 		(regcache, args[i],
198 		 amd64_windows_dummy_call_integer_regs[reg_idx]);
199 	      on_stack_p = 0;
200 	      reg_idx++;
201 	    }
202 	  else if (amd64_windows_passed_by_xmm_register (type))
203 	    {
204 	      amd64_windows_store_arg_in_reg
205 	        (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
206 	      /* In case of varargs, these parameters must also be
207 		 passed via the integer registers.  */
208 	      amd64_windows_store_arg_in_reg
209 		(regcache, args[i],
210 		 amd64_windows_dummy_call_integer_regs[reg_idx]);
211 	      on_stack_p = 0;
212 	      reg_idx++;
213 	    }
214 	}
215 
216       if (on_stack_p)
217 	{
218 	  num_elements += ((len + 7) / 8);
219 	  stack_args[num_stack_args++] = args[i];
220 	}
221     }
222 
223   /* Allocate space for the arguments on the stack, keeping it
224      aligned on a 16 byte boundary.  */
225   sp -= num_elements * 8;
226   sp &= ~0xf;
227 
228   /* Write out the arguments to the stack.  */
229   for (i = 0; i < num_stack_args; i++)
230     {
231       struct type *type = value_type (stack_args[i]);
232       const gdb_byte *valbuf = value_contents (stack_args[i]);
233 
234       write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
235       element += ((TYPE_LENGTH (type) + 7) / 8);
236     }
237 
238   return sp;
239 }
240 
241 /* Implement the "push_dummy_call" gdbarch method.  */
242 
243 static CORE_ADDR
244 amd64_windows_push_dummy_call
245   (struct gdbarch *gdbarch, struct value *function,
246    struct regcache *regcache, CORE_ADDR bp_addr,
247    int nargs, struct value **args, CORE_ADDR sp,
248    function_call_return_method return_method, CORE_ADDR struct_addr)
249 {
250   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251   gdb_byte buf[8];
252 
253   /* Pass arguments.  */
254   sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
255 				     return_method);
256 
257   /* Pass "hidden" argument".  */
258   if (return_method == return_method_struct)
259     {
260       /* The "hidden" argument is passed throught the first argument
261          register.  */
262       const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
263 
264       store_unsigned_integer (buf, 8, byte_order, struct_addr);
265       regcache->cooked_write (arg_regnum, buf);
266     }
267 
268   /* Reserve some memory on the stack for the integer-parameter
269      registers, as required by the ABI.  */
270   sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
271 
272   /* Store return address.  */
273   sp -= 8;
274   store_unsigned_integer (buf, 8, byte_order, bp_addr);
275   write_memory (sp, buf, 8);
276 
277   /* Update the stack pointer...  */
278   store_unsigned_integer (buf, 8, byte_order, sp);
279   regcache->cooked_write (AMD64_RSP_REGNUM, buf);
280 
281   /* ...and fake a frame pointer.  */
282   regcache->cooked_write (AMD64_RBP_REGNUM, buf);
283 
284   return sp + 16;
285 }
286 
287 /* Implement the "return_value" gdbarch method for amd64-windows.  */
288 
289 static enum return_value_convention
290 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
291 			    struct type *type, struct regcache *regcache,
292 			    gdb_byte *readbuf, const gdb_byte *writebuf)
293 {
294   int len = TYPE_LENGTH (type);
295   int regnum = -1;
296 
297   /* See if our value is returned through a register.  If it is, then
298      store the associated register number in REGNUM.  */
299   switch (TYPE_CODE (type))
300     {
301       case TYPE_CODE_FLT:
302       case TYPE_CODE_DECFLOAT:
303         /* __m128, __m128i, __m128d, floats, and doubles are returned
304            via XMM0.  */
305         if (len == 4 || len == 8 || len == 16)
306           regnum = AMD64_XMM0_REGNUM;
307         break;
308       default:
309         /* All other values that are 1, 2, 4 or 8 bytes long are returned
310            via RAX.  */
311         if (len == 1 || len == 2 || len == 4 || len == 8)
312           regnum = AMD64_RAX_REGNUM;
313         break;
314     }
315 
316   if (regnum < 0)
317     {
318       /* RAX contains the address where the return value has been stored.  */
319       if (readbuf)
320         {
321 	  ULONGEST addr;
322 
323 	  regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
324 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
325 	}
326       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
327     }
328   else
329     {
330       /* Extract the return value from the register where it was stored.  */
331       if (readbuf)
332 	regcache->raw_read_part (regnum, 0, len, readbuf);
333       if (writebuf)
334 	regcache->raw_write_part (regnum, 0, len, writebuf);
335       return RETURN_VALUE_REGISTER_CONVENTION;
336     }
337 }
338 
339 /* Check that the code pointed to by PC corresponds to a call to
340    __main, skip it if so.  Return PC otherwise.  */
341 
342 static CORE_ADDR
343 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
344 {
345   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
346   gdb_byte op;
347 
348   target_read_memory (pc, &op, 1);
349   if (op == 0xe8)
350     {
351       gdb_byte buf[4];
352 
353       if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
354  	{
355  	  struct bound_minimal_symbol s;
356  	  CORE_ADDR call_dest;
357 
358 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
359  	  s = lookup_minimal_symbol_by_pc (call_dest);
360  	  if (s.minsym != NULL
361  	      && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
362  	      && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
363  	    pc += 5;
364  	}
365     }
366 
367   return pc;
368 }
369 
370 struct amd64_windows_frame_cache
371 {
372   /* ImageBase for the module.  */
373   CORE_ADDR image_base;
374 
375   /* Function start and end rva.  */
376   CORE_ADDR start_rva;
377   CORE_ADDR end_rva;
378 
379   /* Next instruction to be executed.  */
380   CORE_ADDR pc;
381 
382   /* Current sp.  */
383   CORE_ADDR sp;
384 
385   /* Address of saved integer and xmm registers.  */
386   CORE_ADDR prev_reg_addr[16];
387   CORE_ADDR prev_xmm_addr[16];
388 
389   /* These two next fields are set only for machine info frames.  */
390 
391   /* Likewise for RIP.  */
392   CORE_ADDR prev_rip_addr;
393 
394   /* Likewise for RSP.  */
395   CORE_ADDR prev_rsp_addr;
396 
397   /* Address of the previous frame.  */
398   CORE_ADDR prev_sp;
399 };
400 
401 /* Convert a Windows register number to gdb.  */
402 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
403 {
404   AMD64_RAX_REGNUM,
405   AMD64_RCX_REGNUM,
406   AMD64_RDX_REGNUM,
407   AMD64_RBX_REGNUM,
408   AMD64_RSP_REGNUM,
409   AMD64_RBP_REGNUM,
410   AMD64_RSI_REGNUM,
411   AMD64_RDI_REGNUM,
412   AMD64_R8_REGNUM,
413   AMD64_R9_REGNUM,
414   AMD64_R10_REGNUM,
415   AMD64_R11_REGNUM,
416   AMD64_R12_REGNUM,
417   AMD64_R13_REGNUM,
418   AMD64_R14_REGNUM,
419   AMD64_R15_REGNUM
420 };
421 
422 /* Return TRUE iff PC is the range of the function corresponding to
423    CACHE.  */
424 
425 static int
426 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
427 {
428   return (pc >= cache->image_base + cache->start_rva
429 	  && pc < cache->image_base + cache->end_rva);
430 }
431 
432 /* Try to recognize and decode an epilogue sequence.
433 
434    Return -1 if we fail to read the instructions for any reason.
435    Return 1 if an epilogue sequence was recognized, 0 otherwise.  */
436 
437 static int
438 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
439 				     struct amd64_windows_frame_cache *cache)
440 {
441   /* According to MSDN an epilogue "must consist of either an add RSP,constant
442      or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
443      register pops and a return or a jmp".
444 
445      Furthermore, according to RtlVirtualUnwind, the complete list of
446      epilog marker is:
447      - ret                      [c3]
448      - ret n                    [c2 imm16]
449      - rep ret                  [f3 c3]
450      - jmp imm8 | imm32         [eb rel8] or [e9 rel32]
451      - jmp qword ptr imm32                 - not handled
452      - rex.w jmp reg            [4X ff eY]
453   */
454 
455   CORE_ADDR pc = cache->pc;
456   CORE_ADDR cur_sp = cache->sp;
457   struct gdbarch *gdbarch = get_frame_arch (this_frame);
458   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
459   gdb_byte op;
460   gdb_byte rex;
461 
462   /* We don't care about the instruction deallocating the frame:
463      if it hasn't been executed, the pc is still in the body,
464      if it has been executed, the following epilog decoding will work.  */
465 
466   /* First decode:
467      -  pop reg                 [41 58-5f] or [58-5f].  */
468 
469   while (1)
470     {
471       /* Read opcode. */
472       if (target_read_memory (pc, &op, 1) != 0)
473 	return -1;
474 
475       if (op >= 0x40 && op <= 0x4f)
476 	{
477 	  /* REX prefix.  */
478 	  rex = op;
479 
480 	  /* Read opcode. */
481 	  if (target_read_memory (pc + 1, &op, 1) != 0)
482 	    return -1;
483 	}
484       else
485 	rex = 0;
486 
487       if (op >= 0x58 && op <= 0x5f)
488 	{
489 	  /* pop reg  */
490 	  gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
491 
492 	  cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
493 	  cur_sp += 8;
494 	  pc += rex ? 2 : 1;
495 	}
496       else
497 	break;
498 
499       /* Allow the user to break this loop.  This shouldn't happen as the
500 	 number of consecutive pop should be small.  */
501       QUIT;
502     }
503 
504   /* Then decode the marker.  */
505 
506   /* Read opcode.  */
507   if (target_read_memory (pc, &op, 1) != 0)
508     return -1;
509 
510   switch (op)
511     {
512     case 0xc3:
513       /* Ret.  */
514       cache->prev_rip_addr = cur_sp;
515       cache->prev_sp = cur_sp + 8;
516       return 1;
517 
518     case 0xeb:
519       {
520 	/* jmp rel8  */
521 	gdb_byte rel8;
522 	CORE_ADDR npc;
523 
524 	if (target_read_memory (pc + 1, &rel8, 1) != 0)
525 	  return -1;
526 	npc = pc + 2 + (signed char) rel8;
527 
528 	/* If the jump is within the function, then this is not a marker,
529 	   otherwise this is a tail-call.  */
530 	return !pc_in_range (npc, cache);
531       }
532 
533     case 0xec:
534       {
535 	/* jmp rel32  */
536 	gdb_byte rel32[4];
537 	CORE_ADDR npc;
538 
539 	if (target_read_memory (pc + 1, rel32, 4) != 0)
540 	  return -1;
541 	npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
542 
543 	/* If the jump is within the function, then this is not a marker,
544 	   otherwise this is a tail-call.  */
545 	return !pc_in_range (npc, cache);
546       }
547 
548     case 0xc2:
549       {
550 	/* ret n  */
551 	gdb_byte imm16[2];
552 
553 	if (target_read_memory (pc + 1, imm16, 2) != 0)
554 	  return -1;
555 	cache->prev_rip_addr = cur_sp;
556 	cache->prev_sp = cur_sp
557 	  + extract_unsigned_integer (imm16, 4, byte_order);
558 	return 1;
559       }
560 
561     case 0xf3:
562       {
563 	/* rep; ret  */
564 	gdb_byte op1;
565 
566 	if (target_read_memory (pc + 2, &op1, 1) != 0)
567 	  return -1;
568 	if (op1 != 0xc3)
569 	  return 0;
570 
571 	cache->prev_rip_addr = cur_sp;
572 	cache->prev_sp = cur_sp + 8;
573 	return 1;
574       }
575 
576     case 0x40:
577     case 0x41:
578     case 0x42:
579     case 0x43:
580     case 0x44:
581     case 0x45:
582     case 0x46:
583     case 0x47:
584     case 0x48:
585     case 0x49:
586     case 0x4a:
587     case 0x4b:
588     case 0x4c:
589     case 0x4d:
590     case 0x4e:
591     case 0x4f:
592       /* Got a REX prefix, read next byte.  */
593       rex = op;
594       if (target_read_memory (pc + 1, &op, 1) != 0)
595 	return -1;
596 
597       if (op == 0xff)
598 	{
599 	  /* rex jmp reg  */
600 	  gdb_byte op1;
601 
602 	  if (target_read_memory (pc + 2, &op1, 1) != 0)
603 	    return -1;
604 	  return (op1 & 0xf8) == 0xe0;
605 	}
606       else
607 	return 0;
608 
609     default:
610       /* Not REX, so unknown.  */
611       return 0;
612     }
613 }
614 
615 /* Decode and execute unwind insns at UNWIND_INFO.  */
616 
617 static void
618 amd64_windows_frame_decode_insns (struct frame_info *this_frame,
619 				  struct amd64_windows_frame_cache *cache,
620 				  CORE_ADDR unwind_info)
621 {
622   CORE_ADDR save_addr = 0;
623   CORE_ADDR cur_sp = cache->sp;
624   struct gdbarch *gdbarch = get_frame_arch (this_frame);
625   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
626   int first = 1;
627 
628   /* There are at least 3 possibilities to share an unwind info entry:
629      1. Two different runtime_function entries (in .pdata) can point to the
630 	same unwind info entry.  There is no such indication while unwinding,
631 	so we don't really care about that case.  We suppose this scheme is
632 	used to save memory when the unwind entries are exactly the same.
633      2. Chained unwind_info entries, with no unwind codes (no prologue).
634 	There is a major difference with the previous case: the pc range for
635 	the function is different (in case 1, the pc range comes from the
636 	runtime_function entry; in case 2, the pc range for the chained entry
637 	comes from the first unwind entry).  Case 1 cannot be used instead as
638 	the pc is not in the prologue.  This case is officially documented.
639 	(There might be unwind code in the first unwind entry to handle
640 	additional unwinding).  GCC (at least until gcc 5.0) doesn't chain
641 	entries.
642      3. Undocumented unwind info redirection.  Hard to know the exact purpose,
643 	so it is considered as a memory optimization of case 2.
644   */
645 
646   if (unwind_info & 1)
647     {
648       /* Unofficially documented unwind info redirection, when UNWIND_INFO
649 	 address is odd (http://www.codemachine.com/article_x64deepdive.html).
650       */
651       struct external_pex64_runtime_function d;
652 
653       if (target_read_memory (cache->image_base + (unwind_info & ~1),
654 			      (gdb_byte *) &d, sizeof (d)) != 0)
655 	return;
656 
657       cache->start_rva
658 	= extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
659       cache->end_rva
660 	= extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
661       unwind_info
662 	= extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
663     }
664 
665   while (1)
666     {
667       struct external_pex64_unwind_info ex_ui;
668       /* There are at most 256 16-bit unwind insns.  */
669       gdb_byte insns[2 * 256];
670       gdb_byte *p;
671       gdb_byte *end_insns;
672       unsigned char codes_count;
673       unsigned char frame_reg;
674       CORE_ADDR start;
675 
676       /* Read and decode header.  */
677       if (target_read_memory (cache->image_base + unwind_info,
678 			      (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
679 	return;
680 
681       if (frame_debug)
682 	fprintf_unfiltered
683 	  (gdb_stdlog,
684 	   "amd64_windows_frame_decodes_insn: "
685 	   "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
686 	   paddress (gdbarch, unwind_info),
687 	   ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
688 	   ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
689 
690       /* Check version.  */
691       if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
692 	  && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
693 	return;
694 
695       start = cache->image_base + cache->start_rva;
696       if (first
697 	  && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
698 	{
699 	  /* We want to detect if the PC points to an epilogue.  This needs
700 	     to be checked only once, and an epilogue can be anywhere but in
701 	     the prologue.  If so, the epilogue detection+decoding function is
702 	     sufficient.  Otherwise, the unwinder will consider that the PC
703 	     is in the body of the function and will need to decode unwind
704 	     info.  */
705 	  if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
706 	    return;
707 
708 	  /* Not in an epilog.  Clear possible side effects.  */
709 	  memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
710 	}
711 
712       codes_count = ex_ui.CountOfCodes;
713       frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
714 
715       if (frame_reg != 0)
716 	{
717 	  /* According to msdn:
718 	     If an FP reg is used, then any unwind code taking an offset must
719 	     only be used after the FP reg is established in the prolog.  */
720 	  gdb_byte buf[8];
721 	  int frreg = amd64_windows_w2gdb_regnum[frame_reg];
722 
723 	  get_frame_register (this_frame, frreg, buf);
724 	  save_addr = extract_unsigned_integer (buf, 8, byte_order);
725 
726 	  if (frame_debug)
727 	    fprintf_unfiltered (gdb_stdlog, "   frame_reg=%s, val=%s\n",
728 				gdbarch_register_name (gdbarch, frreg),
729 				paddress (gdbarch, save_addr));
730 	}
731 
732       /* Read opcodes.  */
733       if (codes_count != 0
734 	  && target_read_memory (cache->image_base + unwind_info
735 				 + sizeof (ex_ui),
736 				 insns, codes_count * 2) != 0)
737 	return;
738 
739       end_insns = &insns[codes_count * 2];
740       p = insns;
741 
742       /* Skip opcodes 6 of version 2.  This opcode is not documented.  */
743       if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
744 	{
745 	  for (; p < end_insns; p += 2)
746 	    if (PEX64_UNWCODE_CODE (p[1]) != 6)
747 	      break;
748 	}
749 
750       for (; p < end_insns; p += 2)
751 	{
752 	  int reg;
753 
754 	  /* Virtually execute the operation if the pc is after the
755 	     corresponding instruction (that does matter in case of break
756 	     within the prologue).  Note that for chained info (!first), the
757 	     prologue has been fully executed.  */
758 	  if (cache->pc >= start + p[0] || cache->pc < start)
759 	    {
760 	      if (frame_debug)
761 		fprintf_unfiltered
762 		  (gdb_stdlog, "   op #%u: off=0x%02x, insn=0x%02x\n",
763 		   (unsigned) (p - insns), p[0], p[1]);
764 
765 	      /* If there is no frame registers defined, the current value of
766 		 rsp is used instead.  */
767 	      if (frame_reg == 0)
768 		save_addr = cur_sp;
769 
770 	      reg = -1;
771 
772 	      switch (PEX64_UNWCODE_CODE (p[1]))
773 		{
774 		case UWOP_PUSH_NONVOL:
775 		  /* Push pre-decrements RSP.  */
776 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
777 		  cache->prev_reg_addr[reg] = cur_sp;
778 		  cur_sp += 8;
779 		  break;
780 		case UWOP_ALLOC_LARGE:
781 		  if (PEX64_UNWCODE_INFO (p[1]) == 0)
782 		    cur_sp +=
783 		      8 * extract_unsigned_integer (p + 2, 2, byte_order);
784 		  else if (PEX64_UNWCODE_INFO (p[1]) == 1)
785 		    cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
786 		  else
787 		    return;
788 		  break;
789 		case UWOP_ALLOC_SMALL:
790 		  cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
791 		  break;
792 		case UWOP_SET_FPREG:
793 		  cur_sp = save_addr
794 		    - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
795 		  break;
796 		case UWOP_SAVE_NONVOL:
797 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
798 		  cache->prev_reg_addr[reg] = save_addr
799 		    + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
800 		  break;
801 		case UWOP_SAVE_NONVOL_FAR:
802 		  reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
803 		  cache->prev_reg_addr[reg] = save_addr
804 		    + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
805 		  break;
806 		case UWOP_SAVE_XMM128:
807 		  cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
808 		    save_addr
809 		    - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
810 		  break;
811 		case UWOP_SAVE_XMM128_FAR:
812 		  cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
813 		    save_addr
814 		    - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
815 		  break;
816 		case UWOP_PUSH_MACHFRAME:
817 		  if (PEX64_UNWCODE_INFO (p[1]) == 0)
818 		    {
819 		      cache->prev_rip_addr = cur_sp + 0;
820 		      cache->prev_rsp_addr = cur_sp + 24;
821 		      cur_sp += 40;
822 		    }
823 		  else if (PEX64_UNWCODE_INFO (p[1]) == 1)
824 		    {
825 		      cache->prev_rip_addr = cur_sp + 8;
826 		      cache->prev_rsp_addr = cur_sp + 32;
827 		      cur_sp += 48;
828 		    }
829 		  else
830 		    return;
831 		  break;
832 		default:
833 		  return;
834 		}
835 
836 	      /* Display address where the register was saved.  */
837 	      if (frame_debug && reg >= 0)
838 		fprintf_unfiltered
839 		  (gdb_stdlog, "     [reg %s at %s]\n",
840 		   gdbarch_register_name (gdbarch, reg),
841 		   paddress (gdbarch, cache->prev_reg_addr[reg]));
842 	    }
843 
844 	  /* Adjust with the length of the opcode.  */
845 	  switch (PEX64_UNWCODE_CODE (p[1]))
846 	    {
847 	    case UWOP_PUSH_NONVOL:
848 	    case UWOP_ALLOC_SMALL:
849 	    case UWOP_SET_FPREG:
850 	    case UWOP_PUSH_MACHFRAME:
851 	      break;
852 	    case UWOP_ALLOC_LARGE:
853 	      if (PEX64_UNWCODE_INFO (p[1]) == 0)
854 		p += 2;
855 	      else if (PEX64_UNWCODE_INFO (p[1]) == 1)
856 		p += 4;
857 	      else
858 		return;
859 	      break;
860 	    case UWOP_SAVE_NONVOL:
861 	    case UWOP_SAVE_XMM128:
862 	      p += 2;
863 	      break;
864 	    case UWOP_SAVE_NONVOL_FAR:
865 	    case UWOP_SAVE_XMM128_FAR:
866 	      p += 4;
867 	      break;
868 	    default:
869 	      return;
870 	    }
871 	}
872       if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
873 	{
874 	  /* End of unwind info.  */
875 	  break;
876 	}
877       else
878 	{
879 	  /* Read the chained unwind info.  */
880 	  struct external_pex64_runtime_function d;
881 	  CORE_ADDR chain_vma;
882 
883 	  /* Not anymore the first entry.  */
884 	  first = 0;
885 
886 	  /* Stay aligned on word boundary.  */
887 	  chain_vma = cache->image_base + unwind_info
888 	    + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
889 
890 	  if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
891 	    return;
892 
893 	  /* Decode begin/end.  This may be different from .pdata index, as
894 	     an unwind info may be shared by several functions (in particular
895 	     if many functions have the same prolog and handler.  */
896 	  cache->start_rva =
897 	    extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
898 	  cache->end_rva =
899 	    extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
900 	  unwind_info =
901 	    extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
902 
903 	  if (frame_debug)
904 	    fprintf_unfiltered
905 	      (gdb_stdlog,
906 	       "amd64_windows_frame_decodes_insn (next in chain):"
907 	       " unwind_data=%s, start_rva=%s, end_rva=%s\n",
908 	       paddress (gdbarch, unwind_info),
909 	       paddress (gdbarch, cache->start_rva),
910 	       paddress (gdbarch, cache->end_rva));
911 	}
912 
913       /* Allow the user to break this loop.  */
914       QUIT;
915     }
916   /* PC is saved by the call.  */
917   if (cache->prev_rip_addr == 0)
918     cache->prev_rip_addr = cur_sp;
919   cache->prev_sp = cur_sp + 8;
920 
921   if (frame_debug)
922     fprintf_unfiltered (gdb_stdlog, "   prev_sp: %s, prev_pc @%s\n",
923 			paddress (gdbarch, cache->prev_sp),
924 			paddress (gdbarch, cache->prev_rip_addr));
925 }
926 
927 /* Find SEH unwind info for PC, returning 0 on success.
928 
929    UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
930    to the base address of the corresponding image, and START_RVA
931    to the rva of the function containing PC.  */
932 
933 static int
934 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
935 				CORE_ADDR *unwind_info,
936 				CORE_ADDR *image_base,
937 				CORE_ADDR *start_rva,
938 				CORE_ADDR *end_rva)
939 {
940   struct obj_section *sec;
941   pe_data_type *pe;
942   IMAGE_DATA_DIRECTORY *dir;
943   struct objfile *objfile;
944   unsigned long lo, hi;
945   CORE_ADDR base;
946   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
947 
948   /* Get the corresponding exception directory.  */
949   sec = find_pc_section (pc);
950   if (sec == NULL)
951     return -1;
952   objfile = sec->objfile;
953   pe = pe_data (sec->objfile->obfd);
954   dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
955 
956   base = pe->pe_opthdr.ImageBase
957     + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
958   *image_base = base;
959 
960   /* Find the entry.
961 
962      Note: This does not handle dynamically added entries (for JIT
963      engines).  For this, we would need to ask the kernel directly,
964      which means getting some info from the native layer.  For the
965      rest of the code, however, it's probably faster to search
966      the entry ourselves.  */
967   lo = 0;
968   hi = dir->Size / sizeof (struct external_pex64_runtime_function);
969   *unwind_info = 0;
970   while (lo <= hi)
971     {
972       unsigned long mid = lo + (hi - lo) / 2;
973       struct external_pex64_runtime_function d;
974       CORE_ADDR sa, ea;
975 
976       if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
977 			      (gdb_byte *) &d, sizeof (d)) != 0)
978 	return -1;
979 
980       sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
981       ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
982       if (pc < base + sa)
983 	hi = mid - 1;
984       else if (pc >= base + ea)
985 	lo = mid + 1;
986       else if (pc >= base + sa && pc < base + ea)
987 	{
988 	  /* Got it.  */
989 	  *start_rva = sa;
990 	  *end_rva = ea;
991 	  *unwind_info =
992 	    extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
993 	  break;
994 	}
995       else
996 	break;
997     }
998 
999   if (frame_debug)
1000     fprintf_unfiltered
1001       (gdb_stdlog,
1002        "amd64_windows_find_unwind_data:  image_base=%s, unwind_data=%s\n",
1003        paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
1004 
1005   return 0;
1006 }
1007 
1008 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1009    for THIS_FRAME.  */
1010 
1011 static struct amd64_windows_frame_cache *
1012 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
1013 {
1014   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1015   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1016   struct amd64_windows_frame_cache *cache;
1017   gdb_byte buf[8];
1018   CORE_ADDR pc;
1019   CORE_ADDR unwind_info = 0;
1020 
1021   if (*this_cache)
1022     return (struct amd64_windows_frame_cache *) *this_cache;
1023 
1024   cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1025   *this_cache = cache;
1026 
1027   /* Get current PC and SP.  */
1028   pc = get_frame_pc (this_frame);
1029   get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1030   cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1031   cache->pc = pc;
1032 
1033   if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1034 				      &cache->image_base,
1035 				      &cache->start_rva,
1036 				      &cache->end_rva))
1037     return cache;
1038 
1039   if (unwind_info == 0)
1040     {
1041       /* Assume a leaf function.  */
1042       cache->prev_sp = cache->sp + 8;
1043       cache->prev_rip_addr = cache->sp;
1044     }
1045   else
1046     {
1047       /* Decode unwind insns to compute saved addresses.  */
1048       amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1049     }
1050   return cache;
1051 }
1052 
1053 /* Implement the "prev_register" method of struct frame_unwind
1054    using the standard Windows x64 SEH info.  */
1055 
1056 static struct value *
1057 amd64_windows_frame_prev_register (struct frame_info *this_frame,
1058 				   void **this_cache, int regnum)
1059 {
1060   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1061   struct amd64_windows_frame_cache *cache =
1062     amd64_windows_frame_cache (this_frame, this_cache);
1063   CORE_ADDR prev;
1064 
1065   if (frame_debug)
1066     fprintf_unfiltered (gdb_stdlog,
1067 			"amd64_windows_frame_prev_register %s for sp=%s\n",
1068 			gdbarch_register_name (gdbarch, regnum),
1069 			paddress (gdbarch, cache->prev_sp));
1070 
1071   if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1072       prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1073   else if (regnum == AMD64_RSP_REGNUM)
1074     {
1075       prev = cache->prev_rsp_addr;
1076       if (prev == 0)
1077 	return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1078     }
1079   else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1080     prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1081   else if (regnum == AMD64_RIP_REGNUM)
1082     prev = cache->prev_rip_addr;
1083   else
1084     prev = 0;
1085 
1086   if (prev && frame_debug)
1087     fprintf_unfiltered (gdb_stdlog, "  -> at %s\n", paddress (gdbarch, prev));
1088 
1089   if (prev)
1090     {
1091       /* Register was saved.  */
1092       return frame_unwind_got_memory (this_frame, regnum, prev);
1093     }
1094   else
1095     {
1096       /* Register is either volatile or not modified.  */
1097       return frame_unwind_got_register (this_frame, regnum, regnum);
1098     }
1099 }
1100 
1101 /* Implement the "this_id" method of struct frame_unwind using
1102    the standard Windows x64 SEH info.  */
1103 
1104 static void
1105 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1106 		   struct frame_id *this_id)
1107 {
1108   struct amd64_windows_frame_cache *cache =
1109     amd64_windows_frame_cache (this_frame, this_cache);
1110 
1111   *this_id = frame_id_build (cache->prev_sp,
1112 			     cache->image_base + cache->start_rva);
1113 }
1114 
1115 /* Windows x64 SEH unwinder.  */
1116 
1117 static const struct frame_unwind amd64_windows_frame_unwind =
1118 {
1119   NORMAL_FRAME,
1120   default_frame_unwind_stop_reason,
1121   &amd64_windows_frame_this_id,
1122   &amd64_windows_frame_prev_register,
1123   NULL,
1124   default_frame_sniffer
1125 };
1126 
1127 /* Implement the "skip_prologue" gdbarch method.  */
1128 
1129 static CORE_ADDR
1130 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1131 {
1132   CORE_ADDR func_addr;
1133   CORE_ADDR unwind_info = 0;
1134   CORE_ADDR image_base, start_rva, end_rva;
1135   struct external_pex64_unwind_info ex_ui;
1136 
1137   /* Use prologue size from unwind info.  */
1138   if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1139 				      &image_base, &start_rva, &end_rva) == 0)
1140     {
1141       if (unwind_info == 0)
1142 	{
1143 	  /* Leaf function.  */
1144 	  return pc;
1145 	}
1146       else if (target_read_memory (image_base + unwind_info,
1147 				   (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1148 	       && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1149 	return std::max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1150     }
1151 
1152   /* See if we can determine the end of the prologue via the symbol
1153      table.  If so, then return either the PC, or the PC after
1154      the prologue, whichever is greater.  */
1155   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1156     {
1157       CORE_ADDR post_prologue_pc
1158 	= skip_prologue_using_sal (gdbarch, func_addr);
1159 
1160       if (post_prologue_pc != 0)
1161 	return std::max (pc, post_prologue_pc);
1162     }
1163 
1164   return pc;
1165 }
1166 
1167 /* Check Win64 DLL jmp trampolines and find jump destination.  */
1168 
1169 static CORE_ADDR
1170 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1171 {
1172   CORE_ADDR destination = 0;
1173   struct gdbarch *gdbarch = get_frame_arch (frame);
1174   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1175 
1176   /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)).  */
1177   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1178     {
1179       /* Get opcode offset and see if we can find a reference in our data.  */
1180       ULONGEST offset
1181 	= read_memory_unsigned_integer (pc + 2, 4, byte_order);
1182 
1183       /* Get address of function pointer at end of pc.  */
1184       CORE_ADDR indirect_addr = pc + offset + 6;
1185 
1186       struct minimal_symbol *indsym
1187 	= (indirect_addr
1188 	   ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1189 	   : NULL);
1190       const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
1191 
1192       if (symname)
1193 	{
1194 	  if (startswith (symname, "__imp_")
1195 	      || startswith (symname, "_imp_"))
1196 	    destination
1197 	      = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1198 	}
1199     }
1200 
1201   return destination;
1202 }
1203 
1204 /* Implement the "auto_wide_charset" gdbarch method.  */
1205 
1206 static const char *
1207 amd64_windows_auto_wide_charset (void)
1208 {
1209   return "UTF-16";
1210 }
1211 
1212 static void
1213 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1214 {
1215   /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1216      preferred over the SEH one.  The reasons are:
1217      - binaries without SEH but with dwarf2 debug info are correcly handled
1218        (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1219        info).
1220      - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1221        handled if the dwarf2 unwinder is used).
1222 
1223     The call to amd64_init_abi appends default unwinders, that aren't
1224     compatible with the SEH one.
1225   */
1226   frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1227 
1228   amd64_init_abi (info, gdbarch,
1229 		  amd64_target_description (X86_XSTATE_SSE_MASK, false));
1230 
1231   windows_init_abi (info, gdbarch);
1232 
1233   /* On Windows, "long"s are only 32bit.  */
1234   set_gdbarch_long_bit (gdbarch, 32);
1235 
1236   /* Function calls.  */
1237   set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1238   set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
1239   set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1240   set_gdbarch_skip_trampoline_code (gdbarch,
1241 				    amd64_windows_skip_trampoline_code);
1242 
1243   set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1244 
1245   set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1246 }
1247 
1248 void
1249 _initialize_amd64_windows_tdep (void)
1250 {
1251   gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1252                           amd64_windows_init_abi);
1253 }
1254