1 /* Target-dependent code for AMD64. 2 3 Copyright (C) 2001-2023 Free Software Foundation, Inc. 4 5 Contributed by Jiri Smid, SuSE Labs. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "opcode/i386.h" 24 #include "dis-asm.h" 25 #include "arch-utils.h" 26 #include "block.h" 27 #include "dummy-frame.h" 28 #include "frame.h" 29 #include "frame-base.h" 30 #include "frame-unwind.h" 31 #include "inferior.h" 32 #include "infrun.h" 33 #include "gdbcmd.h" 34 #include "gdbcore.h" 35 #include "objfiles.h" 36 #include "regcache.h" 37 #include "regset.h" 38 #include "symfile.h" 39 #include "disasm.h" 40 #include "amd64-tdep.h" 41 #include "i387-tdep.h" 42 #include "gdbsupport/x86-xstate.h" 43 #include <algorithm> 44 #include "target-descriptions.h" 45 #include "arch/amd64.h" 46 #include "producer.h" 47 #include "ax.h" 48 #include "ax-gdb.h" 49 #include "gdbsupport/byte-vector.h" 50 #include "osabi.h" 51 #include "x86-tdep.h" 52 #include "amd64-ravenscar-thread.h" 53 54 /* Note that the AMD64 architecture was previously known as x86-64. 55 The latter is (forever) engraved into the canonical system name as 56 returned by config.guess, and used as the name for the AMD64 port 57 of GNU/Linux. The BSD's have renamed their ports to amd64; they 58 don't like to shout. For GDB we prefer the amd64_-prefix over the 59 x86_64_-prefix since it's so much easier to type. */ 60 61 /* Register information. */ 62 63 static const char * const amd64_register_names[] = 64 { 65 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", 66 67 /* %r8 is indeed register number 8. */ 68 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 69 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", 70 71 /* %st0 is register number 24. */ 72 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", 73 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", 74 75 /* %xmm0 is register number 40. */ 76 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", 77 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", 78 "mxcsr", 79 }; 80 81 static const char * const amd64_ymm_names[] = 82 { 83 "ymm0", "ymm1", "ymm2", "ymm3", 84 "ymm4", "ymm5", "ymm6", "ymm7", 85 "ymm8", "ymm9", "ymm10", "ymm11", 86 "ymm12", "ymm13", "ymm14", "ymm15" 87 }; 88 89 static const char * const amd64_ymm_avx512_names[] = 90 { 91 "ymm16", "ymm17", "ymm18", "ymm19", 92 "ymm20", "ymm21", "ymm22", "ymm23", 93 "ymm24", "ymm25", "ymm26", "ymm27", 94 "ymm28", "ymm29", "ymm30", "ymm31" 95 }; 96 97 static const char * const amd64_ymmh_names[] = 98 { 99 "ymm0h", "ymm1h", "ymm2h", "ymm3h", 100 "ymm4h", "ymm5h", "ymm6h", "ymm7h", 101 "ymm8h", "ymm9h", "ymm10h", "ymm11h", 102 "ymm12h", "ymm13h", "ymm14h", "ymm15h" 103 }; 104 105 static const char * const amd64_ymmh_avx512_names[] = 106 { 107 "ymm16h", "ymm17h", "ymm18h", "ymm19h", 108 "ymm20h", "ymm21h", "ymm22h", "ymm23h", 109 "ymm24h", "ymm25h", "ymm26h", "ymm27h", 110 "ymm28h", "ymm29h", "ymm30h", "ymm31h" 111 }; 112 113 static const char * const amd64_mpx_names[] = 114 { 115 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus" 116 }; 117 118 static const char * const amd64_k_names[] = 119 { 120 "k0", "k1", "k2", "k3", 121 "k4", "k5", "k6", "k7" 122 }; 123 124 static const char * const amd64_zmmh_names[] = 125 { 126 "zmm0h", "zmm1h", "zmm2h", "zmm3h", 127 "zmm4h", "zmm5h", "zmm6h", "zmm7h", 128 "zmm8h", "zmm9h", "zmm10h", "zmm11h", 129 "zmm12h", "zmm13h", "zmm14h", "zmm15h", 130 "zmm16h", "zmm17h", "zmm18h", "zmm19h", 131 "zmm20h", "zmm21h", "zmm22h", "zmm23h", 132 "zmm24h", "zmm25h", "zmm26h", "zmm27h", 133 "zmm28h", "zmm29h", "zmm30h", "zmm31h" 134 }; 135 136 static const char * const amd64_zmm_names[] = 137 { 138 "zmm0", "zmm1", "zmm2", "zmm3", 139 "zmm4", "zmm5", "zmm6", "zmm7", 140 "zmm8", "zmm9", "zmm10", "zmm11", 141 "zmm12", "zmm13", "zmm14", "zmm15", 142 "zmm16", "zmm17", "zmm18", "zmm19", 143 "zmm20", "zmm21", "zmm22", "zmm23", 144 "zmm24", "zmm25", "zmm26", "zmm27", 145 "zmm28", "zmm29", "zmm30", "zmm31" 146 }; 147 148 static const char * const amd64_xmm_avx512_names[] = { 149 "xmm16", "xmm17", "xmm18", "xmm19", 150 "xmm20", "xmm21", "xmm22", "xmm23", 151 "xmm24", "xmm25", "xmm26", "xmm27", 152 "xmm28", "xmm29", "xmm30", "xmm31" 153 }; 154 155 static const char * const amd64_pkeys_names[] = { 156 "pkru" 157 }; 158 159 /* DWARF Register Number Mapping as defined in the System V psABI, 160 section 3.6. */ 161 162 static int amd64_dwarf_regmap[] = 163 { 164 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ 165 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, 166 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, 167 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, 168 169 /* Frame Pointer Register RBP. */ 170 AMD64_RBP_REGNUM, 171 172 /* Stack Pointer Register RSP. */ 173 AMD64_RSP_REGNUM, 174 175 /* Extended Integer Registers 8 - 15. */ 176 AMD64_R8_REGNUM, /* %r8 */ 177 AMD64_R9_REGNUM, /* %r9 */ 178 AMD64_R10_REGNUM, /* %r10 */ 179 AMD64_R11_REGNUM, /* %r11 */ 180 AMD64_R12_REGNUM, /* %r12 */ 181 AMD64_R13_REGNUM, /* %r13 */ 182 AMD64_R14_REGNUM, /* %r14 */ 183 AMD64_R15_REGNUM, /* %r15 */ 184 185 /* Return Address RA. Mapped to RIP. */ 186 AMD64_RIP_REGNUM, 187 188 /* SSE Registers 0 - 7. */ 189 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, 190 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, 191 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, 192 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, 193 194 /* Extended SSE Registers 8 - 15. */ 195 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, 196 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, 197 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, 198 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, 199 200 /* Floating Point Registers 0-7. */ 201 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, 202 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, 203 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, 204 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, 205 206 /* MMX Registers 0 - 7. 207 We have to handle those registers specifically, as their register 208 number within GDB depends on the target (or they may even not be 209 available at all). */ 210 -1, -1, -1, -1, -1, -1, -1, -1, 211 212 /* Control and Status Flags Register. */ 213 AMD64_EFLAGS_REGNUM, 214 215 /* Selector Registers. */ 216 AMD64_ES_REGNUM, 217 AMD64_CS_REGNUM, 218 AMD64_SS_REGNUM, 219 AMD64_DS_REGNUM, 220 AMD64_FS_REGNUM, 221 AMD64_GS_REGNUM, 222 -1, 223 -1, 224 225 /* Segment Base Address Registers. */ 226 -1, 227 -1, 228 -1, 229 -1, 230 231 /* Special Selector Registers. */ 232 -1, 233 -1, 234 235 /* Floating Point Control Registers. */ 236 AMD64_MXCSR_REGNUM, 237 AMD64_FCTRL_REGNUM, 238 AMD64_FSTAT_REGNUM 239 }; 240 241 static const int amd64_dwarf_regmap_len = 242 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); 243 244 /* Convert DWARF register number REG to the appropriate register 245 number used by GDB. */ 246 247 static int 248 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 249 { 250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 251 int ymm0_regnum = tdep->ymm0_regnum; 252 int regnum = -1; 253 254 if (reg >= 0 && reg < amd64_dwarf_regmap_len) 255 regnum = amd64_dwarf_regmap[reg]; 256 257 if (ymm0_regnum >= 0 258 && i386_xmm_regnum_p (gdbarch, regnum)) 259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); 260 261 return regnum; 262 } 263 264 /* Map architectural register numbers to gdb register numbers. */ 265 266 static const int amd64_arch_regmap[16] = 267 { 268 AMD64_RAX_REGNUM, /* %rax */ 269 AMD64_RCX_REGNUM, /* %rcx */ 270 AMD64_RDX_REGNUM, /* %rdx */ 271 AMD64_RBX_REGNUM, /* %rbx */ 272 AMD64_RSP_REGNUM, /* %rsp */ 273 AMD64_RBP_REGNUM, /* %rbp */ 274 AMD64_RSI_REGNUM, /* %rsi */ 275 AMD64_RDI_REGNUM, /* %rdi */ 276 AMD64_R8_REGNUM, /* %r8 */ 277 AMD64_R9_REGNUM, /* %r9 */ 278 AMD64_R10_REGNUM, /* %r10 */ 279 AMD64_R11_REGNUM, /* %r11 */ 280 AMD64_R12_REGNUM, /* %r12 */ 281 AMD64_R13_REGNUM, /* %r13 */ 282 AMD64_R14_REGNUM, /* %r14 */ 283 AMD64_R15_REGNUM /* %r15 */ 284 }; 285 286 static const int amd64_arch_regmap_len = 287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); 288 289 /* Convert architectural register number REG to the appropriate register 290 number used by GDB. */ 291 292 static int 293 amd64_arch_reg_to_regnum (int reg) 294 { 295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); 296 297 return amd64_arch_regmap[reg]; 298 } 299 300 /* Register names for byte pseudo-registers. */ 301 302 static const char * const amd64_byte_names[] = 303 { 304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl", 305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l", 306 "ah", "bh", "ch", "dh" 307 }; 308 309 /* Number of lower byte registers. */ 310 #define AMD64_NUM_LOWER_BYTE_REGS 16 311 312 /* Register names for word pseudo-registers. */ 313 314 static const char * const amd64_word_names[] = 315 { 316 "ax", "bx", "cx", "dx", "si", "di", "bp", "", 317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" 318 }; 319 320 /* Register names for dword pseudo-registers. */ 321 322 static const char * const amd64_dword_names[] = 323 { 324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", 325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", 326 "eip" 327 }; 328 329 /* Return the name of register REGNUM. */ 330 331 static const char * 332 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) 333 { 334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 335 if (i386_byte_regnum_p (gdbarch, regnum)) 336 return amd64_byte_names[regnum - tdep->al_regnum]; 337 else if (i386_zmm_regnum_p (gdbarch, regnum)) 338 return amd64_zmm_names[regnum - tdep->zmm0_regnum]; 339 else if (i386_ymm_regnum_p (gdbarch, regnum)) 340 return amd64_ymm_names[regnum - tdep->ymm0_regnum]; 341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) 342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum]; 343 else if (i386_word_regnum_p (gdbarch, regnum)) 344 return amd64_word_names[regnum - tdep->ax_regnum]; 345 else if (i386_dword_regnum_p (gdbarch, regnum)) 346 return amd64_dword_names[regnum - tdep->eax_regnum]; 347 else 348 return i386_pseudo_register_name (gdbarch, regnum); 349 } 350 351 static struct value * 352 amd64_pseudo_register_read_value (struct gdbarch *gdbarch, 353 readable_regcache *regcache, 354 int regnum) 355 { 356 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 357 358 value *result_value = allocate_value (register_type (gdbarch, regnum)); 359 VALUE_LVAL (result_value) = lval_register; 360 VALUE_REGNUM (result_value) = regnum; 361 gdb_byte *buf = value_contents_raw (result_value).data (); 362 363 if (i386_byte_regnum_p (gdbarch, regnum)) 364 { 365 int gpnum = regnum - tdep->al_regnum; 366 367 /* Extract (always little endian). */ 368 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) 369 { 370 gpnum -= AMD64_NUM_LOWER_BYTE_REGS; 371 gdb_byte raw_buf[register_size (gdbarch, gpnum)]; 372 373 /* Special handling for AH, BH, CH, DH. */ 374 register_status status = regcache->raw_read (gpnum, raw_buf); 375 if (status == REG_VALID) 376 memcpy (buf, raw_buf + 1, 1); 377 else 378 mark_value_bytes_unavailable (result_value, 0, 379 value_type (result_value)->length ()); 380 } 381 else 382 { 383 gdb_byte raw_buf[register_size (gdbarch, gpnum)]; 384 register_status status = regcache->raw_read (gpnum, raw_buf); 385 if (status == REG_VALID) 386 memcpy (buf, raw_buf, 1); 387 else 388 mark_value_bytes_unavailable (result_value, 0, 389 value_type (result_value)->length ()); 390 } 391 } 392 else if (i386_dword_regnum_p (gdbarch, regnum)) 393 { 394 int gpnum = regnum - tdep->eax_regnum; 395 gdb_byte raw_buf[register_size (gdbarch, gpnum)]; 396 /* Extract (always little endian). */ 397 register_status status = regcache->raw_read (gpnum, raw_buf); 398 if (status == REG_VALID) 399 memcpy (buf, raw_buf, 4); 400 else 401 mark_value_bytes_unavailable (result_value, 0, 402 value_type (result_value)->length ()); 403 } 404 else 405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, 406 result_value); 407 408 return result_value; 409 } 410 411 static void 412 amd64_pseudo_register_write (struct gdbarch *gdbarch, 413 struct regcache *regcache, 414 int regnum, const gdb_byte *buf) 415 { 416 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 417 418 if (i386_byte_regnum_p (gdbarch, regnum)) 419 { 420 int gpnum = regnum - tdep->al_regnum; 421 422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) 423 { 424 gpnum -= AMD64_NUM_LOWER_BYTE_REGS; 425 gdb_byte raw_buf[register_size (gdbarch, gpnum)]; 426 427 /* Read ... AH, BH, CH, DH. */ 428 regcache->raw_read (gpnum, raw_buf); 429 /* ... Modify ... (always little endian). */ 430 memcpy (raw_buf + 1, buf, 1); 431 /* ... Write. */ 432 regcache->raw_write (gpnum, raw_buf); 433 } 434 else 435 { 436 gdb_byte raw_buf[register_size (gdbarch, gpnum)]; 437 438 /* Read ... */ 439 regcache->raw_read (gpnum, raw_buf); 440 /* ... Modify ... (always little endian). */ 441 memcpy (raw_buf, buf, 1); 442 /* ... Write. */ 443 regcache->raw_write (gpnum, raw_buf); 444 } 445 } 446 else if (i386_dword_regnum_p (gdbarch, regnum)) 447 { 448 int gpnum = regnum - tdep->eax_regnum; 449 gdb_byte raw_buf[register_size (gdbarch, gpnum)]; 450 451 /* Read ... */ 452 regcache->raw_read (gpnum, raw_buf); 453 /* ... Modify ... (always little endian). */ 454 memcpy (raw_buf, buf, 4); 455 /* ... Write. */ 456 regcache->raw_write (gpnum, raw_buf); 457 } 458 else 459 i386_pseudo_register_write (gdbarch, regcache, regnum, buf); 460 } 461 462 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */ 463 464 static int 465 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch, 466 struct agent_expr *ax, int regnum) 467 { 468 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 469 470 if (i386_byte_regnum_p (gdbarch, regnum)) 471 { 472 int gpnum = regnum - tdep->al_regnum; 473 474 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) 475 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS); 476 else 477 ax_reg_mask (ax, gpnum); 478 return 0; 479 } 480 else if (i386_dword_regnum_p (gdbarch, regnum)) 481 { 482 int gpnum = regnum - tdep->eax_regnum; 483 484 ax_reg_mask (ax, gpnum); 485 return 0; 486 } 487 else 488 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum); 489 } 490 491 492 493 /* Register classes as defined in the psABI. */ 494 495 enum amd64_reg_class 496 { 497 AMD64_INTEGER, 498 AMD64_SSE, 499 AMD64_SSEUP, 500 AMD64_X87, 501 AMD64_X87UP, 502 AMD64_COMPLEX_X87, 503 AMD64_NO_CLASS, 504 AMD64_MEMORY 505 }; 506 507 /* Return the union class of CLASS1 and CLASS2. See the psABI for 508 details. */ 509 510 static enum amd64_reg_class 511 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) 512 { 513 /* Rule (a): If both classes are equal, this is the resulting class. */ 514 if (class1 == class2) 515 return class1; 516 517 /* Rule (b): If one of the classes is NO_CLASS, the resulting class 518 is the other class. */ 519 if (class1 == AMD64_NO_CLASS) 520 return class2; 521 if (class2 == AMD64_NO_CLASS) 522 return class1; 523 524 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ 525 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) 526 return AMD64_MEMORY; 527 528 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ 529 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) 530 return AMD64_INTEGER; 531 532 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, 533 MEMORY is used as class. */ 534 if (class1 == AMD64_X87 || class1 == AMD64_X87UP 535 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 536 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) 537 return AMD64_MEMORY; 538 539 /* Rule (f): Otherwise class SSE is used. */ 540 return AMD64_SSE; 541 } 542 543 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]); 544 545 /* Return true if TYPE is a structure or union with unaligned fields. */ 546 547 static bool 548 amd64_has_unaligned_fields (struct type *type) 549 { 550 if (type->code () == TYPE_CODE_STRUCT 551 || type->code () == TYPE_CODE_UNION) 552 { 553 for (int i = 0; i < type->num_fields (); i++) 554 { 555 struct type *subtype = check_typedef (type->field (i).type ()); 556 557 /* Ignore static fields, empty fields (for example nested 558 empty structures), and bitfields (these are handled by 559 the caller). */ 560 if (field_is_static (&type->field (i)) 561 || (TYPE_FIELD_BITSIZE (type, i) == 0 562 && subtype->length () == 0) 563 || TYPE_FIELD_PACKED (type, i)) 564 continue; 565 566 int bitpos = type->field (i).loc_bitpos (); 567 568 if (bitpos % 8 != 0) 569 return true; 570 571 int align = type_align (subtype); 572 if (align == 0) 573 error (_("could not determine alignment of type")); 574 575 int bytepos = bitpos / 8; 576 if (bytepos % align != 0) 577 return true; 578 579 if (amd64_has_unaligned_fields (subtype)) 580 return true; 581 } 582 } 583 584 return false; 585 } 586 587 /* Classify field I of TYPE starting at BITOFFSET according to the rules for 588 structures and union types, and store the result in THECLASS. */ 589 590 static void 591 amd64_classify_aggregate_field (struct type *type, int i, 592 enum amd64_reg_class theclass[2], 593 unsigned int bitoffset) 594 { 595 struct type *subtype = check_typedef (type->field (i).type ()); 596 enum amd64_reg_class subclass[2]; 597 int bitsize = TYPE_FIELD_BITSIZE (type, i); 598 599 if (bitsize == 0) 600 bitsize = subtype->length () * 8; 601 602 /* Ignore static fields, or empty fields, for example nested 603 empty structures.*/ 604 if (field_is_static (&type->field (i)) || bitsize == 0) 605 return; 606 607 int bitpos = bitoffset + type->field (i).loc_bitpos (); 608 int pos = bitpos / 64; 609 int endpos = (bitpos + bitsize - 1) / 64; 610 611 if (subtype->code () == TYPE_CODE_STRUCT 612 || subtype->code () == TYPE_CODE_UNION) 613 { 614 /* Each field of an object is classified recursively. */ 615 int j; 616 for (j = 0; j < subtype->num_fields (); j++) 617 amd64_classify_aggregate_field (subtype, j, theclass, bitpos); 618 return; 619 } 620 621 gdb_assert (pos == 0 || pos == 1); 622 623 amd64_classify (subtype, subclass); 624 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]); 625 if (bitsize <= 64 && pos == 0 && endpos == 1) 626 /* This is a bit of an odd case: We have a field that would 627 normally fit in one of the two eightbytes, except that 628 it is placed in a way that this field straddles them. 629 This has been seen with a structure containing an array. 630 631 The ABI is a bit unclear in this case, but we assume that 632 this field's class (stored in subclass[0]) must also be merged 633 into class[1]. In other words, our field has a piece stored 634 in the second eight-byte, and thus its class applies to 635 the second eight-byte as well. 636 637 In the case where the field length exceeds 8 bytes, 638 it should not be necessary to merge the field class 639 into class[1]. As LEN > 8, subclass[1] is necessarily 640 different from AMD64_NO_CLASS. If subclass[1] is equal 641 to subclass[0], then the normal class[1]/subclass[1] 642 merging will take care of everything. For subclass[1] 643 to be different from subclass[0], I can only see the case 644 where we have a SSE/SSEUP or X87/X87UP pair, which both 645 use up all 16 bytes of the aggregate, and are already 646 handled just fine (because each portion sits on its own 647 8-byte). */ 648 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]); 649 if (pos == 0) 650 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]); 651 } 652 653 /* Classify TYPE according to the rules for aggregate (structures and 654 arrays) and union types, and store the result in CLASS. */ 655 656 static void 657 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2]) 658 { 659 /* 1. If the size of an object is larger than two times eight bytes, or 660 it is a non-trivial C++ object, or it has unaligned fields, then it 661 has class memory. 662 663 It is important that the trivially_copyable check is before the 664 unaligned fields check, as C++ classes with virtual base classes 665 will have fields (for the virtual base classes) with non-constant 666 loc_bitpos attributes, which will cause an assert to trigger within 667 the unaligned field check. As classes with virtual bases are not 668 trivially copyable, checking that first avoids this problem. */ 669 if (type->length () > 16 670 || !language_pass_by_reference (type).trivially_copyable 671 || amd64_has_unaligned_fields (type)) 672 { 673 theclass[0] = theclass[1] = AMD64_MEMORY; 674 return; 675 } 676 677 /* 2. Both eightbytes get initialized to class NO_CLASS. */ 678 theclass[0] = theclass[1] = AMD64_NO_CLASS; 679 680 /* 3. Each field of an object is classified recursively so that 681 always two fields are considered. The resulting class is 682 calculated according to the classes of the fields in the 683 eightbyte: */ 684 685 if (type->code () == TYPE_CODE_ARRAY) 686 { 687 struct type *subtype = check_typedef (type->target_type ()); 688 689 /* All fields in an array have the same type. */ 690 amd64_classify (subtype, theclass); 691 if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS) 692 theclass[1] = theclass[0]; 693 } 694 else 695 { 696 int i; 697 698 /* Structure or union. */ 699 gdb_assert (type->code () == TYPE_CODE_STRUCT 700 || type->code () == TYPE_CODE_UNION); 701 702 for (i = 0; i < type->num_fields (); i++) 703 amd64_classify_aggregate_field (type, i, theclass, 0); 704 } 705 706 /* 4. Then a post merger cleanup is done: */ 707 708 /* Rule (a): If one of the classes is MEMORY, the whole argument is 709 passed in memory. */ 710 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY) 711 theclass[0] = theclass[1] = AMD64_MEMORY; 712 713 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to 714 SSE. */ 715 if (theclass[0] == AMD64_SSEUP) 716 theclass[0] = AMD64_SSE; 717 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE) 718 theclass[1] = AMD64_SSE; 719 } 720 721 /* Classify TYPE, and store the result in CLASS. */ 722 723 static void 724 amd64_classify (struct type *type, enum amd64_reg_class theclass[2]) 725 { 726 enum type_code code = type->code (); 727 int len = type->length (); 728 729 theclass[0] = theclass[1] = AMD64_NO_CLASS; 730 731 /* Arguments of types (signed and unsigned) _Bool, char, short, int, 732 long, long long, and pointers are in the INTEGER class. Similarly, 733 range types, used by languages such as Ada, are also in the INTEGER 734 class. */ 735 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM 736 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE 737 || code == TYPE_CODE_CHAR 738 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)) 739 && (len == 1 || len == 2 || len == 4 || len == 8)) 740 theclass[0] = AMD64_INTEGER; 741 742 /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and 743 __m64 are in class SSE. */ 744 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) 745 && (len == 2 || len == 4 || len == 8)) 746 /* FIXME: __m64 . */ 747 theclass[0] = AMD64_SSE; 748 749 /* Arguments of types __float128, _Decimal128 and __m128 are split into 750 two halves. The least significant ones belong to class SSE, the most 751 significant one to class SSEUP. */ 752 else if (code == TYPE_CODE_DECFLOAT && len == 16) 753 /* FIXME: __float128, __m128. */ 754 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP; 755 756 /* The 64-bit mantissa of arguments of type long double belongs to 757 class X87, the 16-bit exponent plus 6 bytes of padding belongs to 758 class X87UP. */ 759 else if (code == TYPE_CODE_FLT && len == 16) 760 /* Class X87 and X87UP. */ 761 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP; 762 763 /* Arguments of complex T - where T is one of the types _Float16, float or 764 double - get treated as if they are implemented as: 765 766 struct complexT { 767 T real; 768 T imag; 769 }; 770 771 */ 772 else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4)) 773 theclass[0] = AMD64_SSE; 774 else if (code == TYPE_CODE_COMPLEX && len == 16) 775 theclass[0] = theclass[1] = AMD64_SSE; 776 777 /* A variable of type complex long double is classified as type 778 COMPLEX_X87. */ 779 else if (code == TYPE_CODE_COMPLEX && len == 32) 780 theclass[0] = AMD64_COMPLEX_X87; 781 782 /* Aggregates. */ 783 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT 784 || code == TYPE_CODE_UNION) 785 amd64_classify_aggregate (type, theclass); 786 } 787 788 static enum return_value_convention 789 amd64_return_value (struct gdbarch *gdbarch, struct value *function, 790 struct type *type, struct regcache *regcache, 791 gdb_byte *readbuf, const gdb_byte *writebuf) 792 { 793 enum amd64_reg_class theclass[2]; 794 int len = type->length (); 795 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; 796 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; 797 int integer_reg = 0; 798 int sse_reg = 0; 799 int i; 800 801 gdb_assert (!(readbuf && writebuf)); 802 803 /* 1. Classify the return type with the classification algorithm. */ 804 amd64_classify (type, theclass); 805 806 /* 2. If the type has class MEMORY, then the caller provides space 807 for the return value and passes the address of this storage in 808 %rdi as if it were the first argument to the function. In effect, 809 this address becomes a hidden first argument. 810 811 On return %rax will contain the address that has been passed in 812 by the caller in %rdi. */ 813 if (theclass[0] == AMD64_MEMORY) 814 { 815 /* As indicated by the comment above, the ABI guarantees that we 816 can always find the return value just after the function has 817 returned. */ 818 819 if (readbuf) 820 { 821 ULONGEST addr; 822 823 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); 824 read_memory (addr, readbuf, type->length ()); 825 } 826 827 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 828 } 829 830 /* 8. If the class is COMPLEX_X87, the real part of the value is 831 returned in %st0 and the imaginary part in %st1. */ 832 if (theclass[0] == AMD64_COMPLEX_X87) 833 { 834 if (readbuf) 835 { 836 regcache->raw_read (AMD64_ST0_REGNUM, readbuf); 837 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16); 838 } 839 840 if (writebuf) 841 { 842 i387_return_value (gdbarch, regcache); 843 regcache->raw_write (AMD64_ST0_REGNUM, writebuf); 844 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16); 845 846 /* Fix up the tag word such that both %st(0) and %st(1) are 847 marked as valid. */ 848 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff); 849 } 850 851 return RETURN_VALUE_REGISTER_CONVENTION; 852 } 853 854 gdb_assert (theclass[1] != AMD64_MEMORY); 855 gdb_assert (len <= 16); 856 857 for (i = 0; len > 0; i++, len -= 8) 858 { 859 int regnum = -1; 860 int offset = 0; 861 862 switch (theclass[i]) 863 { 864 case AMD64_INTEGER: 865 /* 3. If the class is INTEGER, the next available register 866 of the sequence %rax, %rdx is used. */ 867 regnum = integer_regnum[integer_reg++]; 868 break; 869 870 case AMD64_SSE: 871 /* 4. If the class is SSE, the next available SSE register 872 of the sequence %xmm0, %xmm1 is used. */ 873 regnum = sse_regnum[sse_reg++]; 874 break; 875 876 case AMD64_SSEUP: 877 /* 5. If the class is SSEUP, the eightbyte is passed in the 878 upper half of the last used SSE register. */ 879 gdb_assert (sse_reg > 0); 880 regnum = sse_regnum[sse_reg - 1]; 881 offset = 8; 882 break; 883 884 case AMD64_X87: 885 /* 6. If the class is X87, the value is returned on the X87 886 stack in %st0 as 80-bit x87 number. */ 887 regnum = AMD64_ST0_REGNUM; 888 if (writebuf) 889 i387_return_value (gdbarch, regcache); 890 break; 891 892 case AMD64_X87UP: 893 /* 7. If the class is X87UP, the value is returned together 894 with the previous X87 value in %st0. */ 895 gdb_assert (i > 0 && theclass[0] == AMD64_X87); 896 regnum = AMD64_ST0_REGNUM; 897 offset = 8; 898 len = 2; 899 break; 900 901 case AMD64_NO_CLASS: 902 continue; 903 904 default: 905 gdb_assert (!"Unexpected register class."); 906 } 907 908 gdb_assert (regnum != -1); 909 910 if (readbuf) 911 regcache->raw_read_part (regnum, offset, std::min (len, 8), 912 readbuf + i * 8); 913 if (writebuf) 914 regcache->raw_write_part (regnum, offset, std::min (len, 8), 915 writebuf + i * 8); 916 } 917 918 return RETURN_VALUE_REGISTER_CONVENTION; 919 } 920 921 922 static CORE_ADDR 923 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args, 924 CORE_ADDR sp, function_call_return_method return_method) 925 { 926 static int integer_regnum[] = 927 { 928 AMD64_RDI_REGNUM, /* %rdi */ 929 AMD64_RSI_REGNUM, /* %rsi */ 930 AMD64_RDX_REGNUM, /* %rdx */ 931 AMD64_RCX_REGNUM, /* %rcx */ 932 AMD64_R8_REGNUM, /* %r8 */ 933 AMD64_R9_REGNUM /* %r9 */ 934 }; 935 static int sse_regnum[] = 936 { 937 /* %xmm0 ... %xmm7 */ 938 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, 939 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, 940 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, 941 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, 942 }; 943 struct value **stack_args = XALLOCAVEC (struct value *, nargs); 944 int num_stack_args = 0; 945 int num_elements = 0; 946 int element = 0; 947 int integer_reg = 0; 948 int sse_reg = 0; 949 int i; 950 951 /* Reserve a register for the "hidden" argument. */ 952 if (return_method == return_method_struct) 953 integer_reg++; 954 955 for (i = 0; i < nargs; i++) 956 { 957 struct type *type = value_type (args[i]); 958 int len = type->length (); 959 enum amd64_reg_class theclass[2]; 960 int needed_integer_regs = 0; 961 int needed_sse_regs = 0; 962 int j; 963 964 /* Classify argument. */ 965 amd64_classify (type, theclass); 966 967 /* Calculate the number of integer and SSE registers needed for 968 this argument. */ 969 for (j = 0; j < 2; j++) 970 { 971 if (theclass[j] == AMD64_INTEGER) 972 needed_integer_regs++; 973 else if (theclass[j] == AMD64_SSE) 974 needed_sse_regs++; 975 } 976 977 /* Check whether enough registers are available, and if the 978 argument should be passed in registers at all. */ 979 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) 980 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) 981 || (needed_integer_regs == 0 && needed_sse_regs == 0)) 982 { 983 /* The argument will be passed on the stack. */ 984 num_elements += ((len + 7) / 8); 985 stack_args[num_stack_args++] = args[i]; 986 } 987 else 988 { 989 /* The argument will be passed in registers. */ 990 const gdb_byte *valbuf = value_contents (args[i]).data (); 991 gdb_byte buf[8]; 992 993 gdb_assert (len <= 16); 994 995 for (j = 0; len > 0; j++, len -= 8) 996 { 997 int regnum = -1; 998 int offset = 0; 999 1000 switch (theclass[j]) 1001 { 1002 case AMD64_INTEGER: 1003 regnum = integer_regnum[integer_reg++]; 1004 break; 1005 1006 case AMD64_SSE: 1007 regnum = sse_regnum[sse_reg++]; 1008 break; 1009 1010 case AMD64_SSEUP: 1011 gdb_assert (sse_reg > 0); 1012 regnum = sse_regnum[sse_reg - 1]; 1013 offset = 8; 1014 break; 1015 1016 case AMD64_NO_CLASS: 1017 continue; 1018 1019 default: 1020 gdb_assert (!"Unexpected register class."); 1021 } 1022 1023 gdb_assert (regnum != -1); 1024 memset (buf, 0, sizeof buf); 1025 memcpy (buf, valbuf + j * 8, std::min (len, 8)); 1026 regcache->raw_write_part (regnum, offset, 8, buf); 1027 } 1028 } 1029 } 1030 1031 /* Allocate space for the arguments on the stack. */ 1032 sp -= num_elements * 8; 1033 1034 /* The psABI says that "The end of the input argument area shall be 1035 aligned on a 16 byte boundary." */ 1036 sp &= ~0xf; 1037 1038 /* Write out the arguments to the stack. */ 1039 for (i = 0; i < num_stack_args; i++) 1040 { 1041 struct type *type = value_type (stack_args[i]); 1042 const gdb_byte *valbuf = value_contents (stack_args[i]).data (); 1043 int len = type->length (); 1044 1045 write_memory (sp + element * 8, valbuf, len); 1046 element += ((len + 7) / 8); 1047 } 1048 1049 /* The psABI says that "For calls that may call functions that use 1050 varargs or stdargs (prototype-less calls or calls to functions 1051 containing ellipsis (...) in the declaration) %al is used as 1052 hidden argument to specify the number of SSE registers used. */ 1053 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); 1054 return sp; 1055 } 1056 1057 static CORE_ADDR 1058 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 1059 struct regcache *regcache, CORE_ADDR bp_addr, 1060 int nargs, struct value **args, CORE_ADDR sp, 1061 function_call_return_method return_method, 1062 CORE_ADDR struct_addr) 1063 { 1064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1065 gdb_byte buf[8]; 1066 1067 /* BND registers can be in arbitrary values at the moment of the 1068 inferior call. This can cause boundary violations that are not 1069 due to a real bug or even desired by the user. The best to be done 1070 is set the BND registers to allow access to the whole memory, INIT 1071 state, before pushing the inferior call. */ 1072 i387_reset_bnd_regs (gdbarch, regcache); 1073 1074 /* Pass arguments. */ 1075 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method); 1076 1077 /* Pass "hidden" argument". */ 1078 if (return_method == return_method_struct) 1079 { 1080 store_unsigned_integer (buf, 8, byte_order, struct_addr); 1081 regcache->cooked_write (AMD64_RDI_REGNUM, buf); 1082 } 1083 1084 /* Store return address. */ 1085 sp -= 8; 1086 store_unsigned_integer (buf, 8, byte_order, bp_addr); 1087 write_memory (sp, buf, 8); 1088 1089 /* Finally, update the stack pointer... */ 1090 store_unsigned_integer (buf, 8, byte_order, sp); 1091 regcache->cooked_write (AMD64_RSP_REGNUM, buf); 1092 1093 /* ...and fake a frame pointer. */ 1094 regcache->cooked_write (AMD64_RBP_REGNUM, buf); 1095 1096 return sp + 16; 1097 } 1098 1099 /* Displaced instruction handling. */ 1100 1101 /* A partially decoded instruction. 1102 This contains enough details for displaced stepping purposes. */ 1103 1104 struct amd64_insn 1105 { 1106 /* The number of opcode bytes. */ 1107 int opcode_len; 1108 /* The offset of the REX/VEX instruction encoding prefix or -1 if 1109 not present. */ 1110 int enc_prefix_offset; 1111 /* The offset to the first opcode byte. */ 1112 int opcode_offset; 1113 /* The offset to the modrm byte or -1 if not present. */ 1114 int modrm_offset; 1115 1116 /* The raw instruction. */ 1117 gdb_byte *raw_insn; 1118 }; 1119 1120 struct amd64_displaced_step_copy_insn_closure 1121 : public displaced_step_copy_insn_closure 1122 { 1123 amd64_displaced_step_copy_insn_closure (int insn_buf_len) 1124 : insn_buf (insn_buf_len, 0) 1125 {} 1126 1127 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */ 1128 int tmp_used = 0; 1129 int tmp_regno; 1130 ULONGEST tmp_save; 1131 1132 /* Details of the instruction. */ 1133 struct amd64_insn insn_details; 1134 1135 /* The possibly modified insn. */ 1136 gdb::byte_vector insn_buf; 1137 }; 1138 1139 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with 1140 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, 1141 at which point delete these in favor of libopcodes' versions). */ 1142 1143 static const unsigned char onebyte_has_modrm[256] = { 1144 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 1145 /* ------------------------------- */ 1146 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ 1147 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ 1148 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ 1149 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ 1150 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ 1151 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ 1152 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ 1153 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ 1154 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ 1155 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ 1156 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ 1157 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ 1158 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ 1159 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ 1160 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ 1161 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */ 1162 /* ------------------------------- */ 1163 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 1164 }; 1165 1166 static const unsigned char twobyte_has_modrm[256] = { 1167 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 1168 /* ------------------------------- */ 1169 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ 1170 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ 1171 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ 1172 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ 1173 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ 1174 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ 1175 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ 1176 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ 1177 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ 1178 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ 1179 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ 1180 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ 1181 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ 1182 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ 1183 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ 1184 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */ 1185 /* ------------------------------- */ 1186 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 1187 }; 1188 1189 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); 1190 1191 static int 1192 rex_prefix_p (gdb_byte pfx) 1193 { 1194 return REX_PREFIX_P (pfx); 1195 } 1196 1197 /* True if PFX is the start of the 2-byte VEX prefix. */ 1198 1199 static bool 1200 vex2_prefix_p (gdb_byte pfx) 1201 { 1202 return pfx == 0xc5; 1203 } 1204 1205 /* True if PFX is the start of the 3-byte VEX prefix. */ 1206 1207 static bool 1208 vex3_prefix_p (gdb_byte pfx) 1209 { 1210 return pfx == 0xc4; 1211 } 1212 1213 /* Skip the legacy instruction prefixes in INSN. 1214 We assume INSN is properly sentineled so we don't have to worry 1215 about falling off the end of the buffer. */ 1216 1217 static gdb_byte * 1218 amd64_skip_prefixes (gdb_byte *insn) 1219 { 1220 while (1) 1221 { 1222 switch (*insn) 1223 { 1224 case DATA_PREFIX_OPCODE: 1225 case ADDR_PREFIX_OPCODE: 1226 case CS_PREFIX_OPCODE: 1227 case DS_PREFIX_OPCODE: 1228 case ES_PREFIX_OPCODE: 1229 case FS_PREFIX_OPCODE: 1230 case GS_PREFIX_OPCODE: 1231 case SS_PREFIX_OPCODE: 1232 case LOCK_PREFIX_OPCODE: 1233 case REPE_PREFIX_OPCODE: 1234 case REPNE_PREFIX_OPCODE: 1235 ++insn; 1236 continue; 1237 default: 1238 break; 1239 } 1240 break; 1241 } 1242 1243 return insn; 1244 } 1245 1246 /* Return an integer register (other than RSP) that is unused as an input 1247 operand in INSN. 1248 In order to not require adding a rex prefix if the insn doesn't already 1249 have one, the result is restricted to RAX ... RDI, sans RSP. 1250 The register numbering of the result follows architecture ordering, 1251 e.g. RDI = 7. */ 1252 1253 static int 1254 amd64_get_unused_input_int_reg (const struct amd64_insn *details) 1255 { 1256 /* 1 bit for each reg */ 1257 int used_regs_mask = 0; 1258 1259 /* There can be at most 3 int regs used as inputs in an insn, and we have 1260 7 to choose from (RAX ... RDI, sans RSP). 1261 This allows us to take a conservative approach and keep things simple. 1262 E.g. By avoiding RAX, we don't have to specifically watch for opcodes 1263 that implicitly specify RAX. */ 1264 1265 /* Avoid RAX. */ 1266 used_regs_mask |= 1 << EAX_REG_NUM; 1267 /* Similarily avoid RDX, implicit operand in divides. */ 1268 used_regs_mask |= 1 << EDX_REG_NUM; 1269 /* Avoid RSP. */ 1270 used_regs_mask |= 1 << ESP_REG_NUM; 1271 1272 /* If the opcode is one byte long and there's no ModRM byte, 1273 assume the opcode specifies a register. */ 1274 if (details->opcode_len == 1 && details->modrm_offset == -1) 1275 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); 1276 1277 /* Mark used regs in the modrm/sib bytes. */ 1278 if (details->modrm_offset != -1) 1279 { 1280 int modrm = details->raw_insn[details->modrm_offset]; 1281 int mod = MODRM_MOD_FIELD (modrm); 1282 int reg = MODRM_REG_FIELD (modrm); 1283 int rm = MODRM_RM_FIELD (modrm); 1284 int have_sib = mod != 3 && rm == 4; 1285 1286 /* Assume the reg field of the modrm byte specifies a register. */ 1287 used_regs_mask |= 1 << reg; 1288 1289 if (have_sib) 1290 { 1291 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); 1292 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); 1293 used_regs_mask |= 1 << base; 1294 used_regs_mask |= 1 << idx; 1295 } 1296 else 1297 { 1298 used_regs_mask |= 1 << rm; 1299 } 1300 } 1301 1302 gdb_assert (used_regs_mask < 256); 1303 gdb_assert (used_regs_mask != 255); 1304 1305 /* Finally, find a free reg. */ 1306 { 1307 int i; 1308 1309 for (i = 0; i < 8; ++i) 1310 { 1311 if (! (used_regs_mask & (1 << i))) 1312 return i; 1313 } 1314 1315 /* We shouldn't get here. */ 1316 internal_error (_("unable to find free reg")); 1317 } 1318 } 1319 1320 /* Extract the details of INSN that we need. */ 1321 1322 static void 1323 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) 1324 { 1325 gdb_byte *start = insn; 1326 int need_modrm; 1327 1328 details->raw_insn = insn; 1329 1330 details->opcode_len = -1; 1331 details->enc_prefix_offset = -1; 1332 details->opcode_offset = -1; 1333 details->modrm_offset = -1; 1334 1335 /* Skip legacy instruction prefixes. */ 1336 insn = amd64_skip_prefixes (insn); 1337 1338 /* Skip REX/VEX instruction encoding prefixes. */ 1339 if (rex_prefix_p (*insn)) 1340 { 1341 details->enc_prefix_offset = insn - start; 1342 ++insn; 1343 } 1344 else if (vex2_prefix_p (*insn)) 1345 { 1346 /* Don't record the offset in this case because this prefix has 1347 no REX.B equivalent. */ 1348 insn += 2; 1349 } 1350 else if (vex3_prefix_p (*insn)) 1351 { 1352 details->enc_prefix_offset = insn - start; 1353 insn += 3; 1354 } 1355 1356 details->opcode_offset = insn - start; 1357 1358 if (*insn == TWO_BYTE_OPCODE_ESCAPE) 1359 { 1360 /* Two or three-byte opcode. */ 1361 ++insn; 1362 need_modrm = twobyte_has_modrm[*insn]; 1363 1364 /* Check for three-byte opcode. */ 1365 switch (*insn) 1366 { 1367 case 0x24: 1368 case 0x25: 1369 case 0x38: 1370 case 0x3a: 1371 case 0x7a: 1372 case 0x7b: 1373 ++insn; 1374 details->opcode_len = 3; 1375 break; 1376 default: 1377 details->opcode_len = 2; 1378 break; 1379 } 1380 } 1381 else 1382 { 1383 /* One-byte opcode. */ 1384 need_modrm = onebyte_has_modrm[*insn]; 1385 details->opcode_len = 1; 1386 } 1387 1388 if (need_modrm) 1389 { 1390 ++insn; 1391 details->modrm_offset = insn - start; 1392 } 1393 } 1394 1395 /* Update %rip-relative addressing in INSN. 1396 1397 %rip-relative addressing only uses a 32-bit displacement. 1398 32 bits is not enough to be guaranteed to cover the distance between where 1399 the real instruction is and where its copy is. 1400 Convert the insn to use base+disp addressing. 1401 We set base = pc + insn_length so we can leave disp unchanged. */ 1402 1403 static void 1404 fixup_riprel (struct gdbarch *gdbarch, 1405 amd64_displaced_step_copy_insn_closure *dsc, 1406 CORE_ADDR from, CORE_ADDR to, struct regcache *regs) 1407 { 1408 const struct amd64_insn *insn_details = &dsc->insn_details; 1409 int modrm_offset = insn_details->modrm_offset; 1410 CORE_ADDR rip_base; 1411 int insn_length; 1412 int arch_tmp_regno, tmp_regno; 1413 ULONGEST orig_value; 1414 1415 /* Compute the rip-relative address. */ 1416 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (), 1417 dsc->insn_buf.size (), from); 1418 rip_base = from + insn_length; 1419 1420 /* We need a register to hold the address. 1421 Pick one not used in the insn. 1422 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */ 1423 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); 1424 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); 1425 1426 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */ 1427 static constexpr gdb_byte VEX3_NOT_B = 0x20; 1428 1429 /* REX.B should be unset (VEX.!B set) as we were using rip-relative 1430 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno 1431 is not r8-r15. */ 1432 if (insn_details->enc_prefix_offset != -1) 1433 { 1434 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset]; 1435 if (rex_prefix_p (pfx[0])) 1436 pfx[0] &= ~REX_B; 1437 else if (vex3_prefix_p (pfx[0])) 1438 pfx[1] |= VEX3_NOT_B; 1439 else 1440 gdb_assert_not_reached ("unhandled prefix"); 1441 } 1442 1443 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); 1444 dsc->tmp_regno = tmp_regno; 1445 dsc->tmp_save = orig_value; 1446 dsc->tmp_used = 1; 1447 1448 /* Convert the ModRM field to be base+disp. */ 1449 dsc->insn_buf[modrm_offset] &= ~0xc7; 1450 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; 1451 1452 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); 1453 1454 displaced_debug_printf ("%%rip-relative addressing used."); 1455 displaced_debug_printf ("using temp reg %d, old value %s, new value %s", 1456 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), 1457 paddress (gdbarch, rip_base)); 1458 } 1459 1460 static void 1461 fixup_displaced_copy (struct gdbarch *gdbarch, 1462 amd64_displaced_step_copy_insn_closure *dsc, 1463 CORE_ADDR from, CORE_ADDR to, struct regcache *regs) 1464 { 1465 const struct amd64_insn *details = &dsc->insn_details; 1466 1467 if (details->modrm_offset != -1) 1468 { 1469 gdb_byte modrm = details->raw_insn[details->modrm_offset]; 1470 1471 if ((modrm & 0xc7) == 0x05) 1472 { 1473 /* The insn uses rip-relative addressing. 1474 Deal with it. */ 1475 fixup_riprel (gdbarch, dsc, from, to, regs); 1476 } 1477 } 1478 } 1479 1480 displaced_step_copy_insn_closure_up 1481 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, 1482 CORE_ADDR from, CORE_ADDR to, 1483 struct regcache *regs) 1484 { 1485 int len = gdbarch_max_insn_length (gdbarch); 1486 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to 1487 continually watch for running off the end of the buffer. */ 1488 int fixup_sentinel_space = len; 1489 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc 1490 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space)); 1491 gdb_byte *buf = &dsc->insn_buf[0]; 1492 struct amd64_insn *details = &dsc->insn_details; 1493 1494 read_memory (from, buf, len); 1495 1496 /* Set up the sentinel space so we don't have to worry about running 1497 off the end of the buffer. An excessive number of leading prefixes 1498 could otherwise cause this. */ 1499 memset (buf + len, 0, fixup_sentinel_space); 1500 1501 amd64_get_insn_details (buf, details); 1502 1503 /* GDB may get control back after the insn after the syscall. 1504 Presumably this is a kernel bug. 1505 If this is a syscall, make sure there's a nop afterwards. */ 1506 { 1507 int syscall_length; 1508 1509 if (amd64_syscall_p (details, &syscall_length)) 1510 buf[details->opcode_offset + syscall_length] = NOP_OPCODE; 1511 } 1512 1513 /* Modify the insn to cope with the address where it will be executed from. 1514 In particular, handle any rip-relative addressing. */ 1515 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs); 1516 1517 write_memory (to, buf, len); 1518 1519 displaced_debug_printf ("copy %s->%s: %s", 1520 paddress (gdbarch, from), paddress (gdbarch, to), 1521 displaced_step_dump_bytes (buf, len).c_str ()); 1522 1523 /* This is a work around for a problem with g++ 4.8. */ 1524 return displaced_step_copy_insn_closure_up (dsc.release ()); 1525 } 1526 1527 static int 1528 amd64_absolute_jmp_p (const struct amd64_insn *details) 1529 { 1530 const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; 1531 1532 if (insn[0] == 0xff) 1533 { 1534 /* jump near, absolute indirect (/4) */ 1535 if ((insn[1] & 0x38) == 0x20) 1536 return 1; 1537 1538 /* jump far, absolute indirect (/5) */ 1539 if ((insn[1] & 0x38) == 0x28) 1540 return 1; 1541 } 1542 1543 return 0; 1544 } 1545 1546 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */ 1547 1548 static int 1549 amd64_jmp_p (const struct amd64_insn *details) 1550 { 1551 const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; 1552 1553 /* jump short, relative. */ 1554 if (insn[0] == 0xeb) 1555 return 1; 1556 1557 /* jump near, relative. */ 1558 if (insn[0] == 0xe9) 1559 return 1; 1560 1561 return amd64_absolute_jmp_p (details); 1562 } 1563 1564 static int 1565 amd64_absolute_call_p (const struct amd64_insn *details) 1566 { 1567 const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; 1568 1569 if (insn[0] == 0xff) 1570 { 1571 /* Call near, absolute indirect (/2) */ 1572 if ((insn[1] & 0x38) == 0x10) 1573 return 1; 1574 1575 /* Call far, absolute indirect (/3) */ 1576 if ((insn[1] & 0x38) == 0x18) 1577 return 1; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static int 1584 amd64_ret_p (const struct amd64_insn *details) 1585 { 1586 /* NOTE: gcc can emit "repz ; ret". */ 1587 const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; 1588 1589 switch (insn[0]) 1590 { 1591 case 0xc2: /* ret near, pop N bytes */ 1592 case 0xc3: /* ret near */ 1593 case 0xca: /* ret far, pop N bytes */ 1594 case 0xcb: /* ret far */ 1595 case 0xcf: /* iret */ 1596 return 1; 1597 1598 default: 1599 return 0; 1600 } 1601 } 1602 1603 static int 1604 amd64_call_p (const struct amd64_insn *details) 1605 { 1606 const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; 1607 1608 if (amd64_absolute_call_p (details)) 1609 return 1; 1610 1611 /* call near, relative */ 1612 if (insn[0] == 0xe8) 1613 return 1; 1614 1615 return 0; 1616 } 1617 1618 /* Return non-zero if INSN is a system call, and set *LENGTHP to its 1619 length in bytes. Otherwise, return zero. */ 1620 1621 static int 1622 amd64_syscall_p (const struct amd64_insn *details, int *lengthp) 1623 { 1624 const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; 1625 1626 if (insn[0] == 0x0f && insn[1] == 0x05) 1627 { 1628 *lengthp = 2; 1629 return 1; 1630 } 1631 1632 return 0; 1633 } 1634 1635 /* Classify the instruction at ADDR using PRED. 1636 Throw an error if the memory can't be read. */ 1637 1638 static int 1639 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr, 1640 int (*pred) (const struct amd64_insn *)) 1641 { 1642 struct amd64_insn details; 1643 gdb_byte *buf; 1644 int len, classification; 1645 1646 len = gdbarch_max_insn_length (gdbarch); 1647 buf = (gdb_byte *) alloca (len); 1648 1649 read_code (addr, buf, len); 1650 amd64_get_insn_details (buf, &details); 1651 1652 classification = pred (&details); 1653 1654 return classification; 1655 } 1656 1657 /* The gdbarch insn_is_call method. */ 1658 1659 static int 1660 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) 1661 { 1662 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p); 1663 } 1664 1665 /* The gdbarch insn_is_ret method. */ 1666 1667 static int 1668 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) 1669 { 1670 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p); 1671 } 1672 1673 /* The gdbarch insn_is_jump method. */ 1674 1675 static int 1676 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) 1677 { 1678 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p); 1679 } 1680 1681 /* Fix up the state of registers and memory after having single-stepped 1682 a displaced instruction. */ 1683 1684 void 1685 amd64_displaced_step_fixup (struct gdbarch *gdbarch, 1686 struct displaced_step_copy_insn_closure *dsc_, 1687 CORE_ADDR from, CORE_ADDR to, 1688 struct regcache *regs) 1689 { 1690 amd64_displaced_step_copy_insn_closure *dsc 1691 = (amd64_displaced_step_copy_insn_closure *) dsc_; 1692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1693 /* The offset we applied to the instruction's address. */ 1694 ULONGEST insn_offset = to - from; 1695 gdb_byte *insn = dsc->insn_buf.data (); 1696 const struct amd64_insn *insn_details = &dsc->insn_details; 1697 1698 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...", 1699 paddress (gdbarch, from), paddress (gdbarch, to), 1700 insn[0], insn[1]); 1701 1702 /* If we used a tmp reg, restore it. */ 1703 1704 if (dsc->tmp_used) 1705 { 1706 displaced_debug_printf ("restoring reg %d to %s", 1707 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); 1708 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); 1709 } 1710 1711 /* The list of issues to contend with here is taken from 1712 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. 1713 Yay for Free Software! */ 1714 1715 /* Relocate the %rip back to the program's instruction stream, 1716 if necessary. */ 1717 1718 /* Except in the case of absolute or indirect jump or call 1719 instructions, or a return instruction, the new rip is relative to 1720 the displaced instruction; make it relative to the original insn. 1721 Well, signal handler returns don't need relocation either, but we use the 1722 value of %rip to recognize those; see below. */ 1723 if (! amd64_absolute_jmp_p (insn_details) 1724 && ! amd64_absolute_call_p (insn_details) 1725 && ! amd64_ret_p (insn_details)) 1726 { 1727 ULONGEST orig_rip; 1728 int insn_len; 1729 1730 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip); 1731 1732 /* A signal trampoline system call changes the %rip, resuming 1733 execution of the main program after the signal handler has 1734 returned. That makes them like 'return' instructions; we 1735 shouldn't relocate %rip. 1736 1737 But most system calls don't, and we do need to relocate %rip. 1738 1739 Our heuristic for distinguishing these cases: if stepping 1740 over the system call instruction left control directly after 1741 the instruction, the we relocate --- control almost certainly 1742 doesn't belong in the displaced copy. Otherwise, we assume 1743 the instruction has put control where it belongs, and leave 1744 it unrelocated. Goodness help us if there are PC-relative 1745 system calls. */ 1746 if (amd64_syscall_p (insn_details, &insn_len) 1747 && orig_rip != to + insn_len 1748 /* GDB can get control back after the insn after the syscall. 1749 Presumably this is a kernel bug. 1750 Fixup ensures its a nop, we add one to the length for it. */ 1751 && orig_rip != to + insn_len + 1) 1752 displaced_debug_printf ("syscall changed %%rip; not relocating"); 1753 else 1754 { 1755 ULONGEST rip = orig_rip - insn_offset; 1756 1757 /* If we just stepped over a breakpoint insn, we don't backup 1758 the pc on purpose; this is to match behaviour without 1759 stepping. */ 1760 1761 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip); 1762 1763 displaced_debug_printf ("relocated %%rip from %s to %s", 1764 paddress (gdbarch, orig_rip), 1765 paddress (gdbarch, rip)); 1766 } 1767 } 1768 1769 /* If the instruction was PUSHFL, then the TF bit will be set in the 1770 pushed value, and should be cleared. We'll leave this for later, 1771 since GDB already messes up the TF flag when stepping over a 1772 pushfl. */ 1773 1774 /* If the instruction was a call, the return address now atop the 1775 stack is the address following the copied instruction. We need 1776 to make it the address following the original instruction. */ 1777 if (amd64_call_p (insn_details)) 1778 { 1779 ULONGEST rsp; 1780 ULONGEST retaddr; 1781 const ULONGEST retaddr_len = 8; 1782 1783 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); 1784 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); 1785 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL; 1786 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); 1787 1788 displaced_debug_printf ("relocated return addr at %s to %s", 1789 paddress (gdbarch, rsp), 1790 paddress (gdbarch, retaddr)); 1791 } 1792 } 1793 1794 /* If the instruction INSN uses RIP-relative addressing, return the 1795 offset into the raw INSN where the displacement to be adjusted is 1796 found. Returns 0 if the instruction doesn't use RIP-relative 1797 addressing. */ 1798 1799 static int 1800 rip_relative_offset (struct amd64_insn *insn) 1801 { 1802 if (insn->modrm_offset != -1) 1803 { 1804 gdb_byte modrm = insn->raw_insn[insn->modrm_offset]; 1805 1806 if ((modrm & 0xc7) == 0x05) 1807 { 1808 /* The displacement is found right after the ModRM byte. */ 1809 return insn->modrm_offset + 1; 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 1816 static void 1817 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) 1818 { 1819 target_write_memory (*to, buf, len); 1820 *to += len; 1821 } 1822 1823 static void 1824 amd64_relocate_instruction (struct gdbarch *gdbarch, 1825 CORE_ADDR *to, CORE_ADDR oldloc) 1826 { 1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1828 int len = gdbarch_max_insn_length (gdbarch); 1829 /* Extra space for sentinels. */ 1830 int fixup_sentinel_space = len; 1831 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space); 1832 struct amd64_insn insn_details; 1833 int offset = 0; 1834 LONGEST rel32, newrel; 1835 gdb_byte *insn; 1836 int insn_length; 1837 1838 read_memory (oldloc, buf, len); 1839 1840 /* Set up the sentinel space so we don't have to worry about running 1841 off the end of the buffer. An excessive number of leading prefixes 1842 could otherwise cause this. */ 1843 memset (buf + len, 0, fixup_sentinel_space); 1844 1845 insn = buf; 1846 amd64_get_insn_details (insn, &insn_details); 1847 1848 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc); 1849 1850 /* Skip legacy instruction prefixes. */ 1851 insn = amd64_skip_prefixes (insn); 1852 1853 /* Adjust calls with 32-bit relative addresses as push/jump, with 1854 the address pushed being the location where the original call in 1855 the user program would return to. */ 1856 if (insn[0] == 0xe8) 1857 { 1858 gdb_byte push_buf[32]; 1859 CORE_ADDR ret_addr; 1860 int i = 0; 1861 1862 /* Where "ret" in the original code will return to. */ 1863 ret_addr = oldloc + insn_length; 1864 1865 /* If pushing an address higher than or equal to 0x80000000, 1866 avoid 'pushq', as that sign extends its 32-bit operand, which 1867 would be incorrect. */ 1868 if (ret_addr <= 0x7fffffff) 1869 { 1870 push_buf[0] = 0x68; /* pushq $... */ 1871 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); 1872 i = 5; 1873 } 1874 else 1875 { 1876 push_buf[i++] = 0x48; /* sub $0x8,%rsp */ 1877 push_buf[i++] = 0x83; 1878 push_buf[i++] = 0xec; 1879 push_buf[i++] = 0x08; 1880 1881 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */ 1882 push_buf[i++] = 0x04; 1883 push_buf[i++] = 0x24; 1884 store_unsigned_integer (&push_buf[i], 4, byte_order, 1885 ret_addr & 0xffffffff); 1886 i += 4; 1887 1888 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */ 1889 push_buf[i++] = 0x44; 1890 push_buf[i++] = 0x24; 1891 push_buf[i++] = 0x04; 1892 store_unsigned_integer (&push_buf[i], 4, byte_order, 1893 ret_addr >> 32); 1894 i += 4; 1895 } 1896 gdb_assert (i <= sizeof (push_buf)); 1897 /* Push the push. */ 1898 append_insns (to, i, push_buf); 1899 1900 /* Convert the relative call to a relative jump. */ 1901 insn[0] = 0xe9; 1902 1903 /* Adjust the destination offset. */ 1904 rel32 = extract_signed_integer (insn + 1, 4, byte_order); 1905 newrel = (oldloc - *to) + rel32; 1906 store_signed_integer (insn + 1, 4, byte_order, newrel); 1907 1908 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s", 1909 hex_string (rel32), paddress (gdbarch, oldloc), 1910 hex_string (newrel), paddress (gdbarch, *to)); 1911 1912 /* Write the adjusted jump into its displaced location. */ 1913 append_insns (to, 5, insn); 1914 return; 1915 } 1916 1917 offset = rip_relative_offset (&insn_details); 1918 if (!offset) 1919 { 1920 /* Adjust jumps with 32-bit relative addresses. Calls are 1921 already handled above. */ 1922 if (insn[0] == 0xe9) 1923 offset = 1; 1924 /* Adjust conditional jumps. */ 1925 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) 1926 offset = 2; 1927 } 1928 1929 if (offset) 1930 { 1931 rel32 = extract_signed_integer (insn + offset, 4, byte_order); 1932 newrel = (oldloc - *to) + rel32; 1933 store_signed_integer (insn + offset, 4, byte_order, newrel); 1934 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s", 1935 hex_string (rel32), paddress (gdbarch, oldloc), 1936 hex_string (newrel), paddress (gdbarch, *to)); 1937 } 1938 1939 /* Write the adjusted instruction into its displaced location. */ 1940 append_insns (to, insn_length, buf); 1941 } 1942 1943 1944 /* The maximum number of saved registers. This should include %rip. */ 1945 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS 1946 1947 struct amd64_frame_cache 1948 { 1949 /* Base address. */ 1950 CORE_ADDR base; 1951 int base_p; 1952 CORE_ADDR sp_offset; 1953 CORE_ADDR pc; 1954 1955 /* Saved registers. */ 1956 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; 1957 CORE_ADDR saved_sp; 1958 int saved_sp_reg; 1959 1960 /* Do we have a frame? */ 1961 int frameless_p; 1962 }; 1963 1964 /* Initialize a frame cache. */ 1965 1966 static void 1967 amd64_init_frame_cache (struct amd64_frame_cache *cache) 1968 { 1969 int i; 1970 1971 /* Base address. */ 1972 cache->base = 0; 1973 cache->base_p = 0; 1974 cache->sp_offset = -8; 1975 cache->pc = 0; 1976 1977 /* Saved registers. We initialize these to -1 since zero is a valid 1978 offset (that's where %rbp is supposed to be stored). 1979 The values start out as being offsets, and are later converted to 1980 addresses (at which point -1 is interpreted as an address, still meaning 1981 "invalid"). */ 1982 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) 1983 cache->saved_regs[i] = -1; 1984 cache->saved_sp = 0; 1985 cache->saved_sp_reg = -1; 1986 1987 /* Frameless until proven otherwise. */ 1988 cache->frameless_p = 1; 1989 } 1990 1991 /* Allocate and initialize a frame cache. */ 1992 1993 static struct amd64_frame_cache * 1994 amd64_alloc_frame_cache (void) 1995 { 1996 struct amd64_frame_cache *cache; 1997 1998 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); 1999 amd64_init_frame_cache (cache); 2000 return cache; 2001 } 2002 2003 /* GCC 4.4 and later, can put code in the prologue to realign the 2004 stack pointer. Check whether PC points to such code, and update 2005 CACHE accordingly. Return the first instruction after the code 2006 sequence or CURRENT_PC, whichever is smaller. If we don't 2007 recognize the code, return PC. */ 2008 2009 static CORE_ADDR 2010 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, 2011 struct amd64_frame_cache *cache) 2012 { 2013 /* There are 2 code sequences to re-align stack before the frame 2014 gets set up: 2015 2016 1. Use a caller-saved saved register: 2017 2018 leaq 8(%rsp), %reg 2019 andq $-XXX, %rsp 2020 pushq -8(%reg) 2021 2022 2. Use a callee-saved saved register: 2023 2024 pushq %reg 2025 leaq 16(%rsp), %reg 2026 andq $-XXX, %rsp 2027 pushq -8(%reg) 2028 2029 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: 2030 2031 0x48 0x83 0xe4 0xf0 andq $-16, %rsp 2032 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp 2033 */ 2034 2035 gdb_byte buf[18]; 2036 int reg, r; 2037 int offset, offset_and; 2038 2039 if (target_read_code (pc, buf, sizeof buf)) 2040 return pc; 2041 2042 /* Check caller-saved saved register. The first instruction has 2043 to be "leaq 8(%rsp), %reg". */ 2044 if ((buf[0] & 0xfb) == 0x48 2045 && buf[1] == 0x8d 2046 && buf[3] == 0x24 2047 && buf[4] == 0x8) 2048 { 2049 /* MOD must be binary 10 and R/M must be binary 100. */ 2050 if ((buf[2] & 0xc7) != 0x44) 2051 return pc; 2052 2053 /* REG has register number. */ 2054 reg = (buf[2] >> 3) & 7; 2055 2056 /* Check the REX.R bit. */ 2057 if (buf[0] == 0x4c) 2058 reg += 8; 2059 2060 offset = 5; 2061 } 2062 else 2063 { 2064 /* Check callee-saved saved register. The first instruction 2065 has to be "pushq %reg". */ 2066 reg = 0; 2067 if ((buf[0] & 0xf8) == 0x50) 2068 offset = 0; 2069 else if ((buf[0] & 0xf6) == 0x40 2070 && (buf[1] & 0xf8) == 0x50) 2071 { 2072 /* Check the REX.B bit. */ 2073 if ((buf[0] & 1) != 0) 2074 reg = 8; 2075 2076 offset = 1; 2077 } 2078 else 2079 return pc; 2080 2081 /* Get register. */ 2082 reg += buf[offset] & 0x7; 2083 2084 offset++; 2085 2086 /* The next instruction has to be "leaq 16(%rsp), %reg". */ 2087 if ((buf[offset] & 0xfb) != 0x48 2088 || buf[offset + 1] != 0x8d 2089 || buf[offset + 3] != 0x24 2090 || buf[offset + 4] != 0x10) 2091 return pc; 2092 2093 /* MOD must be binary 10 and R/M must be binary 100. */ 2094 if ((buf[offset + 2] & 0xc7) != 0x44) 2095 return pc; 2096 2097 /* REG has register number. */ 2098 r = (buf[offset + 2] >> 3) & 7; 2099 2100 /* Check the REX.R bit. */ 2101 if (buf[offset] == 0x4c) 2102 r += 8; 2103 2104 /* Registers in pushq and leaq have to be the same. */ 2105 if (reg != r) 2106 return pc; 2107 2108 offset += 5; 2109 } 2110 2111 /* Rigister can't be %rsp nor %rbp. */ 2112 if (reg == 4 || reg == 5) 2113 return pc; 2114 2115 /* The next instruction has to be "andq $-XXX, %rsp". */ 2116 if (buf[offset] != 0x48 2117 || buf[offset + 2] != 0xe4 2118 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) 2119 return pc; 2120 2121 offset_and = offset; 2122 offset += buf[offset + 1] == 0x81 ? 7 : 4; 2123 2124 /* The next instruction has to be "pushq -8(%reg)". */ 2125 r = 0; 2126 if (buf[offset] == 0xff) 2127 offset++; 2128 else if ((buf[offset] & 0xf6) == 0x40 2129 && buf[offset + 1] == 0xff) 2130 { 2131 /* Check the REX.B bit. */ 2132 if ((buf[offset] & 0x1) != 0) 2133 r = 8; 2134 offset += 2; 2135 } 2136 else 2137 return pc; 2138 2139 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary 2140 01. */ 2141 if (buf[offset + 1] != 0xf8 2142 || (buf[offset] & 0xf8) != 0x70) 2143 return pc; 2144 2145 /* R/M has register. */ 2146 r += buf[offset] & 7; 2147 2148 /* Registers in leaq and pushq have to be the same. */ 2149 if (reg != r) 2150 return pc; 2151 2152 if (current_pc > pc + offset_and) 2153 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); 2154 2155 return std::min (pc + offset + 2, current_pc); 2156 } 2157 2158 /* Similar to amd64_analyze_stack_align for x32. */ 2159 2160 static CORE_ADDR 2161 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, 2162 struct amd64_frame_cache *cache) 2163 { 2164 /* There are 2 code sequences to re-align stack before the frame 2165 gets set up: 2166 2167 1. Use a caller-saved saved register: 2168 2169 leaq 8(%rsp), %reg 2170 andq $-XXX, %rsp 2171 pushq -8(%reg) 2172 2173 or 2174 2175 [addr32] leal 8(%rsp), %reg 2176 andl $-XXX, %esp 2177 [addr32] pushq -8(%reg) 2178 2179 2. Use a callee-saved saved register: 2180 2181 pushq %reg 2182 leaq 16(%rsp), %reg 2183 andq $-XXX, %rsp 2184 pushq -8(%reg) 2185 2186 or 2187 2188 pushq %reg 2189 [addr32] leal 16(%rsp), %reg 2190 andl $-XXX, %esp 2191 [addr32] pushq -8(%reg) 2192 2193 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: 2194 2195 0x48 0x83 0xe4 0xf0 andq $-16, %rsp 2196 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp 2197 2198 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes: 2199 2200 0x83 0xe4 0xf0 andl $-16, %esp 2201 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp 2202 */ 2203 2204 gdb_byte buf[19]; 2205 int reg, r; 2206 int offset, offset_and; 2207 2208 if (target_read_memory (pc, buf, sizeof buf)) 2209 return pc; 2210 2211 /* Skip optional addr32 prefix. */ 2212 offset = buf[0] == 0x67 ? 1 : 0; 2213 2214 /* Check caller-saved saved register. The first instruction has 2215 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */ 2216 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40) 2217 && buf[offset + 1] == 0x8d 2218 && buf[offset + 3] == 0x24 2219 && buf[offset + 4] == 0x8) 2220 { 2221 /* MOD must be binary 10 and R/M must be binary 100. */ 2222 if ((buf[offset + 2] & 0xc7) != 0x44) 2223 return pc; 2224 2225 /* REG has register number. */ 2226 reg = (buf[offset + 2] >> 3) & 7; 2227 2228 /* Check the REX.R bit. */ 2229 if ((buf[offset] & 0x4) != 0) 2230 reg += 8; 2231 2232 offset += 5; 2233 } 2234 else 2235 { 2236 /* Check callee-saved saved register. The first instruction 2237 has to be "pushq %reg". */ 2238 reg = 0; 2239 if ((buf[offset] & 0xf6) == 0x40 2240 && (buf[offset + 1] & 0xf8) == 0x50) 2241 { 2242 /* Check the REX.B bit. */ 2243 if ((buf[offset] & 1) != 0) 2244 reg = 8; 2245 2246 offset += 1; 2247 } 2248 else if ((buf[offset] & 0xf8) != 0x50) 2249 return pc; 2250 2251 /* Get register. */ 2252 reg += buf[offset] & 0x7; 2253 2254 offset++; 2255 2256 /* Skip optional addr32 prefix. */ 2257 if (buf[offset] == 0x67) 2258 offset++; 2259 2260 /* The next instruction has to be "leaq 16(%rsp), %reg" or 2261 "leal 16(%rsp), %reg". */ 2262 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40) 2263 || buf[offset + 1] != 0x8d 2264 || buf[offset + 3] != 0x24 2265 || buf[offset + 4] != 0x10) 2266 return pc; 2267 2268 /* MOD must be binary 10 and R/M must be binary 100. */ 2269 if ((buf[offset + 2] & 0xc7) != 0x44) 2270 return pc; 2271 2272 /* REG has register number. */ 2273 r = (buf[offset + 2] >> 3) & 7; 2274 2275 /* Check the REX.R bit. */ 2276 if ((buf[offset] & 0x4) != 0) 2277 r += 8; 2278 2279 /* Registers in pushq and leaq have to be the same. */ 2280 if (reg != r) 2281 return pc; 2282 2283 offset += 5; 2284 } 2285 2286 /* Rigister can't be %rsp nor %rbp. */ 2287 if (reg == 4 || reg == 5) 2288 return pc; 2289 2290 /* The next instruction may be "andq $-XXX, %rsp" or 2291 "andl $-XXX, %esp". */ 2292 if (buf[offset] != 0x48) 2293 offset--; 2294 2295 if (buf[offset + 2] != 0xe4 2296 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) 2297 return pc; 2298 2299 offset_and = offset; 2300 offset += buf[offset + 1] == 0x81 ? 7 : 4; 2301 2302 /* Skip optional addr32 prefix. */ 2303 if (buf[offset] == 0x67) 2304 offset++; 2305 2306 /* The next instruction has to be "pushq -8(%reg)". */ 2307 r = 0; 2308 if (buf[offset] == 0xff) 2309 offset++; 2310 else if ((buf[offset] & 0xf6) == 0x40 2311 && buf[offset + 1] == 0xff) 2312 { 2313 /* Check the REX.B bit. */ 2314 if ((buf[offset] & 0x1) != 0) 2315 r = 8; 2316 offset += 2; 2317 } 2318 else 2319 return pc; 2320 2321 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary 2322 01. */ 2323 if (buf[offset + 1] != 0xf8 2324 || (buf[offset] & 0xf8) != 0x70) 2325 return pc; 2326 2327 /* R/M has register. */ 2328 r += buf[offset] & 7; 2329 2330 /* Registers in leaq and pushq have to be the same. */ 2331 if (reg != r) 2332 return pc; 2333 2334 if (current_pc > pc + offset_and) 2335 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); 2336 2337 return std::min (pc + offset + 2, current_pc); 2338 } 2339 2340 /* Do a limited analysis of the prologue at PC and update CACHE 2341 accordingly. Bail out early if CURRENT_PC is reached. Return the 2342 address where the analysis stopped. 2343 2344 We will handle only functions beginning with: 2345 2346 pushq %rbp 0x55 2347 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec) 2348 2349 or (for the X32 ABI): 2350 2351 pushq %rbp 0x55 2352 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec) 2353 2354 The `endbr64` instruction can be found before these sequences, and will be 2355 skipped if found. 2356 2357 Any function that doesn't start with one of these sequences will be 2358 assumed to have no prologue and thus no valid frame pointer in 2359 %rbp. */ 2360 2361 static CORE_ADDR 2362 amd64_analyze_prologue (struct gdbarch *gdbarch, 2363 CORE_ADDR pc, CORE_ADDR current_pc, 2364 struct amd64_frame_cache *cache) 2365 { 2366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2367 /* The `endbr64` instruction. */ 2368 static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa }; 2369 /* There are two variations of movq %rsp, %rbp. */ 2370 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 }; 2371 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec }; 2372 /* Ditto for movl %esp, %ebp. */ 2373 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 }; 2374 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec }; 2375 2376 gdb_byte buf[3]; 2377 gdb_byte op; 2378 2379 if (current_pc <= pc) 2380 return current_pc; 2381 2382 if (gdbarch_ptr_bit (gdbarch) == 32) 2383 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache); 2384 else 2385 pc = amd64_analyze_stack_align (pc, current_pc, cache); 2386 2387 op = read_code_unsigned_integer (pc, 1, byte_order); 2388 2389 /* Check for the `endbr64` instruction, skip it if found. */ 2390 if (op == endbr64[0]) 2391 { 2392 read_code (pc + 1, buf, 3); 2393 2394 if (memcmp (buf, &endbr64[1], 3) == 0) 2395 pc += 4; 2396 2397 op = read_code_unsigned_integer (pc, 1, byte_order); 2398 } 2399 2400 if (current_pc <= pc) 2401 return current_pc; 2402 2403 if (op == 0x55) /* pushq %rbp */ 2404 { 2405 /* Take into account that we've executed the `pushq %rbp' that 2406 starts this instruction sequence. */ 2407 cache->saved_regs[AMD64_RBP_REGNUM] = 0; 2408 cache->sp_offset += 8; 2409 2410 /* If that's all, return now. */ 2411 if (current_pc <= pc + 1) 2412 return current_pc; 2413 2414 read_code (pc + 1, buf, 3); 2415 2416 /* Check for `movq %rsp, %rbp'. */ 2417 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0 2418 || memcmp (buf, mov_rsp_rbp_2, 3) == 0) 2419 { 2420 /* OK, we actually have a frame. */ 2421 cache->frameless_p = 0; 2422 return pc + 4; 2423 } 2424 2425 /* For X32, also check for `movl %esp, %ebp'. */ 2426 if (gdbarch_ptr_bit (gdbarch) == 32) 2427 { 2428 if (memcmp (buf, mov_esp_ebp_1, 2) == 0 2429 || memcmp (buf, mov_esp_ebp_2, 2) == 0) 2430 { 2431 /* OK, we actually have a frame. */ 2432 cache->frameless_p = 0; 2433 return pc + 3; 2434 } 2435 } 2436 2437 return pc + 1; 2438 } 2439 2440 return pc; 2441 } 2442 2443 /* Work around false termination of prologue - GCC PR debug/48827. 2444 2445 START_PC is the first instruction of a function, PC is its minimal already 2446 determined advanced address. Function returns PC if it has nothing to do. 2447 2448 84 c0 test %al,%al 2449 74 23 je after 2450 <-- here is 0 lines advance - the false prologue end marker. 2451 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp) 2452 0f 29 4d 80 movaps %xmm1,-0x80(%rbp) 2453 0f 29 55 90 movaps %xmm2,-0x70(%rbp) 2454 0f 29 5d a0 movaps %xmm3,-0x60(%rbp) 2455 0f 29 65 b0 movaps %xmm4,-0x50(%rbp) 2456 0f 29 6d c0 movaps %xmm5,-0x40(%rbp) 2457 0f 29 75 d0 movaps %xmm6,-0x30(%rbp) 2458 0f 29 7d e0 movaps %xmm7,-0x20(%rbp) 2459 after: */ 2460 2461 static CORE_ADDR 2462 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc) 2463 { 2464 struct symtab_and_line start_pc_sal, next_sal; 2465 gdb_byte buf[4 + 8 * 7]; 2466 int offset, xmmreg; 2467 2468 if (pc == start_pc) 2469 return pc; 2470 2471 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0); 2472 if (start_pc_sal.symtab == NULL 2473 || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit () 2474 ->producer ()) < 6 2475 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end) 2476 return pc; 2477 2478 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0); 2479 if (next_sal.line != start_pc_sal.line) 2480 return pc; 2481 2482 /* START_PC can be from overlayed memory, ignored here. */ 2483 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0) 2484 return pc; 2485 2486 /* test %al,%al */ 2487 if (buf[0] != 0x84 || buf[1] != 0xc0) 2488 return pc; 2489 /* je AFTER */ 2490 if (buf[2] != 0x74) 2491 return pc; 2492 2493 offset = 4; 2494 for (xmmreg = 0; xmmreg < 8; xmmreg++) 2495 { 2496 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */ 2497 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29 2498 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5)) 2499 return pc; 2500 2501 /* 0b01?????? */ 2502 if ((buf[offset + 2] & 0xc0) == 0x40) 2503 { 2504 /* 8-bit displacement. */ 2505 offset += 4; 2506 } 2507 /* 0b10?????? */ 2508 else if ((buf[offset + 2] & 0xc0) == 0x80) 2509 { 2510 /* 32-bit displacement. */ 2511 offset += 7; 2512 } 2513 else 2514 return pc; 2515 } 2516 2517 /* je AFTER */ 2518 if (offset - 4 != buf[3]) 2519 return pc; 2520 2521 return next_sal.end; 2522 } 2523 2524 /* Return PC of first real instruction. */ 2525 2526 static CORE_ADDR 2527 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) 2528 { 2529 struct amd64_frame_cache cache; 2530 CORE_ADDR pc; 2531 CORE_ADDR func_addr; 2532 2533 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) 2534 { 2535 CORE_ADDR post_prologue_pc 2536 = skip_prologue_using_sal (gdbarch, func_addr); 2537 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); 2538 2539 /* LLVM backend (Clang/Flang) always emits a line note before the 2540 prologue and another one after. We trust clang and newer Intel 2541 compilers to emit usable line notes. */ 2542 if (post_prologue_pc 2543 && (cust != NULL 2544 && cust->producer () != nullptr 2545 && (producer_is_llvm (cust->producer ()) 2546 || producer_is_icc_ge_19 (cust->producer ())))) 2547 return std::max (start_pc, post_prologue_pc); 2548 } 2549 2550 amd64_init_frame_cache (&cache); 2551 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, 2552 &cache); 2553 if (cache.frameless_p) 2554 return start_pc; 2555 2556 return amd64_skip_xmm_prologue (pc, start_pc); 2557 } 2558 2559 2560 /* Normal frames. */ 2561 2562 static void 2563 amd64_frame_cache_1 (frame_info_ptr this_frame, 2564 struct amd64_frame_cache *cache) 2565 { 2566 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2567 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2568 gdb_byte buf[8]; 2569 int i; 2570 2571 cache->pc = get_frame_func (this_frame); 2572 if (cache->pc != 0) 2573 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), 2574 cache); 2575 2576 if (cache->frameless_p) 2577 { 2578 /* We didn't find a valid frame. If we're at the start of a 2579 function, or somewhere half-way its prologue, the function's 2580 frame probably hasn't been fully setup yet. Try to 2581 reconstruct the base address for the stack frame by looking 2582 at the stack pointer. For truly "frameless" functions this 2583 might work too. */ 2584 2585 if (cache->saved_sp_reg != -1) 2586 { 2587 /* Stack pointer has been saved. */ 2588 get_frame_register (this_frame, cache->saved_sp_reg, buf); 2589 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order); 2590 2591 /* We're halfway aligning the stack. */ 2592 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; 2593 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; 2594 2595 /* This will be added back below. */ 2596 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; 2597 } 2598 else 2599 { 2600 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 2601 cache->base = extract_unsigned_integer (buf, 8, byte_order) 2602 + cache->sp_offset; 2603 } 2604 } 2605 else 2606 { 2607 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); 2608 cache->base = extract_unsigned_integer (buf, 8, byte_order); 2609 } 2610 2611 /* Now that we have the base address for the stack frame we can 2612 calculate the value of %rsp in the calling frame. */ 2613 cache->saved_sp = cache->base + 16; 2614 2615 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a 2616 frame we find it at the same offset from the reconstructed base 2617 address. If we're halfway aligning the stack, %rip is handled 2618 differently (see above). */ 2619 if (!cache->frameless_p || cache->saved_sp_reg == -1) 2620 cache->saved_regs[AMD64_RIP_REGNUM] = 8; 2621 2622 /* Adjust all the saved registers such that they contain addresses 2623 instead of offsets. */ 2624 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) 2625 if (cache->saved_regs[i] != -1) 2626 cache->saved_regs[i] += cache->base; 2627 2628 cache->base_p = 1; 2629 } 2630 2631 static struct amd64_frame_cache * 2632 amd64_frame_cache (frame_info_ptr this_frame, void **this_cache) 2633 { 2634 struct amd64_frame_cache *cache; 2635 2636 if (*this_cache) 2637 return (struct amd64_frame_cache *) *this_cache; 2638 2639 cache = amd64_alloc_frame_cache (); 2640 *this_cache = cache; 2641 2642 try 2643 { 2644 amd64_frame_cache_1 (this_frame, cache); 2645 } 2646 catch (const gdb_exception_error &ex) 2647 { 2648 if (ex.error != NOT_AVAILABLE_ERROR) 2649 throw; 2650 } 2651 2652 return cache; 2653 } 2654 2655 static enum unwind_stop_reason 2656 amd64_frame_unwind_stop_reason (frame_info_ptr this_frame, 2657 void **this_cache) 2658 { 2659 struct amd64_frame_cache *cache = 2660 amd64_frame_cache (this_frame, this_cache); 2661 2662 if (!cache->base_p) 2663 return UNWIND_UNAVAILABLE; 2664 2665 /* This marks the outermost frame. */ 2666 if (cache->base == 0) 2667 return UNWIND_OUTERMOST; 2668 2669 return UNWIND_NO_REASON; 2670 } 2671 2672 static void 2673 amd64_frame_this_id (frame_info_ptr this_frame, void **this_cache, 2674 struct frame_id *this_id) 2675 { 2676 struct amd64_frame_cache *cache = 2677 amd64_frame_cache (this_frame, this_cache); 2678 2679 if (!cache->base_p) 2680 (*this_id) = frame_id_build_unavailable_stack (cache->pc); 2681 else if (cache->base == 0) 2682 { 2683 /* This marks the outermost frame. */ 2684 return; 2685 } 2686 else 2687 (*this_id) = frame_id_build (cache->base + 16, cache->pc); 2688 } 2689 2690 static struct value * 2691 amd64_frame_prev_register (frame_info_ptr this_frame, void **this_cache, 2692 int regnum) 2693 { 2694 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2695 struct amd64_frame_cache *cache = 2696 amd64_frame_cache (this_frame, this_cache); 2697 2698 gdb_assert (regnum >= 0); 2699 2700 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) 2701 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); 2702 2703 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) 2704 return frame_unwind_got_memory (this_frame, regnum, 2705 cache->saved_regs[regnum]); 2706 2707 return frame_unwind_got_register (this_frame, regnum, regnum); 2708 } 2709 2710 static const struct frame_unwind amd64_frame_unwind = 2711 { 2712 "amd64 prologue", 2713 NORMAL_FRAME, 2714 amd64_frame_unwind_stop_reason, 2715 amd64_frame_this_id, 2716 amd64_frame_prev_register, 2717 NULL, 2718 default_frame_sniffer 2719 }; 2720 2721 /* Generate a bytecode expression to get the value of the saved PC. */ 2722 2723 static void 2724 amd64_gen_return_address (struct gdbarch *gdbarch, 2725 struct agent_expr *ax, struct axs_value *value, 2726 CORE_ADDR scope) 2727 { 2728 /* The following sequence assumes the traditional use of the base 2729 register. */ 2730 ax_reg (ax, AMD64_RBP_REGNUM); 2731 ax_const_l (ax, 8); 2732 ax_simple (ax, aop_add); 2733 value->type = register_type (gdbarch, AMD64_RIP_REGNUM); 2734 value->kind = axs_lvalue_memory; 2735 } 2736 2737 2738 /* Signal trampolines. */ 2739 2740 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and 2741 64-bit variants. This would require using identical frame caches 2742 on both platforms. */ 2743 2744 static struct amd64_frame_cache * 2745 amd64_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache) 2746 { 2747 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2748 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 2749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2750 struct amd64_frame_cache *cache; 2751 CORE_ADDR addr; 2752 gdb_byte buf[8]; 2753 int i; 2754 2755 if (*this_cache) 2756 return (struct amd64_frame_cache *) *this_cache; 2757 2758 cache = amd64_alloc_frame_cache (); 2759 2760 try 2761 { 2762 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 2763 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; 2764 2765 addr = tdep->sigcontext_addr (this_frame); 2766 gdb_assert (tdep->sc_reg_offset); 2767 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); 2768 for (i = 0; i < tdep->sc_num_regs; i++) 2769 if (tdep->sc_reg_offset[i] != -1) 2770 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; 2771 2772 cache->base_p = 1; 2773 } 2774 catch (const gdb_exception_error &ex) 2775 { 2776 if (ex.error != NOT_AVAILABLE_ERROR) 2777 throw; 2778 } 2779 2780 *this_cache = cache; 2781 return cache; 2782 } 2783 2784 static enum unwind_stop_reason 2785 amd64_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame, 2786 void **this_cache) 2787 { 2788 struct amd64_frame_cache *cache = 2789 amd64_sigtramp_frame_cache (this_frame, this_cache); 2790 2791 if (!cache->base_p) 2792 return UNWIND_UNAVAILABLE; 2793 2794 return UNWIND_NO_REASON; 2795 } 2796 2797 static void 2798 amd64_sigtramp_frame_this_id (frame_info_ptr this_frame, 2799 void **this_cache, struct frame_id *this_id) 2800 { 2801 struct amd64_frame_cache *cache = 2802 amd64_sigtramp_frame_cache (this_frame, this_cache); 2803 2804 if (!cache->base_p) 2805 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame)); 2806 else if (cache->base == 0) 2807 { 2808 /* This marks the outermost frame. */ 2809 return; 2810 } 2811 else 2812 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); 2813 } 2814 2815 static struct value * 2816 amd64_sigtramp_frame_prev_register (frame_info_ptr this_frame, 2817 void **this_cache, int regnum) 2818 { 2819 /* Make sure we've initialized the cache. */ 2820 amd64_sigtramp_frame_cache (this_frame, this_cache); 2821 2822 return amd64_frame_prev_register (this_frame, this_cache, regnum); 2823 } 2824 2825 static int 2826 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, 2827 frame_info_ptr this_frame, 2828 void **this_cache) 2829 { 2830 gdbarch *arch = get_frame_arch (this_frame); 2831 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); 2832 2833 /* We shouldn't even bother if we don't have a sigcontext_addr 2834 handler. */ 2835 if (tdep->sigcontext_addr == NULL) 2836 return 0; 2837 2838 if (tdep->sigtramp_p != NULL) 2839 { 2840 if (tdep->sigtramp_p (this_frame)) 2841 return 1; 2842 } 2843 2844 if (tdep->sigtramp_start != 0) 2845 { 2846 CORE_ADDR pc = get_frame_pc (this_frame); 2847 2848 gdb_assert (tdep->sigtramp_end != 0); 2849 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) 2850 return 1; 2851 } 2852 2853 return 0; 2854 } 2855 2856 static const struct frame_unwind amd64_sigtramp_frame_unwind = 2857 { 2858 "amd64 sigtramp", 2859 SIGTRAMP_FRAME, 2860 amd64_sigtramp_frame_unwind_stop_reason, 2861 amd64_sigtramp_frame_this_id, 2862 amd64_sigtramp_frame_prev_register, 2863 NULL, 2864 amd64_sigtramp_frame_sniffer 2865 }; 2866 2867 2868 static CORE_ADDR 2869 amd64_frame_base_address (frame_info_ptr this_frame, void **this_cache) 2870 { 2871 struct amd64_frame_cache *cache = 2872 amd64_frame_cache (this_frame, this_cache); 2873 2874 return cache->base; 2875 } 2876 2877 static const struct frame_base amd64_frame_base = 2878 { 2879 &amd64_frame_unwind, 2880 amd64_frame_base_address, 2881 amd64_frame_base_address, 2882 amd64_frame_base_address 2883 }; 2884 2885 /* Normal frames, but in a function epilogue. */ 2886 2887 /* Implement the stack_frame_destroyed_p gdbarch method. 2888 2889 The epilogue is defined here as the 'ret' instruction, which will 2890 follow any instruction such as 'leave' or 'pop %ebp' that destroys 2891 the function's stack frame. */ 2892 2893 static int 2894 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) 2895 { 2896 gdb_byte insn; 2897 struct compunit_symtab *cust; 2898 2899 cust = find_pc_compunit_symtab (pc); 2900 if (cust != NULL && cust->epilogue_unwind_valid ()) 2901 return 0; 2902 2903 if (target_read_memory (pc, &insn, 1)) 2904 return 0; /* Can't read memory at pc. */ 2905 2906 if (insn != 0xc3) /* 'ret' instruction. */ 2907 return 0; 2908 2909 return 1; 2910 } 2911 2912 static int 2913 amd64_epilogue_frame_sniffer (const struct frame_unwind *self, 2914 frame_info_ptr this_frame, 2915 void **this_prologue_cache) 2916 { 2917 if (frame_relative_level (this_frame) == 0) 2918 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame), 2919 get_frame_pc (this_frame)); 2920 else 2921 return 0; 2922 } 2923 2924 static struct amd64_frame_cache * 2925 amd64_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache) 2926 { 2927 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2928 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2929 struct amd64_frame_cache *cache; 2930 gdb_byte buf[8]; 2931 2932 if (*this_cache) 2933 return (struct amd64_frame_cache *) *this_cache; 2934 2935 cache = amd64_alloc_frame_cache (); 2936 *this_cache = cache; 2937 2938 try 2939 { 2940 /* Cache base will be %rsp plus cache->sp_offset (-8). */ 2941 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); 2942 cache->base = extract_unsigned_integer (buf, 8, 2943 byte_order) + cache->sp_offset; 2944 2945 /* Cache pc will be the frame func. */ 2946 cache->pc = get_frame_func (this_frame); 2947 2948 /* The previous value of %rsp is cache->base plus 16. */ 2949 cache->saved_sp = cache->base + 16; 2950 2951 /* The saved %rip will be at cache->base plus 8. */ 2952 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; 2953 2954 cache->base_p = 1; 2955 } 2956 catch (const gdb_exception_error &ex) 2957 { 2958 if (ex.error != NOT_AVAILABLE_ERROR) 2959 throw; 2960 } 2961 2962 return cache; 2963 } 2964 2965 static enum unwind_stop_reason 2966 amd64_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame, 2967 void **this_cache) 2968 { 2969 struct amd64_frame_cache *cache 2970 = amd64_epilogue_frame_cache (this_frame, this_cache); 2971 2972 if (!cache->base_p) 2973 return UNWIND_UNAVAILABLE; 2974 2975 return UNWIND_NO_REASON; 2976 } 2977 2978 static void 2979 amd64_epilogue_frame_this_id (frame_info_ptr this_frame, 2980 void **this_cache, 2981 struct frame_id *this_id) 2982 { 2983 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, 2984 this_cache); 2985 2986 if (!cache->base_p) 2987 (*this_id) = frame_id_build_unavailable_stack (cache->pc); 2988 else 2989 (*this_id) = frame_id_build (cache->base + 16, cache->pc); 2990 } 2991 2992 static const struct frame_unwind amd64_epilogue_frame_unwind = 2993 { 2994 "amd64 epilogue", 2995 NORMAL_FRAME, 2996 amd64_epilogue_frame_unwind_stop_reason, 2997 amd64_epilogue_frame_this_id, 2998 amd64_frame_prev_register, 2999 NULL, 3000 amd64_epilogue_frame_sniffer 3001 }; 3002 3003 static struct frame_id 3004 amd64_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame) 3005 { 3006 CORE_ADDR fp; 3007 3008 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); 3009 3010 return frame_id_build (fp + 16, get_frame_pc (this_frame)); 3011 } 3012 3013 /* 16 byte align the SP per frame requirements. */ 3014 3015 static CORE_ADDR 3016 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 3017 { 3018 return sp & -(CORE_ADDR)16; 3019 } 3020 3021 3022 /* Supply register REGNUM from the buffer specified by FPREGS and LEN 3023 in the floating-point register set REGSET to register cache 3024 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ 3025 3026 static void 3027 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, 3028 int regnum, const void *fpregs, size_t len) 3029 { 3030 struct gdbarch *gdbarch = regcache->arch (); 3031 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3032 3033 gdb_assert (len >= tdep->sizeof_fpregset); 3034 amd64_supply_fxsave (regcache, regnum, fpregs); 3035 } 3036 3037 /* Collect register REGNUM from the register cache REGCACHE and store 3038 it in the buffer specified by FPREGS and LEN as described by the 3039 floating-point register set REGSET. If REGNUM is -1, do this for 3040 all registers in REGSET. */ 3041 3042 static void 3043 amd64_collect_fpregset (const struct regset *regset, 3044 const struct regcache *regcache, 3045 int regnum, void *fpregs, size_t len) 3046 { 3047 struct gdbarch *gdbarch = regcache->arch (); 3048 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3049 3050 gdb_assert (len >= tdep->sizeof_fpregset); 3051 amd64_collect_fxsave (regcache, regnum, fpregs); 3052 } 3053 3054 const struct regset amd64_fpregset = 3055 { 3056 NULL, amd64_supply_fpregset, amd64_collect_fpregset 3057 }; 3058 3059 3060 /* Figure out where the longjmp will land. Slurp the jmp_buf out of 3061 %rdi. We expect its value to be a pointer to the jmp_buf structure 3062 from which we extract the address that we will land at. This 3063 address is copied into PC. This routine returns non-zero on 3064 success. */ 3065 3066 static int 3067 amd64_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc) 3068 { 3069 gdb_byte buf[8]; 3070 CORE_ADDR jb_addr; 3071 struct gdbarch *gdbarch = get_frame_arch (frame); 3072 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3073 int jb_pc_offset = tdep->jb_pc_offset; 3074 int len = builtin_type (gdbarch)->builtin_func_ptr->length (); 3075 3076 /* If JB_PC_OFFSET is -1, we have no way to find out where the 3077 longjmp will land. */ 3078 if (jb_pc_offset == -1) 3079 return 0; 3080 3081 get_frame_register (frame, AMD64_RDI_REGNUM, buf); 3082 jb_addr= extract_typed_address 3083 (buf, builtin_type (gdbarch)->builtin_data_ptr); 3084 if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) 3085 return 0; 3086 3087 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); 3088 3089 return 1; 3090 } 3091 3092 static const int amd64_record_regmap[] = 3093 { 3094 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM, 3095 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, 3096 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM, 3097 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM, 3098 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM, 3099 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM 3100 }; 3101 3102 /* Implement the "in_indirect_branch_thunk" gdbarch function. */ 3103 3104 static bool 3105 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc) 3106 { 3107 return x86_in_indirect_branch_thunk (pc, amd64_register_names, 3108 AMD64_RAX_REGNUM, 3109 AMD64_RIP_REGNUM); 3110 } 3111 3112 void 3113 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, 3114 const target_desc *default_tdesc) 3115 { 3116 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3117 const struct target_desc *tdesc = info.target_desc; 3118 static const char *const stap_integer_prefixes[] = { "$", NULL }; 3119 static const char *const stap_register_prefixes[] = { "%", NULL }; 3120 static const char *const stap_register_indirection_prefixes[] = { "(", 3121 NULL }; 3122 static const char *const stap_register_indirection_suffixes[] = { ")", 3123 NULL }; 3124 3125 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its 3126 floating-point registers. */ 3127 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; 3128 tdep->fpregset = &amd64_fpregset; 3129 3130 if (! tdesc_has_registers (tdesc)) 3131 tdesc = default_tdesc; 3132 tdep->tdesc = tdesc; 3133 3134 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS; 3135 tdep->register_names = amd64_register_names; 3136 3137 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL) 3138 { 3139 tdep->zmmh_register_names = amd64_zmmh_names; 3140 tdep->k_register_names = amd64_k_names; 3141 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names; 3142 tdep->ymm16h_register_names = amd64_ymmh_avx512_names; 3143 3144 tdep->num_zmm_regs = 32; 3145 tdep->num_xmm_avx512_regs = 16; 3146 tdep->num_ymm_avx512_regs = 16; 3147 3148 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM; 3149 tdep->k0_regnum = AMD64_K0_REGNUM; 3150 tdep->xmm16_regnum = AMD64_XMM16_REGNUM; 3151 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM; 3152 } 3153 3154 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL) 3155 { 3156 tdep->ymmh_register_names = amd64_ymmh_names; 3157 tdep->num_ymm_regs = 16; 3158 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM; 3159 } 3160 3161 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL) 3162 { 3163 tdep->mpx_register_names = amd64_mpx_names; 3164 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM; 3165 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM; 3166 } 3167 3168 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL) 3169 { 3170 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM; 3171 } 3172 3173 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL) 3174 { 3175 tdep->pkeys_register_names = amd64_pkeys_names; 3176 tdep->pkru_regnum = AMD64_PKRU_REGNUM; 3177 tdep->num_pkeys_regs = 1; 3178 } 3179 3180 tdep->num_byte_regs = 20; 3181 tdep->num_word_regs = 16; 3182 tdep->num_dword_regs = 16; 3183 /* Avoid wiring in the MMX registers for now. */ 3184 tdep->num_mmx_regs = 0; 3185 3186 set_gdbarch_pseudo_register_read_value (gdbarch, 3187 amd64_pseudo_register_read_value); 3188 set_gdbarch_pseudo_register_write (gdbarch, 3189 amd64_pseudo_register_write); 3190 set_gdbarch_ax_pseudo_register_collect (gdbarch, 3191 amd64_ax_pseudo_register_collect); 3192 3193 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name); 3194 3195 /* AMD64 has an FPU and 16 SSE registers. */ 3196 tdep->st0_regnum = AMD64_ST0_REGNUM; 3197 tdep->num_xmm_regs = 16; 3198 3199 /* This is what all the fuss is about. */ 3200 set_gdbarch_long_bit (gdbarch, 64); 3201 set_gdbarch_long_long_bit (gdbarch, 64); 3202 set_gdbarch_ptr_bit (gdbarch, 64); 3203 3204 /* In contrast to the i386, on AMD64 a `long double' actually takes 3205 up 128 bits, even though it's still based on the i387 extended 3206 floating-point format which has only 80 significant bits. */ 3207 set_gdbarch_long_double_bit (gdbarch, 128); 3208 3209 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); 3210 3211 /* Register numbers of various important registers. */ 3212 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ 3213 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ 3214 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ 3215 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ 3216 3217 /* The "default" register numbering scheme for AMD64 is referred to 3218 as the "DWARF Register Number Mapping" in the System V psABI. 3219 The preferred debugging format for all known AMD64 targets is 3220 actually DWARF2, and GCC doesn't seem to support DWARF (that is 3221 DWARF-1), but we provide the same mapping just in case. This 3222 mapping is also used for stabs, which GCC does support. */ 3223 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); 3224 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); 3225 3226 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to 3227 be in use on any of the supported AMD64 targets. */ 3228 3229 /* Call dummy code. */ 3230 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); 3231 set_gdbarch_frame_align (gdbarch, amd64_frame_align); 3232 set_gdbarch_frame_red_zone_size (gdbarch, 128); 3233 3234 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); 3235 set_gdbarch_register_to_value (gdbarch, i387_register_to_value); 3236 set_gdbarch_value_to_register (gdbarch, i387_value_to_register); 3237 3238 set_gdbarch_return_value (gdbarch, amd64_return_value); 3239 3240 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); 3241 3242 tdep->record_regmap = amd64_record_regmap; 3243 3244 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); 3245 3246 /* Hook the function epilogue frame unwinder. This unwinder is 3247 appended to the list first, so that it supercedes the other 3248 unwinders in function epilogues. */ 3249 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind); 3250 3251 /* Hook the prologue-based frame unwinders. */ 3252 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind); 3253 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); 3254 frame_base_set_default (gdbarch, &amd64_frame_base); 3255 3256 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); 3257 3258 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction); 3259 3260 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address); 3261 3262 /* SystemTap variables and functions. */ 3263 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); 3264 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); 3265 set_gdbarch_stap_register_indirection_prefixes (gdbarch, 3266 stap_register_indirection_prefixes); 3267 set_gdbarch_stap_register_indirection_suffixes (gdbarch, 3268 stap_register_indirection_suffixes); 3269 set_gdbarch_stap_is_single_operand (gdbarch, 3270 i386_stap_is_single_operand); 3271 set_gdbarch_stap_parse_special_token (gdbarch, 3272 i386_stap_parse_special_token); 3273 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call); 3274 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret); 3275 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump); 3276 3277 set_gdbarch_in_indirect_branch_thunk (gdbarch, 3278 amd64_in_indirect_branch_thunk); 3279 3280 register_amd64_ravenscar_ops (gdbarch); 3281 } 3282 3283 /* Initialize ARCH for x86-64, no osabi. */ 3284 3285 static void 3286 amd64_none_init_abi (gdbarch_info info, gdbarch *arch) 3287 { 3288 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK, 3289 true)); 3290 } 3291 3292 static struct type * 3293 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) 3294 { 3295 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3296 3297 switch (regnum - tdep->eax_regnum) 3298 { 3299 case AMD64_RBP_REGNUM: /* %ebp */ 3300 case AMD64_RSP_REGNUM: /* %esp */ 3301 return builtin_type (gdbarch)->builtin_data_ptr; 3302 case AMD64_RIP_REGNUM: /* %eip */ 3303 return builtin_type (gdbarch)->builtin_func_ptr; 3304 } 3305 3306 return i386_pseudo_register_type (gdbarch, regnum); 3307 } 3308 3309 void 3310 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, 3311 const target_desc *default_tdesc) 3312 { 3313 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3314 3315 amd64_init_abi (info, gdbarch, default_tdesc); 3316 3317 tdep->num_dword_regs = 17; 3318 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type); 3319 3320 set_gdbarch_long_bit (gdbarch, 32); 3321 set_gdbarch_ptr_bit (gdbarch, 32); 3322 } 3323 3324 /* Initialize ARCH for x64-32, no osabi. */ 3325 3326 static void 3327 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch) 3328 { 3329 amd64_x32_init_abi (info, arch, 3330 amd64_target_description (X86_XSTATE_SSE_MASK, true)); 3331 } 3332 3333 /* Return the target description for a specified XSAVE feature mask. */ 3334 3335 const struct target_desc * 3336 amd64_target_description (uint64_t xcr0, bool segments) 3337 { 3338 static target_desc *amd64_tdescs \ 3339 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {}; 3340 target_desc **tdesc; 3341 3342 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0] 3343 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0] 3344 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0] 3345 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0] 3346 [segments ? 1 : 0]; 3347 3348 if (*tdesc == NULL) 3349 *tdesc = amd64_create_target_description (xcr0, false, false, 3350 segments); 3351 3352 return *tdesc; 3353 } 3354 3355 void _initialize_amd64_tdep (); 3356 void 3357 _initialize_amd64_tdep () 3358 { 3359 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE, 3360 amd64_none_init_abi); 3361 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE, 3362 amd64_x32_none_init_abi); 3363 } 3364 3365 3366 /* The 64-bit FXSAVE format differs from the 32-bit format in the 3367 sense that the instruction pointer and data pointer are simply 3368 64-bit offsets into the code segment and the data segment instead 3369 of a selector offset pair. The functions below store the upper 32 3370 bits of these pointers (instead of just the 16-bits of the segment 3371 selector). */ 3372 3373 /* Fill register REGNUM in REGCACHE with the appropriate 3374 floating-point or SSE register value from *FXSAVE. If REGNUM is 3375 -1, do this for all registers. This function masks off any of the 3376 reserved bits in *FXSAVE. */ 3377 3378 void 3379 amd64_supply_fxsave (struct regcache *regcache, int regnum, 3380 const void *fxsave) 3381 { 3382 struct gdbarch *gdbarch = regcache->arch (); 3383 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3384 3385 i387_supply_fxsave (regcache, regnum, fxsave); 3386 3387 if (fxsave 3388 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) 3389 { 3390 const gdb_byte *regs = (const gdb_byte *) fxsave; 3391 3392 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) 3393 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12); 3394 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) 3395 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20); 3396 } 3397 } 3398 3399 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */ 3400 3401 void 3402 amd64_supply_xsave (struct regcache *regcache, int regnum, 3403 const void *xsave) 3404 { 3405 struct gdbarch *gdbarch = regcache->arch (); 3406 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3407 3408 i387_supply_xsave (regcache, regnum, xsave); 3409 3410 if (xsave 3411 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) 3412 { 3413 const gdb_byte *regs = (const gdb_byte *) xsave; 3414 ULONGEST clear_bv; 3415 3416 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave); 3417 3418 /* If the FISEG and FOSEG registers have not been initialised yet 3419 (their CLEAR_BV bit is set) then their default values of zero will 3420 have already been setup by I387_SUPPLY_XSAVE. */ 3421 if (!(clear_bv & X86_XSTATE_X87)) 3422 { 3423 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) 3424 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12); 3425 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) 3426 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20); 3427 } 3428 } 3429 } 3430 3431 /* Fill register REGNUM (if it is a floating-point or SSE register) in 3432 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for 3433 all registers. This function doesn't touch any of the reserved 3434 bits in *FXSAVE. */ 3435 3436 void 3437 amd64_collect_fxsave (const struct regcache *regcache, int regnum, 3438 void *fxsave) 3439 { 3440 struct gdbarch *gdbarch = regcache->arch (); 3441 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3442 gdb_byte *regs = (gdb_byte *) fxsave; 3443 3444 i387_collect_fxsave (regcache, regnum, fxsave); 3445 3446 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) 3447 { 3448 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) 3449 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12); 3450 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) 3451 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20); 3452 } 3453 } 3454 3455 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */ 3456 3457 void 3458 amd64_collect_xsave (const struct regcache *regcache, int regnum, 3459 void *xsave, int gcore) 3460 { 3461 struct gdbarch *gdbarch = regcache->arch (); 3462 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); 3463 gdb_byte *regs = (gdb_byte *) xsave; 3464 3465 i387_collect_xsave (regcache, regnum, xsave, gcore); 3466 3467 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) 3468 { 3469 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) 3470 regcache->raw_collect (I387_FISEG_REGNUM (tdep), 3471 regs + 12); 3472 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) 3473 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), 3474 regs + 20); 3475 } 3476 } 3477