1 /* varobj support for Ada. 2 3 Copyright (C) 2012-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "ada-lang.h" 22 #include "varobj.h" 23 #include "language.h" 24 #include "valprint.h" 25 26 /* Implementation principle used in this unit: 27 28 For our purposes, the meat of the varobj object is made of two 29 elements: The varobj's (struct) value, and the varobj's (struct) 30 type. In most situations, the varobj has a non-NULL value, and 31 the type becomes redundant, as it can be directly derived from 32 the value. In the initial implementation of this unit, most 33 routines would only take a value, and return a value. 34 35 But there are many situations where it is possible for a varobj 36 to have a NULL value. For instance, if the varobj becomes out of 37 scope. Or better yet, when the varobj is the child of another 38 NULL pointer varobj. In that situation, we must rely on the type 39 instead of the value to create the child varobj. 40 41 That's why most functions below work with a (value, type) pair. 42 The value may or may not be NULL. But the type is always expected 43 to be set. When the value is NULL, then we work with the type 44 alone, and keep the value NULL. But when the value is not NULL, 45 then we work using the value, because it provides more information. 46 But we still always set the type as well, even if that type could 47 easily be derived from the value. The reason behind this is that 48 it allows the code to use the type without having to worry about 49 it being set or not. It makes the code clearer. */ 50 51 static int ada_varobj_get_number_of_children (struct value *parent_value, 52 struct type *parent_type); 53 54 /* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple: 55 If there is a value (*VALUE_PTR not NULL), then perform the decoding 56 using it, and compute the associated type from the resulting value. 57 Otherwise, compute a static approximation of *TYPE_PTR, leaving 58 *VALUE_PTR unchanged. 59 60 The results are written in place. */ 61 62 static void 63 ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr) 64 { 65 if (*value_ptr) 66 { 67 *value_ptr = ada_get_decoded_value (*value_ptr); 68 *type_ptr = ada_check_typedef (value_type (*value_ptr)); 69 } 70 else 71 *type_ptr = ada_get_decoded_type (*type_ptr); 72 } 73 74 /* Return a string containing an image of the given scalar value. 75 VAL is the numeric value, while TYPE is the value's type. 76 This is useful for plain integers, of course, but even more 77 so for enumerated types. 78 79 The result should be deallocated by xfree after use. */ 80 81 static char * 82 ada_varobj_scalar_image (struct type *type, LONGEST val) 83 { 84 struct ui_file *buf = mem_fileopen (); 85 struct cleanup *cleanups = make_cleanup_ui_file_delete (buf); 86 char *result; 87 88 ada_print_scalar (type, val, buf); 89 result = ui_file_xstrdup (buf, NULL); 90 do_cleanups (cleanups); 91 92 return result; 93 } 94 95 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates 96 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple 97 corresponding to the field number FIELDNO. */ 98 99 static void 100 ada_varobj_struct_elt (struct value *parent_value, 101 struct type *parent_type, 102 int fieldno, 103 struct value **child_value, 104 struct type **child_type) 105 { 106 struct value *value = NULL; 107 struct type *type = NULL; 108 109 if (parent_value) 110 { 111 value = value_field (parent_value, fieldno); 112 type = value_type (value); 113 } 114 else 115 type = TYPE_FIELD_TYPE (parent_type, fieldno); 116 117 if (child_value) 118 *child_value = value; 119 if (child_type) 120 *child_type = type; 121 } 122 123 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or 124 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding 125 to the dereferenced value. */ 126 127 static void 128 ada_varobj_ind (struct value *parent_value, 129 struct type *parent_type, 130 struct value **child_value, 131 struct type **child_type) 132 { 133 struct value *value = NULL; 134 struct type *type = NULL; 135 136 if (ada_is_array_descriptor_type (parent_type)) 137 { 138 /* This can only happen when PARENT_VALUE is NULL. Otherwise, 139 ada_get_decoded_value would have transformed our parent_type 140 into a simple array pointer type. */ 141 gdb_assert (parent_value == NULL); 142 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF); 143 144 /* Decode parent_type by the equivalent pointer to (decoded) 145 array. */ 146 while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF) 147 parent_type = TYPE_TARGET_TYPE (parent_type); 148 parent_type = ada_coerce_to_simple_array_type (parent_type); 149 parent_type = lookup_pointer_type (parent_type); 150 } 151 152 /* If parent_value is a null pointer, then only perform static 153 dereferencing. We cannot dereference null pointers. */ 154 if (parent_value && value_as_address (parent_value) == 0) 155 parent_value = NULL; 156 157 if (parent_value) 158 { 159 value = ada_value_ind (parent_value); 160 type = value_type (value); 161 } 162 else 163 type = TYPE_TARGET_TYPE (parent_type); 164 165 if (child_value) 166 *child_value = value; 167 if (child_type) 168 *child_type = type; 169 } 170 171 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple 172 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE) 173 pair corresponding to the element at ELT_INDEX. */ 174 175 static void 176 ada_varobj_simple_array_elt (struct value *parent_value, 177 struct type *parent_type, 178 int elt_index, 179 struct value **child_value, 180 struct type **child_type) 181 { 182 struct value *value = NULL; 183 struct type *type = NULL; 184 185 if (parent_value) 186 { 187 struct value *index_value = 188 value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index); 189 190 value = ada_value_subscript (parent_value, 1, &index_value); 191 type = value_type (value); 192 } 193 else 194 type = TYPE_TARGET_TYPE (parent_type); 195 196 if (child_value) 197 *child_value = value; 198 if (child_type) 199 *child_type = type; 200 } 201 202 /* Given the decoded value and decoded type of a variable object, 203 adjust the value and type to those necessary for getting children 204 of the variable object. 205 206 The replacement is performed in place. */ 207 208 static void 209 ada_varobj_adjust_for_child_access (struct value **value, 210 struct type **type) 211 { 212 /* Pointers to struct/union types are special: Instead of having 213 one child (the struct), their children are the components of 214 the struct/union type. We handle this situation by dereferencing 215 the (value, type) couple. */ 216 if (TYPE_CODE (*type) == TYPE_CODE_PTR 217 && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT 218 || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION) 219 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type)) 220 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type))) 221 ada_varobj_ind (*value, *type, value, type); 222 223 /* If this is a tagged type, we need to transform it a bit in order 224 to be able to fetch its full view. As always with tagged types, 225 we can only do that if we have a value. */ 226 if (*value != NULL && ada_is_tagged_type (*type, 1)) 227 { 228 *value = ada_tag_value_at_base_address (*value); 229 *type = value_type (*value); 230 } 231 } 232 233 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array 234 (any type of array, "simple" or not), return the number of children 235 that this array contains. */ 236 237 static int 238 ada_varobj_get_array_number_of_children (struct value *parent_value, 239 struct type *parent_type) 240 { 241 LONGEST lo, hi; 242 243 if (parent_value == NULL 244 && is_dynamic_type (TYPE_INDEX_TYPE (parent_type))) 245 { 246 /* This happens when listing the children of an object 247 which does not exist in memory (Eg: when requesting 248 the children of a null pointer, which is allowed by 249 varobj). The array index type being dynamic, we cannot 250 determine how many elements this array has. Just assume 251 it has none. */ 252 return 0; 253 } 254 255 if (!get_array_bounds (parent_type, &lo, &hi)) 256 { 257 /* Could not get the array bounds. Pretend this is an empty array. */ 258 warning (_("unable to get bounds of array, assuming null array")); 259 return 0; 260 } 261 262 /* Ada allows the upper bound to be less than the lower bound, 263 in order to specify empty arrays... */ 264 if (hi < lo) 265 return 0; 266 267 return hi - lo + 1; 268 } 269 270 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or 271 union, return the number of children this struct contains. */ 272 273 static int 274 ada_varobj_get_struct_number_of_children (struct value *parent_value, 275 struct type *parent_type) 276 { 277 int n_children = 0; 278 int i; 279 280 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT 281 || TYPE_CODE (parent_type) == TYPE_CODE_UNION); 282 283 for (i = 0; i < TYPE_NFIELDS (parent_type); i++) 284 { 285 if (ada_is_ignored_field (parent_type, i)) 286 continue; 287 288 if (ada_is_wrapper_field (parent_type, i)) 289 { 290 struct value *elt_value; 291 struct type *elt_type; 292 293 ada_varobj_struct_elt (parent_value, parent_type, i, 294 &elt_value, &elt_type); 295 if (ada_is_tagged_type (elt_type, 0)) 296 { 297 /* We must not use ada_varobj_get_number_of_children 298 to determine is element's number of children, because 299 this function first calls ada_varobj_decode_var, 300 which "fixes" the element. For tagged types, this 301 includes reading the object's tag to determine its 302 real type, which happens to be the parent_type, and 303 leads to an infinite loop (because the element gets 304 fixed back into the parent). */ 305 n_children += ada_varobj_get_struct_number_of_children 306 (elt_value, elt_type); 307 } 308 else 309 n_children += ada_varobj_get_number_of_children (elt_value, elt_type); 310 } 311 else if (ada_is_variant_part (parent_type, i)) 312 { 313 /* In normal situations, the variant part of the record should 314 have been "fixed". Or, in other words, it should have been 315 replaced by the branch of the variant part that is relevant 316 for our value. But there are still situations where this 317 can happen, however (Eg. when our parent is a NULL pointer). 318 We do not support showing this part of the record for now, 319 so just pretend this field does not exist. */ 320 } 321 else 322 n_children++; 323 } 324 325 return n_children; 326 } 327 328 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates 329 a pointer, return the number of children this pointer has. */ 330 331 static int 332 ada_varobj_get_ptr_number_of_children (struct value *parent_value, 333 struct type *parent_type) 334 { 335 struct type *child_type = TYPE_TARGET_TYPE (parent_type); 336 337 /* Pointer to functions and to void do not have a child, since 338 you cannot print what they point to. */ 339 if (TYPE_CODE (child_type) == TYPE_CODE_FUNC 340 || TYPE_CODE (child_type) == TYPE_CODE_VOID) 341 return 0; 342 343 /* All other types have 1 child. */ 344 return 1; 345 } 346 347 /* Return the number of children for the (PARENT_VALUE, PARENT_TYPE) 348 pair. */ 349 350 static int 351 ada_varobj_get_number_of_children (struct value *parent_value, 352 struct type *parent_type) 353 { 354 ada_varobj_decode_var (&parent_value, &parent_type); 355 ada_varobj_adjust_for_child_access (&parent_value, &parent_type); 356 357 /* A typedef to an array descriptor in fact represents a pointer 358 to an unconstrained array. These types always have one child 359 (the unconstrained array). */ 360 if (ada_is_array_descriptor_type (parent_type) 361 && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF) 362 return 1; 363 364 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY) 365 return ada_varobj_get_array_number_of_children (parent_value, 366 parent_type); 367 368 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT 369 || TYPE_CODE (parent_type) == TYPE_CODE_UNION) 370 return ada_varobj_get_struct_number_of_children (parent_value, 371 parent_type); 372 373 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) 374 return ada_varobj_get_ptr_number_of_children (parent_value, 375 parent_type); 376 377 /* All other types have no child. */ 378 return 0; 379 } 380 381 /* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair 382 whose index is CHILD_INDEX: 383 384 - If CHILD_NAME is not NULL, then a copy of the child's name 385 is saved in *CHILD_NAME. This copy must be deallocated 386 with xfree after use. 387 388 - If CHILD_VALUE is not NULL, then save the child's value 389 in *CHILD_VALUE. Same thing for the child's type with 390 CHILD_TYPE if not NULL. 391 392 - If CHILD_PATH_EXPR is not NULL, then compute the child's 393 path expression. The resulting string must be deallocated 394 after use with xfree. 395 396 Computing the child's path expression requires the PARENT_PATH_EXPR 397 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if 398 CHILD_PATH_EXPR is NULL. 399 400 PARENT_NAME is the name of the parent, and should never be NULL. */ 401 402 static void ada_varobj_describe_child (struct value *parent_value, 403 struct type *parent_type, 404 const char *parent_name, 405 const char *parent_path_expr, 406 int child_index, 407 char **child_name, 408 struct value **child_value, 409 struct type **child_type, 410 char **child_path_expr); 411 412 /* Same as ada_varobj_describe_child, but limited to struct/union 413 objects. */ 414 415 static void 416 ada_varobj_describe_struct_child (struct value *parent_value, 417 struct type *parent_type, 418 const char *parent_name, 419 const char *parent_path_expr, 420 int child_index, 421 char **child_name, 422 struct value **child_value, 423 struct type **child_type, 424 char **child_path_expr) 425 { 426 int fieldno; 427 int childno = 0; 428 429 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT); 430 431 for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++) 432 { 433 if (ada_is_ignored_field (parent_type, fieldno)) 434 continue; 435 436 if (ada_is_wrapper_field (parent_type, fieldno)) 437 { 438 struct value *elt_value; 439 struct type *elt_type; 440 int elt_n_children; 441 442 ada_varobj_struct_elt (parent_value, parent_type, fieldno, 443 &elt_value, &elt_type); 444 if (ada_is_tagged_type (elt_type, 0)) 445 { 446 /* Same as in ada_varobj_get_struct_number_of_children: 447 For tagged types, we must be careful to not call 448 ada_varobj_get_number_of_children, to prevent our 449 element from being fixed back into the parent. */ 450 elt_n_children = ada_varobj_get_struct_number_of_children 451 (elt_value, elt_type); 452 } 453 else 454 elt_n_children = 455 ada_varobj_get_number_of_children (elt_value, elt_type); 456 457 /* Is the child we're looking for one of the children 458 of this wrapper field? */ 459 if (child_index - childno < elt_n_children) 460 { 461 if (ada_is_tagged_type (elt_type, 0)) 462 { 463 /* Same as in ada_varobj_get_struct_number_of_children: 464 For tagged types, we must be careful to not call 465 ada_varobj_describe_child, to prevent our element 466 from being fixed back into the parent. */ 467 ada_varobj_describe_struct_child 468 (elt_value, elt_type, parent_name, parent_path_expr, 469 child_index - childno, child_name, child_value, 470 child_type, child_path_expr); 471 } 472 else 473 ada_varobj_describe_child (elt_value, elt_type, 474 parent_name, parent_path_expr, 475 child_index - childno, 476 child_name, child_value, 477 child_type, child_path_expr); 478 return; 479 } 480 481 /* The child we're looking for is beyond this wrapper 482 field, so skip all its children. */ 483 childno += elt_n_children; 484 continue; 485 } 486 else if (ada_is_variant_part (parent_type, fieldno)) 487 { 488 /* In normal situations, the variant part of the record should 489 have been "fixed". Or, in other words, it should have been 490 replaced by the branch of the variant part that is relevant 491 for our value. But there are still situations where this 492 can happen, however (Eg. when our parent is a NULL pointer). 493 We do not support showing this part of the record for now, 494 so just pretend this field does not exist. */ 495 continue; 496 } 497 498 if (childno == child_index) 499 { 500 if (child_name) 501 { 502 /* The name of the child is none other than the field's 503 name, except that we need to strip suffixes from it. 504 For instance, fields with alignment constraints will 505 have an __XVA suffix added to them. */ 506 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno); 507 int child_name_len = ada_name_prefix_len (field_name); 508 509 *child_name = xstrprintf ("%.*s", child_name_len, field_name); 510 } 511 512 if (child_value && parent_value) 513 ada_varobj_struct_elt (parent_value, parent_type, fieldno, 514 child_value, NULL); 515 516 if (child_type) 517 ada_varobj_struct_elt (parent_value, parent_type, fieldno, 518 NULL, child_type); 519 520 if (child_path_expr) 521 { 522 /* The name of the child is none other than the field's 523 name, except that we need to strip suffixes from it. 524 For instance, fields with alignment constraints will 525 have an __XVA suffix added to them. */ 526 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno); 527 int child_name_len = ada_name_prefix_len (field_name); 528 529 *child_path_expr = 530 xstrprintf ("(%s).%.*s", parent_path_expr, 531 child_name_len, field_name); 532 } 533 534 return; 535 } 536 537 childno++; 538 } 539 540 /* Something went wrong. Either we miscounted the number of 541 children, or CHILD_INDEX was too high. But we should never 542 reach here. We don't have enough information to recover 543 nicely, so just raise an assertion failure. */ 544 gdb_assert_not_reached ("unexpected code path"); 545 } 546 547 /* Same as ada_varobj_describe_child, but limited to pointer objects. 548 549 Note that CHILD_INDEX is unused in this situation, but still provided 550 for consistency of interface with other routines describing an object's 551 child. */ 552 553 static void 554 ada_varobj_describe_ptr_child (struct value *parent_value, 555 struct type *parent_type, 556 const char *parent_name, 557 const char *parent_path_expr, 558 int child_index, 559 char **child_name, 560 struct value **child_value, 561 struct type **child_type, 562 char **child_path_expr) 563 { 564 if (child_name) 565 *child_name = xstrprintf ("%s.all", parent_name); 566 567 if (child_value && parent_value) 568 ada_varobj_ind (parent_value, parent_type, child_value, NULL); 569 570 if (child_type) 571 ada_varobj_ind (parent_value, parent_type, NULL, child_type); 572 573 if (child_path_expr) 574 *child_path_expr = xstrprintf ("(%s).all", parent_path_expr); 575 } 576 577 /* Same as ada_varobj_describe_child, limited to simple array objects 578 (TYPE_CODE_ARRAY only). 579 580 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded. 581 This is done by ada_varobj_describe_child before calling us. */ 582 583 static void 584 ada_varobj_describe_simple_array_child (struct value *parent_value, 585 struct type *parent_type, 586 const char *parent_name, 587 const char *parent_path_expr, 588 int child_index, 589 char **child_name, 590 struct value **child_value, 591 struct type **child_type, 592 char **child_path_expr) 593 { 594 struct type *index_type; 595 int real_index; 596 597 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY); 598 599 index_type = TYPE_INDEX_TYPE (parent_type); 600 real_index = child_index + ada_discrete_type_low_bound (index_type); 601 602 if (child_name) 603 *child_name = ada_varobj_scalar_image (index_type, real_index); 604 605 if (child_value && parent_value) 606 ada_varobj_simple_array_elt (parent_value, parent_type, real_index, 607 child_value, NULL); 608 609 if (child_type) 610 ada_varobj_simple_array_elt (parent_value, parent_type, real_index, 611 NULL, child_type); 612 613 if (child_path_expr) 614 { 615 char *index_img = ada_varobj_scalar_image (index_type, real_index); 616 struct cleanup *cleanups = make_cleanup (xfree, index_img); 617 618 /* Enumeration litterals by themselves are potentially ambiguous. 619 For instance, consider the following package spec: 620 621 package Pck is 622 type Color is (Red, Green, Blue, White); 623 type Blood_Cells is (White, Red); 624 end Pck; 625 626 In this case, the litteral "red" for instance, or even 627 the fully-qualified litteral "pck.red" cannot be resolved 628 by itself. Type qualification is needed to determine which 629 enumeration litterals should be used. 630 631 The following variable will be used to contain the name 632 of the array index type when such type qualification is 633 needed. */ 634 const char *index_type_name = NULL; 635 636 /* If the index type is a range type, find the base type. */ 637 while (TYPE_CODE (index_type) == TYPE_CODE_RANGE) 638 index_type = TYPE_TARGET_TYPE (index_type); 639 640 if (TYPE_CODE (index_type) == TYPE_CODE_ENUM 641 || TYPE_CODE (index_type) == TYPE_CODE_BOOL) 642 { 643 index_type_name = ada_type_name (index_type); 644 if (index_type_name) 645 index_type_name = ada_decode (index_type_name); 646 } 647 648 if (index_type_name != NULL) 649 *child_path_expr = 650 xstrprintf ("(%s)(%.*s'(%s))", parent_path_expr, 651 ada_name_prefix_len (index_type_name), 652 index_type_name, index_img); 653 else 654 *child_path_expr = 655 xstrprintf ("(%s)(%s)", parent_path_expr, index_img); 656 do_cleanups (cleanups); 657 } 658 } 659 660 /* See description at declaration above. */ 661 662 static void 663 ada_varobj_describe_child (struct value *parent_value, 664 struct type *parent_type, 665 const char *parent_name, 666 const char *parent_path_expr, 667 int child_index, 668 char **child_name, 669 struct value **child_value, 670 struct type **child_type, 671 char **child_path_expr) 672 { 673 /* We cannot compute the child's path expression without 674 the parent's path expression. This is a pre-condition 675 for calling this function. */ 676 if (child_path_expr) 677 gdb_assert (parent_path_expr != NULL); 678 679 ada_varobj_decode_var (&parent_value, &parent_type); 680 ada_varobj_adjust_for_child_access (&parent_value, &parent_type); 681 682 if (child_name) 683 *child_name = NULL; 684 if (child_value) 685 *child_value = NULL; 686 if (child_type) 687 *child_type = NULL; 688 if (child_path_expr) 689 *child_path_expr = NULL; 690 691 if (ada_is_array_descriptor_type (parent_type) 692 && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF) 693 { 694 ada_varobj_describe_ptr_child (parent_value, parent_type, 695 parent_name, parent_path_expr, 696 child_index, child_name, 697 child_value, child_type, 698 child_path_expr); 699 return; 700 } 701 702 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY) 703 { 704 ada_varobj_describe_simple_array_child 705 (parent_value, parent_type, parent_name, parent_path_expr, 706 child_index, child_name, child_value, child_type, 707 child_path_expr); 708 return; 709 } 710 711 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT) 712 { 713 ada_varobj_describe_struct_child (parent_value, parent_type, 714 parent_name, parent_path_expr, 715 child_index, child_name, 716 child_value, child_type, 717 child_path_expr); 718 return; 719 } 720 721 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) 722 { 723 ada_varobj_describe_ptr_child (parent_value, parent_type, 724 parent_name, parent_path_expr, 725 child_index, child_name, 726 child_value, child_type, 727 child_path_expr); 728 return; 729 } 730 731 /* It should never happen. But rather than crash, report dummy names 732 and return a NULL child_value. */ 733 if (child_name) 734 *child_name = xstrdup ("???"); 735 } 736 737 /* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE, 738 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. 739 740 The result should be deallocated after use with xfree. */ 741 742 static char * 743 ada_varobj_get_name_of_child (struct value *parent_value, 744 struct type *parent_type, 745 const char *parent_name, int child_index) 746 { 747 char *child_name; 748 749 ada_varobj_describe_child (parent_value, parent_type, parent_name, 750 NULL, child_index, &child_name, NULL, 751 NULL, NULL); 752 return child_name; 753 } 754 755 /* Return the path expression of the child number CHILD_INDEX of 756 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name 757 of the parent, and PARENT_PATH_EXPR is the parent's path expression. 758 Both must be non-NULL. 759 760 The result must be deallocated after use with xfree. */ 761 762 static char * 763 ada_varobj_get_path_expr_of_child (struct value *parent_value, 764 struct type *parent_type, 765 const char *parent_name, 766 const char *parent_path_expr, 767 int child_index) 768 { 769 char *child_path_expr; 770 771 ada_varobj_describe_child (parent_value, parent_type, parent_name, 772 parent_path_expr, child_index, NULL, 773 NULL, NULL, &child_path_expr); 774 775 return child_path_expr; 776 } 777 778 /* Return the value of child number CHILD_INDEX of the (PARENT_VALUE, 779 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */ 780 781 static struct value * 782 ada_varobj_get_value_of_child (struct value *parent_value, 783 struct type *parent_type, 784 const char *parent_name, int child_index) 785 { 786 struct value *child_value; 787 788 ada_varobj_describe_child (parent_value, parent_type, parent_name, 789 NULL, child_index, NULL, &child_value, 790 NULL, NULL); 791 792 return child_value; 793 } 794 795 /* Return the type of child number CHILD_INDEX of the (PARENT_VALUE, 796 PARENT_TYPE) pair. */ 797 798 static struct type * 799 ada_varobj_get_type_of_child (struct value *parent_value, 800 struct type *parent_type, 801 int child_index) 802 { 803 struct type *child_type; 804 805 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL, 806 child_index, NULL, NULL, &child_type, NULL); 807 808 return child_type; 809 } 810 811 /* Return a string that contains the image of the given VALUE, using 812 the print options OPTS as the options for formatting the result. 813 814 The resulting string must be deallocated after use with xfree. */ 815 816 static char * 817 ada_varobj_get_value_image (struct value *value, 818 struct value_print_options *opts) 819 { 820 char *result; 821 struct ui_file *buffer; 822 struct cleanup *old_chain; 823 824 buffer = mem_fileopen (); 825 old_chain = make_cleanup_ui_file_delete (buffer); 826 827 common_val_print (value, buffer, 0, opts, current_language); 828 result = ui_file_xstrdup (buffer, NULL); 829 830 do_cleanups (old_chain); 831 return result; 832 } 833 834 /* Assuming that the (VALUE, TYPE) pair designates an array varobj, 835 return a string that is suitable for use in the "value" field of 836 the varobj output. Most of the time, this is the number of elements 837 in the array inside square brackets, but there are situations where 838 it's useful to add more info. 839 840 OPTS are the print options used when formatting the result. 841 842 The result should be deallocated after use using xfree. */ 843 844 static char * 845 ada_varobj_get_value_of_array_variable (struct value *value, 846 struct type *type, 847 struct value_print_options *opts) 848 { 849 char *result; 850 const int numchild = ada_varobj_get_array_number_of_children (value, type); 851 852 /* If we have a string, provide its contents in the "value" field. 853 Otherwise, the only other way to inspect the contents of the string 854 is by looking at the value of each element, as in any other array, 855 which is not very convenient... */ 856 if (value 857 && ada_is_string_type (type) 858 && (opts->format == 0 || opts->format == 's')) 859 { 860 char *str; 861 struct cleanup *old_chain; 862 863 str = ada_varobj_get_value_image (value, opts); 864 old_chain = make_cleanup (xfree, str); 865 result = xstrprintf ("[%d] %s", numchild, str); 866 do_cleanups (old_chain); 867 } 868 else 869 result = xstrprintf ("[%d]", numchild); 870 871 return result; 872 } 873 874 /* Return a string representation of the (VALUE, TYPE) pair, using 875 the given print options OPTS as our formatting options. */ 876 877 static char * 878 ada_varobj_get_value_of_variable (struct value *value, 879 struct type *type, 880 struct value_print_options *opts) 881 { 882 char *result = NULL; 883 884 ada_varobj_decode_var (&value, &type); 885 886 switch (TYPE_CODE (type)) 887 { 888 case TYPE_CODE_STRUCT: 889 case TYPE_CODE_UNION: 890 result = xstrdup ("{...}"); 891 break; 892 case TYPE_CODE_ARRAY: 893 result = ada_varobj_get_value_of_array_variable (value, type, opts); 894 break; 895 default: 896 if (!value) 897 result = xstrdup (""); 898 else 899 result = ada_varobj_get_value_image (value, opts); 900 break; 901 } 902 903 return result; 904 } 905 906 /* Ada specific callbacks for VAROBJs. */ 907 908 static int 909 ada_number_of_children (const struct varobj *var) 910 { 911 return ada_varobj_get_number_of_children (var->value, var->type); 912 } 913 914 static char * 915 ada_name_of_variable (const struct varobj *parent) 916 { 917 return c_varobj_ops.name_of_variable (parent); 918 } 919 920 static char * 921 ada_name_of_child (const struct varobj *parent, int index) 922 { 923 return ada_varobj_get_name_of_child (parent->value, parent->type, 924 parent->name, index); 925 } 926 927 static char* 928 ada_path_expr_of_child (const struct varobj *child) 929 { 930 const struct varobj *parent = child->parent; 931 const char *parent_path_expr = varobj_get_path_expr (parent); 932 933 return ada_varobj_get_path_expr_of_child (parent->value, 934 parent->type, 935 parent->name, 936 parent_path_expr, 937 child->index); 938 } 939 940 static struct value * 941 ada_value_of_child (const struct varobj *parent, int index) 942 { 943 return ada_varobj_get_value_of_child (parent->value, parent->type, 944 parent->name, index); 945 } 946 947 static struct type * 948 ada_type_of_child (const struct varobj *parent, int index) 949 { 950 return ada_varobj_get_type_of_child (parent->value, parent->type, 951 index); 952 } 953 954 static char * 955 ada_value_of_variable (const struct varobj *var, 956 enum varobj_display_formats format) 957 { 958 struct value_print_options opts; 959 960 varobj_formatted_print_options (&opts, format); 961 962 return ada_varobj_get_value_of_variable (var->value, var->type, &opts); 963 } 964 965 /* Implement the "value_is_changeable_p" routine for Ada. */ 966 967 static int 968 ada_value_is_changeable_p (const struct varobj *var) 969 { 970 struct type *type = var->value ? value_type (var->value) : var->type; 971 972 if (ada_is_array_descriptor_type (type) 973 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF) 974 { 975 /* This is in reality a pointer to an unconstrained array. 976 its value is changeable. */ 977 return 1; 978 } 979 980 if (ada_is_string_type (type)) 981 { 982 /* We display the contents of the string in the array's 983 "value" field. The contents can change, so consider 984 that the array is changeable. */ 985 return 1; 986 } 987 988 return varobj_default_value_is_changeable_p (var); 989 } 990 991 /* Implement the "value_has_mutated" routine for Ada. */ 992 993 static int 994 ada_value_has_mutated (const struct varobj *var, struct value *new_val, 995 struct type *new_type) 996 { 997 int i; 998 int from = -1; 999 int to = -1; 1000 1001 /* If the number of fields have changed, then for sure the type 1002 has mutated. */ 1003 if (ada_varobj_get_number_of_children (new_val, new_type) 1004 != var->num_children) 1005 return 1; 1006 1007 /* If the number of fields have remained the same, then we need 1008 to check the name of each field. If they remain the same, 1009 then chances are the type hasn't mutated. This is technically 1010 an incomplete test, as the child's type might have changed 1011 despite the fact that the name remains the same. But we'll 1012 handle this situation by saying that the child has mutated, 1013 not this value. 1014 1015 If only part (or none!) of the children have been fetched, 1016 then only check the ones we fetched. It does not matter 1017 to the frontend whether a child that it has not fetched yet 1018 has mutated or not. So just assume it hasn't. */ 1019 1020 varobj_restrict_range (var->children, &from, &to); 1021 for (i = from; i < to; i++) 1022 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type, 1023 var->name, i), 1024 VEC_index (varobj_p, var->children, i)->name) != 0) 1025 return 1; 1026 1027 return 0; 1028 } 1029 1030 /* varobj operations for ada. */ 1031 1032 const struct lang_varobj_ops ada_varobj_ops = 1033 { 1034 ada_number_of_children, 1035 ada_name_of_variable, 1036 ada_name_of_child, 1037 ada_path_expr_of_child, 1038 ada_value_of_child, 1039 ada_type_of_child, 1040 ada_value_of_variable, 1041 ada_value_is_changeable_p, 1042 ada_value_has_mutated, 1043 varobj_default_is_path_expr_parent 1044 }; 1045