1 /* varobj support for Ada. 2 3 Copyright (C) 2012-2023 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "ada-lang.h" 22 #include "varobj.h" 23 #include "language.h" 24 #include "valprint.h" 25 26 /* Implementation principle used in this unit: 27 28 For our purposes, the meat of the varobj object is made of two 29 elements: The varobj's (struct) value, and the varobj's (struct) 30 type. In most situations, the varobj has a non-NULL value, and 31 the type becomes redundant, as it can be directly derived from 32 the value. In the initial implementation of this unit, most 33 routines would only take a value, and return a value. 34 35 But there are many situations where it is possible for a varobj 36 to have a NULL value. For instance, if the varobj becomes out of 37 scope. Or better yet, when the varobj is the child of another 38 NULL pointer varobj. In that situation, we must rely on the type 39 instead of the value to create the child varobj. 40 41 That's why most functions below work with a (value, type) pair. 42 The value may or may not be NULL. But the type is always expected 43 to be set. When the value is NULL, then we work with the type 44 alone, and keep the value NULL. But when the value is not NULL, 45 then we work using the value, because it provides more information. 46 But we still always set the type as well, even if that type could 47 easily be derived from the value. The reason behind this is that 48 it allows the code to use the type without having to worry about 49 it being set or not. It makes the code clearer. */ 50 51 static int ada_varobj_get_number_of_children (struct value *parent_value, 52 struct type *parent_type); 53 54 /* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple: 55 If there is a value (*VALUE_PTR not NULL), then perform the decoding 56 using it, and compute the associated type from the resulting value. 57 Otherwise, compute a static approximation of *TYPE_PTR, leaving 58 *VALUE_PTR unchanged. 59 60 The results are written in place. */ 61 62 static void 63 ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr) 64 { 65 if (*value_ptr) 66 *value_ptr = ada_get_decoded_value (*value_ptr); 67 68 if (*value_ptr != nullptr) 69 *type_ptr = ada_check_typedef (value_type (*value_ptr)); 70 else 71 *type_ptr = ada_get_decoded_type (*type_ptr); 72 } 73 74 /* Return a string containing an image of the given scalar value. 75 VAL is the numeric value, while TYPE is the value's type. 76 This is useful for plain integers, of course, but even more 77 so for enumerated types. */ 78 79 static std::string 80 ada_varobj_scalar_image (struct type *type, LONGEST val) 81 { 82 string_file buf; 83 84 ada_print_scalar (type, val, &buf); 85 return buf.release (); 86 } 87 88 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates 89 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple 90 corresponding to the field number FIELDNO. */ 91 92 static void 93 ada_varobj_struct_elt (struct value *parent_value, 94 struct type *parent_type, 95 int fieldno, 96 struct value **child_value, 97 struct type **child_type) 98 { 99 struct value *value = NULL; 100 struct type *type = NULL; 101 102 if (parent_value) 103 { 104 value = value_field (parent_value, fieldno); 105 type = value_type (value); 106 } 107 else 108 type = parent_type->field (fieldno).type (); 109 110 if (child_value) 111 *child_value = value; 112 if (child_type) 113 *child_type = type; 114 } 115 116 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or 117 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding 118 to the dereferenced value. */ 119 120 static void 121 ada_varobj_ind (struct value *parent_value, 122 struct type *parent_type, 123 struct value **child_value, 124 struct type **child_type) 125 { 126 struct value *value = NULL; 127 struct type *type = NULL; 128 129 if (ada_is_array_descriptor_type (parent_type)) 130 { 131 /* This can only happen when PARENT_VALUE is NULL. Otherwise, 132 ada_get_decoded_value would have transformed our parent_type 133 into a simple array pointer type. */ 134 gdb_assert (parent_value == NULL); 135 gdb_assert (parent_type->code () == TYPE_CODE_TYPEDEF); 136 137 /* Decode parent_type by the equivalent pointer to (decoded) 138 array. */ 139 while (parent_type->code () == TYPE_CODE_TYPEDEF) 140 parent_type = parent_type->target_type (); 141 parent_type = ada_coerce_to_simple_array_type (parent_type); 142 parent_type = lookup_pointer_type (parent_type); 143 } 144 145 /* If parent_value is a null pointer, then only perform static 146 dereferencing. We cannot dereference null pointers. */ 147 if (parent_value && value_as_address (parent_value) == 0) 148 parent_value = NULL; 149 150 if (parent_value) 151 { 152 value = ada_value_ind (parent_value); 153 type = value_type (value); 154 } 155 else 156 type = parent_type->target_type (); 157 158 if (child_value) 159 *child_value = value; 160 if (child_type) 161 *child_type = type; 162 } 163 164 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple 165 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE) 166 pair corresponding to the element at ELT_INDEX. */ 167 168 static void 169 ada_varobj_simple_array_elt (struct value *parent_value, 170 struct type *parent_type, 171 int elt_index, 172 struct value **child_value, 173 struct type **child_type) 174 { 175 struct value *value = NULL; 176 struct type *type = NULL; 177 178 if (parent_value) 179 { 180 struct value *index_value = 181 value_from_longest (parent_type->index_type (), elt_index); 182 183 value = ada_value_subscript (parent_value, 1, &index_value); 184 type = value_type (value); 185 } 186 else 187 type = parent_type->target_type (); 188 189 if (child_value) 190 *child_value = value; 191 if (child_type) 192 *child_type = type; 193 } 194 195 /* Given the decoded value and decoded type of a variable object, 196 adjust the value and type to those necessary for getting children 197 of the variable object. 198 199 The replacement is performed in place. */ 200 201 static void 202 ada_varobj_adjust_for_child_access (struct value **value, 203 struct type **type) 204 { 205 /* Pointers to struct/union types are special: Instead of having 206 one child (the struct), their children are the components of 207 the struct/union type. We handle this situation by dereferencing 208 the (value, type) couple. */ 209 if ((*type)->code () == TYPE_CODE_PTR 210 && ((*type)->target_type ()->code () == TYPE_CODE_STRUCT 211 || (*type)->target_type ()->code () == TYPE_CODE_UNION) 212 && *value != nullptr 213 && value_as_address (*value) != 0 214 && !ada_is_array_descriptor_type ((*type)->target_type ()) 215 && !ada_is_constrained_packed_array_type ((*type)->target_type ())) 216 ada_varobj_ind (*value, *type, value, type); 217 218 /* If this is a tagged type, we need to transform it a bit in order 219 to be able to fetch its full view. As always with tagged types, 220 we can only do that if we have a value. */ 221 if (*value != NULL && ada_is_tagged_type (*type, 1)) 222 { 223 *value = ada_tag_value_at_base_address (*value); 224 *type = value_type (*value); 225 } 226 } 227 228 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array 229 (any type of array, "simple" or not), return the number of children 230 that this array contains. */ 231 232 static int 233 ada_varobj_get_array_number_of_children (struct value *parent_value, 234 struct type *parent_type) 235 { 236 LONGEST lo, hi; 237 238 if (parent_value == NULL 239 && is_dynamic_type (parent_type->index_type ())) 240 { 241 /* This happens when listing the children of an object 242 which does not exist in memory (Eg: when requesting 243 the children of a null pointer, which is allowed by 244 varobj). The array index type being dynamic, we cannot 245 determine how many elements this array has. Just assume 246 it has none. */ 247 return 0; 248 } 249 250 if (!get_array_bounds (parent_type, &lo, &hi)) 251 { 252 /* Could not get the array bounds. Pretend this is an empty array. */ 253 warning (_("unable to get bounds of array, assuming null array")); 254 return 0; 255 } 256 257 /* Ada allows the upper bound to be less than the lower bound, 258 in order to specify empty arrays... */ 259 if (hi < lo) 260 return 0; 261 262 return hi - lo + 1; 263 } 264 265 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or 266 union, return the number of children this struct contains. */ 267 268 static int 269 ada_varobj_get_struct_number_of_children (struct value *parent_value, 270 struct type *parent_type) 271 { 272 int n_children = 0; 273 int i; 274 275 gdb_assert (parent_type->code () == TYPE_CODE_STRUCT 276 || parent_type->code () == TYPE_CODE_UNION); 277 278 for (i = 0; i < parent_type->num_fields (); i++) 279 { 280 if (ada_is_ignored_field (parent_type, i)) 281 continue; 282 283 if (ada_is_wrapper_field (parent_type, i)) 284 { 285 struct value *elt_value; 286 struct type *elt_type; 287 288 ada_varobj_struct_elt (parent_value, parent_type, i, 289 &elt_value, &elt_type); 290 if (ada_is_tagged_type (elt_type, 0)) 291 { 292 /* We must not use ada_varobj_get_number_of_children 293 to determine is element's number of children, because 294 this function first calls ada_varobj_decode_var, 295 which "fixes" the element. For tagged types, this 296 includes reading the object's tag to determine its 297 real type, which happens to be the parent_type, and 298 leads to an infinite loop (because the element gets 299 fixed back into the parent). */ 300 n_children += ada_varobj_get_struct_number_of_children 301 (elt_value, elt_type); 302 } 303 else 304 n_children += ada_varobj_get_number_of_children (elt_value, elt_type); 305 } 306 else if (ada_is_variant_part (parent_type, i)) 307 { 308 /* In normal situations, the variant part of the record should 309 have been "fixed". Or, in other words, it should have been 310 replaced by the branch of the variant part that is relevant 311 for our value. But there are still situations where this 312 can happen, however (Eg. when our parent is a NULL pointer). 313 We do not support showing this part of the record for now, 314 so just pretend this field does not exist. */ 315 } 316 else 317 n_children++; 318 } 319 320 return n_children; 321 } 322 323 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates 324 a pointer, return the number of children this pointer has. */ 325 326 static int 327 ada_varobj_get_ptr_number_of_children (struct value *parent_value, 328 struct type *parent_type) 329 { 330 struct type *child_type = parent_type->target_type (); 331 332 /* Pointer to functions and to void do not have a child, since 333 you cannot print what they point to. */ 334 if (child_type->code () == TYPE_CODE_FUNC 335 || child_type->code () == TYPE_CODE_VOID) 336 return 0; 337 338 /* Only show children for non-null pointers. */ 339 if (parent_value == nullptr || value_as_address (parent_value) == 0) 340 return 0; 341 342 /* All other types have 1 child. */ 343 return 1; 344 } 345 346 /* Return the number of children for the (PARENT_VALUE, PARENT_TYPE) 347 pair. */ 348 349 static int 350 ada_varobj_get_number_of_children (struct value *parent_value, 351 struct type *parent_type) 352 { 353 ada_varobj_decode_var (&parent_value, &parent_type); 354 ada_varobj_adjust_for_child_access (&parent_value, &parent_type); 355 356 /* A typedef to an array descriptor in fact represents a pointer 357 to an unconstrained array. These types always have one child 358 (the unconstrained array). */ 359 if (ada_is_access_to_unconstrained_array (parent_type)) 360 return 1; 361 362 if (parent_type->code () == TYPE_CODE_ARRAY) 363 return ada_varobj_get_array_number_of_children (parent_value, 364 parent_type); 365 366 if (parent_type->code () == TYPE_CODE_STRUCT 367 || parent_type->code () == TYPE_CODE_UNION) 368 return ada_varobj_get_struct_number_of_children (parent_value, 369 parent_type); 370 371 if (parent_type->code () == TYPE_CODE_PTR) 372 return ada_varobj_get_ptr_number_of_children (parent_value, 373 parent_type); 374 375 /* All other types have no child. */ 376 return 0; 377 } 378 379 /* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair 380 whose index is CHILD_INDEX: 381 382 - If CHILD_NAME is not NULL, then a copy of the child's name 383 is saved in *CHILD_NAME. This copy must be deallocated 384 with xfree after use. 385 386 - If CHILD_VALUE is not NULL, then save the child's value 387 in *CHILD_VALUE. Same thing for the child's type with 388 CHILD_TYPE if not NULL. 389 390 - If CHILD_PATH_EXPR is not NULL, then compute the child's 391 path expression. The resulting string must be deallocated 392 after use with xfree. 393 394 Computing the child's path expression requires the PARENT_PATH_EXPR 395 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if 396 CHILD_PATH_EXPR is NULL. 397 398 PARENT_NAME is the name of the parent, and should never be NULL. */ 399 400 static void ada_varobj_describe_child (struct value *parent_value, 401 struct type *parent_type, 402 const char *parent_name, 403 const char *parent_path_expr, 404 int child_index, 405 std::string *child_name, 406 struct value **child_value, 407 struct type **child_type, 408 std::string *child_path_expr); 409 410 /* Same as ada_varobj_describe_child, but limited to struct/union 411 objects. */ 412 413 static void 414 ada_varobj_describe_struct_child (struct value *parent_value, 415 struct type *parent_type, 416 const char *parent_name, 417 const char *parent_path_expr, 418 int child_index, 419 std::string *child_name, 420 struct value **child_value, 421 struct type **child_type, 422 std::string *child_path_expr) 423 { 424 int fieldno; 425 int childno = 0; 426 427 gdb_assert (parent_type->code () == TYPE_CODE_STRUCT 428 || parent_type->code () == TYPE_CODE_UNION); 429 430 for (fieldno = 0; fieldno < parent_type->num_fields (); fieldno++) 431 { 432 if (ada_is_ignored_field (parent_type, fieldno)) 433 continue; 434 435 if (ada_is_wrapper_field (parent_type, fieldno)) 436 { 437 struct value *elt_value; 438 struct type *elt_type; 439 int elt_n_children; 440 441 ada_varobj_struct_elt (parent_value, parent_type, fieldno, 442 &elt_value, &elt_type); 443 if (ada_is_tagged_type (elt_type, 0)) 444 { 445 /* Same as in ada_varobj_get_struct_number_of_children: 446 For tagged types, we must be careful to not call 447 ada_varobj_get_number_of_children, to prevent our 448 element from being fixed back into the parent. */ 449 elt_n_children = ada_varobj_get_struct_number_of_children 450 (elt_value, elt_type); 451 } 452 else 453 elt_n_children = 454 ada_varobj_get_number_of_children (elt_value, elt_type); 455 456 /* Is the child we're looking for one of the children 457 of this wrapper field? */ 458 if (child_index - childno < elt_n_children) 459 { 460 if (ada_is_tagged_type (elt_type, 0)) 461 { 462 /* Same as in ada_varobj_get_struct_number_of_children: 463 For tagged types, we must be careful to not call 464 ada_varobj_describe_child, to prevent our element 465 from being fixed back into the parent. */ 466 ada_varobj_describe_struct_child 467 (elt_value, elt_type, parent_name, parent_path_expr, 468 child_index - childno, child_name, child_value, 469 child_type, child_path_expr); 470 } 471 else 472 ada_varobj_describe_child (elt_value, elt_type, 473 parent_name, parent_path_expr, 474 child_index - childno, 475 child_name, child_value, 476 child_type, child_path_expr); 477 return; 478 } 479 480 /* The child we're looking for is beyond this wrapper 481 field, so skip all its children. */ 482 childno += elt_n_children; 483 continue; 484 } 485 else if (ada_is_variant_part (parent_type, fieldno)) 486 { 487 /* In normal situations, the variant part of the record should 488 have been "fixed". Or, in other words, it should have been 489 replaced by the branch of the variant part that is relevant 490 for our value. But there are still situations where this 491 can happen, however (Eg. when our parent is a NULL pointer). 492 We do not support showing this part of the record for now, 493 so just pretend this field does not exist. */ 494 continue; 495 } 496 497 if (childno == child_index) 498 { 499 if (child_name) 500 { 501 /* The name of the child is none other than the field's 502 name, except that we need to strip suffixes from it. 503 For instance, fields with alignment constraints will 504 have an __XVA suffix added to them. */ 505 const char *field_name = parent_type->field (fieldno).name (); 506 int child_name_len = ada_name_prefix_len (field_name); 507 508 *child_name = string_printf ("%.*s", child_name_len, field_name); 509 } 510 511 if (child_value && parent_value) 512 ada_varobj_struct_elt (parent_value, parent_type, fieldno, 513 child_value, NULL); 514 515 if (child_type) 516 ada_varobj_struct_elt (parent_value, parent_type, fieldno, 517 NULL, child_type); 518 519 if (child_path_expr) 520 { 521 /* The name of the child is none other than the field's 522 name, except that we need to strip suffixes from it. 523 For instance, fields with alignment constraints will 524 have an __XVA suffix added to them. */ 525 const char *field_name = parent_type->field (fieldno).name (); 526 int child_name_len = ada_name_prefix_len (field_name); 527 528 *child_path_expr = 529 string_printf ("(%s).%.*s", parent_path_expr, 530 child_name_len, field_name); 531 } 532 533 return; 534 } 535 536 childno++; 537 } 538 539 /* Something went wrong. Either we miscounted the number of 540 children, or CHILD_INDEX was too high. But we should never 541 reach here. We don't have enough information to recover 542 nicely, so just raise an assertion failure. */ 543 gdb_assert_not_reached ("unexpected code path"); 544 } 545 546 /* Same as ada_varobj_describe_child, but limited to pointer objects. 547 548 Note that CHILD_INDEX is unused in this situation, but still provided 549 for consistency of interface with other routines describing an object's 550 child. */ 551 552 static void 553 ada_varobj_describe_ptr_child (struct value *parent_value, 554 struct type *parent_type, 555 const char *parent_name, 556 const char *parent_path_expr, 557 int child_index, 558 std::string *child_name, 559 struct value **child_value, 560 struct type **child_type, 561 std::string *child_path_expr) 562 { 563 if (child_name) 564 *child_name = string_printf ("%s.all", parent_name); 565 566 if (child_value && parent_value) 567 ada_varobj_ind (parent_value, parent_type, child_value, NULL); 568 569 if (child_type) 570 ada_varobj_ind (parent_value, parent_type, NULL, child_type); 571 572 if (child_path_expr) 573 *child_path_expr = string_printf ("(%s).all", parent_path_expr); 574 } 575 576 /* Same as ada_varobj_describe_child, limited to simple array objects 577 (TYPE_CODE_ARRAY only). 578 579 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded. 580 This is done by ada_varobj_describe_child before calling us. */ 581 582 static void 583 ada_varobj_describe_simple_array_child (struct value *parent_value, 584 struct type *parent_type, 585 const char *parent_name, 586 const char *parent_path_expr, 587 int child_index, 588 std::string *child_name, 589 struct value **child_value, 590 struct type **child_type, 591 std::string *child_path_expr) 592 { 593 struct type *index_type; 594 int real_index; 595 596 gdb_assert (parent_type->code () == TYPE_CODE_ARRAY); 597 598 index_type = parent_type->index_type (); 599 real_index = child_index + ada_discrete_type_low_bound (index_type); 600 601 if (child_name) 602 *child_name = ada_varobj_scalar_image (index_type, real_index); 603 604 if (child_value && parent_value) 605 ada_varobj_simple_array_elt (parent_value, parent_type, real_index, 606 child_value, NULL); 607 608 if (child_type) 609 ada_varobj_simple_array_elt (parent_value, parent_type, real_index, 610 NULL, child_type); 611 612 if (child_path_expr) 613 { 614 std::string index_img = ada_varobj_scalar_image (index_type, real_index); 615 616 /* Enumeration litterals by themselves are potentially ambiguous. 617 For instance, consider the following package spec: 618 619 package Pck is 620 type Color is (Red, Green, Blue, White); 621 type Blood_Cells is (White, Red); 622 end Pck; 623 624 In this case, the litteral "red" for instance, or even 625 the fully-qualified litteral "pck.red" cannot be resolved 626 by itself. Type qualification is needed to determine which 627 enumeration litterals should be used. 628 629 The following variable will be used to contain the name 630 of the array index type when such type qualification is 631 needed. */ 632 const char *index_type_name = NULL; 633 std::string decoded; 634 635 /* If the index type is a range type, find the base type. */ 636 while (index_type->code () == TYPE_CODE_RANGE) 637 index_type = index_type->target_type (); 638 639 if (index_type->code () == TYPE_CODE_ENUM 640 || index_type->code () == TYPE_CODE_BOOL) 641 { 642 index_type_name = ada_type_name (index_type); 643 if (index_type_name) 644 { 645 decoded = ada_decode (index_type_name); 646 index_type_name = decoded.c_str (); 647 } 648 } 649 650 if (index_type_name != NULL) 651 *child_path_expr = 652 string_printf ("(%s)(%.*s'(%s))", parent_path_expr, 653 ada_name_prefix_len (index_type_name), 654 index_type_name, index_img.c_str ()); 655 else 656 *child_path_expr = 657 string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ()); 658 } 659 } 660 661 /* See description at declaration above. */ 662 663 static void 664 ada_varobj_describe_child (struct value *parent_value, 665 struct type *parent_type, 666 const char *parent_name, 667 const char *parent_path_expr, 668 int child_index, 669 std::string *child_name, 670 struct value **child_value, 671 struct type **child_type, 672 std::string *child_path_expr) 673 { 674 /* We cannot compute the child's path expression without 675 the parent's path expression. This is a pre-condition 676 for calling this function. */ 677 if (child_path_expr) 678 gdb_assert (parent_path_expr != NULL); 679 680 ada_varobj_decode_var (&parent_value, &parent_type); 681 ada_varobj_adjust_for_child_access (&parent_value, &parent_type); 682 683 if (child_name) 684 *child_name = std::string (); 685 if (child_value) 686 *child_value = NULL; 687 if (child_type) 688 *child_type = NULL; 689 if (child_path_expr) 690 *child_path_expr = std::string (); 691 692 if (ada_is_access_to_unconstrained_array (parent_type)) 693 { 694 ada_varobj_describe_ptr_child (parent_value, parent_type, 695 parent_name, parent_path_expr, 696 child_index, child_name, 697 child_value, child_type, 698 child_path_expr); 699 return; 700 } 701 702 if (parent_type->code () == TYPE_CODE_ARRAY) 703 { 704 ada_varobj_describe_simple_array_child 705 (parent_value, parent_type, parent_name, parent_path_expr, 706 child_index, child_name, child_value, child_type, 707 child_path_expr); 708 return; 709 } 710 711 if (parent_type->code () == TYPE_CODE_STRUCT 712 || parent_type->code () == TYPE_CODE_UNION) 713 { 714 ada_varobj_describe_struct_child (parent_value, parent_type, 715 parent_name, parent_path_expr, 716 child_index, child_name, 717 child_value, child_type, 718 child_path_expr); 719 return; 720 } 721 722 if (parent_type->code () == TYPE_CODE_PTR) 723 { 724 ada_varobj_describe_ptr_child (parent_value, parent_type, 725 parent_name, parent_path_expr, 726 child_index, child_name, 727 child_value, child_type, 728 child_path_expr); 729 return; 730 } 731 732 /* It should never happen. But rather than crash, report dummy names 733 and return a NULL child_value. */ 734 if (child_name) 735 *child_name = "???"; 736 } 737 738 /* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE, 739 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */ 740 741 static std::string 742 ada_varobj_get_name_of_child (struct value *parent_value, 743 struct type *parent_type, 744 const char *parent_name, int child_index) 745 { 746 std::string child_name; 747 748 ada_varobj_describe_child (parent_value, parent_type, parent_name, 749 NULL, child_index, &child_name, NULL, 750 NULL, NULL); 751 return child_name; 752 } 753 754 /* Return the path expression of the child number CHILD_INDEX of 755 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name 756 of the parent, and PARENT_PATH_EXPR is the parent's path expression. 757 Both must be non-NULL. */ 758 759 static std::string 760 ada_varobj_get_path_expr_of_child (struct value *parent_value, 761 struct type *parent_type, 762 const char *parent_name, 763 const char *parent_path_expr, 764 int child_index) 765 { 766 std::string child_path_expr; 767 768 ada_varobj_describe_child (parent_value, parent_type, parent_name, 769 parent_path_expr, child_index, NULL, 770 NULL, NULL, &child_path_expr); 771 772 return child_path_expr; 773 } 774 775 /* Return the value of child number CHILD_INDEX of the (PARENT_VALUE, 776 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */ 777 778 static struct value * 779 ada_varobj_get_value_of_child (struct value *parent_value, 780 struct type *parent_type, 781 const char *parent_name, int child_index) 782 { 783 struct value *child_value; 784 785 ada_varobj_describe_child (parent_value, parent_type, parent_name, 786 NULL, child_index, NULL, &child_value, 787 NULL, NULL); 788 789 return child_value; 790 } 791 792 /* Return the type of child number CHILD_INDEX of the (PARENT_VALUE, 793 PARENT_TYPE) pair. */ 794 795 static struct type * 796 ada_varobj_get_type_of_child (struct value *parent_value, 797 struct type *parent_type, 798 int child_index) 799 { 800 struct type *child_type; 801 802 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL, 803 child_index, NULL, NULL, &child_type, NULL); 804 805 return child_type; 806 } 807 808 /* Return a string that contains the image of the given VALUE, using 809 the print options OPTS as the options for formatting the result. 810 811 The resulting string must be deallocated after use with xfree. */ 812 813 static std::string 814 ada_varobj_get_value_image (struct value *value, 815 struct value_print_options *opts) 816 { 817 string_file buffer; 818 819 common_val_print (value, &buffer, 0, opts, current_language); 820 return buffer.release (); 821 } 822 823 /* Assuming that the (VALUE, TYPE) pair designates an array varobj, 824 return a string that is suitable for use in the "value" field of 825 the varobj output. Most of the time, this is the number of elements 826 in the array inside square brackets, but there are situations where 827 it's useful to add more info. 828 829 OPTS are the print options used when formatting the result. 830 831 The result should be deallocated after use using xfree. */ 832 833 static std::string 834 ada_varobj_get_value_of_array_variable (struct value *value, 835 struct type *type, 836 struct value_print_options *opts) 837 { 838 const int numchild = ada_varobj_get_array_number_of_children (value, type); 839 840 /* If we have a string, provide its contents in the "value" field. 841 Otherwise, the only other way to inspect the contents of the string 842 is by looking at the value of each element, as in any other array, 843 which is not very convenient... */ 844 if (value 845 && ada_is_string_type (type) 846 && (opts->format == 0 || opts->format == 's')) 847 { 848 std::string str = ada_varobj_get_value_image (value, opts); 849 return string_printf ("[%d] %s", numchild, str.c_str ()); 850 } 851 else 852 return string_printf ("[%d]", numchild); 853 } 854 855 /* Return a string representation of the (VALUE, TYPE) pair, using 856 the given print options OPTS as our formatting options. */ 857 858 static std::string 859 ada_varobj_get_value_of_variable (struct value *value, 860 struct type *type, 861 struct value_print_options *opts) 862 { 863 ada_varobj_decode_var (&value, &type); 864 865 switch (type->code ()) 866 { 867 case TYPE_CODE_STRUCT: 868 case TYPE_CODE_UNION: 869 return "{...}"; 870 case TYPE_CODE_ARRAY: 871 return ada_varobj_get_value_of_array_variable (value, type, opts); 872 default: 873 if (!value) 874 return ""; 875 else 876 return ada_varobj_get_value_image (value, opts); 877 } 878 } 879 880 /* Ada specific callbacks for VAROBJs. */ 881 882 static int 883 ada_number_of_children (const struct varobj *var) 884 { 885 return ada_varobj_get_number_of_children (var->value.get (), var->type); 886 } 887 888 static std::string 889 ada_name_of_variable (const struct varobj *parent) 890 { 891 return c_varobj_ops.name_of_variable (parent); 892 } 893 894 static std::string 895 ada_name_of_child (const struct varobj *parent, int index) 896 { 897 return ada_varobj_get_name_of_child (parent->value.get (), parent->type, 898 parent->name.c_str (), index); 899 } 900 901 static std::string 902 ada_path_expr_of_child (const struct varobj *child) 903 { 904 const struct varobj *parent = child->parent; 905 const char *parent_path_expr = varobj_get_path_expr (parent); 906 907 return ada_varobj_get_path_expr_of_child (parent->value.get (), 908 parent->type, 909 parent->name.c_str (), 910 parent_path_expr, 911 child->index); 912 } 913 914 static struct value * 915 ada_value_of_child (const struct varobj *parent, int index) 916 { 917 return ada_varobj_get_value_of_child (parent->value.get (), parent->type, 918 parent->name.c_str (), index); 919 } 920 921 static struct type * 922 ada_type_of_child (const struct varobj *parent, int index) 923 { 924 return ada_varobj_get_type_of_child (parent->value.get (), parent->type, 925 index); 926 } 927 928 static std::string 929 ada_value_of_variable (const struct varobj *var, 930 enum varobj_display_formats format) 931 { 932 struct value_print_options opts; 933 934 varobj_formatted_print_options (&opts, format); 935 936 return ada_varobj_get_value_of_variable (var->value.get (), var->type, 937 &opts); 938 } 939 940 /* Implement the "value_is_changeable_p" routine for Ada. */ 941 942 static bool 943 ada_value_is_changeable_p (const struct varobj *var) 944 { 945 struct type *type = (var->value != nullptr 946 ? value_type (var->value.get ()) : var->type); 947 948 if (type->code () == TYPE_CODE_REF) 949 type = type->target_type (); 950 951 if (ada_is_access_to_unconstrained_array (type)) 952 { 953 /* This is in reality a pointer to an unconstrained array. 954 its value is changeable. */ 955 return true; 956 } 957 958 if (ada_is_string_type (type)) 959 { 960 /* We display the contents of the string in the array's 961 "value" field. The contents can change, so consider 962 that the array is changeable. */ 963 return true; 964 } 965 966 return varobj_default_value_is_changeable_p (var); 967 } 968 969 /* Implement the "value_has_mutated" routine for Ada. */ 970 971 static bool 972 ada_value_has_mutated (const struct varobj *var, struct value *new_val, 973 struct type *new_type) 974 { 975 int from = -1; 976 int to = -1; 977 978 /* If the number of fields have changed, then for sure the type 979 has mutated. */ 980 if (ada_varobj_get_number_of_children (new_val, new_type) 981 != var->num_children) 982 return true; 983 984 /* If the number of fields have remained the same, then we need 985 to check the name of each field. If they remain the same, 986 then chances are the type hasn't mutated. This is technically 987 an incomplete test, as the child's type might have changed 988 despite the fact that the name remains the same. But we'll 989 handle this situation by saying that the child has mutated, 990 not this value. 991 992 If only part (or none!) of the children have been fetched, 993 then only check the ones we fetched. It does not matter 994 to the frontend whether a child that it has not fetched yet 995 has mutated or not. So just assume it hasn't. */ 996 997 varobj_restrict_range (var->children, &from, &to); 998 for (int i = from; i < to; i++) 999 if (ada_varobj_get_name_of_child (new_val, new_type, 1000 var->name.c_str (), i) 1001 != var->children[i]->name) 1002 return true; 1003 1004 return false; 1005 } 1006 1007 /* varobj operations for ada. */ 1008 1009 const struct lang_varobj_ops ada_varobj_ops = 1010 { 1011 ada_number_of_children, 1012 ada_name_of_variable, 1013 ada_name_of_child, 1014 ada_path_expr_of_child, 1015 ada_value_of_child, 1016 ada_type_of_child, 1017 ada_value_of_variable, 1018 ada_value_is_changeable_p, 1019 ada_value_has_mutated, 1020 varobj_default_is_path_expr_parent 1021 }; 1022