1 /* Matsushita 10300 specific support for 32-bit ELF 2 Copyright (C) 1996-2022 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "libbfd.h" 24 #include "elf-bfd.h" 25 #include "elf/mn10300.h" 26 #include "libiberty.h" 27 28 /* The mn10300 linker needs to keep track of the number of relocs that 29 it decides to copy in check_relocs for each symbol. This is so 30 that it can discard PC relative relocs if it doesn't need them when 31 linking with -Bsymbolic. We store the information in a field 32 extending the regular ELF linker hash table. */ 33 34 struct elf32_mn10300_link_hash_entry 35 { 36 /* The basic elf link hash table entry. */ 37 struct elf_link_hash_entry root; 38 39 /* For function symbols, the number of times this function is 40 called directly (ie by name). */ 41 unsigned int direct_calls; 42 43 /* For function symbols, the size of this function's stack 44 (if <= 255 bytes). We stuff this into "call" instructions 45 to this target when it's valid and profitable to do so. 46 47 This does not include stack allocated by movm! */ 48 unsigned char stack_size; 49 50 /* For function symbols, arguments (if any) for movm instruction 51 in the prologue. We stuff this value into "call" instructions 52 to the target when it's valid and profitable to do so. */ 53 unsigned char movm_args; 54 55 /* For function symbols, the amount of stack space that would be allocated 56 by the movm instruction. This is redundant with movm_args, but we 57 add it to the hash table to avoid computing it over and over. */ 58 unsigned char movm_stack_size; 59 60 /* When set, convert all "call" instructions to this target into "calls" 61 instructions. */ 62 #define MN10300_CONVERT_CALL_TO_CALLS 0x1 63 64 /* Used to mark functions which have had redundant parts of their 65 prologue deleted. */ 66 #define MN10300_DELETED_PROLOGUE_BYTES 0x2 67 unsigned char flags; 68 69 /* Calculated value. */ 70 bfd_vma value; 71 72 #define GOT_UNKNOWN 0 73 #define GOT_NORMAL 1 74 #define GOT_TLS_GD 2 75 #define GOT_TLS_LD 3 76 #define GOT_TLS_IE 4 77 /* Used to distinguish GOT entries for TLS types from normal GOT entries. */ 78 unsigned char tls_type; 79 }; 80 81 /* We derive a hash table from the main elf linker hash table so 82 we can store state variables and a secondary hash table without 83 resorting to global variables. */ 84 struct elf32_mn10300_link_hash_table 85 { 86 /* The main hash table. */ 87 struct elf_link_hash_table root; 88 89 /* A hash table for static functions. We could derive a new hash table 90 instead of using the full elf32_mn10300_link_hash_table if we wanted 91 to save some memory. */ 92 struct elf32_mn10300_link_hash_table *static_hash_table; 93 94 /* Random linker state flags. */ 95 #define MN10300_HASH_ENTRIES_INITIALIZED 0x1 96 char flags; 97 struct 98 { 99 bfd_signed_vma refcount; 100 bfd_vma offset; 101 char got_allocated; 102 char rel_emitted; 103 } tls_ldm_got; 104 }; 105 106 #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent)) 107 108 struct elf_mn10300_obj_tdata 109 { 110 struct elf_obj_tdata root; 111 112 /* tls_type for each local got entry. */ 113 char * local_got_tls_type; 114 }; 115 116 #define elf_mn10300_tdata(abfd) \ 117 ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any) 118 119 #define elf_mn10300_local_got_tls_type(abfd) \ 120 (elf_mn10300_tdata (abfd)->local_got_tls_type) 121 122 #ifndef streq 123 #define streq(a, b) (strcmp ((a),(b)) == 0) 124 #endif 125 126 /* For MN10300 linker hash table. */ 127 128 /* Get the MN10300 ELF linker hash table from a link_info structure. */ 129 130 #define elf32_mn10300_hash_table(p) \ 131 ((is_elf_hash_table ((p)->hash) \ 132 && elf_hash_table_id (elf_hash_table (p)) == MN10300_ELF_DATA) \ 133 ? (struct elf32_mn10300_link_hash_table *) (p)->hash : NULL) 134 135 #define elf32_mn10300_link_hash_traverse(table, func, info) \ 136 (elf_link_hash_traverse \ 137 (&(table)->root, \ 138 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \ 139 (info))) 140 141 static reloc_howto_type elf_mn10300_howto_table[] = 142 { 143 /* Dummy relocation. Does nothing. */ 144 HOWTO (R_MN10300_NONE, 145 0, 146 0, 147 0, 148 false, 149 0, 150 complain_overflow_dont, 151 bfd_elf_generic_reloc, 152 "R_MN10300_NONE", 153 false, 154 0, 155 0, 156 false), 157 /* Standard 32 bit reloc. */ 158 HOWTO (R_MN10300_32, 159 0, 160 4, 161 32, 162 false, 163 0, 164 complain_overflow_bitfield, 165 bfd_elf_generic_reloc, 166 "R_MN10300_32", 167 false, 168 0xffffffff, 169 0xffffffff, 170 false), 171 /* Standard 16 bit reloc. */ 172 HOWTO (R_MN10300_16, 173 0, 174 2, 175 16, 176 false, 177 0, 178 complain_overflow_bitfield, 179 bfd_elf_generic_reloc, 180 "R_MN10300_16", 181 false, 182 0xffff, 183 0xffff, 184 false), 185 /* Standard 8 bit reloc. */ 186 HOWTO (R_MN10300_8, 187 0, 188 1, 189 8, 190 false, 191 0, 192 complain_overflow_bitfield, 193 bfd_elf_generic_reloc, 194 "R_MN10300_8", 195 false, 196 0xff, 197 0xff, 198 false), 199 /* Standard 32bit pc-relative reloc. */ 200 HOWTO (R_MN10300_PCREL32, 201 0, 202 4, 203 32, 204 true, 205 0, 206 complain_overflow_bitfield, 207 bfd_elf_generic_reloc, 208 "R_MN10300_PCREL32", 209 false, 210 0xffffffff, 211 0xffffffff, 212 true), 213 /* Standard 16bit pc-relative reloc. */ 214 HOWTO (R_MN10300_PCREL16, 215 0, 216 2, 217 16, 218 true, 219 0, 220 complain_overflow_bitfield, 221 bfd_elf_generic_reloc, 222 "R_MN10300_PCREL16", 223 false, 224 0xffff, 225 0xffff, 226 true), 227 /* Standard 8 pc-relative reloc. */ 228 HOWTO (R_MN10300_PCREL8, 229 0, 230 1, 231 8, 232 true, 233 0, 234 complain_overflow_bitfield, 235 bfd_elf_generic_reloc, 236 "R_MN10300_PCREL8", 237 false, 238 0xff, 239 0xff, 240 true), 241 242 /* GNU extension to record C++ vtable hierarchy. */ 243 HOWTO (R_MN10300_GNU_VTINHERIT, /* type */ 244 0, /* rightshift */ 245 0, /* size */ 246 0, /* bitsize */ 247 false, /* pc_relative */ 248 0, /* bitpos */ 249 complain_overflow_dont, /* complain_on_overflow */ 250 NULL, /* special_function */ 251 "R_MN10300_GNU_VTINHERIT", /* name */ 252 false, /* partial_inplace */ 253 0, /* src_mask */ 254 0, /* dst_mask */ 255 false), /* pcrel_offset */ 256 257 /* GNU extension to record C++ vtable member usage */ 258 HOWTO (R_MN10300_GNU_VTENTRY, /* type */ 259 0, /* rightshift */ 260 0, /* size */ 261 0, /* bitsize */ 262 false, /* pc_relative */ 263 0, /* bitpos */ 264 complain_overflow_dont, /* complain_on_overflow */ 265 NULL, /* special_function */ 266 "R_MN10300_GNU_VTENTRY", /* name */ 267 false, /* partial_inplace */ 268 0, /* src_mask */ 269 0, /* dst_mask */ 270 false), /* pcrel_offset */ 271 272 /* Standard 24 bit reloc. */ 273 HOWTO (R_MN10300_24, 274 0, 275 4, 276 24, 277 false, 278 0, 279 complain_overflow_bitfield, 280 bfd_elf_generic_reloc, 281 "R_MN10300_24", 282 false, 283 0xffffff, 284 0xffffff, 285 false), 286 HOWTO (R_MN10300_GOTPC32, /* type */ 287 0, /* rightshift */ 288 4, /* size */ 289 32, /* bitsize */ 290 true, /* pc_relative */ 291 0, /* bitpos */ 292 complain_overflow_bitfield, /* complain_on_overflow */ 293 bfd_elf_generic_reloc, /* */ 294 "R_MN10300_GOTPC32", /* name */ 295 false, /* partial_inplace */ 296 0xffffffff, /* src_mask */ 297 0xffffffff, /* dst_mask */ 298 true), /* pcrel_offset */ 299 300 HOWTO (R_MN10300_GOTPC16, /* type */ 301 0, /* rightshift */ 302 2, /* size */ 303 16, /* bitsize */ 304 true, /* pc_relative */ 305 0, /* bitpos */ 306 complain_overflow_bitfield, /* complain_on_overflow */ 307 bfd_elf_generic_reloc, /* */ 308 "R_MN10300_GOTPC16", /* name */ 309 false, /* partial_inplace */ 310 0xffff, /* src_mask */ 311 0xffff, /* dst_mask */ 312 true), /* pcrel_offset */ 313 314 HOWTO (R_MN10300_GOTOFF32, /* type */ 315 0, /* rightshift */ 316 4, /* size */ 317 32, /* bitsize */ 318 false, /* pc_relative */ 319 0, /* bitpos */ 320 complain_overflow_bitfield, /* complain_on_overflow */ 321 bfd_elf_generic_reloc, /* */ 322 "R_MN10300_GOTOFF32", /* name */ 323 false, /* partial_inplace */ 324 0xffffffff, /* src_mask */ 325 0xffffffff, /* dst_mask */ 326 false), /* pcrel_offset */ 327 328 HOWTO (R_MN10300_GOTOFF24, /* type */ 329 0, /* rightshift */ 330 4, /* size */ 331 24, /* bitsize */ 332 false, /* pc_relative */ 333 0, /* bitpos */ 334 complain_overflow_bitfield, /* complain_on_overflow */ 335 bfd_elf_generic_reloc, /* */ 336 "R_MN10300_GOTOFF24", /* name */ 337 false, /* partial_inplace */ 338 0xffffff, /* src_mask */ 339 0xffffff, /* dst_mask */ 340 false), /* pcrel_offset */ 341 342 HOWTO (R_MN10300_GOTOFF16, /* type */ 343 0, /* rightshift */ 344 2, /* size */ 345 16, /* bitsize */ 346 false, /* pc_relative */ 347 0, /* bitpos */ 348 complain_overflow_bitfield, /* complain_on_overflow */ 349 bfd_elf_generic_reloc, /* */ 350 "R_MN10300_GOTOFF16", /* name */ 351 false, /* partial_inplace */ 352 0xffff, /* src_mask */ 353 0xffff, /* dst_mask */ 354 false), /* pcrel_offset */ 355 356 HOWTO (R_MN10300_PLT32, /* type */ 357 0, /* rightshift */ 358 4, /* size */ 359 32, /* bitsize */ 360 true, /* pc_relative */ 361 0, /* bitpos */ 362 complain_overflow_bitfield, /* complain_on_overflow */ 363 bfd_elf_generic_reloc, /* */ 364 "R_MN10300_PLT32", /* name */ 365 false, /* partial_inplace */ 366 0xffffffff, /* src_mask */ 367 0xffffffff, /* dst_mask */ 368 true), /* pcrel_offset */ 369 370 HOWTO (R_MN10300_PLT16, /* type */ 371 0, /* rightshift */ 372 2, /* size */ 373 16, /* bitsize */ 374 true, /* pc_relative */ 375 0, /* bitpos */ 376 complain_overflow_bitfield, /* complain_on_overflow */ 377 bfd_elf_generic_reloc, /* */ 378 "R_MN10300_PLT16", /* name */ 379 false, /* partial_inplace */ 380 0xffff, /* src_mask */ 381 0xffff, /* dst_mask */ 382 true), /* pcrel_offset */ 383 384 HOWTO (R_MN10300_GOT32, /* type */ 385 0, /* rightshift */ 386 4, /* size */ 387 32, /* bitsize */ 388 false, /* pc_relative */ 389 0, /* bitpos */ 390 complain_overflow_bitfield, /* complain_on_overflow */ 391 bfd_elf_generic_reloc, /* */ 392 "R_MN10300_GOT32", /* name */ 393 false, /* partial_inplace */ 394 0xffffffff, /* src_mask */ 395 0xffffffff, /* dst_mask */ 396 false), /* pcrel_offset */ 397 398 HOWTO (R_MN10300_GOT24, /* type */ 399 0, /* rightshift */ 400 4, /* size */ 401 24, /* bitsize */ 402 false, /* pc_relative */ 403 0, /* bitpos */ 404 complain_overflow_bitfield, /* complain_on_overflow */ 405 bfd_elf_generic_reloc, /* */ 406 "R_MN10300_GOT24", /* name */ 407 false, /* partial_inplace */ 408 0xffffffff, /* src_mask */ 409 0xffffffff, /* dst_mask */ 410 false), /* pcrel_offset */ 411 412 HOWTO (R_MN10300_GOT16, /* type */ 413 0, /* rightshift */ 414 2, /* size */ 415 16, /* bitsize */ 416 false, /* pc_relative */ 417 0, /* bitpos */ 418 complain_overflow_bitfield, /* complain_on_overflow */ 419 bfd_elf_generic_reloc, /* */ 420 "R_MN10300_GOT16", /* name */ 421 false, /* partial_inplace */ 422 0xffffffff, /* src_mask */ 423 0xffffffff, /* dst_mask */ 424 false), /* pcrel_offset */ 425 426 HOWTO (R_MN10300_COPY, /* type */ 427 0, /* rightshift */ 428 4, /* size */ 429 32, /* bitsize */ 430 false, /* pc_relative */ 431 0, /* bitpos */ 432 complain_overflow_bitfield, /* complain_on_overflow */ 433 bfd_elf_generic_reloc, /* */ 434 "R_MN10300_COPY", /* name */ 435 false, /* partial_inplace */ 436 0xffffffff, /* src_mask */ 437 0xffffffff, /* dst_mask */ 438 false), /* pcrel_offset */ 439 440 HOWTO (R_MN10300_GLOB_DAT, /* type */ 441 0, /* rightshift */ 442 4, /* size */ 443 32, /* bitsize */ 444 false, /* pc_relative */ 445 0, /* bitpos */ 446 complain_overflow_bitfield, /* complain_on_overflow */ 447 bfd_elf_generic_reloc, /* */ 448 "R_MN10300_GLOB_DAT", /* name */ 449 false, /* partial_inplace */ 450 0xffffffff, /* src_mask */ 451 0xffffffff, /* dst_mask */ 452 false), /* pcrel_offset */ 453 454 HOWTO (R_MN10300_JMP_SLOT, /* type */ 455 0, /* rightshift */ 456 4, /* size */ 457 32, /* bitsize */ 458 false, /* pc_relative */ 459 0, /* bitpos */ 460 complain_overflow_bitfield, /* complain_on_overflow */ 461 bfd_elf_generic_reloc, /* */ 462 "R_MN10300_JMP_SLOT", /* name */ 463 false, /* partial_inplace */ 464 0xffffffff, /* src_mask */ 465 0xffffffff, /* dst_mask */ 466 false), /* pcrel_offset */ 467 468 HOWTO (R_MN10300_RELATIVE, /* type */ 469 0, /* rightshift */ 470 4, /* size */ 471 32, /* bitsize */ 472 false, /* pc_relative */ 473 0, /* bitpos */ 474 complain_overflow_bitfield, /* complain_on_overflow */ 475 bfd_elf_generic_reloc, /* */ 476 "R_MN10300_RELATIVE", /* name */ 477 false, /* partial_inplace */ 478 0xffffffff, /* src_mask */ 479 0xffffffff, /* dst_mask */ 480 false), /* pcrel_offset */ 481 482 HOWTO (R_MN10300_TLS_GD, /* type */ 483 0, /* rightshift */ 484 4, /* size */ 485 32, /* bitsize */ 486 false, /* pc_relative */ 487 0, /* bitpos */ 488 complain_overflow_bitfield, /* complain_on_overflow */ 489 bfd_elf_generic_reloc, /* */ 490 "R_MN10300_TLS_GD", /* name */ 491 false, /* partial_inplace */ 492 0xffffffff, /* src_mask */ 493 0xffffffff, /* dst_mask */ 494 false), /* pcrel_offset */ 495 496 HOWTO (R_MN10300_TLS_LD, /* type */ 497 0, /* rightshift */ 498 4, /* size */ 499 32, /* bitsize */ 500 false, /* pc_relative */ 501 0, /* bitpos */ 502 complain_overflow_bitfield, /* complain_on_overflow */ 503 bfd_elf_generic_reloc, /* */ 504 "R_MN10300_TLS_LD", /* name */ 505 false, /* partial_inplace */ 506 0xffffffff, /* src_mask */ 507 0xffffffff, /* dst_mask */ 508 false), /* pcrel_offset */ 509 510 HOWTO (R_MN10300_TLS_LDO, /* type */ 511 0, /* rightshift */ 512 4, /* size */ 513 32, /* bitsize */ 514 false, /* pc_relative */ 515 0, /* bitpos */ 516 complain_overflow_bitfield, /* complain_on_overflow */ 517 bfd_elf_generic_reloc, /* */ 518 "R_MN10300_TLS_LDO", /* name */ 519 false, /* partial_inplace */ 520 0xffffffff, /* src_mask */ 521 0xffffffff, /* dst_mask */ 522 false), /* pcrel_offset */ 523 524 HOWTO (R_MN10300_TLS_GOTIE, /* type */ 525 0, /* rightshift */ 526 4, /* size */ 527 32, /* bitsize */ 528 false, /* pc_relative */ 529 0, /* bitpos */ 530 complain_overflow_bitfield, /* complain_on_overflow */ 531 bfd_elf_generic_reloc, /* */ 532 "R_MN10300_TLS_GOTIE", /* name */ 533 false, /* partial_inplace */ 534 0xffffffff, /* src_mask */ 535 0xffffffff, /* dst_mask */ 536 false), /* pcrel_offset */ 537 538 HOWTO (R_MN10300_TLS_IE, /* type */ 539 0, /* rightshift */ 540 4, /* size */ 541 32, /* bitsize */ 542 false, /* pc_relative */ 543 0, /* bitpos */ 544 complain_overflow_bitfield, /* complain_on_overflow */ 545 bfd_elf_generic_reloc, /* */ 546 "R_MN10300_TLS_IE", /* name */ 547 false, /* partial_inplace */ 548 0xffffffff, /* src_mask */ 549 0xffffffff, /* dst_mask */ 550 false), /* pcrel_offset */ 551 552 HOWTO (R_MN10300_TLS_LE, /* type */ 553 0, /* rightshift */ 554 4, /* size */ 555 32, /* bitsize */ 556 false, /* pc_relative */ 557 0, /* bitpos */ 558 complain_overflow_bitfield, /* complain_on_overflow */ 559 bfd_elf_generic_reloc, /* */ 560 "R_MN10300_TLS_LE", /* name */ 561 false, /* partial_inplace */ 562 0xffffffff, /* src_mask */ 563 0xffffffff, /* dst_mask */ 564 false), /* pcrel_offset */ 565 566 HOWTO (R_MN10300_TLS_DTPMOD, /* type */ 567 0, /* rightshift */ 568 4, /* size */ 569 32, /* bitsize */ 570 false, /* pc_relative */ 571 0, /* bitpos */ 572 complain_overflow_bitfield, /* complain_on_overflow */ 573 bfd_elf_generic_reloc, /* */ 574 "R_MN10300_TLS_DTPMOD", /* name */ 575 false, /* partial_inplace */ 576 0xffffffff, /* src_mask */ 577 0xffffffff, /* dst_mask */ 578 false), /* pcrel_offset */ 579 580 HOWTO (R_MN10300_TLS_DTPOFF, /* type */ 581 0, /* rightshift */ 582 4, /* size */ 583 32, /* bitsize */ 584 false, /* pc_relative */ 585 0, /* bitpos */ 586 complain_overflow_bitfield, /* complain_on_overflow */ 587 bfd_elf_generic_reloc, /* */ 588 "R_MN10300_TLS_DTPOFF", /* name */ 589 false, /* partial_inplace */ 590 0xffffffff, /* src_mask */ 591 0xffffffff, /* dst_mask */ 592 false), /* pcrel_offset */ 593 594 HOWTO (R_MN10300_TLS_TPOFF, /* type */ 595 0, /* rightshift */ 596 4, /* size */ 597 32, /* bitsize */ 598 false, /* pc_relative */ 599 0, /* bitpos */ 600 complain_overflow_bitfield, /* complain_on_overflow */ 601 bfd_elf_generic_reloc, /* */ 602 "R_MN10300_TLS_TPOFF", /* name */ 603 false, /* partial_inplace */ 604 0xffffffff, /* src_mask */ 605 0xffffffff, /* dst_mask */ 606 false), /* pcrel_offset */ 607 608 HOWTO (R_MN10300_SYM_DIFF, /* type */ 609 0, /* rightshift */ 610 4, /* size */ 611 32, /* bitsize */ 612 false, /* pc_relative */ 613 0, /* bitpos */ 614 complain_overflow_dont,/* complain_on_overflow */ 615 NULL, /* special handler. */ 616 "R_MN10300_SYM_DIFF", /* name */ 617 false, /* partial_inplace */ 618 0xffffffff, /* src_mask */ 619 0xffffffff, /* dst_mask */ 620 false), /* pcrel_offset */ 621 622 HOWTO (R_MN10300_ALIGN, /* type */ 623 0, /* rightshift */ 624 1, /* size */ 625 32, /* bitsize */ 626 false, /* pc_relative */ 627 0, /* bitpos */ 628 complain_overflow_dont,/* complain_on_overflow */ 629 NULL, /* special handler. */ 630 "R_MN10300_ALIGN", /* name */ 631 false, /* partial_inplace */ 632 0, /* src_mask */ 633 0, /* dst_mask */ 634 false) /* pcrel_offset */ 635 }; 636 637 struct mn10300_reloc_map 638 { 639 bfd_reloc_code_real_type bfd_reloc_val; 640 unsigned char elf_reloc_val; 641 }; 642 643 static const struct mn10300_reloc_map mn10300_reloc_map[] = 644 { 645 { BFD_RELOC_NONE, R_MN10300_NONE, }, 646 { BFD_RELOC_32, R_MN10300_32, }, 647 { BFD_RELOC_16, R_MN10300_16, }, 648 { BFD_RELOC_8, R_MN10300_8, }, 649 { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, }, 650 { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, }, 651 { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, }, 652 { BFD_RELOC_24, R_MN10300_24, }, 653 { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT }, 654 { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY }, 655 { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 }, 656 { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 }, 657 { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 }, 658 { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 }, 659 { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 }, 660 { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 }, 661 { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 }, 662 { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 }, 663 { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 }, 664 { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 }, 665 { BFD_RELOC_MN10300_COPY, R_MN10300_COPY }, 666 { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT }, 667 { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT }, 668 { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE }, 669 { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD }, 670 { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD }, 671 { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO }, 672 { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE }, 673 { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE }, 674 { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE }, 675 { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD }, 676 { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF }, 677 { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF }, 678 { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF }, 679 { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN } 680 }; 681 682 /* Create the GOT section. */ 683 684 static bool 685 _bfd_mn10300_elf_create_got_section (bfd * abfd, 686 struct bfd_link_info * info) 687 { 688 flagword flags; 689 flagword pltflags; 690 asection * s; 691 struct elf_link_hash_entry * h; 692 const struct elf_backend_data * bed = get_elf_backend_data (abfd); 693 struct elf_link_hash_table *htab; 694 int ptralign; 695 696 /* This function may be called more than once. */ 697 htab = elf_hash_table (info); 698 if (htab->sgot != NULL) 699 return true; 700 701 switch (bed->s->arch_size) 702 { 703 case 32: 704 ptralign = 2; 705 break; 706 707 case 64: 708 ptralign = 3; 709 break; 710 711 default: 712 bfd_set_error (bfd_error_bad_value); 713 return false; 714 } 715 716 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 717 | SEC_LINKER_CREATED); 718 719 pltflags = flags; 720 pltflags |= SEC_CODE; 721 if (bed->plt_not_loaded) 722 pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); 723 if (bed->plt_readonly) 724 pltflags |= SEC_READONLY; 725 726 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); 727 htab->splt = s; 728 if (s == NULL 729 || !bfd_set_section_alignment (s, bed->plt_alignment)) 730 return false; 731 732 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the 733 .plt section. */ 734 if (bed->want_plt_sym) 735 { 736 h = _bfd_elf_define_linkage_sym (abfd, info, s, 737 "_PROCEDURE_LINKAGE_TABLE_"); 738 htab->hplt = h; 739 if (h == NULL) 740 return false; 741 } 742 743 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 744 htab->sgot = s; 745 if (s == NULL 746 || !bfd_set_section_alignment (s, ptralign)) 747 return false; 748 749 if (bed->want_got_plt) 750 { 751 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 752 htab->sgotplt = s; 753 if (s == NULL 754 || !bfd_set_section_alignment (s, ptralign)) 755 return false; 756 } 757 758 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 759 (or .got.plt) section. We don't do this in the linker script 760 because we don't want to define the symbol if we are not creating 761 a global offset table. */ 762 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_"); 763 htab->hgot = h; 764 if (h == NULL) 765 return false; 766 767 /* The first bit of the global offset table is the header. */ 768 s->size += bed->got_header_size; 769 770 return true; 771 } 772 773 static reloc_howto_type * 774 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 775 bfd_reloc_code_real_type code) 776 { 777 unsigned int i; 778 779 for (i = ARRAY_SIZE (mn10300_reloc_map); i--;) 780 if (mn10300_reloc_map[i].bfd_reloc_val == code) 781 return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val]; 782 783 return NULL; 784 } 785 786 static reloc_howto_type * 787 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 788 const char *r_name) 789 { 790 unsigned int i; 791 792 for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;) 793 if (elf_mn10300_howto_table[i].name != NULL 794 && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0) 795 return elf_mn10300_howto_table + i; 796 797 return NULL; 798 } 799 800 /* Set the howto pointer for an MN10300 ELF reloc. */ 801 802 static bool 803 mn10300_info_to_howto (bfd *abfd, 804 arelent *cache_ptr, 805 Elf_Internal_Rela *dst) 806 { 807 unsigned int r_type; 808 809 r_type = ELF32_R_TYPE (dst->r_info); 810 if (r_type >= R_MN10300_MAX) 811 { 812 /* xgettext:c-format */ 813 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 814 abfd, r_type); 815 bfd_set_error (bfd_error_bad_value); 816 return false; 817 } 818 cache_ptr->howto = elf_mn10300_howto_table + r_type; 819 return true; 820 } 821 822 static int 823 elf_mn10300_tls_transition (struct bfd_link_info * info, 824 int r_type, 825 struct elf_link_hash_entry * h, 826 asection * sec, 827 bool counting) 828 { 829 bool is_local; 830 831 if (r_type == R_MN10300_TLS_GD 832 && h != NULL 833 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) 834 return R_MN10300_TLS_GOTIE; 835 836 if (bfd_link_pic (info)) 837 return r_type; 838 839 if (! (sec->flags & SEC_CODE)) 840 return r_type; 841 842 if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created) 843 is_local = true; 844 else 845 is_local = SYMBOL_CALLS_LOCAL (info, h); 846 847 /* For the main program, these are the transitions we do. */ 848 switch (r_type) 849 { 850 case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE; 851 case R_MN10300_TLS_LD: return R_MN10300_NONE; 852 case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE; 853 case R_MN10300_TLS_IE: 854 case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type; 855 } 856 857 return r_type; 858 } 859 860 /* Return the relocation value for @tpoff relocation 861 if STT_TLS virtual address is ADDRESS. */ 862 863 static bfd_vma 864 dtpoff (struct bfd_link_info * info, bfd_vma address) 865 { 866 struct elf_link_hash_table *htab = elf_hash_table (info); 867 868 /* If tls_sec is NULL, we should have signalled an error already. */ 869 if (htab->tls_sec == NULL) 870 return 0; 871 return address - htab->tls_sec->vma; 872 } 873 874 /* Return the relocation value for @tpoff relocation 875 if STT_TLS virtual address is ADDRESS. */ 876 877 static bfd_vma 878 tpoff (struct bfd_link_info * info, bfd_vma address) 879 { 880 struct elf_link_hash_table *htab = elf_hash_table (info); 881 882 /* If tls_sec is NULL, we should have signalled an error already. */ 883 if (htab->tls_sec == NULL) 884 return 0; 885 return address - (htab->tls_size + htab->tls_sec->vma); 886 } 887 888 /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need 889 to skip, after this one. The actual value is the offset between 890 this reloc and the PLT reloc. */ 891 892 static int 893 mn10300_do_tls_transition (bfd * input_bfd, 894 unsigned int r_type, 895 unsigned int tls_r_type, 896 bfd_byte * contents, 897 bfd_vma offset) 898 { 899 bfd_byte *op = contents + offset; 900 int gotreg = 0; 901 902 #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2)) 903 904 /* This is common to all GD/LD transitions, so break it out. */ 905 if (r_type == R_MN10300_TLS_GD 906 || r_type == R_MN10300_TLS_LD) 907 { 908 op -= 2; 909 /* mov imm,d0. */ 910 BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC); 911 BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC); 912 /* add aN,d0. */ 913 BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1); 914 gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2; 915 /* Call. */ 916 BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD); 917 } 918 919 switch (TLS_PAIR (r_type, tls_r_type)) 920 { 921 case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE): 922 { 923 /* Keep track of which register we put GOTptr in. */ 924 /* mov (_x@indntpoff,a2),a0. */ 925 memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6); 926 op[1] |= gotreg; 927 /* add e2,a0. */ 928 memcpy (op+6, "\xF9\x78\x28", 3); 929 /* or 0x00000000, d0 - six byte nop. */ 930 memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); 931 } 932 return 7; 933 934 case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE): 935 { 936 /* Register is *always* a0. */ 937 /* mov _x@tpoff,a0. */ 938 memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6); 939 /* add e2,a0. */ 940 memcpy (op+6, "\xF9\x78\x28", 3); 941 /* or 0x00000000, d0 - six byte nop. */ 942 memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); 943 } 944 return 7; 945 case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE): 946 { 947 /* Register is *always* a0. */ 948 /* mov e2,a0. */ 949 memcpy (op, "\xF5\x88", 2); 950 /* or 0x00000000, d0 - six byte nop. */ 951 memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6); 952 /* or 0x00000000, e2 - seven byte nop. */ 953 memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7); 954 } 955 return 7; 956 957 case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE): 958 /* No changes needed, just the reloc change. */ 959 return 0; 960 961 /* These are a little tricky, because we have to detect which 962 opcode is being used (they're different sizes, with the reloc 963 at different offsets within the opcode) and convert each 964 accordingly, copying the operands as needed. The conversions 965 we do are as follows (IE,GOTIE,LE): 966 967 1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn 968 1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn 969 1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn 970 971 1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An 972 1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An 973 1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An 974 975 1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn 976 1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn 977 1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn 978 979 Since the GOT pointer is always $a2, we assume the last 980 normally won't happen, but let's be paranoid and plan for the 981 day that GCC optimizes it somewhow. */ 982 983 case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE): 984 if (op[-2] == 0xFC) 985 { 986 op -= 2; 987 if ((op[1] & 0xFC) == 0xA4) /* Dn */ 988 { 989 op[1] &= 0x03; /* Leaves Dn. */ 990 op[1] |= 0xCC; 991 } 992 else /* An */ 993 { 994 op[1] &= 0x03; /* Leaves An. */ 995 op[1] |= 0xDC; 996 } 997 } 998 else if (op[-3] == 0xFE) 999 op[-2] = 0x08; 1000 else 1001 abort (); 1002 break; 1003 1004 case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE): 1005 if (op[-2] == 0xFC) 1006 { 1007 op -= 2; 1008 if ((op[1] & 0xF0) == 0x00) /* Dn */ 1009 { 1010 op[1] &= 0x0C; /* Leaves Dn. */ 1011 op[1] >>= 2; 1012 op[1] |= 0xCC; 1013 } 1014 else /* An */ 1015 { 1016 op[1] &= 0x0C; /* Leaves An. */ 1017 op[1] >>= 2; 1018 op[1] |= 0xDC; 1019 } 1020 } 1021 else if (op[-3] == 0xFE) 1022 op[-2] = 0x08; 1023 else 1024 abort (); 1025 break; 1026 1027 default: 1028 _bfd_error_handler 1029 /* xgettext:c-format */ 1030 (_("%pB: unsupported transition from %s to %s"), 1031 input_bfd, 1032 elf_mn10300_howto_table[r_type].name, 1033 elf_mn10300_howto_table[tls_r_type].name); 1034 break; 1035 } 1036 #undef TLS_PAIR 1037 return 0; 1038 } 1039 1040 /* Look through the relocs for a section during the first phase. 1041 Since we don't do .gots or .plts, we just need to consider the 1042 virtual table relocs for gc. */ 1043 1044 static bool 1045 mn10300_elf_check_relocs (bfd *abfd, 1046 struct bfd_link_info *info, 1047 asection *sec, 1048 const Elf_Internal_Rela *relocs) 1049 { 1050 struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); 1051 bool sym_diff_reloc_seen; 1052 Elf_Internal_Shdr *symtab_hdr; 1053 Elf_Internal_Sym * isymbuf = NULL; 1054 struct elf_link_hash_entry **sym_hashes; 1055 const Elf_Internal_Rela *rel; 1056 const Elf_Internal_Rela *rel_end; 1057 bfd * dynobj; 1058 bfd_vma * local_got_offsets; 1059 asection * sgot; 1060 asection * srelgot; 1061 asection * sreloc; 1062 bool result = false; 1063 1064 sgot = NULL; 1065 srelgot = NULL; 1066 sreloc = NULL; 1067 1068 if (bfd_link_relocatable (info)) 1069 return true; 1070 1071 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1072 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 1073 sym_hashes = elf_sym_hashes (abfd); 1074 1075 dynobj = elf_hash_table (info)->dynobj; 1076 local_got_offsets = elf_local_got_offsets (abfd); 1077 rel_end = relocs + sec->reloc_count; 1078 sym_diff_reloc_seen = false; 1079 1080 for (rel = relocs; rel < rel_end; rel++) 1081 { 1082 struct elf_link_hash_entry *h; 1083 unsigned long r_symndx; 1084 unsigned int r_type; 1085 int tls_type = GOT_NORMAL; 1086 1087 r_symndx = ELF32_R_SYM (rel->r_info); 1088 if (r_symndx < symtab_hdr->sh_info) 1089 h = NULL; 1090 else 1091 { 1092 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1093 while (h->root.type == bfd_link_hash_indirect 1094 || h->root.type == bfd_link_hash_warning) 1095 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1096 } 1097 1098 r_type = ELF32_R_TYPE (rel->r_info); 1099 r_type = elf_mn10300_tls_transition (info, r_type, h, sec, true); 1100 1101 /* Some relocs require a global offset table. */ 1102 if (dynobj == NULL) 1103 { 1104 switch (r_type) 1105 { 1106 case R_MN10300_GOT32: 1107 case R_MN10300_GOT24: 1108 case R_MN10300_GOT16: 1109 case R_MN10300_GOTOFF32: 1110 case R_MN10300_GOTOFF24: 1111 case R_MN10300_GOTOFF16: 1112 case R_MN10300_GOTPC32: 1113 case R_MN10300_GOTPC16: 1114 case R_MN10300_TLS_GD: 1115 case R_MN10300_TLS_LD: 1116 case R_MN10300_TLS_GOTIE: 1117 case R_MN10300_TLS_IE: 1118 elf_hash_table (info)->dynobj = dynobj = abfd; 1119 if (! _bfd_mn10300_elf_create_got_section (dynobj, info)) 1120 goto fail; 1121 break; 1122 1123 default: 1124 break; 1125 } 1126 } 1127 1128 switch (r_type) 1129 { 1130 /* This relocation describes the C++ object vtable hierarchy. 1131 Reconstruct it for later use during GC. */ 1132 case R_MN10300_GNU_VTINHERIT: 1133 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 1134 goto fail; 1135 break; 1136 1137 /* This relocation describes which C++ vtable entries are actually 1138 used. Record for later use during GC. */ 1139 case R_MN10300_GNU_VTENTRY: 1140 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 1141 goto fail; 1142 break; 1143 1144 case R_MN10300_TLS_LD: 1145 htab->tls_ldm_got.refcount ++; 1146 tls_type = GOT_TLS_LD; 1147 1148 if (htab->tls_ldm_got.got_allocated) 1149 break; 1150 goto create_got; 1151 1152 case R_MN10300_TLS_IE: 1153 case R_MN10300_TLS_GOTIE: 1154 if (bfd_link_pic (info)) 1155 info->flags |= DF_STATIC_TLS; 1156 /* Fall through */ 1157 1158 case R_MN10300_TLS_GD: 1159 case R_MN10300_GOT32: 1160 case R_MN10300_GOT24: 1161 case R_MN10300_GOT16: 1162 create_got: 1163 /* This symbol requires a global offset table entry. */ 1164 1165 switch (r_type) 1166 { 1167 case R_MN10300_TLS_IE: 1168 case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break; 1169 case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break; 1170 default: tls_type = GOT_NORMAL; break; 1171 } 1172 1173 sgot = htab->root.sgot; 1174 srelgot = htab->root.srelgot; 1175 BFD_ASSERT (sgot != NULL && srelgot != NULL); 1176 1177 if (r_type == R_MN10300_TLS_LD) 1178 { 1179 htab->tls_ldm_got.offset = sgot->size; 1180 htab->tls_ldm_got.got_allocated ++; 1181 } 1182 else if (h != NULL) 1183 { 1184 if (elf_mn10300_hash_entry (h)->tls_type != tls_type 1185 && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN) 1186 { 1187 if (tls_type == GOT_TLS_IE 1188 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD) 1189 /* No change - this is ok. */; 1190 else if (tls_type == GOT_TLS_GD 1191 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) 1192 /* Transition GD->IE. */ 1193 tls_type = GOT_TLS_IE; 1194 else 1195 _bfd_error_handler 1196 /* xgettext:c-format */ 1197 (_("%pB: %s' accessed both as normal and thread local symbol"), 1198 abfd, h ? h->root.root.string : "<local>"); 1199 } 1200 1201 elf_mn10300_hash_entry (h)->tls_type = tls_type; 1202 1203 if (h->got.offset != (bfd_vma) -1) 1204 /* We have already allocated space in the .got. */ 1205 break; 1206 1207 h->got.offset = sgot->size; 1208 1209 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 1210 /* Make sure this symbol is output as a dynamic symbol. */ 1211 && h->dynindx == -1) 1212 { 1213 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1214 goto fail; 1215 } 1216 1217 srelgot->size += sizeof (Elf32_External_Rela); 1218 if (r_type == R_MN10300_TLS_GD) 1219 srelgot->size += sizeof (Elf32_External_Rela); 1220 } 1221 else 1222 { 1223 /* This is a global offset table entry for a local 1224 symbol. */ 1225 if (local_got_offsets == NULL) 1226 { 1227 size_t size; 1228 unsigned int i; 1229 1230 size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char)); 1231 local_got_offsets = bfd_alloc (abfd, size); 1232 1233 if (local_got_offsets == NULL) 1234 goto fail; 1235 1236 elf_local_got_offsets (abfd) = local_got_offsets; 1237 elf_mn10300_local_got_tls_type (abfd) 1238 = (char *) (local_got_offsets + symtab_hdr->sh_info); 1239 1240 for (i = 0; i < symtab_hdr->sh_info; i++) 1241 local_got_offsets[i] = (bfd_vma) -1; 1242 } 1243 1244 if (local_got_offsets[r_symndx] != (bfd_vma) -1) 1245 /* We have already allocated space in the .got. */ 1246 break; 1247 1248 local_got_offsets[r_symndx] = sgot->size; 1249 1250 if (bfd_link_pic (info)) 1251 { 1252 /* If we are generating a shared object, we need to 1253 output a R_MN10300_RELATIVE reloc so that the dynamic 1254 linker can adjust this GOT entry. */ 1255 srelgot->size += sizeof (Elf32_External_Rela); 1256 1257 if (r_type == R_MN10300_TLS_GD) 1258 /* And a R_MN10300_TLS_DTPOFF reloc as well. */ 1259 srelgot->size += sizeof (Elf32_External_Rela); 1260 } 1261 1262 elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type; 1263 } 1264 1265 sgot->size += 4; 1266 if (r_type == R_MN10300_TLS_GD 1267 || r_type == R_MN10300_TLS_LD) 1268 sgot->size += 4; 1269 1270 goto need_shared_relocs; 1271 1272 case R_MN10300_PLT32: 1273 case R_MN10300_PLT16: 1274 /* This symbol requires a procedure linkage table entry. We 1275 actually build the entry in adjust_dynamic_symbol, 1276 because this might be a case of linking PIC code which is 1277 never referenced by a dynamic object, in which case we 1278 don't need to generate a procedure linkage table entry 1279 after all. */ 1280 1281 /* If this is a local symbol, we resolve it directly without 1282 creating a procedure linkage table entry. */ 1283 if (h == NULL) 1284 continue; 1285 1286 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 1287 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) 1288 break; 1289 1290 h->needs_plt = 1; 1291 break; 1292 1293 case R_MN10300_24: 1294 case R_MN10300_16: 1295 case R_MN10300_8: 1296 case R_MN10300_PCREL32: 1297 case R_MN10300_PCREL16: 1298 case R_MN10300_PCREL8: 1299 if (h != NULL) 1300 h->non_got_ref = 1; 1301 break; 1302 1303 case R_MN10300_SYM_DIFF: 1304 sym_diff_reloc_seen = true; 1305 break; 1306 1307 case R_MN10300_32: 1308 if (h != NULL) 1309 h->non_got_ref = 1; 1310 1311 need_shared_relocs: 1312 /* If we are creating a shared library, then we 1313 need to copy the reloc into the shared library. */ 1314 if (bfd_link_pic (info) 1315 && (sec->flags & SEC_ALLOC) != 0 1316 /* Do not generate a dynamic reloc for a 1317 reloc associated with a SYM_DIFF operation. */ 1318 && ! sym_diff_reloc_seen) 1319 { 1320 asection * sym_section = NULL; 1321 1322 /* Find the section containing the 1323 symbol involved in the relocation. */ 1324 if (h == NULL) 1325 { 1326 Elf_Internal_Sym * isym; 1327 1328 if (isymbuf == NULL) 1329 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 1330 symtab_hdr->sh_info, 0, 1331 NULL, NULL, NULL); 1332 if (isymbuf) 1333 { 1334 isym = isymbuf + r_symndx; 1335 /* All we care about is whether this local symbol is absolute. */ 1336 if (isym->st_shndx == SHN_ABS) 1337 sym_section = bfd_abs_section_ptr; 1338 } 1339 } 1340 else 1341 { 1342 if (h->root.type == bfd_link_hash_defined 1343 || h->root.type == bfd_link_hash_defweak) 1344 sym_section = h->root.u.def.section; 1345 } 1346 1347 /* If the symbol is absolute then the relocation can 1348 be resolved during linking and there is no need for 1349 a dynamic reloc. */ 1350 if (sym_section != bfd_abs_section_ptr) 1351 { 1352 /* When creating a shared object, we must copy these 1353 reloc types into the output file. We create a reloc 1354 section in dynobj and make room for this reloc. */ 1355 if (sreloc == NULL) 1356 { 1357 sreloc = _bfd_elf_make_dynamic_reloc_section 1358 (sec, dynobj, 2, abfd, /*rela?*/ true); 1359 if (sreloc == NULL) 1360 goto fail; 1361 } 1362 1363 sreloc->size += sizeof (Elf32_External_Rela); 1364 } 1365 } 1366 1367 break; 1368 } 1369 1370 if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF) 1371 sym_diff_reloc_seen = false; 1372 } 1373 1374 result = true; 1375 fail: 1376 if (symtab_hdr->contents != (unsigned char *) isymbuf) 1377 free (isymbuf); 1378 1379 return result; 1380 } 1381 1382 /* Return the section that should be marked against GC for a given 1383 relocation. */ 1384 1385 static asection * 1386 mn10300_elf_gc_mark_hook (asection *sec, 1387 struct bfd_link_info *info, 1388 Elf_Internal_Rela *rel, 1389 struct elf_link_hash_entry *h, 1390 Elf_Internal_Sym *sym) 1391 { 1392 if (h != NULL) 1393 switch (ELF32_R_TYPE (rel->r_info)) 1394 { 1395 case R_MN10300_GNU_VTINHERIT: 1396 case R_MN10300_GNU_VTENTRY: 1397 return NULL; 1398 } 1399 1400 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1401 } 1402 1403 /* Perform a relocation as part of a final link. */ 1404 1405 static bfd_reloc_status_type 1406 mn10300_elf_final_link_relocate (reloc_howto_type *howto, 1407 bfd *input_bfd, 1408 bfd *output_bfd ATTRIBUTE_UNUSED, 1409 asection *input_section, 1410 bfd_byte *contents, 1411 bfd_vma offset, 1412 bfd_vma value, 1413 bfd_vma addend, 1414 struct elf_link_hash_entry * h, 1415 unsigned long symndx, 1416 struct bfd_link_info *info, 1417 asection *sym_sec ATTRIBUTE_UNUSED, 1418 int is_local ATTRIBUTE_UNUSED) 1419 { 1420 struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); 1421 static asection * sym_diff_section; 1422 static bfd_vma sym_diff_value; 1423 bool is_sym_diff_reloc; 1424 unsigned long r_type = howto->type; 1425 bfd_byte * hit_data = contents + offset; 1426 bfd * dynobj; 1427 asection * sgot; 1428 asection * splt; 1429 asection * sreloc; 1430 1431 dynobj = elf_hash_table (info)->dynobj; 1432 sgot = NULL; 1433 splt = NULL; 1434 sreloc = NULL; 1435 1436 switch (r_type) 1437 { 1438 case R_MN10300_24: 1439 case R_MN10300_16: 1440 case R_MN10300_8: 1441 case R_MN10300_PCREL8: 1442 case R_MN10300_PCREL16: 1443 case R_MN10300_PCREL32: 1444 case R_MN10300_GOTOFF32: 1445 case R_MN10300_GOTOFF24: 1446 case R_MN10300_GOTOFF16: 1447 if (bfd_link_pic (info) 1448 && (input_section->flags & SEC_ALLOC) != 0 1449 && h != NULL 1450 && ! SYMBOL_REFERENCES_LOCAL (info, h)) 1451 return bfd_reloc_dangerous; 1452 /* Fall through. */ 1453 case R_MN10300_GOT32: 1454 /* Issue 2052223: 1455 Taking the address of a protected function in a shared library 1456 is illegal. Issue an error message here. */ 1457 if (bfd_link_pic (info) 1458 && (input_section->flags & SEC_ALLOC) != 0 1459 && h != NULL 1460 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED 1461 && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC) 1462 && ! SYMBOL_REFERENCES_LOCAL (info, h)) 1463 return bfd_reloc_dangerous; 1464 } 1465 1466 is_sym_diff_reloc = false; 1467 if (sym_diff_section != NULL) 1468 { 1469 BFD_ASSERT (sym_diff_section == input_section); 1470 1471 switch (r_type) 1472 { 1473 case R_MN10300_32: 1474 case R_MN10300_24: 1475 case R_MN10300_16: 1476 case R_MN10300_8: 1477 value -= sym_diff_value; 1478 /* If we are computing a 32-bit value for the location lists 1479 and the result is 0 then we add one to the value. A zero 1480 value can result because of linker relaxation deleteing 1481 prologue instructions and using a value of 1 (for the begin 1482 and end offsets in the location list entry) results in a 1483 nul entry which does not prevent the following entries from 1484 being parsed. */ 1485 if (r_type == R_MN10300_32 1486 && value == 0 1487 && strcmp (input_section->name, ".debug_loc") == 0) 1488 value = 1; 1489 sym_diff_section = NULL; 1490 is_sym_diff_reloc = true; 1491 break; 1492 1493 default: 1494 sym_diff_section = NULL; 1495 break; 1496 } 1497 } 1498 1499 switch (r_type) 1500 { 1501 case R_MN10300_SYM_DIFF: 1502 BFD_ASSERT (addend == 0); 1503 /* Cache the input section and value. 1504 The offset is unreliable, since relaxation may 1505 have reduced the following reloc's offset. */ 1506 sym_diff_section = input_section; 1507 sym_diff_value = value; 1508 return bfd_reloc_ok; 1509 1510 case R_MN10300_ALIGN: 1511 case R_MN10300_NONE: 1512 return bfd_reloc_ok; 1513 1514 case R_MN10300_32: 1515 if (bfd_link_pic (info) 1516 /* Do not generate relocs when an R_MN10300_32 has been used 1517 with an R_MN10300_SYM_DIFF to compute a difference of two 1518 symbols. */ 1519 && !is_sym_diff_reloc 1520 /* Also, do not generate a reloc when the symbol associated 1521 with the R_MN10300_32 reloc is absolute - there is no 1522 need for a run time computation in this case. */ 1523 && sym_sec != bfd_abs_section_ptr 1524 /* If the section is not going to be allocated at load time 1525 then there is no need to generate relocs for it. */ 1526 && (input_section->flags & SEC_ALLOC) != 0) 1527 { 1528 Elf_Internal_Rela outrel; 1529 bool skip, relocate; 1530 1531 /* When generating a shared object, these relocations are 1532 copied into the output file to be resolved at run 1533 time. */ 1534 if (sreloc == NULL) 1535 { 1536 sreloc = _bfd_elf_get_dynamic_reloc_section 1537 (input_bfd, input_section, /*rela?*/ true); 1538 if (sreloc == NULL) 1539 return false; 1540 } 1541 1542 skip = false; 1543 1544 outrel.r_offset = _bfd_elf_section_offset (input_bfd, info, 1545 input_section, offset); 1546 if (outrel.r_offset == (bfd_vma) -1) 1547 skip = true; 1548 1549 outrel.r_offset += (input_section->output_section->vma 1550 + input_section->output_offset); 1551 1552 if (skip) 1553 { 1554 memset (&outrel, 0, sizeof outrel); 1555 relocate = false; 1556 } 1557 else 1558 { 1559 /* h->dynindx may be -1 if this symbol was marked to 1560 become local. */ 1561 if (h == NULL 1562 || SYMBOL_REFERENCES_LOCAL (info, h)) 1563 { 1564 relocate = true; 1565 outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); 1566 outrel.r_addend = value + addend; 1567 } 1568 else 1569 { 1570 BFD_ASSERT (h->dynindx != -1); 1571 relocate = false; 1572 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32); 1573 outrel.r_addend = value + addend; 1574 } 1575 } 1576 1577 bfd_elf32_swap_reloca_out (output_bfd, &outrel, 1578 (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents) 1579 + sreloc->reloc_count)); 1580 ++sreloc->reloc_count; 1581 1582 /* If this reloc is against an external symbol, we do 1583 not want to fiddle with the addend. Otherwise, we 1584 need to include the symbol value so that it becomes 1585 an addend for the dynamic reloc. */ 1586 if (! relocate) 1587 return bfd_reloc_ok; 1588 } 1589 value += addend; 1590 bfd_put_32 (input_bfd, value, hit_data); 1591 return bfd_reloc_ok; 1592 1593 case R_MN10300_24: 1594 value += addend; 1595 1596 if ((long) value > 0x7fffff || (long) value < -0x800000) 1597 return bfd_reloc_overflow; 1598 1599 bfd_put_8 (input_bfd, value & 0xff, hit_data); 1600 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); 1601 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); 1602 return bfd_reloc_ok; 1603 1604 case R_MN10300_16: 1605 value += addend; 1606 1607 if ((long) value > 0x7fff || (long) value < -0x8000) 1608 return bfd_reloc_overflow; 1609 1610 bfd_put_16 (input_bfd, value, hit_data); 1611 return bfd_reloc_ok; 1612 1613 case R_MN10300_8: 1614 value += addend; 1615 1616 if ((long) value > 0x7f || (long) value < -0x80) 1617 return bfd_reloc_overflow; 1618 1619 bfd_put_8 (input_bfd, value, hit_data); 1620 return bfd_reloc_ok; 1621 1622 case R_MN10300_PCREL8: 1623 value -= (input_section->output_section->vma 1624 + input_section->output_offset); 1625 value -= offset; 1626 value += addend; 1627 1628 if ((long) value > 0x7f || (long) value < -0x80) 1629 return bfd_reloc_overflow; 1630 1631 bfd_put_8 (input_bfd, value, hit_data); 1632 return bfd_reloc_ok; 1633 1634 case R_MN10300_PCREL16: 1635 value -= (input_section->output_section->vma 1636 + input_section->output_offset); 1637 value -= offset; 1638 value += addend; 1639 1640 if ((long) value > 0x7fff || (long) value < -0x8000) 1641 return bfd_reloc_overflow; 1642 1643 bfd_put_16 (input_bfd, value, hit_data); 1644 return bfd_reloc_ok; 1645 1646 case R_MN10300_PCREL32: 1647 value -= (input_section->output_section->vma 1648 + input_section->output_offset); 1649 value -= offset; 1650 value += addend; 1651 1652 bfd_put_32 (input_bfd, value, hit_data); 1653 return bfd_reloc_ok; 1654 1655 case R_MN10300_GNU_VTINHERIT: 1656 case R_MN10300_GNU_VTENTRY: 1657 return bfd_reloc_ok; 1658 1659 case R_MN10300_GOTPC32: 1660 if (dynobj == NULL) 1661 return bfd_reloc_dangerous; 1662 1663 /* Use global offset table as symbol value. */ 1664 value = htab->root.sgot->output_section->vma; 1665 value -= (input_section->output_section->vma 1666 + input_section->output_offset); 1667 value -= offset; 1668 value += addend; 1669 1670 bfd_put_32 (input_bfd, value, hit_data); 1671 return bfd_reloc_ok; 1672 1673 case R_MN10300_GOTPC16: 1674 if (dynobj == NULL) 1675 return bfd_reloc_dangerous; 1676 1677 /* Use global offset table as symbol value. */ 1678 value = htab->root.sgot->output_section->vma; 1679 value -= (input_section->output_section->vma 1680 + input_section->output_offset); 1681 value -= offset; 1682 value += addend; 1683 1684 if ((long) value > 0x7fff || (long) value < -0x8000) 1685 return bfd_reloc_overflow; 1686 1687 bfd_put_16 (input_bfd, value, hit_data); 1688 return bfd_reloc_ok; 1689 1690 case R_MN10300_GOTOFF32: 1691 if (dynobj == NULL) 1692 return bfd_reloc_dangerous; 1693 1694 value -= htab->root.sgot->output_section->vma; 1695 value += addend; 1696 1697 bfd_put_32 (input_bfd, value, hit_data); 1698 return bfd_reloc_ok; 1699 1700 case R_MN10300_GOTOFF24: 1701 if (dynobj == NULL) 1702 return bfd_reloc_dangerous; 1703 1704 value -= htab->root.sgot->output_section->vma; 1705 value += addend; 1706 1707 if ((long) value > 0x7fffff || (long) value < -0x800000) 1708 return bfd_reloc_overflow; 1709 1710 bfd_put_8 (input_bfd, value, hit_data); 1711 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); 1712 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); 1713 return bfd_reloc_ok; 1714 1715 case R_MN10300_GOTOFF16: 1716 if (dynobj == NULL) 1717 return bfd_reloc_dangerous; 1718 1719 value -= htab->root.sgot->output_section->vma; 1720 value += addend; 1721 1722 if ((long) value > 0x7fff || (long) value < -0x8000) 1723 return bfd_reloc_overflow; 1724 1725 bfd_put_16 (input_bfd, value, hit_data); 1726 return bfd_reloc_ok; 1727 1728 case R_MN10300_PLT32: 1729 if (h != NULL 1730 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 1731 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN 1732 && h->plt.offset != (bfd_vma) -1) 1733 { 1734 if (dynobj == NULL) 1735 return bfd_reloc_dangerous; 1736 1737 splt = htab->root.splt; 1738 value = (splt->output_section->vma 1739 + splt->output_offset 1740 + h->plt.offset) - value; 1741 } 1742 1743 value -= (input_section->output_section->vma 1744 + input_section->output_offset); 1745 value -= offset; 1746 value += addend; 1747 1748 bfd_put_32 (input_bfd, value, hit_data); 1749 return bfd_reloc_ok; 1750 1751 case R_MN10300_PLT16: 1752 if (h != NULL 1753 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 1754 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN 1755 && h->plt.offset != (bfd_vma) -1) 1756 { 1757 if (dynobj == NULL) 1758 return bfd_reloc_dangerous; 1759 1760 splt = htab->root.splt; 1761 value = (splt->output_section->vma 1762 + splt->output_offset 1763 + h->plt.offset) - value; 1764 } 1765 1766 value -= (input_section->output_section->vma 1767 + input_section->output_offset); 1768 value -= offset; 1769 value += addend; 1770 1771 if ((long) value > 0x7fff || (long) value < -0x8000) 1772 return bfd_reloc_overflow; 1773 1774 bfd_put_16 (input_bfd, value, hit_data); 1775 return bfd_reloc_ok; 1776 1777 case R_MN10300_TLS_LDO: 1778 value = dtpoff (info, value); 1779 bfd_put_32 (input_bfd, value + addend, hit_data); 1780 return bfd_reloc_ok; 1781 1782 case R_MN10300_TLS_LE: 1783 value = tpoff (info, value); 1784 bfd_put_32 (input_bfd, value + addend, hit_data); 1785 return bfd_reloc_ok; 1786 1787 case R_MN10300_TLS_LD: 1788 if (dynobj == NULL) 1789 return bfd_reloc_dangerous; 1790 1791 sgot = htab->root.sgot; 1792 BFD_ASSERT (sgot != NULL); 1793 value = htab->tls_ldm_got.offset + sgot->output_offset; 1794 bfd_put_32 (input_bfd, value, hit_data); 1795 1796 if (!htab->tls_ldm_got.rel_emitted) 1797 { 1798 asection *srelgot = htab->root.srelgot; 1799 Elf_Internal_Rela rel; 1800 1801 BFD_ASSERT (srelgot != NULL); 1802 htab->tls_ldm_got.rel_emitted ++; 1803 rel.r_offset = (sgot->output_section->vma 1804 + sgot->output_offset 1805 + htab->tls_ldm_got.offset); 1806 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset); 1807 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4); 1808 rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); 1809 rel.r_addend = 0; 1810 bfd_elf32_swap_reloca_out (output_bfd, & rel, 1811 (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents 1812 + srelgot->reloc_count)); 1813 ++ srelgot->reloc_count; 1814 } 1815 1816 return bfd_reloc_ok; 1817 1818 case R_MN10300_TLS_GOTIE: 1819 value = tpoff (info, value); 1820 /* Fall Through. */ 1821 1822 case R_MN10300_TLS_GD: 1823 case R_MN10300_TLS_IE: 1824 case R_MN10300_GOT32: 1825 case R_MN10300_GOT24: 1826 case R_MN10300_GOT16: 1827 if (dynobj == NULL) 1828 return bfd_reloc_dangerous; 1829 1830 sgot = htab->root.sgot; 1831 if (r_type == R_MN10300_TLS_GD) 1832 value = dtpoff (info, value); 1833 1834 if (h != NULL) 1835 { 1836 bfd_vma off; 1837 1838 off = h->got.offset; 1839 /* Offsets in the GOT are allocated in check_relocs 1840 which is not called for shared libraries... */ 1841 if (off == (bfd_vma) -1) 1842 off = 0; 1843 1844 if (sgot->contents != NULL 1845 && (! elf_hash_table (info)->dynamic_sections_created 1846 || SYMBOL_REFERENCES_LOCAL (info, h))) 1847 /* This is actually a static link, or it is a 1848 -Bsymbolic link and the symbol is defined 1849 locally, or the symbol was forced to be local 1850 because of a version file. We must initialize 1851 this entry in the global offset table. 1852 1853 When doing a dynamic link, we create a .rela.got 1854 relocation entry to initialize the value. This 1855 is done in the finish_dynamic_symbol routine. */ 1856 bfd_put_32 (output_bfd, value, 1857 sgot->contents + off); 1858 1859 value = sgot->output_offset + off; 1860 } 1861 else 1862 { 1863 bfd_vma off; 1864 1865 off = elf_local_got_offsets (input_bfd)[symndx]; 1866 1867 if (off & 1) 1868 bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1)); 1869 else 1870 { 1871 bfd_put_32 (output_bfd, value, sgot->contents + off); 1872 1873 if (bfd_link_pic (info)) 1874 { 1875 asection *srelgot = htab->root.srelgot;; 1876 Elf_Internal_Rela outrel; 1877 1878 BFD_ASSERT (srelgot != NULL); 1879 1880 outrel.r_offset = (sgot->output_section->vma 1881 + sgot->output_offset 1882 + off); 1883 switch (r_type) 1884 { 1885 case R_MN10300_TLS_GD: 1886 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF); 1887 outrel.r_offset = (sgot->output_section->vma 1888 + sgot->output_offset 1889 + off + 4); 1890 bfd_elf32_swap_reloca_out (output_bfd, & outrel, 1891 (bfd_byte *) (((Elf32_External_Rela *) 1892 srelgot->contents) 1893 + srelgot->reloc_count)); 1894 ++ srelgot->reloc_count; 1895 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); 1896 break; 1897 case R_MN10300_TLS_GOTIE: 1898 case R_MN10300_TLS_IE: 1899 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); 1900 break; 1901 default: 1902 outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); 1903 break; 1904 } 1905 1906 outrel.r_addend = value; 1907 bfd_elf32_swap_reloca_out (output_bfd, &outrel, 1908 (bfd_byte *) (((Elf32_External_Rela *) 1909 srelgot->contents) 1910 + srelgot->reloc_count)); 1911 ++ srelgot->reloc_count; 1912 elf_local_got_offsets (input_bfd)[symndx] |= 1; 1913 } 1914 1915 value = sgot->output_offset + (off & ~(bfd_vma) 1); 1916 } 1917 } 1918 1919 value += addend; 1920 1921 if (r_type == R_MN10300_TLS_IE) 1922 { 1923 value += sgot->output_section->vma; 1924 bfd_put_32 (input_bfd, value, hit_data); 1925 return bfd_reloc_ok; 1926 } 1927 else if (r_type == R_MN10300_TLS_GOTIE 1928 || r_type == R_MN10300_TLS_GD 1929 || r_type == R_MN10300_TLS_LD) 1930 { 1931 bfd_put_32 (input_bfd, value, hit_data); 1932 return bfd_reloc_ok; 1933 } 1934 else if (r_type == R_MN10300_GOT32) 1935 { 1936 bfd_put_32 (input_bfd, value, hit_data); 1937 return bfd_reloc_ok; 1938 } 1939 else if (r_type == R_MN10300_GOT24) 1940 { 1941 if ((long) value > 0x7fffff || (long) value < -0x800000) 1942 return bfd_reloc_overflow; 1943 1944 bfd_put_8 (input_bfd, value & 0xff, hit_data); 1945 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); 1946 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); 1947 return bfd_reloc_ok; 1948 } 1949 else if (r_type == R_MN10300_GOT16) 1950 { 1951 if ((long) value > 0x7fff || (long) value < -0x8000) 1952 return bfd_reloc_overflow; 1953 1954 bfd_put_16 (input_bfd, value, hit_data); 1955 return bfd_reloc_ok; 1956 } 1957 /* Fall through. */ 1958 1959 default: 1960 return bfd_reloc_notsupported; 1961 } 1962 } 1963 1964 /* Relocate an MN10300 ELF section. */ 1965 1966 static int 1967 mn10300_elf_relocate_section (bfd *output_bfd, 1968 struct bfd_link_info *info, 1969 bfd *input_bfd, 1970 asection *input_section, 1971 bfd_byte *contents, 1972 Elf_Internal_Rela *relocs, 1973 Elf_Internal_Sym *local_syms, 1974 asection **local_sections) 1975 { 1976 Elf_Internal_Shdr *symtab_hdr; 1977 struct elf_link_hash_entry **sym_hashes; 1978 Elf_Internal_Rela *rel, *relend; 1979 Elf_Internal_Rela * trel; 1980 1981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1982 sym_hashes = elf_sym_hashes (input_bfd); 1983 1984 rel = relocs; 1985 relend = relocs + input_section->reloc_count; 1986 for (; rel < relend; rel++) 1987 { 1988 int r_type; 1989 reloc_howto_type *howto; 1990 unsigned long r_symndx; 1991 Elf_Internal_Sym *sym; 1992 asection *sec; 1993 struct elf32_mn10300_link_hash_entry *h; 1994 bfd_vma relocation; 1995 bfd_reloc_status_type r; 1996 int tls_r_type; 1997 bool unresolved_reloc = false; 1998 bool warned, ignored; 1999 struct elf_link_hash_entry * hh; 2000 2001 relocation = 0; 2002 r_symndx = ELF32_R_SYM (rel->r_info); 2003 r_type = ELF32_R_TYPE (rel->r_info); 2004 howto = elf_mn10300_howto_table + r_type; 2005 2006 /* Just skip the vtable gc relocs. */ 2007 if (r_type == R_MN10300_GNU_VTINHERIT 2008 || r_type == R_MN10300_GNU_VTENTRY) 2009 continue; 2010 2011 h = NULL; 2012 sym = NULL; 2013 sec = NULL; 2014 if (r_symndx < symtab_hdr->sh_info) 2015 hh = NULL; 2016 else 2017 { 2018 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 2019 r_symndx, symtab_hdr, sym_hashes, 2020 hh, sec, relocation, 2021 unresolved_reloc, warned, ignored); 2022 } 2023 h = elf_mn10300_hash_entry (hh); 2024 2025 tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0); 2026 if (tls_r_type != r_type) 2027 { 2028 bool had_plt; 2029 2030 had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type, 2031 contents, rel->r_offset); 2032 r_type = tls_r_type; 2033 howto = elf_mn10300_howto_table + r_type; 2034 2035 if (had_plt) 2036 for (trel = rel+1; trel < relend; trel++) 2037 if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32 2038 || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32) 2039 && rel->r_offset + had_plt == trel->r_offset) 2040 trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE); 2041 } 2042 2043 if (r_symndx < symtab_hdr->sh_info) 2044 { 2045 sym = local_syms + r_symndx; 2046 sec = local_sections[r_symndx]; 2047 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 2048 } 2049 else 2050 { 2051 if ((h->root.root.type == bfd_link_hash_defined 2052 || h->root.root.type == bfd_link_hash_defweak) 2053 && ( r_type == R_MN10300_GOTPC32 2054 || r_type == R_MN10300_GOTPC16 2055 || (( r_type == R_MN10300_PLT32 2056 || r_type == R_MN10300_PLT16) 2057 && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL 2058 && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN 2059 && h->root.plt.offset != (bfd_vma) -1) 2060 || (( r_type == R_MN10300_GOT32 2061 || r_type == R_MN10300_GOT24 2062 || r_type == R_MN10300_TLS_GD 2063 || r_type == R_MN10300_TLS_LD 2064 || r_type == R_MN10300_TLS_GOTIE 2065 || r_type == R_MN10300_TLS_IE 2066 || r_type == R_MN10300_GOT16) 2067 && elf_hash_table (info)->dynamic_sections_created 2068 && !SYMBOL_REFERENCES_LOCAL (info, hh)) 2069 || (r_type == R_MN10300_32 2070 && !SYMBOL_REFERENCES_LOCAL (info, hh) 2071 /* _32 relocs in executables force _COPY relocs, 2072 such that the address of the symbol ends up 2073 being local. */ 2074 && (((input_section->flags & SEC_ALLOC) != 0 2075 && !bfd_link_executable (info)) 2076 /* DWARF will emit R_MN10300_32 relocations 2077 in its sections against symbols defined 2078 externally in shared libraries. We can't 2079 do anything with them here. */ 2080 || ((input_section->flags & SEC_DEBUGGING) != 0 2081 && h->root.def_dynamic))))) 2082 /* In these cases, we don't need the relocation 2083 value. We check specially because in some 2084 obscure cases sec->output_section will be NULL. */ 2085 relocation = 0; 2086 2087 else if (!bfd_link_relocatable (info) && unresolved_reloc 2088 && _bfd_elf_section_offset (output_bfd, info, input_section, 2089 rel->r_offset) != (bfd_vma) -1) 2090 2091 _bfd_error_handler 2092 /* xgettext:c-format */ 2093 (_("%pB(%pA+%#" PRIx64 "): " 2094 "unresolvable %s relocation against symbol `%s'"), 2095 input_bfd, 2096 input_section, 2097 (uint64_t) rel->r_offset, 2098 howto->name, 2099 h->root.root.root.string); 2100 } 2101 2102 if (sec != NULL && discarded_section (sec)) 2103 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 2104 rel, 1, relend, howto, 0, contents); 2105 2106 if (bfd_link_relocatable (info)) 2107 continue; 2108 2109 r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd, 2110 input_section, 2111 contents, rel->r_offset, 2112 relocation, rel->r_addend, 2113 (struct elf_link_hash_entry *) h, 2114 r_symndx, 2115 info, sec, h == NULL); 2116 2117 if (r != bfd_reloc_ok) 2118 { 2119 const char *name; 2120 const char *msg = NULL; 2121 2122 if (h != NULL) 2123 name = h->root.root.root.string; 2124 else 2125 { 2126 name = (bfd_elf_string_from_elf_section 2127 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 2128 if (name == NULL || *name == '\0') 2129 name = bfd_section_name (sec); 2130 } 2131 2132 switch (r) 2133 { 2134 case bfd_reloc_overflow: 2135 (*info->callbacks->reloc_overflow) 2136 (info, (h ? &h->root.root : NULL), name, howto->name, 2137 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 2138 break; 2139 2140 case bfd_reloc_undefined: 2141 (*info->callbacks->undefined_symbol) 2142 (info, name, input_bfd, input_section, rel->r_offset, true); 2143 break; 2144 2145 case bfd_reloc_outofrange: 2146 msg = _("internal error: out of range error"); 2147 goto common_error; 2148 2149 case bfd_reloc_notsupported: 2150 msg = _("internal error: unsupported relocation error"); 2151 goto common_error; 2152 2153 case bfd_reloc_dangerous: 2154 if (r_type == R_MN10300_PCREL32) 2155 msg = _("error: inappropriate relocation type for shared" 2156 " library (did you forget -fpic?)"); 2157 else if (r_type == R_MN10300_GOT32) 2158 /* xgettext:c-format */ 2159 msg = _("%pB: taking the address of protected function" 2160 " '%s' cannot be done when making a shared library"); 2161 else 2162 msg = _("internal error: suspicious relocation type used" 2163 " in shared library"); 2164 goto common_error; 2165 2166 default: 2167 msg = _("internal error: unknown error"); 2168 /* Fall through. */ 2169 2170 common_error: 2171 _bfd_error_handler (msg, input_bfd, name); 2172 bfd_set_error (bfd_error_bad_value); 2173 return false; 2174 } 2175 } 2176 } 2177 2178 return true; 2179 } 2180 2181 /* Finish initializing one hash table entry. */ 2182 2183 static bool 2184 elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry, 2185 void * in_args) 2186 { 2187 struct elf32_mn10300_link_hash_entry *entry; 2188 struct bfd_link_info *link_info = (struct bfd_link_info *) in_args; 2189 unsigned int byte_count = 0; 2190 2191 entry = (struct elf32_mn10300_link_hash_entry *) gen_entry; 2192 2193 /* If we already know we want to convert "call" to "calls" for calls 2194 to this symbol, then return now. */ 2195 if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS) 2196 return true; 2197 2198 /* If there are no named calls to this symbol, or there's nothing we 2199 can move from the function itself into the "call" instruction, 2200 then note that all "call" instructions should be converted into 2201 "calls" instructions and return. If a symbol is available for 2202 dynamic symbol resolution (overridable or overriding), avoid 2203 custom calling conventions. */ 2204 if (entry->direct_calls == 0 2205 || (entry->stack_size == 0 && entry->movm_args == 0) 2206 || (elf_hash_table (link_info)->dynamic_sections_created 2207 && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL 2208 && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN)) 2209 { 2210 /* Make a note that we should convert "call" instructions to "calls" 2211 instructions for calls to this symbol. */ 2212 entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; 2213 return true; 2214 } 2215 2216 /* We may be able to move some instructions from the function itself into 2217 the "call" instruction. Count how many bytes we might be able to 2218 eliminate in the function itself. */ 2219 2220 /* A movm instruction is two bytes. */ 2221 if (entry->movm_args) 2222 byte_count += 2; 2223 2224 /* Count the insn to allocate stack space too. */ 2225 if (entry->stack_size > 0) 2226 { 2227 if (entry->stack_size <= 128) 2228 byte_count += 3; 2229 else 2230 byte_count += 4; 2231 } 2232 2233 /* If using "call" will result in larger code, then turn all 2234 the associated "call" instructions into "calls" instructions. */ 2235 if (byte_count < entry->direct_calls) 2236 entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; 2237 2238 /* This routine never fails. */ 2239 return true; 2240 } 2241 2242 /* Used to count hash table entries. */ 2243 2244 static bool 2245 elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED, 2246 void * in_args) 2247 { 2248 int *count = (int *) in_args; 2249 2250 (*count) ++; 2251 return true; 2252 } 2253 2254 /* Used to enumerate hash table entries into a linear array. */ 2255 2256 static bool 2257 elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry, 2258 void * in_args) 2259 { 2260 struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args; 2261 2262 **ptr = gen_entry; 2263 (*ptr) ++; 2264 return true; 2265 } 2266 2267 /* Used to sort the array created by the above. */ 2268 2269 static int 2270 sort_by_value (const void *va, const void *vb) 2271 { 2272 struct elf32_mn10300_link_hash_entry *a 2273 = *(struct elf32_mn10300_link_hash_entry **) va; 2274 struct elf32_mn10300_link_hash_entry *b 2275 = *(struct elf32_mn10300_link_hash_entry **) vb; 2276 2277 return a->value - b->value; 2278 } 2279 2280 /* Compute the stack size and movm arguments for the function 2281 referred to by HASH at address ADDR in section with 2282 contents CONTENTS, store the information in the hash table. */ 2283 2284 static void 2285 compute_function_info (bfd *abfd, 2286 struct elf32_mn10300_link_hash_entry *hash, 2287 bfd_vma addr, 2288 unsigned char *contents) 2289 { 2290 unsigned char byte1, byte2; 2291 /* We only care about a very small subset of the possible prologue 2292 sequences here. Basically we look for: 2293 2294 movm [d2,d3,a2,a3],sp (optional) 2295 add <size>,sp (optional, and only for sizes which fit in an unsigned 2296 8 bit number) 2297 2298 If we find anything else, we quit. */ 2299 2300 /* Look for movm [regs],sp. */ 2301 byte1 = bfd_get_8 (abfd, contents + addr); 2302 byte2 = bfd_get_8 (abfd, contents + addr + 1); 2303 2304 if (byte1 == 0xcf) 2305 { 2306 hash->movm_args = byte2; 2307 addr += 2; 2308 byte1 = bfd_get_8 (abfd, contents + addr); 2309 byte2 = bfd_get_8 (abfd, contents + addr + 1); 2310 } 2311 2312 /* Now figure out how much stack space will be allocated by the movm 2313 instruction. We need this kept separate from the function's normal 2314 stack space. */ 2315 if (hash->movm_args) 2316 { 2317 /* Space for d2. */ 2318 if (hash->movm_args & 0x80) 2319 hash->movm_stack_size += 4; 2320 2321 /* Space for d3. */ 2322 if (hash->movm_args & 0x40) 2323 hash->movm_stack_size += 4; 2324 2325 /* Space for a2. */ 2326 if (hash->movm_args & 0x20) 2327 hash->movm_stack_size += 4; 2328 2329 /* Space for a3. */ 2330 if (hash->movm_args & 0x10) 2331 hash->movm_stack_size += 4; 2332 2333 /* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */ 2334 if (hash->movm_args & 0x08) 2335 hash->movm_stack_size += 8 * 4; 2336 2337 if (bfd_get_mach (abfd) == bfd_mach_am33 2338 || bfd_get_mach (abfd) == bfd_mach_am33_2) 2339 { 2340 /* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */ 2341 if (hash->movm_args & 0x1) 2342 hash->movm_stack_size += 6 * 4; 2343 2344 /* exreg1 space. e4, e5, e6, e7 */ 2345 if (hash->movm_args & 0x2) 2346 hash->movm_stack_size += 4 * 4; 2347 2348 /* exreg0 space. e2, e3 */ 2349 if (hash->movm_args & 0x4) 2350 hash->movm_stack_size += 2 * 4; 2351 } 2352 } 2353 2354 /* Now look for the two stack adjustment variants. */ 2355 if (byte1 == 0xf8 && byte2 == 0xfe) 2356 { 2357 int temp = bfd_get_8 (abfd, contents + addr + 2); 2358 temp = ((temp & 0xff) ^ (~0x7f)) + 0x80; 2359 2360 hash->stack_size = -temp; 2361 } 2362 else if (byte1 == 0xfa && byte2 == 0xfe) 2363 { 2364 int temp = bfd_get_16 (abfd, contents + addr + 2); 2365 temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000; 2366 temp = -temp; 2367 2368 if (temp < 255) 2369 hash->stack_size = temp; 2370 } 2371 2372 /* If the total stack to be allocated by the call instruction is more 2373 than 255 bytes, then we can't remove the stack adjustment by using 2374 "call" (we might still be able to remove the "movm" instruction. */ 2375 if (hash->stack_size + hash->movm_stack_size > 255) 2376 hash->stack_size = 0; 2377 } 2378 2379 /* Delete some bytes from a section while relaxing. */ 2380 2381 static bool 2382 mn10300_elf_relax_delete_bytes (bfd *abfd, 2383 asection *sec, 2384 bfd_vma addr, 2385 int count) 2386 { 2387 Elf_Internal_Shdr *symtab_hdr; 2388 unsigned int sec_shndx; 2389 bfd_byte *contents; 2390 Elf_Internal_Rela *irel, *irelend; 2391 Elf_Internal_Rela *irelalign; 2392 bfd_vma toaddr; 2393 Elf_Internal_Sym *isym, *isymend; 2394 struct elf_link_hash_entry **sym_hashes; 2395 struct elf_link_hash_entry **end_hashes; 2396 unsigned int symcount; 2397 2398 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 2399 2400 contents = elf_section_data (sec)->this_hdr.contents; 2401 2402 irelalign = NULL; 2403 toaddr = sec->size; 2404 2405 irel = elf_section_data (sec)->relocs; 2406 irelend = irel + sec->reloc_count; 2407 2408 if (sec->reloc_count > 0) 2409 { 2410 /* If there is an align reloc at the end of the section ignore it. 2411 GAS creates these relocs for reasons of its own, and they just 2412 serve to keep the section artifically inflated. */ 2413 if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN) 2414 --irelend; 2415 2416 /* The deletion must stop at the next ALIGN reloc for an alignment 2417 power larger than, or not a multiple of, the number of bytes we 2418 are deleting. */ 2419 for (; irel < irelend; irel++) 2420 { 2421 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN 2422 && irel->r_offset > addr 2423 && irel->r_offset < toaddr) 2424 { 2425 int alignment = 1 << irel->r_addend; 2426 2427 if (count < alignment 2428 || alignment % count != 0) 2429 { 2430 irelalign = irel; 2431 toaddr = irel->r_offset; 2432 break; 2433 } 2434 } 2435 } 2436 } 2437 2438 /* Actually delete the bytes. */ 2439 memmove (contents + addr, contents + addr + count, 2440 (size_t) (toaddr - addr - count)); 2441 2442 /* Adjust the section's size if we are shrinking it, or else 2443 pad the bytes between the end of the shrunken region and 2444 the start of the next region with NOP codes. */ 2445 if (irelalign == NULL) 2446 { 2447 sec->size -= count; 2448 /* Include symbols at the end of the section, but 2449 not at the end of a sub-region of the section. */ 2450 toaddr ++; 2451 } 2452 else 2453 { 2454 int i; 2455 2456 #define NOP_OPCODE 0xcb 2457 2458 for (i = 0; i < count; i ++) 2459 bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); 2460 } 2461 2462 /* Adjust all the relocs. */ 2463 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 2464 { 2465 /* Get the new reloc address. */ 2466 if ((irel->r_offset > addr 2467 && irel->r_offset < toaddr) 2468 || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN 2469 && irel->r_offset == toaddr)) 2470 irel->r_offset -= count; 2471 } 2472 2473 /* Adjust the local symbols in the section, reducing their value 2474 by the number of bytes deleted. Note - symbols within the deleted 2475 region are moved to the address of the start of the region, which 2476 actually means that they will address the byte beyond the end of 2477 the region once the deletion has been completed. */ 2478 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2479 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 2480 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 2481 { 2482 if (isym->st_shndx == sec_shndx 2483 && isym->st_value > addr 2484 && isym->st_value < toaddr) 2485 { 2486 if (isym->st_value < addr + count) 2487 isym->st_value = addr; 2488 else 2489 isym->st_value -= count; 2490 } 2491 /* Adjust the function symbol's size as well. */ 2492 else if (isym->st_shndx == sec_shndx 2493 && ELF_ST_TYPE (isym->st_info) == STT_FUNC 2494 && isym->st_value + isym->st_size > addr 2495 && isym->st_value + isym->st_size < toaddr) 2496 isym->st_size -= count; 2497 } 2498 2499 /* Now adjust the global symbols defined in this section. */ 2500 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2501 - symtab_hdr->sh_info); 2502 sym_hashes = elf_sym_hashes (abfd); 2503 end_hashes = sym_hashes + symcount; 2504 for (; sym_hashes < end_hashes; sym_hashes++) 2505 { 2506 struct elf_link_hash_entry *sym_hash = *sym_hashes; 2507 2508 if ((sym_hash->root.type == bfd_link_hash_defined 2509 || sym_hash->root.type == bfd_link_hash_defweak) 2510 && sym_hash->root.u.def.section == sec 2511 && sym_hash->root.u.def.value > addr 2512 && sym_hash->root.u.def.value < toaddr) 2513 { 2514 if (sym_hash->root.u.def.value < addr + count) 2515 sym_hash->root.u.def.value = addr; 2516 else 2517 sym_hash->root.u.def.value -= count; 2518 } 2519 /* Adjust the function symbol's size as well. */ 2520 else if (sym_hash->root.type == bfd_link_hash_defined 2521 && sym_hash->root.u.def.section == sec 2522 && sym_hash->type == STT_FUNC 2523 && sym_hash->root.u.def.value + sym_hash->size > addr 2524 && sym_hash->root.u.def.value + sym_hash->size < toaddr) 2525 sym_hash->size -= count; 2526 } 2527 2528 /* See if we can move the ALIGN reloc forward. 2529 We have adjusted r_offset for it already. */ 2530 if (irelalign != NULL) 2531 { 2532 bfd_vma alignto, alignaddr; 2533 2534 if ((int) irelalign->r_addend > 0) 2535 { 2536 /* This is the old address. */ 2537 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); 2538 /* This is where the align points to now. */ 2539 alignaddr = BFD_ALIGN (irelalign->r_offset, 2540 1 << irelalign->r_addend); 2541 if (alignaddr < alignto) 2542 /* Tail recursion. */ 2543 return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr, 2544 (int) (alignto - alignaddr)); 2545 } 2546 } 2547 2548 return true; 2549 } 2550 2551 /* Return TRUE if a symbol exists at the given address, else return 2552 FALSE. */ 2553 2554 static bool 2555 mn10300_elf_symbol_address_p (bfd *abfd, 2556 asection *sec, 2557 Elf_Internal_Sym *isym, 2558 bfd_vma addr) 2559 { 2560 Elf_Internal_Shdr *symtab_hdr; 2561 unsigned int sec_shndx; 2562 Elf_Internal_Sym *isymend; 2563 struct elf_link_hash_entry **sym_hashes; 2564 struct elf_link_hash_entry **end_hashes; 2565 unsigned int symcount; 2566 2567 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 2568 2569 /* Examine all the symbols. */ 2570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2571 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 2572 if (isym->st_shndx == sec_shndx 2573 && isym->st_value == addr) 2574 return true; 2575 2576 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2577 - symtab_hdr->sh_info); 2578 sym_hashes = elf_sym_hashes (abfd); 2579 end_hashes = sym_hashes + symcount; 2580 for (; sym_hashes < end_hashes; sym_hashes++) 2581 { 2582 struct elf_link_hash_entry *sym_hash = *sym_hashes; 2583 2584 if ((sym_hash->root.type == bfd_link_hash_defined 2585 || sym_hash->root.type == bfd_link_hash_defweak) 2586 && sym_hash->root.u.def.section == sec 2587 && sym_hash->root.u.def.value == addr) 2588 return true; 2589 } 2590 2591 return false; 2592 } 2593 2594 /* This function handles relaxing for the mn10300. 2595 2596 There are quite a few relaxing opportunities available on the mn10300: 2597 2598 * calls:32 -> calls:16 2 bytes 2599 * call:32 -> call:16 2 bytes 2600 2601 * call:32 -> calls:32 1 byte 2602 * call:16 -> calls:16 1 byte 2603 * These are done anytime using "calls" would result 2604 in smaller code, or when necessary to preserve the 2605 meaning of the program. 2606 2607 * call:32 varies 2608 * call:16 2609 * In some circumstances we can move instructions 2610 from a function prologue into a "call" instruction. 2611 This is only done if the resulting code is no larger 2612 than the original code. 2613 2614 * jmp:32 -> jmp:16 2 bytes 2615 * jmp:16 -> bra:8 1 byte 2616 2617 * If the previous instruction is a conditional branch 2618 around the jump/bra, we may be able to reverse its condition 2619 and change its target to the jump's target. The jump/bra 2620 can then be deleted. 2 bytes 2621 2622 * mov abs32 -> mov abs16 1 or 2 bytes 2623 2624 * Most instructions which accept imm32 can relax to imm16 1 or 2 bytes 2625 - Most instructions which accept imm16 can relax to imm8 1 or 2 bytes 2626 2627 * Most instructions which accept d32 can relax to d16 1 or 2 bytes 2628 - Most instructions which accept d16 can relax to d8 1 or 2 bytes 2629 2630 We don't handle imm16->imm8 or d16->d8 as they're very rare 2631 and somewhat more difficult to support. */ 2632 2633 static bool 2634 mn10300_elf_relax_section (bfd *abfd, 2635 asection *sec, 2636 struct bfd_link_info *link_info, 2637 bool *again) 2638 { 2639 Elf_Internal_Shdr *symtab_hdr; 2640 Elf_Internal_Rela *internal_relocs = NULL; 2641 Elf_Internal_Rela *irel, *irelend; 2642 bfd_byte *contents = NULL; 2643 Elf_Internal_Sym *isymbuf = NULL; 2644 struct elf32_mn10300_link_hash_table *hash_table; 2645 asection *section = sec; 2646 bfd_vma align_gap_adjustment; 2647 2648 if (bfd_link_relocatable (link_info)) 2649 (*link_info->callbacks->einfo) 2650 (_("%P%F: --relax and -r may not be used together\n")); 2651 2652 /* Assume nothing changes. */ 2653 *again = false; 2654 2655 /* We need a pointer to the mn10300 specific hash table. */ 2656 hash_table = elf32_mn10300_hash_table (link_info); 2657 if (hash_table == NULL) 2658 return false; 2659 2660 /* Initialize fields in each hash table entry the first time through. */ 2661 if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0) 2662 { 2663 bfd *input_bfd; 2664 2665 /* Iterate over all the input bfds. */ 2666 for (input_bfd = link_info->input_bfds; 2667 input_bfd != NULL; 2668 input_bfd = input_bfd->link.next) 2669 { 2670 /* We're going to need all the symbols for each bfd. */ 2671 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2672 if (symtab_hdr->sh_info != 0) 2673 { 2674 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2675 if (isymbuf == NULL) 2676 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 2677 symtab_hdr->sh_info, 0, 2678 NULL, NULL, NULL); 2679 if (isymbuf == NULL) 2680 goto error_return; 2681 } 2682 2683 /* Iterate over each section in this bfd. */ 2684 for (section = input_bfd->sections; 2685 section != NULL; 2686 section = section->next) 2687 { 2688 struct elf32_mn10300_link_hash_entry *hash; 2689 asection *sym_sec = NULL; 2690 const char *sym_name; 2691 char *new_name; 2692 2693 /* If there's nothing to do in this section, skip it. */ 2694 if (! ((section->flags & SEC_RELOC) != 0 2695 && section->reloc_count != 0)) 2696 continue; 2697 if ((section->flags & SEC_ALLOC) == 0) 2698 continue; 2699 2700 /* Get cached copy of section contents if it exists. */ 2701 if (elf_section_data (section)->this_hdr.contents != NULL) 2702 contents = elf_section_data (section)->this_hdr.contents; 2703 else if (section->size != 0) 2704 { 2705 /* Go get them off disk. */ 2706 if (!bfd_malloc_and_get_section (input_bfd, section, 2707 &contents)) 2708 goto error_return; 2709 } 2710 else 2711 contents = NULL; 2712 2713 /* If there aren't any relocs, then there's nothing to do. */ 2714 if ((section->flags & SEC_RELOC) != 0 2715 && section->reloc_count != 0) 2716 { 2717 /* Get a copy of the native relocations. */ 2718 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, 2719 NULL, NULL, 2720 link_info->keep_memory); 2721 if (internal_relocs == NULL) 2722 goto error_return; 2723 2724 /* Now examine each relocation. */ 2725 irel = internal_relocs; 2726 irelend = irel + section->reloc_count; 2727 for (; irel < irelend; irel++) 2728 { 2729 long r_type; 2730 unsigned long r_index; 2731 unsigned char code; 2732 2733 r_type = ELF32_R_TYPE (irel->r_info); 2734 r_index = ELF32_R_SYM (irel->r_info); 2735 2736 if (r_type < 0 || r_type >= (int) R_MN10300_MAX) 2737 goto error_return; 2738 2739 /* We need the name and hash table entry of the target 2740 symbol! */ 2741 hash = NULL; 2742 sym_sec = NULL; 2743 2744 if (r_index < symtab_hdr->sh_info) 2745 { 2746 /* A local symbol. */ 2747 Elf_Internal_Sym *isym; 2748 struct elf_link_hash_table *elftab; 2749 size_t amt; 2750 2751 isym = isymbuf + r_index; 2752 if (isym->st_shndx == SHN_UNDEF) 2753 sym_sec = bfd_und_section_ptr; 2754 else if (isym->st_shndx == SHN_ABS) 2755 sym_sec = bfd_abs_section_ptr; 2756 else if (isym->st_shndx == SHN_COMMON) 2757 sym_sec = bfd_com_section_ptr; 2758 else 2759 sym_sec 2760 = bfd_section_from_elf_index (input_bfd, 2761 isym->st_shndx); 2762 2763 sym_name 2764 = bfd_elf_string_from_elf_section (input_bfd, 2765 (symtab_hdr 2766 ->sh_link), 2767 isym->st_name); 2768 2769 /* If it isn't a function, then we don't care 2770 about it. */ 2771 if (ELF_ST_TYPE (isym->st_info) != STT_FUNC) 2772 continue; 2773 2774 /* Tack on an ID so we can uniquely identify this 2775 local symbol in the global hash table. */ 2776 amt = strlen (sym_name) + 10; 2777 new_name = bfd_malloc (amt); 2778 if (new_name == NULL) 2779 goto error_return; 2780 2781 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); 2782 sym_name = new_name; 2783 2784 elftab = &hash_table->static_hash_table->root; 2785 hash = ((struct elf32_mn10300_link_hash_entry *) 2786 elf_link_hash_lookup (elftab, sym_name, 2787 true, true, false)); 2788 free (new_name); 2789 } 2790 else 2791 { 2792 r_index -= symtab_hdr->sh_info; 2793 hash = (struct elf32_mn10300_link_hash_entry *) 2794 elf_sym_hashes (input_bfd)[r_index]; 2795 } 2796 2797 sym_name = hash->root.root.root.string; 2798 if ((section->flags & SEC_CODE) != 0) 2799 { 2800 /* If this is not a "call" instruction, then we 2801 should convert "call" instructions to "calls" 2802 instructions. */ 2803 code = bfd_get_8 (input_bfd, 2804 contents + irel->r_offset - 1); 2805 if (code != 0xdd && code != 0xcd) 2806 hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; 2807 } 2808 2809 /* If this is a jump/call, then bump the 2810 direct_calls counter. Else force "call" to 2811 "calls" conversions. */ 2812 if (r_type == R_MN10300_PCREL32 2813 || r_type == R_MN10300_PLT32 2814 || r_type == R_MN10300_PLT16 2815 || r_type == R_MN10300_PCREL16) 2816 hash->direct_calls++; 2817 else 2818 hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; 2819 } 2820 } 2821 2822 /* Now look at the actual contents to get the stack size, 2823 and a list of what registers were saved in the prologue 2824 (ie movm_args). */ 2825 if ((section->flags & SEC_CODE) != 0) 2826 { 2827 Elf_Internal_Sym *isym, *isymend; 2828 unsigned int sec_shndx; 2829 struct elf_link_hash_entry **hashes; 2830 struct elf_link_hash_entry **end_hashes; 2831 unsigned int symcount; 2832 2833 sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, 2834 section); 2835 2836 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2837 - symtab_hdr->sh_info); 2838 hashes = elf_sym_hashes (input_bfd); 2839 end_hashes = hashes + symcount; 2840 2841 /* Look at each function defined in this section and 2842 update info for that function. */ 2843 isymend = isymbuf + symtab_hdr->sh_info; 2844 for (isym = isymbuf; isym < isymend; isym++) 2845 { 2846 if (isym->st_shndx == sec_shndx 2847 && ELF_ST_TYPE (isym->st_info) == STT_FUNC) 2848 { 2849 struct elf_link_hash_table *elftab; 2850 size_t amt; 2851 struct elf_link_hash_entry **lhashes = hashes; 2852 2853 /* Skip a local symbol if it aliases a 2854 global one. */ 2855 for (; lhashes < end_hashes; lhashes++) 2856 { 2857 hash = (struct elf32_mn10300_link_hash_entry *) *lhashes; 2858 if ((hash->root.root.type == bfd_link_hash_defined 2859 || hash->root.root.type == bfd_link_hash_defweak) 2860 && hash->root.root.u.def.section == section 2861 && hash->root.type == STT_FUNC 2862 && hash->root.root.u.def.value == isym->st_value) 2863 break; 2864 } 2865 if (lhashes != end_hashes) 2866 continue; 2867 2868 if (isym->st_shndx == SHN_UNDEF) 2869 sym_sec = bfd_und_section_ptr; 2870 else if (isym->st_shndx == SHN_ABS) 2871 sym_sec = bfd_abs_section_ptr; 2872 else if (isym->st_shndx == SHN_COMMON) 2873 sym_sec = bfd_com_section_ptr; 2874 else 2875 sym_sec 2876 = bfd_section_from_elf_index (input_bfd, 2877 isym->st_shndx); 2878 2879 sym_name = (bfd_elf_string_from_elf_section 2880 (input_bfd, symtab_hdr->sh_link, 2881 isym->st_name)); 2882 2883 /* Tack on an ID so we can uniquely identify this 2884 local symbol in the global hash table. */ 2885 amt = strlen (sym_name) + 10; 2886 new_name = bfd_malloc (amt); 2887 if (new_name == NULL) 2888 goto error_return; 2889 2890 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); 2891 sym_name = new_name; 2892 2893 elftab = &hash_table->static_hash_table->root; 2894 hash = ((struct elf32_mn10300_link_hash_entry *) 2895 elf_link_hash_lookup (elftab, sym_name, 2896 true, true, false)); 2897 free (new_name); 2898 compute_function_info (input_bfd, hash, 2899 isym->st_value, contents); 2900 hash->value = isym->st_value; 2901 } 2902 } 2903 2904 for (; hashes < end_hashes; hashes++) 2905 { 2906 hash = (struct elf32_mn10300_link_hash_entry *) *hashes; 2907 if ((hash->root.root.type == bfd_link_hash_defined 2908 || hash->root.root.type == bfd_link_hash_defweak) 2909 && hash->root.root.u.def.section == section 2910 && hash->root.type == STT_FUNC) 2911 compute_function_info (input_bfd, hash, 2912 (hash)->root.root.u.def.value, 2913 contents); 2914 } 2915 } 2916 2917 /* Cache or free any memory we allocated for the relocs. */ 2918 if (elf_section_data (section)->relocs != internal_relocs) 2919 free (internal_relocs); 2920 internal_relocs = NULL; 2921 2922 /* Cache or free any memory we allocated for the contents. */ 2923 if (contents != NULL 2924 && elf_section_data (section)->this_hdr.contents != contents) 2925 { 2926 if (! link_info->keep_memory) 2927 free (contents); 2928 else 2929 { 2930 /* Cache the section contents for elf_link_input_bfd. */ 2931 elf_section_data (section)->this_hdr.contents = contents; 2932 } 2933 } 2934 contents = NULL; 2935 } 2936 2937 /* Cache or free any memory we allocated for the symbols. */ 2938 if (isymbuf != NULL 2939 && symtab_hdr->contents != (unsigned char *) isymbuf) 2940 { 2941 if (! link_info->keep_memory) 2942 free (isymbuf); 2943 else 2944 { 2945 /* Cache the symbols for elf_link_input_bfd. */ 2946 symtab_hdr->contents = (unsigned char *) isymbuf; 2947 } 2948 } 2949 isymbuf = NULL; 2950 } 2951 2952 /* Now iterate on each symbol in the hash table and perform 2953 the final initialization steps on each. */ 2954 elf32_mn10300_link_hash_traverse (hash_table, 2955 elf32_mn10300_finish_hash_table_entry, 2956 link_info); 2957 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, 2958 elf32_mn10300_finish_hash_table_entry, 2959 link_info); 2960 2961 { 2962 /* This section of code collects all our local symbols, sorts 2963 them by value, and looks for multiple symbols referring to 2964 the same address. For those symbols, the flags are merged. 2965 At this point, the only flag that can be set is 2966 MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags 2967 together. */ 2968 int static_count = 0, i; 2969 struct elf32_mn10300_link_hash_entry **entries; 2970 struct elf32_mn10300_link_hash_entry **ptr; 2971 2972 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, 2973 elf32_mn10300_count_hash_table_entries, 2974 &static_count); 2975 2976 entries = bfd_malloc (static_count * sizeof (* ptr)); 2977 2978 ptr = entries; 2979 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, 2980 elf32_mn10300_list_hash_table_entries, 2981 & ptr); 2982 2983 qsort (entries, static_count, sizeof (entries[0]), sort_by_value); 2984 2985 for (i = 0; i < static_count - 1; i++) 2986 if (entries[i]->value && entries[i]->value == entries[i+1]->value) 2987 { 2988 int v = entries[i]->flags; 2989 int j; 2990 2991 for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++) 2992 v |= entries[j]->flags; 2993 2994 for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++) 2995 entries[j]->flags = v; 2996 2997 i = j - 1; 2998 } 2999 } 3000 3001 /* All entries in the hash table are fully initialized. */ 3002 hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED; 3003 3004 /* Now that everything has been initialized, go through each 3005 code section and delete any prologue insns which will be 3006 redundant because their operations will be performed by 3007 a "call" instruction. */ 3008 for (input_bfd = link_info->input_bfds; 3009 input_bfd != NULL; 3010 input_bfd = input_bfd->link.next) 3011 { 3012 /* We're going to need all the local symbols for each bfd. */ 3013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3014 if (symtab_hdr->sh_info != 0) 3015 { 3016 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 3017 if (isymbuf == NULL) 3018 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 3019 symtab_hdr->sh_info, 0, 3020 NULL, NULL, NULL); 3021 if (isymbuf == NULL) 3022 goto error_return; 3023 } 3024 3025 /* Walk over each section in this bfd. */ 3026 for (section = input_bfd->sections; 3027 section != NULL; 3028 section = section->next) 3029 { 3030 unsigned int sec_shndx; 3031 Elf_Internal_Sym *isym, *isymend; 3032 struct elf_link_hash_entry **hashes; 3033 struct elf_link_hash_entry **end_hashes; 3034 unsigned int symcount; 3035 3036 /* Skip non-code sections and empty sections. */ 3037 if ((section->flags & SEC_CODE) == 0 || section->size == 0) 3038 continue; 3039 3040 if (section->reloc_count != 0) 3041 { 3042 /* Get a copy of the native relocations. */ 3043 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, 3044 NULL, NULL, 3045 link_info->keep_memory); 3046 if (internal_relocs == NULL) 3047 goto error_return; 3048 } 3049 3050 /* Get cached copy of section contents if it exists. */ 3051 if (elf_section_data (section)->this_hdr.contents != NULL) 3052 contents = elf_section_data (section)->this_hdr.contents; 3053 else 3054 { 3055 /* Go get them off disk. */ 3056 if (!bfd_malloc_and_get_section (input_bfd, section, 3057 &contents)) 3058 goto error_return; 3059 } 3060 3061 sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, 3062 section); 3063 3064 /* Now look for any function in this section which needs 3065 insns deleted from its prologue. */ 3066 isymend = isymbuf + symtab_hdr->sh_info; 3067 for (isym = isymbuf; isym < isymend; isym++) 3068 { 3069 struct elf32_mn10300_link_hash_entry *sym_hash; 3070 asection *sym_sec = NULL; 3071 const char *sym_name; 3072 char *new_name; 3073 struct elf_link_hash_table *elftab; 3074 size_t amt; 3075 3076 if (isym->st_shndx != sec_shndx) 3077 continue; 3078 3079 if (isym->st_shndx == SHN_UNDEF) 3080 sym_sec = bfd_und_section_ptr; 3081 else if (isym->st_shndx == SHN_ABS) 3082 sym_sec = bfd_abs_section_ptr; 3083 else if (isym->st_shndx == SHN_COMMON) 3084 sym_sec = bfd_com_section_ptr; 3085 else 3086 sym_sec 3087 = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 3088 3089 sym_name 3090 = bfd_elf_string_from_elf_section (input_bfd, 3091 symtab_hdr->sh_link, 3092 isym->st_name); 3093 3094 /* Tack on an ID so we can uniquely identify this 3095 local symbol in the global hash table. */ 3096 amt = strlen (sym_name) + 10; 3097 new_name = bfd_malloc (amt); 3098 if (new_name == NULL) 3099 goto error_return; 3100 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); 3101 sym_name = new_name; 3102 3103 elftab = & hash_table->static_hash_table->root; 3104 sym_hash = (struct elf32_mn10300_link_hash_entry *) 3105 elf_link_hash_lookup (elftab, sym_name, 3106 false, false, false); 3107 3108 free (new_name); 3109 if (sym_hash == NULL) 3110 continue; 3111 3112 if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) 3113 && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) 3114 { 3115 int bytes = 0; 3116 3117 /* Note that we've changed things. */ 3118 elf_section_data (section)->relocs = internal_relocs; 3119 elf_section_data (section)->this_hdr.contents = contents; 3120 symtab_hdr->contents = (unsigned char *) isymbuf; 3121 3122 /* Count how many bytes we're going to delete. */ 3123 if (sym_hash->movm_args) 3124 bytes += 2; 3125 3126 if (sym_hash->stack_size > 0) 3127 { 3128 if (sym_hash->stack_size <= 128) 3129 bytes += 3; 3130 else 3131 bytes += 4; 3132 } 3133 3134 /* Note that we've deleted prologue bytes for this 3135 function. */ 3136 sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; 3137 3138 /* Actually delete the bytes. */ 3139 if (!mn10300_elf_relax_delete_bytes (input_bfd, 3140 section, 3141 isym->st_value, 3142 bytes)) 3143 goto error_return; 3144 3145 /* Something changed. Not strictly necessary, but 3146 may lead to more relaxing opportunities. */ 3147 *again = true; 3148 } 3149 } 3150 3151 /* Look for any global functions in this section which 3152 need insns deleted from their prologues. */ 3153 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 3154 - symtab_hdr->sh_info); 3155 hashes = elf_sym_hashes (input_bfd); 3156 end_hashes = hashes + symcount; 3157 for (; hashes < end_hashes; hashes++) 3158 { 3159 struct elf32_mn10300_link_hash_entry *sym_hash; 3160 3161 sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes; 3162 if ((sym_hash->root.root.type == bfd_link_hash_defined 3163 || sym_hash->root.root.type == bfd_link_hash_defweak) 3164 && sym_hash->root.root.u.def.section == section 3165 && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) 3166 && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) 3167 { 3168 int bytes = 0; 3169 bfd_vma symval; 3170 struct elf_link_hash_entry **hh; 3171 3172 /* Note that we've changed things. */ 3173 elf_section_data (section)->relocs = internal_relocs; 3174 elf_section_data (section)->this_hdr.contents = contents; 3175 symtab_hdr->contents = (unsigned char *) isymbuf; 3176 3177 /* Count how many bytes we're going to delete. */ 3178 if (sym_hash->movm_args) 3179 bytes += 2; 3180 3181 if (sym_hash->stack_size > 0) 3182 { 3183 if (sym_hash->stack_size <= 128) 3184 bytes += 3; 3185 else 3186 bytes += 4; 3187 } 3188 3189 /* Note that we've deleted prologue bytes for this 3190 function. */ 3191 sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; 3192 3193 /* Actually delete the bytes. */ 3194 symval = sym_hash->root.root.u.def.value; 3195 if (!mn10300_elf_relax_delete_bytes (input_bfd, 3196 section, 3197 symval, 3198 bytes)) 3199 goto error_return; 3200 3201 /* There may be other C++ functions symbols with the same 3202 address. If so then mark these as having had their 3203 prologue bytes deleted as well. */ 3204 for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++) 3205 { 3206 struct elf32_mn10300_link_hash_entry *h; 3207 3208 h = (struct elf32_mn10300_link_hash_entry *) * hh; 3209 3210 if (h != sym_hash 3211 && (h->root.root.type == bfd_link_hash_defined 3212 || h->root.root.type == bfd_link_hash_defweak) 3213 && h->root.root.u.def.section == section 3214 && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS) 3215 && h->root.root.u.def.value == symval 3216 && h->root.type == STT_FUNC) 3217 h->flags |= MN10300_DELETED_PROLOGUE_BYTES; 3218 } 3219 3220 /* Something changed. Not strictly necessary, but 3221 may lead to more relaxing opportunities. */ 3222 *again = true; 3223 } 3224 } 3225 3226 /* Cache or free any memory we allocated for the relocs. */ 3227 if (elf_section_data (section)->relocs != internal_relocs) 3228 free (internal_relocs); 3229 internal_relocs = NULL; 3230 3231 /* Cache or free any memory we allocated for the contents. */ 3232 if (contents != NULL 3233 && elf_section_data (section)->this_hdr.contents != contents) 3234 { 3235 if (! link_info->keep_memory) 3236 free (contents); 3237 else 3238 /* Cache the section contents for elf_link_input_bfd. */ 3239 elf_section_data (section)->this_hdr.contents = contents; 3240 } 3241 contents = NULL; 3242 } 3243 3244 /* Cache or free any memory we allocated for the symbols. */ 3245 if (isymbuf != NULL 3246 && symtab_hdr->contents != (unsigned char *) isymbuf) 3247 { 3248 if (! link_info->keep_memory) 3249 free (isymbuf); 3250 else 3251 /* Cache the symbols for elf_link_input_bfd. */ 3252 symtab_hdr->contents = (unsigned char *) isymbuf; 3253 } 3254 isymbuf = NULL; 3255 } 3256 } 3257 3258 /* (Re)initialize for the basic instruction shortening/relaxing pass. */ 3259 contents = NULL; 3260 internal_relocs = NULL; 3261 isymbuf = NULL; 3262 /* For error_return. */ 3263 section = sec; 3264 3265 /* We don't have to do anything for a relocatable link, if 3266 this section does not have relocs, or if this is not a 3267 code section. */ 3268 if (bfd_link_relocatable (link_info) 3269 || (sec->flags & SEC_RELOC) == 0 3270 || sec->reloc_count == 0 3271 || (sec->flags & SEC_CODE) == 0) 3272 return true; 3273 3274 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 3275 3276 /* Get a copy of the native relocations. */ 3277 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 3278 link_info->keep_memory); 3279 if (internal_relocs == NULL) 3280 goto error_return; 3281 3282 /* Scan for worst case alignment gap changes. Note that this logic 3283 is not ideal; what we should do is run this scan for every 3284 opcode/address range and adjust accordingly, but that's 3285 expensive. Worst case is that for an alignment of N bytes, we 3286 move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc 3287 all before it. Plus, this still doesn't cover cross-section 3288 jumps with section alignment. */ 3289 irelend = internal_relocs + sec->reloc_count; 3290 align_gap_adjustment = 0; 3291 for (irel = internal_relocs; irel < irelend; irel++) 3292 { 3293 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN) 3294 { 3295 bfd_vma adj = 1 << irel->r_addend; 3296 bfd_vma aend = irel->r_offset; 3297 3298 aend = BFD_ALIGN (aend, 1 << irel->r_addend); 3299 adj = 2 * adj - adj - 1; 3300 3301 /* Record the biggest adjustmnet. Skip any alignment at the 3302 end of our section. */ 3303 if (align_gap_adjustment < adj 3304 && aend < sec->output_section->vma + sec->output_offset + sec->size) 3305 align_gap_adjustment = adj; 3306 } 3307 } 3308 3309 /* Walk through them looking for relaxing opportunities. */ 3310 irelend = internal_relocs + sec->reloc_count; 3311 for (irel = internal_relocs; irel < irelend; irel++) 3312 { 3313 bfd_vma symval; 3314 bfd_signed_vma jump_offset; 3315 asection *sym_sec = NULL; 3316 struct elf32_mn10300_link_hash_entry *h = NULL; 3317 3318 /* If this isn't something that can be relaxed, then ignore 3319 this reloc. */ 3320 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE 3321 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8 3322 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX) 3323 continue; 3324 3325 /* Get the section contents if we haven't done so already. */ 3326 if (contents == NULL) 3327 { 3328 /* Get cached copy if it exists. */ 3329 if (elf_section_data (sec)->this_hdr.contents != NULL) 3330 contents = elf_section_data (sec)->this_hdr.contents; 3331 else 3332 { 3333 /* Go get them off disk. */ 3334 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 3335 goto error_return; 3336 } 3337 } 3338 3339 /* Read this BFD's symbols if we haven't done so already. */ 3340 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 3341 { 3342 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 3343 if (isymbuf == NULL) 3344 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 3345 symtab_hdr->sh_info, 0, 3346 NULL, NULL, NULL); 3347 if (isymbuf == NULL) 3348 goto error_return; 3349 } 3350 3351 /* Get the value of the symbol referred to by the reloc. */ 3352 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 3353 { 3354 Elf_Internal_Sym *isym; 3355 const char *sym_name; 3356 char *new_name; 3357 3358 /* A local symbol. */ 3359 isym = isymbuf + ELF32_R_SYM (irel->r_info); 3360 if (isym->st_shndx == SHN_UNDEF) 3361 sym_sec = bfd_und_section_ptr; 3362 else if (isym->st_shndx == SHN_ABS) 3363 sym_sec = bfd_abs_section_ptr; 3364 else if (isym->st_shndx == SHN_COMMON) 3365 sym_sec = bfd_com_section_ptr; 3366 else 3367 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 3368 3369 sym_name = bfd_elf_string_from_elf_section (abfd, 3370 symtab_hdr->sh_link, 3371 isym->st_name); 3372 3373 if ((sym_sec->flags & SEC_MERGE) 3374 && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE) 3375 { 3376 symval = isym->st_value; 3377 3378 /* GAS may reduce relocations against symbols in SEC_MERGE 3379 sections to a relocation against the section symbol when 3380 the original addend was zero. When the reloc is against 3381 a section symbol we should include the addend in the 3382 offset passed to _bfd_merged_section_offset, since the 3383 location of interest is the original symbol. On the 3384 other hand, an access to "sym+addend" where "sym" is not 3385 a section symbol should not include the addend; Such an 3386 access is presumed to be an offset from "sym"; The 3387 location of interest is just "sym". */ 3388 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 3389 symval += irel->r_addend; 3390 3391 symval = _bfd_merged_section_offset (abfd, & sym_sec, 3392 elf_section_data (sym_sec)->sec_info, 3393 symval); 3394 3395 if (ELF_ST_TYPE (isym->st_info) != STT_SECTION) 3396 symval += irel->r_addend; 3397 3398 symval += sym_sec->output_section->vma 3399 + sym_sec->output_offset - irel->r_addend; 3400 } 3401 else 3402 symval = (isym->st_value 3403 + sym_sec->output_section->vma 3404 + sym_sec->output_offset); 3405 3406 /* Tack on an ID so we can uniquely identify this 3407 local symbol in the global hash table. */ 3408 new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10); 3409 if (new_name == NULL) 3410 goto error_return; 3411 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); 3412 sym_name = new_name; 3413 3414 h = (struct elf32_mn10300_link_hash_entry *) 3415 elf_link_hash_lookup (&hash_table->static_hash_table->root, 3416 sym_name, false, false, false); 3417 free (new_name); 3418 } 3419 else 3420 { 3421 unsigned long indx; 3422 3423 /* An external symbol. */ 3424 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; 3425 h = (struct elf32_mn10300_link_hash_entry *) 3426 (elf_sym_hashes (abfd)[indx]); 3427 BFD_ASSERT (h != NULL); 3428 if (h->root.root.type != bfd_link_hash_defined 3429 && h->root.root.type != bfd_link_hash_defweak) 3430 /* This appears to be a reference to an undefined 3431 symbol. Just ignore it--it will be caught by the 3432 regular reloc processing. */ 3433 continue; 3434 3435 /* Check for a reference to a discarded symbol and ignore it. */ 3436 if (h->root.root.u.def.section->output_section == NULL) 3437 continue; 3438 3439 sym_sec = h->root.root.u.def.section->output_section; 3440 3441 symval = (h->root.root.u.def.value 3442 + h->root.root.u.def.section->output_section->vma 3443 + h->root.root.u.def.section->output_offset); 3444 } 3445 3446 /* For simplicity of coding, we are going to modify the section 3447 contents, the section relocs, and the BFD symbol table. We 3448 must tell the rest of the code not to free up this 3449 information. It would be possible to instead create a table 3450 of changes which have to be made, as is done in coff-mips.c; 3451 that would be more work, but would require less memory when 3452 the linker is run. */ 3453 3454 /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative 3455 branch/call, also deal with "call" -> "calls" conversions and 3456 insertion of prologue data into "call" instructions. */ 3457 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32 3458 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32) 3459 { 3460 bfd_vma value = symval; 3461 3462 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32 3463 && h != NULL 3464 && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL 3465 && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN 3466 && h->root.plt.offset != (bfd_vma) -1) 3467 { 3468 asection * splt; 3469 3470 splt = hash_table->root.splt; 3471 value = ((splt->output_section->vma 3472 + splt->output_offset 3473 + h->root.plt.offset) 3474 - (sec->output_section->vma 3475 + sec->output_offset 3476 + irel->r_offset)); 3477 } 3478 3479 /* If we've got a "call" instruction that needs to be turned 3480 into a "calls" instruction, do so now. It saves a byte. */ 3481 if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) 3482 { 3483 unsigned char code; 3484 3485 /* Get the opcode. */ 3486 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3487 3488 /* Make sure we're working with a "call" instruction! */ 3489 if (code == 0xdd) 3490 { 3491 /* Note that we've changed the relocs, section contents, 3492 etc. */ 3493 elf_section_data (sec)->relocs = internal_relocs; 3494 elf_section_data (sec)->this_hdr.contents = contents; 3495 symtab_hdr->contents = (unsigned char *) isymbuf; 3496 3497 /* Fix the opcode. */ 3498 bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1); 3499 bfd_put_8 (abfd, 0xff, contents + irel->r_offset); 3500 3501 /* Fix irel->r_offset and irel->r_addend. */ 3502 irel->r_offset += 1; 3503 irel->r_addend += 1; 3504 3505 /* Delete one byte of data. */ 3506 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3507 irel->r_offset + 3, 1)) 3508 goto error_return; 3509 3510 /* That will change things, so, we should relax again. 3511 Note that this is not required, and it may be slow. */ 3512 *again = true; 3513 } 3514 } 3515 else if (h) 3516 { 3517 /* We've got a "call" instruction which needs some data 3518 from target function filled in. */ 3519 unsigned char code; 3520 3521 /* Get the opcode. */ 3522 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3523 3524 /* Insert data from the target function into the "call" 3525 instruction if needed. */ 3526 if (code == 0xdd) 3527 { 3528 bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4); 3529 bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, 3530 contents + irel->r_offset + 5); 3531 } 3532 } 3533 3534 /* Deal with pc-relative gunk. */ 3535 value -= (sec->output_section->vma + sec->output_offset); 3536 value -= irel->r_offset; 3537 value += irel->r_addend; 3538 3539 /* See if the value will fit in 16 bits, note the high value is 3540 0x7fff + 2 as the target will be two bytes closer if we are 3541 able to relax, if it's in the same section. */ 3542 if (sec->output_section == sym_sec->output_section) 3543 jump_offset = 0x8001; 3544 else 3545 jump_offset = 0x7fff; 3546 3547 /* Account for jumps across alignment boundaries using 3548 align_gap_adjustment. */ 3549 if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment 3550 && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment)) 3551 { 3552 unsigned char code; 3553 3554 /* Get the opcode. */ 3555 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3556 3557 if (code != 0xdc && code != 0xdd && code != 0xff) 3558 continue; 3559 3560 /* Note that we've changed the relocs, section contents, etc. */ 3561 elf_section_data (sec)->relocs = internal_relocs; 3562 elf_section_data (sec)->this_hdr.contents = contents; 3563 symtab_hdr->contents = (unsigned char *) isymbuf; 3564 3565 /* Fix the opcode. */ 3566 if (code == 0xdc) 3567 bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1); 3568 else if (code == 0xdd) 3569 bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1); 3570 else if (code == 0xff) 3571 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); 3572 3573 /* Fix the relocation's type. */ 3574 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 3575 (ELF32_R_TYPE (irel->r_info) 3576 == (int) R_MN10300_PLT32) 3577 ? R_MN10300_PLT16 : 3578 R_MN10300_PCREL16); 3579 3580 /* Delete two bytes of data. */ 3581 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3582 irel->r_offset + 1, 2)) 3583 goto error_return; 3584 3585 /* That will change things, so, we should relax again. 3586 Note that this is not required, and it may be slow. */ 3587 *again = true; 3588 } 3589 } 3590 3591 /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative 3592 branch. */ 3593 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16) 3594 { 3595 bfd_vma value = symval; 3596 3597 /* If we've got a "call" instruction that needs to be turned 3598 into a "calls" instruction, do so now. It saves a byte. */ 3599 if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) 3600 { 3601 unsigned char code; 3602 3603 /* Get the opcode. */ 3604 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3605 3606 /* Make sure we're working with a "call" instruction! */ 3607 if (code == 0xcd) 3608 { 3609 /* Note that we've changed the relocs, section contents, 3610 etc. */ 3611 elf_section_data (sec)->relocs = internal_relocs; 3612 elf_section_data (sec)->this_hdr.contents = contents; 3613 symtab_hdr->contents = (unsigned char *) isymbuf; 3614 3615 /* Fix the opcode. */ 3616 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1); 3617 bfd_put_8 (abfd, 0xff, contents + irel->r_offset); 3618 3619 /* Fix irel->r_offset and irel->r_addend. */ 3620 irel->r_offset += 1; 3621 irel->r_addend += 1; 3622 3623 /* Delete one byte of data. */ 3624 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3625 irel->r_offset + 1, 1)) 3626 goto error_return; 3627 3628 /* That will change things, so, we should relax again. 3629 Note that this is not required, and it may be slow. */ 3630 *again = true; 3631 } 3632 } 3633 else if (h) 3634 { 3635 unsigned char code; 3636 3637 /* Get the opcode. */ 3638 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3639 3640 /* Insert data from the target function into the "call" 3641 instruction if needed. */ 3642 if (code == 0xcd) 3643 { 3644 bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2); 3645 bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, 3646 contents + irel->r_offset + 3); 3647 } 3648 } 3649 3650 /* Deal with pc-relative gunk. */ 3651 value -= (sec->output_section->vma + sec->output_offset); 3652 value -= irel->r_offset; 3653 value += irel->r_addend; 3654 3655 /* See if the value will fit in 8 bits, note the high value is 3656 0x7f + 1 as the target will be one bytes closer if we are 3657 able to relax. */ 3658 if ((long) value < 0x80 && (long) value > -0x80) 3659 { 3660 unsigned char code; 3661 3662 /* Get the opcode. */ 3663 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3664 3665 if (code != 0xcc) 3666 continue; 3667 3668 /* Note that we've changed the relocs, section contents, etc. */ 3669 elf_section_data (sec)->relocs = internal_relocs; 3670 elf_section_data (sec)->this_hdr.contents = contents; 3671 symtab_hdr->contents = (unsigned char *) isymbuf; 3672 3673 /* Fix the opcode. */ 3674 bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1); 3675 3676 /* Fix the relocation's type. */ 3677 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 3678 R_MN10300_PCREL8); 3679 3680 /* Delete one byte of data. */ 3681 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3682 irel->r_offset + 1, 1)) 3683 goto error_return; 3684 3685 /* That will change things, so, we should relax again. 3686 Note that this is not required, and it may be slow. */ 3687 *again = true; 3688 } 3689 } 3690 3691 /* Try to eliminate an unconditional 8 bit pc-relative branch 3692 which immediately follows a conditional 8 bit pc-relative 3693 branch around the unconditional branch. 3694 3695 original: new: 3696 bCC lab1 bCC' lab2 3697 bra lab2 3698 lab1: lab1: 3699 3700 This happens when the bCC can't reach lab2 at assembly time, 3701 but due to other relaxations it can reach at link time. */ 3702 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8) 3703 { 3704 Elf_Internal_Rela *nrel; 3705 unsigned char code; 3706 3707 /* Do nothing if this reloc is the last byte in the section. */ 3708 if (irel->r_offset == sec->size) 3709 continue; 3710 3711 /* See if the next instruction is an unconditional pc-relative 3712 branch, more often than not this test will fail, so we 3713 test it first to speed things up. */ 3714 code = bfd_get_8 (abfd, contents + irel->r_offset + 1); 3715 if (code != 0xca) 3716 continue; 3717 3718 /* Also make sure the next relocation applies to the next 3719 instruction and that it's a pc-relative 8 bit branch. */ 3720 nrel = irel + 1; 3721 if (nrel == irelend 3722 || irel->r_offset + 2 != nrel->r_offset 3723 || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8) 3724 continue; 3725 3726 /* Make sure our destination immediately follows the 3727 unconditional branch. */ 3728 if (symval != (sec->output_section->vma + sec->output_offset 3729 + irel->r_offset + 3)) 3730 continue; 3731 3732 /* Now make sure we are a conditional branch. This may not 3733 be necessary, but why take the chance. 3734 3735 Note these checks assume that R_MN10300_PCREL8 relocs 3736 only occur on bCC and bCCx insns. If they occured 3737 elsewhere, we'd need to know the start of this insn 3738 for this check to be accurate. */ 3739 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 3740 if (code != 0xc0 && code != 0xc1 && code != 0xc2 3741 && code != 0xc3 && code != 0xc4 && code != 0xc5 3742 && code != 0xc6 && code != 0xc7 && code != 0xc8 3743 && code != 0xc9 && code != 0xe8 && code != 0xe9 3744 && code != 0xea && code != 0xeb) 3745 continue; 3746 3747 /* We also have to be sure there is no symbol/label 3748 at the unconditional branch. */ 3749 if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf, 3750 irel->r_offset + 1)) 3751 continue; 3752 3753 /* Note that we've changed the relocs, section contents, etc. */ 3754 elf_section_data (sec)->relocs = internal_relocs; 3755 elf_section_data (sec)->this_hdr.contents = contents; 3756 symtab_hdr->contents = (unsigned char *) isymbuf; 3757 3758 /* Reverse the condition of the first branch. */ 3759 switch (code) 3760 { 3761 case 0xc8: 3762 code = 0xc9; 3763 break; 3764 case 0xc9: 3765 code = 0xc8; 3766 break; 3767 case 0xc0: 3768 code = 0xc2; 3769 break; 3770 case 0xc2: 3771 code = 0xc0; 3772 break; 3773 case 0xc3: 3774 code = 0xc1; 3775 break; 3776 case 0xc1: 3777 code = 0xc3; 3778 break; 3779 case 0xc4: 3780 code = 0xc6; 3781 break; 3782 case 0xc6: 3783 code = 0xc4; 3784 break; 3785 case 0xc7: 3786 code = 0xc5; 3787 break; 3788 case 0xc5: 3789 code = 0xc7; 3790 break; 3791 case 0xe8: 3792 code = 0xe9; 3793 break; 3794 case 0x9d: 3795 code = 0xe8; 3796 break; 3797 case 0xea: 3798 code = 0xeb; 3799 break; 3800 case 0xeb: 3801 code = 0xea; 3802 break; 3803 } 3804 bfd_put_8 (abfd, code, contents + irel->r_offset - 1); 3805 3806 /* Set the reloc type and symbol for the first branch 3807 from the second branch. */ 3808 irel->r_info = nrel->r_info; 3809 3810 /* Make the reloc for the second branch a null reloc. */ 3811 nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info), 3812 R_MN10300_NONE); 3813 3814 /* Delete two bytes of data. */ 3815 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3816 irel->r_offset + 1, 2)) 3817 goto error_return; 3818 3819 /* That will change things, so, we should relax again. 3820 Note that this is not required, and it may be slow. */ 3821 *again = true; 3822 } 3823 3824 /* Try to turn a 24 immediate, displacement or absolute address 3825 into a 8 immediate, displacement or absolute address. */ 3826 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24) 3827 { 3828 bfd_vma value = symval; 3829 value += irel->r_addend; 3830 3831 /* See if the value will fit in 8 bits. */ 3832 if ((long) value < 0x7f && (long) value > -0x80) 3833 { 3834 unsigned char code; 3835 3836 /* AM33 insns which have 24 operands are 6 bytes long and 3837 will have 0xfd as the first byte. */ 3838 3839 /* Get the first opcode. */ 3840 code = bfd_get_8 (abfd, contents + irel->r_offset - 3); 3841 3842 if (code == 0xfd) 3843 { 3844 /* Get the second opcode. */ 3845 code = bfd_get_8 (abfd, contents + irel->r_offset - 2); 3846 3847 /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit 3848 equivalent instructions exists. */ 3849 if (code != 0x6b && code != 0x7b 3850 && code != 0x8b && code != 0x9b 3851 && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 3852 || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b 3853 || (code & 0x0f) == 0x0e)) 3854 { 3855 /* Not safe if the high bit is on as relaxing may 3856 move the value out of high mem and thus not fit 3857 in a signed 8bit value. This is currently over 3858 conservative. */ 3859 if ((value & 0x80) == 0) 3860 { 3861 /* Note that we've changed the relocation contents, 3862 etc. */ 3863 elf_section_data (sec)->relocs = internal_relocs; 3864 elf_section_data (sec)->this_hdr.contents = contents; 3865 symtab_hdr->contents = (unsigned char *) isymbuf; 3866 3867 /* Fix the opcode. */ 3868 bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3); 3869 bfd_put_8 (abfd, code, contents + irel->r_offset - 2); 3870 3871 /* Fix the relocation's type. */ 3872 irel->r_info = 3873 ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 3874 R_MN10300_8); 3875 3876 /* Delete two bytes of data. */ 3877 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3878 irel->r_offset + 1, 2)) 3879 goto error_return; 3880 3881 /* That will change things, so, we should relax 3882 again. Note that this is not required, and it 3883 may be slow. */ 3884 *again = true; 3885 break; 3886 } 3887 } 3888 } 3889 } 3890 } 3891 3892 /* Try to turn a 32bit immediate, displacement or absolute address 3893 into a 16bit immediate, displacement or absolute address. */ 3894 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32 3895 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32 3896 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) 3897 { 3898 bfd_vma value = symval; 3899 3900 if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32) 3901 { 3902 asection * sgot; 3903 3904 sgot = hash_table->root.sgot; 3905 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32) 3906 { 3907 value = sgot->output_offset; 3908 3909 if (h) 3910 value += h->root.got.offset; 3911 else 3912 value += (elf_local_got_offsets 3913 (abfd)[ELF32_R_SYM (irel->r_info)]); 3914 } 3915 else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) 3916 value -= sgot->output_section->vma; 3917 else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32) 3918 value = (sgot->output_section->vma 3919 - (sec->output_section->vma 3920 + sec->output_offset 3921 + irel->r_offset)); 3922 else 3923 abort (); 3924 } 3925 3926 value += irel->r_addend; 3927 3928 /* See if the value will fit in 24 bits. 3929 We allow any 16bit match here. We prune those we can't 3930 handle below. */ 3931 if (value + 0x800000 < 0x1000000 && irel->r_offset >= 3) 3932 { 3933 unsigned char code; 3934 3935 /* AM33 insns which have 32bit operands are 7 bytes long and 3936 will have 0xfe as the first byte. */ 3937 3938 /* Get the first opcode. */ 3939 code = bfd_get_8 (abfd, contents + irel->r_offset - 3); 3940 3941 if (code == 0xfe) 3942 { 3943 /* Get the second opcode. */ 3944 code = bfd_get_8 (abfd, contents + irel->r_offset - 2); 3945 3946 /* All the am33 32 -> 24 relaxing possibilities. */ 3947 /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit 3948 equivalent instructions exists. */ 3949 if (code != 0x6b && code != 0x7b 3950 && code != 0x8b && code != 0x9b 3951 && (ELF32_R_TYPE (irel->r_info) 3952 != (int) R_MN10300_GOTPC32) 3953 && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 3954 || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b 3955 || (code & 0x0f) == 0x0e)) 3956 { 3957 /* Not safe if the high bit is on as relaxing may 3958 move the value out of high mem and thus not fit 3959 in a signed 16bit value. This is currently over 3960 conservative. */ 3961 if ((value & 0x8000) == 0) 3962 { 3963 /* Note that we've changed the relocation contents, 3964 etc. */ 3965 elf_section_data (sec)->relocs = internal_relocs; 3966 elf_section_data (sec)->this_hdr.contents = contents; 3967 symtab_hdr->contents = (unsigned char *) isymbuf; 3968 3969 /* Fix the opcode. */ 3970 bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3); 3971 bfd_put_8 (abfd, code, contents + irel->r_offset - 2); 3972 3973 /* Fix the relocation's type. */ 3974 irel->r_info = 3975 ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 3976 (ELF32_R_TYPE (irel->r_info) 3977 == (int) R_MN10300_GOTOFF32) 3978 ? R_MN10300_GOTOFF24 3979 : (ELF32_R_TYPE (irel->r_info) 3980 == (int) R_MN10300_GOT32) 3981 ? R_MN10300_GOT24 : 3982 R_MN10300_24); 3983 3984 /* Delete one byte of data. */ 3985 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 3986 irel->r_offset + 3, 1)) 3987 goto error_return; 3988 3989 /* That will change things, so, we should relax 3990 again. Note that this is not required, and it 3991 may be slow. */ 3992 *again = true; 3993 break; 3994 } 3995 } 3996 } 3997 } 3998 3999 /* See if the value will fit in 16 bits. 4000 We allow any 16bit match here. We prune those we can't 4001 handle below. */ 4002 if (value + 0x8000 < 0x10000 && irel->r_offset >= 2) 4003 { 4004 unsigned char code; 4005 4006 /* Most insns which have 32bit operands are 6 bytes long; 4007 exceptions are pcrel insns and bit insns. 4008 4009 We handle pcrel insns above. We don't bother trying 4010 to handle the bit insns here. 4011 4012 The first byte of the remaining insns will be 0xfc. */ 4013 4014 /* Get the first opcode. */ 4015 code = bfd_get_8 (abfd, contents + irel->r_offset - 2); 4016 4017 if (code != 0xfc) 4018 continue; 4019 4020 /* Get the second opcode. */ 4021 code = bfd_get_8 (abfd, contents + irel->r_offset - 1); 4022 4023 if ((code & 0xf0) < 0x80) 4024 switch (code & 0xf0) 4025 { 4026 /* mov (d32,am),dn -> mov (d32,am),dn 4027 mov dm,(d32,am) -> mov dn,(d32,am) 4028 mov (d32,am),an -> mov (d32,am),an 4029 mov dm,(d32,am) -> mov dn,(d32,am) 4030 movbu (d32,am),dn -> movbu (d32,am),dn 4031 movbu dm,(d32,am) -> movbu dn,(d32,am) 4032 movhu (d32,am),dn -> movhu (d32,am),dn 4033 movhu dm,(d32,am) -> movhu dn,(d32,am) */ 4034 case 0x00: 4035 case 0x10: 4036 case 0x20: 4037 case 0x30: 4038 case 0x40: 4039 case 0x50: 4040 case 0x60: 4041 case 0x70: 4042 /* Not safe if the high bit is on as relaxing may 4043 move the value out of high mem and thus not fit 4044 in a signed 16bit value. */ 4045 if (code == 0xcc 4046 && (value & 0x8000)) 4047 continue; 4048 4049 /* Note that we've changed the relocation contents, etc. */ 4050 elf_section_data (sec)->relocs = internal_relocs; 4051 elf_section_data (sec)->this_hdr.contents = contents; 4052 symtab_hdr->contents = (unsigned char *) isymbuf; 4053 4054 /* Fix the opcode. */ 4055 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); 4056 bfd_put_8 (abfd, code, contents + irel->r_offset - 1); 4057 4058 /* Fix the relocation's type. */ 4059 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 4060 (ELF32_R_TYPE (irel->r_info) 4061 == (int) R_MN10300_GOTOFF32) 4062 ? R_MN10300_GOTOFF16 4063 : (ELF32_R_TYPE (irel->r_info) 4064 == (int) R_MN10300_GOT32) 4065 ? R_MN10300_GOT16 4066 : (ELF32_R_TYPE (irel->r_info) 4067 == (int) R_MN10300_GOTPC32) 4068 ? R_MN10300_GOTPC16 : 4069 R_MN10300_16); 4070 4071 /* Delete two bytes of data. */ 4072 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 4073 irel->r_offset + 2, 2)) 4074 goto error_return; 4075 4076 /* That will change things, so, we should relax again. 4077 Note that this is not required, and it may be slow. */ 4078 *again = true; 4079 break; 4080 } 4081 else if ((code & 0xf0) == 0x80 4082 || (code & 0xf0) == 0x90) 4083 switch (code & 0xf3) 4084 { 4085 /* mov dn,(abs32) -> mov dn,(abs16) 4086 movbu dn,(abs32) -> movbu dn,(abs16) 4087 movhu dn,(abs32) -> movhu dn,(abs16) */ 4088 case 0x81: 4089 case 0x82: 4090 case 0x83: 4091 /* Note that we've changed the relocation contents, etc. */ 4092 elf_section_data (sec)->relocs = internal_relocs; 4093 elf_section_data (sec)->this_hdr.contents = contents; 4094 symtab_hdr->contents = (unsigned char *) isymbuf; 4095 4096 if ((code & 0xf3) == 0x81) 4097 code = 0x01 + (code & 0x0c); 4098 else if ((code & 0xf3) == 0x82) 4099 code = 0x02 + (code & 0x0c); 4100 else if ((code & 0xf3) == 0x83) 4101 code = 0x03 + (code & 0x0c); 4102 else 4103 abort (); 4104 4105 /* Fix the opcode. */ 4106 bfd_put_8 (abfd, code, contents + irel->r_offset - 2); 4107 4108 /* Fix the relocation's type. */ 4109 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 4110 (ELF32_R_TYPE (irel->r_info) 4111 == (int) R_MN10300_GOTOFF32) 4112 ? R_MN10300_GOTOFF16 4113 : (ELF32_R_TYPE (irel->r_info) 4114 == (int) R_MN10300_GOT32) 4115 ? R_MN10300_GOT16 4116 : (ELF32_R_TYPE (irel->r_info) 4117 == (int) R_MN10300_GOTPC32) 4118 ? R_MN10300_GOTPC16 : 4119 R_MN10300_16); 4120 4121 /* The opcode got shorter too, so we have to fix the 4122 addend and offset too! */ 4123 irel->r_offset -= 1; 4124 4125 /* Delete three bytes of data. */ 4126 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 4127 irel->r_offset + 1, 3)) 4128 goto error_return; 4129 4130 /* That will change things, so, we should relax again. 4131 Note that this is not required, and it may be slow. */ 4132 *again = true; 4133 break; 4134 4135 /* mov am,(abs32) -> mov am,(abs16) 4136 mov am,(d32,sp) -> mov am,(d16,sp) 4137 mov dm,(d32,sp) -> mov dm,(d32,sp) 4138 movbu dm,(d32,sp) -> movbu dm,(d32,sp) 4139 movhu dm,(d32,sp) -> movhu dm,(d32,sp) */ 4140 case 0x80: 4141 case 0x90: 4142 case 0x91: 4143 case 0x92: 4144 case 0x93: 4145 /* sp-based offsets are zero-extended. */ 4146 if (code >= 0x90 && code <= 0x93 4147 && (long) value < 0) 4148 continue; 4149 4150 /* Note that we've changed the relocation contents, etc. */ 4151 elf_section_data (sec)->relocs = internal_relocs; 4152 elf_section_data (sec)->this_hdr.contents = contents; 4153 symtab_hdr->contents = (unsigned char *) isymbuf; 4154 4155 /* Fix the opcode. */ 4156 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); 4157 bfd_put_8 (abfd, code, contents + irel->r_offset - 1); 4158 4159 /* Fix the relocation's type. */ 4160 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 4161 (ELF32_R_TYPE (irel->r_info) 4162 == (int) R_MN10300_GOTOFF32) 4163 ? R_MN10300_GOTOFF16 4164 : (ELF32_R_TYPE (irel->r_info) 4165 == (int) R_MN10300_GOT32) 4166 ? R_MN10300_GOT16 4167 : (ELF32_R_TYPE (irel->r_info) 4168 == (int) R_MN10300_GOTPC32) 4169 ? R_MN10300_GOTPC16 : 4170 R_MN10300_16); 4171 4172 /* Delete two bytes of data. */ 4173 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 4174 irel->r_offset + 2, 2)) 4175 goto error_return; 4176 4177 /* That will change things, so, we should relax again. 4178 Note that this is not required, and it may be slow. */ 4179 *again = true; 4180 break; 4181 } 4182 else if ((code & 0xf0) < 0xf0) 4183 switch (code & 0xfc) 4184 { 4185 /* mov imm32,dn -> mov imm16,dn 4186 mov imm32,an -> mov imm16,an 4187 mov (abs32),dn -> mov (abs16),dn 4188 movbu (abs32),dn -> movbu (abs16),dn 4189 movhu (abs32),dn -> movhu (abs16),dn */ 4190 case 0xcc: 4191 case 0xdc: 4192 case 0xa4: 4193 case 0xa8: 4194 case 0xac: 4195 /* Not safe if the high bit is on as relaxing may 4196 move the value out of high mem and thus not fit 4197 in a signed 16bit value. */ 4198 if (code == 0xcc 4199 && (value & 0x8000)) 4200 continue; 4201 4202 /* "mov imm16, an" zero-extends the immediate. */ 4203 if ((code & 0xfc) == 0xdc 4204 && (long) value < 0) 4205 continue; 4206 4207 /* Note that we've changed the relocation contents, etc. */ 4208 elf_section_data (sec)->relocs = internal_relocs; 4209 elf_section_data (sec)->this_hdr.contents = contents; 4210 symtab_hdr->contents = (unsigned char *) isymbuf; 4211 4212 if ((code & 0xfc) == 0xcc) 4213 code = 0x2c + (code & 0x03); 4214 else if ((code & 0xfc) == 0xdc) 4215 code = 0x24 + (code & 0x03); 4216 else if ((code & 0xfc) == 0xa4) 4217 code = 0x30 + (code & 0x03); 4218 else if ((code & 0xfc) == 0xa8) 4219 code = 0x34 + (code & 0x03); 4220 else if ((code & 0xfc) == 0xac) 4221 code = 0x38 + (code & 0x03); 4222 else 4223 abort (); 4224 4225 /* Fix the opcode. */ 4226 bfd_put_8 (abfd, code, contents + irel->r_offset - 2); 4227 4228 /* Fix the relocation's type. */ 4229 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 4230 (ELF32_R_TYPE (irel->r_info) 4231 == (int) R_MN10300_GOTOFF32) 4232 ? R_MN10300_GOTOFF16 4233 : (ELF32_R_TYPE (irel->r_info) 4234 == (int) R_MN10300_GOT32) 4235 ? R_MN10300_GOT16 4236 : (ELF32_R_TYPE (irel->r_info) 4237 == (int) R_MN10300_GOTPC32) 4238 ? R_MN10300_GOTPC16 : 4239 R_MN10300_16); 4240 4241 /* The opcode got shorter too, so we have to fix the 4242 addend and offset too! */ 4243 irel->r_offset -= 1; 4244 4245 /* Delete three bytes of data. */ 4246 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 4247 irel->r_offset + 1, 3)) 4248 goto error_return; 4249 4250 /* That will change things, so, we should relax again. 4251 Note that this is not required, and it may be slow. */ 4252 *again = true; 4253 break; 4254 4255 /* mov (abs32),an -> mov (abs16),an 4256 mov (d32,sp),an -> mov (d16,sp),an 4257 mov (d32,sp),dn -> mov (d16,sp),dn 4258 movbu (d32,sp),dn -> movbu (d16,sp),dn 4259 movhu (d32,sp),dn -> movhu (d16,sp),dn 4260 add imm32,dn -> add imm16,dn 4261 cmp imm32,dn -> cmp imm16,dn 4262 add imm32,an -> add imm16,an 4263 cmp imm32,an -> cmp imm16,an 4264 and imm32,dn -> and imm16,dn 4265 or imm32,dn -> or imm16,dn 4266 xor imm32,dn -> xor imm16,dn 4267 btst imm32,dn -> btst imm16,dn */ 4268 4269 case 0xa0: 4270 case 0xb0: 4271 case 0xb1: 4272 case 0xb2: 4273 case 0xb3: 4274 case 0xc0: 4275 case 0xc8: 4276 4277 case 0xd0: 4278 case 0xd8: 4279 case 0xe0: 4280 case 0xe1: 4281 case 0xe2: 4282 case 0xe3: 4283 /* cmp imm16, an zero-extends the immediate. */ 4284 if (code == 0xdc 4285 && (long) value < 0) 4286 continue; 4287 4288 /* So do sp-based offsets. */ 4289 if (code >= 0xb0 && code <= 0xb3 4290 && (long) value < 0) 4291 continue; 4292 4293 /* Note that we've changed the relocation contents, etc. */ 4294 elf_section_data (sec)->relocs = internal_relocs; 4295 elf_section_data (sec)->this_hdr.contents = contents; 4296 symtab_hdr->contents = (unsigned char *) isymbuf; 4297 4298 /* Fix the opcode. */ 4299 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); 4300 bfd_put_8 (abfd, code, contents + irel->r_offset - 1); 4301 4302 /* Fix the relocation's type. */ 4303 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 4304 (ELF32_R_TYPE (irel->r_info) 4305 == (int) R_MN10300_GOTOFF32) 4306 ? R_MN10300_GOTOFF16 4307 : (ELF32_R_TYPE (irel->r_info) 4308 == (int) R_MN10300_GOT32) 4309 ? R_MN10300_GOT16 4310 : (ELF32_R_TYPE (irel->r_info) 4311 == (int) R_MN10300_GOTPC32) 4312 ? R_MN10300_GOTPC16 : 4313 R_MN10300_16); 4314 4315 /* Delete two bytes of data. */ 4316 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 4317 irel->r_offset + 2, 2)) 4318 goto error_return; 4319 4320 /* That will change things, so, we should relax again. 4321 Note that this is not required, and it may be slow. */ 4322 *again = true; 4323 break; 4324 } 4325 else if (code == 0xfe) 4326 { 4327 /* add imm32,sp -> add imm16,sp */ 4328 4329 /* Note that we've changed the relocation contents, etc. */ 4330 elf_section_data (sec)->relocs = internal_relocs; 4331 elf_section_data (sec)->this_hdr.contents = contents; 4332 symtab_hdr->contents = (unsigned char *) isymbuf; 4333 4334 /* Fix the opcode. */ 4335 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); 4336 bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1); 4337 4338 /* Fix the relocation's type. */ 4339 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 4340 (ELF32_R_TYPE (irel->r_info) 4341 == (int) R_MN10300_GOT32) 4342 ? R_MN10300_GOT16 4343 : (ELF32_R_TYPE (irel->r_info) 4344 == (int) R_MN10300_GOTOFF32) 4345 ? R_MN10300_GOTOFF16 4346 : (ELF32_R_TYPE (irel->r_info) 4347 == (int) R_MN10300_GOTPC32) 4348 ? R_MN10300_GOTPC16 : 4349 R_MN10300_16); 4350 4351 /* Delete two bytes of data. */ 4352 if (!mn10300_elf_relax_delete_bytes (abfd, sec, 4353 irel->r_offset + 2, 2)) 4354 goto error_return; 4355 4356 /* That will change things, so, we should relax again. 4357 Note that this is not required, and it may be slow. */ 4358 *again = true; 4359 break; 4360 } 4361 } 4362 } 4363 } 4364 4365 if (isymbuf != NULL 4366 && symtab_hdr->contents != (unsigned char *) isymbuf) 4367 { 4368 if (! link_info->keep_memory) 4369 free (isymbuf); 4370 else 4371 { 4372 /* Cache the symbols for elf_link_input_bfd. */ 4373 symtab_hdr->contents = (unsigned char *) isymbuf; 4374 } 4375 } 4376 4377 if (contents != NULL 4378 && elf_section_data (sec)->this_hdr.contents != contents) 4379 { 4380 if (! link_info->keep_memory) 4381 free (contents); 4382 else 4383 { 4384 /* Cache the section contents for elf_link_input_bfd. */ 4385 elf_section_data (sec)->this_hdr.contents = contents; 4386 } 4387 } 4388 4389 if (elf_section_data (sec)->relocs != internal_relocs) 4390 free (internal_relocs); 4391 4392 return true; 4393 4394 error_return: 4395 if (symtab_hdr->contents != (unsigned char *) isymbuf) 4396 free (isymbuf); 4397 if (elf_section_data (section)->this_hdr.contents != contents) 4398 free (contents); 4399 if (elf_section_data (section)->relocs != internal_relocs) 4400 free (internal_relocs); 4401 4402 return false; 4403 } 4404 4405 /* This is a version of bfd_generic_get_relocated_section_contents 4406 which uses mn10300_elf_relocate_section. */ 4407 4408 static bfd_byte * 4409 mn10300_elf_get_relocated_section_contents (bfd *output_bfd, 4410 struct bfd_link_info *link_info, 4411 struct bfd_link_order *link_order, 4412 bfd_byte *data, 4413 bool relocatable, 4414 asymbol **symbols) 4415 { 4416 Elf_Internal_Shdr *symtab_hdr; 4417 asection *input_section = link_order->u.indirect.section; 4418 bfd *input_bfd = input_section->owner; 4419 asection **sections = NULL; 4420 Elf_Internal_Rela *internal_relocs = NULL; 4421 Elf_Internal_Sym *isymbuf = NULL; 4422 4423 /* We only need to handle the case of relaxing, or of having a 4424 particular set of section contents, specially. */ 4425 if (relocatable 4426 || elf_section_data (input_section)->this_hdr.contents == NULL) 4427 return bfd_generic_get_relocated_section_contents (output_bfd, link_info, 4428 link_order, data, 4429 relocatable, 4430 symbols); 4431 4432 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4433 4434 bfd_byte *orig_data = data; 4435 if (data == NULL) 4436 { 4437 data = bfd_malloc (input_section->size); 4438 if (data == NULL) 4439 return NULL; 4440 } 4441 memcpy (data, elf_section_data (input_section)->this_hdr.contents, 4442 (size_t) input_section->size); 4443 4444 if ((input_section->flags & SEC_RELOC) != 0 4445 && input_section->reloc_count > 0) 4446 { 4447 asection **secpp; 4448 Elf_Internal_Sym *isym, *isymend; 4449 bfd_size_type amt; 4450 4451 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section, 4452 NULL, NULL, false); 4453 if (internal_relocs == NULL) 4454 goto error_return; 4455 4456 if (symtab_hdr->sh_info != 0) 4457 { 4458 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 4459 if (isymbuf == NULL) 4460 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 4461 symtab_hdr->sh_info, 0, 4462 NULL, NULL, NULL); 4463 if (isymbuf == NULL) 4464 goto error_return; 4465 } 4466 4467 amt = symtab_hdr->sh_info; 4468 amt *= sizeof (asection *); 4469 sections = bfd_malloc (amt); 4470 if (sections == NULL && amt != 0) 4471 goto error_return; 4472 4473 isymend = isymbuf + symtab_hdr->sh_info; 4474 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp) 4475 { 4476 asection *isec; 4477 4478 if (isym->st_shndx == SHN_UNDEF) 4479 isec = bfd_und_section_ptr; 4480 else if (isym->st_shndx == SHN_ABS) 4481 isec = bfd_abs_section_ptr; 4482 else if (isym->st_shndx == SHN_COMMON) 4483 isec = bfd_com_section_ptr; 4484 else 4485 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 4486 4487 *secpp = isec; 4488 } 4489 4490 if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd, 4491 input_section, data, internal_relocs, 4492 isymbuf, sections)) 4493 goto error_return; 4494 4495 free (sections); 4496 if (symtab_hdr->contents != (unsigned char *) isymbuf) 4497 free (isymbuf); 4498 if (internal_relocs != elf_section_data (input_section)->relocs) 4499 free (internal_relocs); 4500 } 4501 4502 return data; 4503 4504 error_return: 4505 free (sections); 4506 if (symtab_hdr->contents != (unsigned char *) isymbuf) 4507 free (isymbuf); 4508 if (internal_relocs != elf_section_data (input_section)->relocs) 4509 free (internal_relocs); 4510 if (orig_data == NULL) 4511 free (data); 4512 return NULL; 4513 } 4514 4515 /* Assorted hash table functions. */ 4516 4517 /* Initialize an entry in the link hash table. */ 4518 4519 /* Create an entry in an MN10300 ELF linker hash table. */ 4520 4521 static struct bfd_hash_entry * 4522 elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry, 4523 struct bfd_hash_table *table, 4524 const char *string) 4525 { 4526 struct elf32_mn10300_link_hash_entry *ret = 4527 (struct elf32_mn10300_link_hash_entry *) entry; 4528 4529 /* Allocate the structure if it has not already been allocated by a 4530 subclass. */ 4531 if (ret == NULL) 4532 ret = (struct elf32_mn10300_link_hash_entry *) 4533 bfd_hash_allocate (table, sizeof (* ret)); 4534 if (ret == NULL) 4535 return (struct bfd_hash_entry *) ret; 4536 4537 /* Call the allocation method of the superclass. */ 4538 ret = (struct elf32_mn10300_link_hash_entry *) 4539 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 4540 table, string); 4541 if (ret != NULL) 4542 { 4543 ret->direct_calls = 0; 4544 ret->stack_size = 0; 4545 ret->movm_args = 0; 4546 ret->movm_stack_size = 0; 4547 ret->flags = 0; 4548 ret->value = 0; 4549 ret->tls_type = GOT_UNKNOWN; 4550 } 4551 4552 return (struct bfd_hash_entry *) ret; 4553 } 4554 4555 static void 4556 _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info * info, 4557 struct elf_link_hash_entry * dir, 4558 struct elf_link_hash_entry * ind) 4559 { 4560 struct elf32_mn10300_link_hash_entry * edir; 4561 struct elf32_mn10300_link_hash_entry * eind; 4562 4563 edir = elf_mn10300_hash_entry (dir); 4564 eind = elf_mn10300_hash_entry (ind); 4565 4566 if (ind->root.type == bfd_link_hash_indirect 4567 && dir->got.refcount <= 0) 4568 { 4569 edir->tls_type = eind->tls_type; 4570 eind->tls_type = GOT_UNKNOWN; 4571 } 4572 edir->direct_calls = eind->direct_calls; 4573 edir->stack_size = eind->stack_size; 4574 edir->movm_args = eind->movm_args; 4575 edir->movm_stack_size = eind->movm_stack_size; 4576 edir->flags = eind->flags; 4577 4578 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 4579 } 4580 4581 /* Destroy an mn10300 ELF linker hash table. */ 4582 4583 static void 4584 elf32_mn10300_link_hash_table_free (bfd *obfd) 4585 { 4586 struct elf32_mn10300_link_hash_table *ret 4587 = (struct elf32_mn10300_link_hash_table *) obfd->link.hash; 4588 4589 obfd->link.hash = &ret->static_hash_table->root.root; 4590 _bfd_elf_link_hash_table_free (obfd); 4591 obfd->is_linker_output = true; 4592 obfd->link.hash = &ret->root.root; 4593 _bfd_elf_link_hash_table_free (obfd); 4594 } 4595 4596 /* Create an mn10300 ELF linker hash table. */ 4597 4598 static struct bfd_link_hash_table * 4599 elf32_mn10300_link_hash_table_create (bfd *abfd) 4600 { 4601 struct elf32_mn10300_link_hash_table *ret; 4602 size_t amt = sizeof (* ret); 4603 4604 ret = bfd_zmalloc (amt); 4605 if (ret == NULL) 4606 return NULL; 4607 4608 amt = sizeof (struct elf_link_hash_table); 4609 ret->static_hash_table = bfd_zmalloc (amt); 4610 if (ret->static_hash_table == NULL) 4611 { 4612 free (ret); 4613 return NULL; 4614 } 4615 4616 if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd, 4617 elf32_mn10300_link_hash_newfunc, 4618 sizeof (struct elf32_mn10300_link_hash_entry), 4619 MN10300_ELF_DATA)) 4620 { 4621 free (ret->static_hash_table); 4622 free (ret); 4623 return NULL; 4624 } 4625 4626 abfd->is_linker_output = false; 4627 abfd->link.hash = NULL; 4628 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 4629 elf32_mn10300_link_hash_newfunc, 4630 sizeof (struct elf32_mn10300_link_hash_entry), 4631 MN10300_ELF_DATA)) 4632 { 4633 abfd->is_linker_output = true; 4634 abfd->link.hash = &ret->static_hash_table->root.root; 4635 _bfd_elf_link_hash_table_free (abfd); 4636 free (ret); 4637 return NULL; 4638 } 4639 ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free; 4640 4641 ret->tls_ldm_got.offset = -1; 4642 4643 return & ret->root.root; 4644 } 4645 4646 static unsigned long 4647 elf_mn10300_mach (flagword flags) 4648 { 4649 switch (flags & EF_MN10300_MACH) 4650 { 4651 case E_MN10300_MACH_MN10300: 4652 default: 4653 return bfd_mach_mn10300; 4654 4655 case E_MN10300_MACH_AM33: 4656 return bfd_mach_am33; 4657 4658 case E_MN10300_MACH_AM33_2: 4659 return bfd_mach_am33_2; 4660 } 4661 } 4662 4663 /* The final processing done just before writing out a MN10300 ELF object 4664 file. This gets the MN10300 architecture right based on the machine 4665 number. */ 4666 4667 static bool 4668 _bfd_mn10300_elf_final_write_processing (bfd *abfd) 4669 { 4670 unsigned long val; 4671 4672 switch (bfd_get_mach (abfd)) 4673 { 4674 default: 4675 case bfd_mach_mn10300: 4676 val = E_MN10300_MACH_MN10300; 4677 break; 4678 4679 case bfd_mach_am33: 4680 val = E_MN10300_MACH_AM33; 4681 break; 4682 4683 case bfd_mach_am33_2: 4684 val = E_MN10300_MACH_AM33_2; 4685 break; 4686 } 4687 4688 elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH); 4689 elf_elfheader (abfd)->e_flags |= val; 4690 return _bfd_elf_final_write_processing (abfd); 4691 } 4692 4693 static bool 4694 _bfd_mn10300_elf_object_p (bfd *abfd) 4695 { 4696 bfd_default_set_arch_mach (abfd, bfd_arch_mn10300, 4697 elf_mn10300_mach (elf_elfheader (abfd)->e_flags)); 4698 return true; 4699 } 4700 4701 /* Merge backend specific data from an object file to the output 4702 object file when linking. */ 4703 4704 static bool 4705 _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 4706 { 4707 bfd *obfd = info->output_bfd; 4708 4709 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 4710 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 4711 return true; 4712 4713 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 4714 && bfd_get_mach (obfd) < bfd_get_mach (ibfd)) 4715 { 4716 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 4717 bfd_get_mach (ibfd))) 4718 return false; 4719 } 4720 4721 return true; 4722 } 4723 4724 #define PLT0_ENTRY_SIZE 15 4725 #define PLT_ENTRY_SIZE 20 4726 #define PIC_PLT_ENTRY_SIZE 24 4727 4728 static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] = 4729 { 4730 0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */ 4731 0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */ 4732 0xf0, 0xf4, /* jmp (a0) */ 4733 }; 4734 4735 static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] = 4736 { 4737 0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */ 4738 0xf0, 0xf4, /* jmp (a0) */ 4739 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */ 4740 0xdc, 0, 0, 0, 0, /* jmp .plt0 */ 4741 }; 4742 4743 static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] = 4744 { 4745 0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */ 4746 0xf0, 0xf4, /* jmp (a0) */ 4747 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */ 4748 0xf8, 0x22, 8, /* mov (8,a2),a0 */ 4749 0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */ 4750 0xf0, 0xf4, /* jmp (a0) */ 4751 }; 4752 4753 /* Return size of the first PLT entry. */ 4754 #define elf_mn10300_sizeof_plt0(info) \ 4755 (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE) 4756 4757 /* Return size of a PLT entry. */ 4758 #define elf_mn10300_sizeof_plt(info) \ 4759 (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE) 4760 4761 /* Return offset of the PLT0 address in an absolute PLT entry. */ 4762 #define elf_mn10300_plt_plt0_offset(info) 16 4763 4764 /* Return offset of the linker in PLT0 entry. */ 4765 #define elf_mn10300_plt0_linker_offset(info) 2 4766 4767 /* Return offset of the GOT id in PLT0 entry. */ 4768 #define elf_mn10300_plt0_gotid_offset(info) 9 4769 4770 /* Return offset of the temporary in PLT entry. */ 4771 #define elf_mn10300_plt_temp_offset(info) 8 4772 4773 /* Return offset of the symbol in PLT entry. */ 4774 #define elf_mn10300_plt_symbol_offset(info) 2 4775 4776 /* Return offset of the relocation in PLT entry. */ 4777 #define elf_mn10300_plt_reloc_offset(info) 11 4778 4779 /* The name of the dynamic interpreter. This is put in the .interp 4780 section. */ 4781 4782 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" 4783 4784 /* Create dynamic sections when linking against a dynamic object. */ 4785 4786 static bool 4787 _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 4788 { 4789 flagword flags; 4790 asection * s; 4791 const struct elf_backend_data * bed = get_elf_backend_data (abfd); 4792 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); 4793 int ptralign = 0; 4794 4795 switch (bed->s->arch_size) 4796 { 4797 case 32: 4798 ptralign = 2; 4799 break; 4800 4801 case 64: 4802 ptralign = 3; 4803 break; 4804 4805 default: 4806 bfd_set_error (bfd_error_bad_value); 4807 return false; 4808 } 4809 4810 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and 4811 .rel[a].bss sections. */ 4812 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 4813 | SEC_LINKER_CREATED); 4814 4815 s = bfd_make_section_anyway_with_flags (abfd, 4816 (bed->default_use_rela_p 4817 ? ".rela.plt" : ".rel.plt"), 4818 flags | SEC_READONLY); 4819 htab->root.srelplt = s; 4820 if (s == NULL 4821 || !bfd_set_section_alignment (s, ptralign)) 4822 return false; 4823 4824 if (! _bfd_mn10300_elf_create_got_section (abfd, info)) 4825 return false; 4826 4827 if (bed->want_dynbss) 4828 { 4829 /* The .dynbss section is a place to put symbols which are defined 4830 by dynamic objects, are referenced by regular objects, and are 4831 not functions. We must allocate space for them in the process 4832 image and use a R_*_COPY reloc to tell the dynamic linker to 4833 initialize them at run time. The linker script puts the .dynbss 4834 section into the .bss section of the final image. */ 4835 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", 4836 SEC_ALLOC | SEC_LINKER_CREATED); 4837 if (s == NULL) 4838 return false; 4839 4840 /* The .rel[a].bss section holds copy relocs. This section is not 4841 normally needed. We need to create it here, though, so that the 4842 linker will map it to an output section. We can't just create it 4843 only if we need it, because we will not know whether we need it 4844 until we have seen all the input files, and the first time the 4845 main linker code calls BFD after examining all the input files 4846 (size_dynamic_sections) the input sections have already been 4847 mapped to the output sections. If the section turns out not to 4848 be needed, we can discard it later. We will never need this 4849 section when generating a shared object, since they do not use 4850 copy relocs. */ 4851 if (! bfd_link_pic (info)) 4852 { 4853 s = bfd_make_section_anyway_with_flags (abfd, 4854 (bed->default_use_rela_p 4855 ? ".rela.bss" : ".rel.bss"), 4856 flags | SEC_READONLY); 4857 if (s == NULL 4858 || !bfd_set_section_alignment (s, ptralign)) 4859 return false; 4860 } 4861 } 4862 4863 return true; 4864 } 4865 4866 /* Adjust a symbol defined by a dynamic object and referenced by a 4867 regular object. The current definition is in some section of the 4868 dynamic object, but we're not including those sections. We have to 4869 change the definition to something the rest of the link can 4870 understand. */ 4871 4872 static bool 4873 _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info, 4874 struct elf_link_hash_entry * h) 4875 { 4876 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); 4877 bfd * dynobj; 4878 asection * s; 4879 4880 dynobj = htab->root.dynobj; 4881 4882 /* Make sure we know what is going on here. */ 4883 BFD_ASSERT (dynobj != NULL 4884 && (h->needs_plt 4885 || h->is_weakalias 4886 || (h->def_dynamic 4887 && h->ref_regular 4888 && !h->def_regular))); 4889 4890 /* If this is a function, put it in the procedure linkage table. We 4891 will fill in the contents of the procedure linkage table later, 4892 when we know the address of the .got section. */ 4893 if (h->type == STT_FUNC 4894 || h->needs_plt) 4895 { 4896 if (! bfd_link_pic (info) 4897 && !h->def_dynamic 4898 && !h->ref_dynamic) 4899 { 4900 /* This case can occur if we saw a PLT reloc in an input 4901 file, but the symbol was never referred to by a dynamic 4902 object. In such a case, we don't actually need to build 4903 a procedure linkage table, and we can just do a REL32 4904 reloc instead. */ 4905 BFD_ASSERT (h->needs_plt); 4906 return true; 4907 } 4908 4909 /* Make sure this symbol is output as a dynamic symbol. */ 4910 if (h->dynindx == -1) 4911 { 4912 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 4913 return false; 4914 } 4915 4916 s = htab->root.splt; 4917 BFD_ASSERT (s != NULL); 4918 4919 /* If this is the first .plt entry, make room for the special 4920 first entry. */ 4921 if (s->size == 0) 4922 s->size += elf_mn10300_sizeof_plt0 (info); 4923 4924 /* If this symbol is not defined in a regular file, and we are 4925 not generating a shared library, then set the symbol to this 4926 location in the .plt. This is required to make function 4927 pointers compare as equal between the normal executable and 4928 the shared library. */ 4929 if (! bfd_link_pic (info) 4930 && !h->def_regular) 4931 { 4932 h->root.u.def.section = s; 4933 h->root.u.def.value = s->size; 4934 } 4935 4936 h->plt.offset = s->size; 4937 4938 /* Make room for this entry. */ 4939 s->size += elf_mn10300_sizeof_plt (info); 4940 4941 /* We also need to make an entry in the .got.plt section, which 4942 will be placed in the .got section by the linker script. */ 4943 s = htab->root.sgotplt; 4944 BFD_ASSERT (s != NULL); 4945 s->size += 4; 4946 4947 /* We also need to make an entry in the .rela.plt section. */ 4948 s = htab->root.srelplt; 4949 BFD_ASSERT (s != NULL); 4950 s->size += sizeof (Elf32_External_Rela); 4951 4952 return true; 4953 } 4954 4955 /* If this is a weak symbol, and there is a real definition, the 4956 processor independent code will have arranged for us to see the 4957 real definition first, and we can just use the same value. */ 4958 if (h->is_weakalias) 4959 { 4960 struct elf_link_hash_entry *def = weakdef (h); 4961 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 4962 h->root.u.def.section = def->root.u.def.section; 4963 h->root.u.def.value = def->root.u.def.value; 4964 return true; 4965 } 4966 4967 /* This is a reference to a symbol defined by a dynamic object which 4968 is not a function. */ 4969 4970 /* If we are creating a shared library, we must presume that the 4971 only references to the symbol are via the global offset table. 4972 For such cases we need not do anything here; the relocations will 4973 be handled correctly by relocate_section. */ 4974 if (bfd_link_pic (info)) 4975 return true; 4976 4977 /* If there are no references to this symbol that do not use the 4978 GOT, we don't need to generate a copy reloc. */ 4979 if (!h->non_got_ref) 4980 return true; 4981 4982 /* We must allocate the symbol in our .dynbss section, which will 4983 become part of the .bss section of the executable. There will be 4984 an entry for this symbol in the .dynsym section. The dynamic 4985 object will contain position independent code, so all references 4986 from the dynamic object to this symbol will go through the global 4987 offset table. The dynamic linker will use the .dynsym entry to 4988 determine the address it must put in the global offset table, so 4989 both the dynamic object and the regular object will refer to the 4990 same memory location for the variable. */ 4991 4992 s = bfd_get_linker_section (dynobj, ".dynbss"); 4993 BFD_ASSERT (s != NULL); 4994 4995 /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to 4996 copy the initial value out of the dynamic object and into the 4997 runtime process image. We need to remember the offset into the 4998 .rela.bss section we are going to use. */ 4999 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 5000 { 5001 asection * srel; 5002 5003 srel = bfd_get_linker_section (dynobj, ".rela.bss"); 5004 BFD_ASSERT (srel != NULL); 5005 srel->size += sizeof (Elf32_External_Rela); 5006 h->needs_copy = 1; 5007 } 5008 5009 return _bfd_elf_adjust_dynamic_copy (info, h, s); 5010 } 5011 5012 /* Set the sizes of the dynamic sections. */ 5013 5014 static bool 5015 _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd, 5016 struct bfd_link_info * info) 5017 { 5018 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); 5019 bfd * dynobj; 5020 asection * s; 5021 bool relocs; 5022 5023 dynobj = htab->root.dynobj; 5024 BFD_ASSERT (dynobj != NULL); 5025 5026 if (elf_hash_table (info)->dynamic_sections_created) 5027 { 5028 /* Set the contents of the .interp section to the interpreter. */ 5029 if (bfd_link_executable (info) && !info->nointerp) 5030 { 5031 s = bfd_get_linker_section (dynobj, ".interp"); 5032 BFD_ASSERT (s != NULL); 5033 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 5034 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 5035 } 5036 } 5037 else 5038 { 5039 /* We may have created entries in the .rela.got section. 5040 However, if we are not creating the dynamic sections, we will 5041 not actually use these entries. Reset the size of .rela.got, 5042 which will cause it to get stripped from the output file 5043 below. */ 5044 s = htab->root.sgot; 5045 if (s != NULL) 5046 s->size = 0; 5047 } 5048 5049 if (htab->tls_ldm_got.refcount > 0) 5050 { 5051 s = htab->root.srelgot; 5052 BFD_ASSERT (s != NULL); 5053 s->size += sizeof (Elf32_External_Rela); 5054 } 5055 5056 /* The check_relocs and adjust_dynamic_symbol entry points have 5057 determined the sizes of the various dynamic sections. Allocate 5058 memory for them. */ 5059 relocs = false; 5060 for (s = dynobj->sections; s != NULL; s = s->next) 5061 { 5062 const char * name; 5063 5064 if ((s->flags & SEC_LINKER_CREATED) == 0) 5065 continue; 5066 5067 /* It's OK to base decisions on the section name, because none 5068 of the dynobj section names depend upon the input files. */ 5069 name = bfd_section_name (s); 5070 5071 if (streq (name, ".plt")) 5072 { 5073 /* Remember whether there is a PLT. */ 5074 ; 5075 } 5076 else if (startswith (name, ".rela")) 5077 { 5078 if (s->size != 0) 5079 { 5080 /* Remember whether there are any reloc sections other 5081 than .rela.plt. */ 5082 if (! streq (name, ".rela.plt")) 5083 relocs = true; 5084 5085 /* We use the reloc_count field as a counter if we need 5086 to copy relocs into the output file. */ 5087 s->reloc_count = 0; 5088 } 5089 } 5090 else if (! startswith (name, ".got") 5091 && ! streq (name, ".dynbss")) 5092 /* It's not one of our sections, so don't allocate space. */ 5093 continue; 5094 5095 if (s->size == 0) 5096 { 5097 /* If we don't need this section, strip it from the 5098 output file. This is mostly to handle .rela.bss and 5099 .rela.plt. We must create both sections in 5100 create_dynamic_sections, because they must be created 5101 before the linker maps input sections to output 5102 sections. The linker does that before 5103 adjust_dynamic_symbol is called, and it is that 5104 function which decides whether anything needs to go 5105 into these sections. */ 5106 s->flags |= SEC_EXCLUDE; 5107 continue; 5108 } 5109 5110 if ((s->flags & SEC_HAS_CONTENTS) == 0) 5111 continue; 5112 5113 /* Allocate memory for the section contents. We use bfd_zalloc 5114 here in case unused entries are not reclaimed before the 5115 section's contents are written out. This should not happen, 5116 but this way if it does, we get a R_MN10300_NONE reloc 5117 instead of garbage. */ 5118 s->contents = bfd_zalloc (dynobj, s->size); 5119 if (s->contents == NULL) 5120 return false; 5121 } 5122 5123 return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); 5124 } 5125 5126 /* Finish up dynamic symbol handling. We set the contents of various 5127 dynamic sections here. */ 5128 5129 static bool 5130 _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd, 5131 struct bfd_link_info * info, 5132 struct elf_link_hash_entry * h, 5133 Elf_Internal_Sym * sym) 5134 { 5135 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); 5136 bfd * dynobj; 5137 5138 dynobj = htab->root.dynobj; 5139 5140 if (h->plt.offset != (bfd_vma) -1) 5141 { 5142 asection * splt; 5143 asection * sgot; 5144 asection * srel; 5145 bfd_vma plt_index; 5146 bfd_vma got_offset; 5147 Elf_Internal_Rela rel; 5148 5149 /* This symbol has an entry in the procedure linkage table. Set 5150 it up. */ 5151 5152 BFD_ASSERT (h->dynindx != -1); 5153 5154 splt = htab->root.splt; 5155 sgot = htab->root.sgotplt; 5156 srel = htab->root.srelplt; 5157 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); 5158 5159 /* Get the index in the procedure linkage table which 5160 corresponds to this symbol. This is the index of this symbol 5161 in all the symbols for which we are making plt entries. The 5162 first entry in the procedure linkage table is reserved. */ 5163 plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info)) 5164 / elf_mn10300_sizeof_plt (info)); 5165 5166 /* Get the offset into the .got table of the entry that 5167 corresponds to this function. Each .got entry is 4 bytes. 5168 The first three are reserved. */ 5169 got_offset = (plt_index + 3) * 4; 5170 5171 /* Fill in the entry in the procedure linkage table. */ 5172 if (! bfd_link_pic (info)) 5173 { 5174 memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry, 5175 elf_mn10300_sizeof_plt (info)); 5176 bfd_put_32 (output_bfd, 5177 (sgot->output_section->vma 5178 + sgot->output_offset 5179 + got_offset), 5180 (splt->contents + h->plt.offset 5181 + elf_mn10300_plt_symbol_offset (info))); 5182 5183 bfd_put_32 (output_bfd, 5184 (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)), 5185 (splt->contents + h->plt.offset 5186 + elf_mn10300_plt_plt0_offset (info))); 5187 } 5188 else 5189 { 5190 memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry, 5191 elf_mn10300_sizeof_plt (info)); 5192 5193 bfd_put_32 (output_bfd, got_offset, 5194 (splt->contents + h->plt.offset 5195 + elf_mn10300_plt_symbol_offset (info))); 5196 } 5197 5198 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), 5199 (splt->contents + h->plt.offset 5200 + elf_mn10300_plt_reloc_offset (info))); 5201 5202 /* Fill in the entry in the global offset table. */ 5203 bfd_put_32 (output_bfd, 5204 (splt->output_section->vma 5205 + splt->output_offset 5206 + h->plt.offset 5207 + elf_mn10300_plt_temp_offset (info)), 5208 sgot->contents + got_offset); 5209 5210 /* Fill in the entry in the .rela.plt section. */ 5211 rel.r_offset = (sgot->output_section->vma 5212 + sgot->output_offset 5213 + got_offset); 5214 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT); 5215 rel.r_addend = 0; 5216 bfd_elf32_swap_reloca_out (output_bfd, &rel, 5217 (bfd_byte *) ((Elf32_External_Rela *) srel->contents 5218 + plt_index)); 5219 5220 if (!h->def_regular) 5221 /* Mark the symbol as undefined, rather than as defined in 5222 the .plt section. Leave the value alone. */ 5223 sym->st_shndx = SHN_UNDEF; 5224 } 5225 5226 if (h->got.offset != (bfd_vma) -1) 5227 { 5228 asection * sgot; 5229 asection * srel; 5230 Elf_Internal_Rela rel; 5231 5232 /* This symbol has an entry in the global offset table. Set it up. */ 5233 sgot = htab->root.sgot; 5234 srel = htab->root.srelgot; 5235 BFD_ASSERT (sgot != NULL && srel != NULL); 5236 5237 rel.r_offset = (sgot->output_section->vma 5238 + sgot->output_offset 5239 + (h->got.offset & ~1)); 5240 5241 switch (elf_mn10300_hash_entry (h)->tls_type) 5242 { 5243 case GOT_TLS_GD: 5244 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); 5245 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4); 5246 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD); 5247 rel.r_addend = 0; 5248 bfd_elf32_swap_reloca_out (output_bfd, & rel, 5249 (bfd_byte *) ((Elf32_External_Rela *) srel->contents 5250 + srel->reloc_count)); 5251 ++ srel->reloc_count; 5252 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF); 5253 rel.r_offset += 4; 5254 rel.r_addend = 0; 5255 break; 5256 5257 case GOT_TLS_IE: 5258 /* We originally stored the addend in the GOT, but at this 5259 point, we want to move it to the reloc instead as that's 5260 where the dynamic linker wants it. */ 5261 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset); 5262 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); 5263 if (h->dynindx == -1) 5264 rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); 5265 else 5266 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF); 5267 break; 5268 5269 default: 5270 /* If this is a -Bsymbolic link, and the symbol is defined 5271 locally, we just want to emit a RELATIVE reloc. Likewise if 5272 the symbol was forced to be local because of a version file. 5273 The entry in the global offset table will already have been 5274 initialized in the relocate_section function. */ 5275 if (bfd_link_pic (info) 5276 && (info->symbolic || h->dynindx == -1) 5277 && h->def_regular) 5278 { 5279 rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); 5280 rel.r_addend = (h->root.u.def.value 5281 + h->root.u.def.section->output_section->vma 5282 + h->root.u.def.section->output_offset); 5283 } 5284 else 5285 { 5286 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); 5287 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT); 5288 rel.r_addend = 0; 5289 } 5290 } 5291 5292 if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE) 5293 { 5294 bfd_elf32_swap_reloca_out (output_bfd, &rel, 5295 (bfd_byte *) ((Elf32_External_Rela *) srel->contents 5296 + srel->reloc_count)); 5297 ++ srel->reloc_count; 5298 } 5299 } 5300 5301 if (h->needs_copy) 5302 { 5303 asection * s; 5304 Elf_Internal_Rela rel; 5305 5306 /* This symbol needs a copy reloc. Set it up. */ 5307 BFD_ASSERT (h->dynindx != -1 5308 && (h->root.type == bfd_link_hash_defined 5309 || h->root.type == bfd_link_hash_defweak)); 5310 5311 s = bfd_get_linker_section (dynobj, ".rela.bss"); 5312 BFD_ASSERT (s != NULL); 5313 5314 rel.r_offset = (h->root.u.def.value 5315 + h->root.u.def.section->output_section->vma 5316 + h->root.u.def.section->output_offset); 5317 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY); 5318 rel.r_addend = 0; 5319 bfd_elf32_swap_reloca_out (output_bfd, & rel, 5320 (bfd_byte *) ((Elf32_External_Rela *) s->contents 5321 + s->reloc_count)); 5322 ++ s->reloc_count; 5323 } 5324 5325 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 5326 if (h == elf_hash_table (info)->hdynamic 5327 || h == elf_hash_table (info)->hgot) 5328 sym->st_shndx = SHN_ABS; 5329 5330 return true; 5331 } 5332 5333 /* Finish up the dynamic sections. */ 5334 5335 static bool 5336 _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd, 5337 struct bfd_link_info * info) 5338 { 5339 bfd * dynobj; 5340 asection * sgot; 5341 asection * sdyn; 5342 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); 5343 5344 dynobj = htab->root.dynobj; 5345 sgot = htab->root.sgotplt; 5346 BFD_ASSERT (sgot != NULL); 5347 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 5348 5349 if (elf_hash_table (info)->dynamic_sections_created) 5350 { 5351 asection * splt; 5352 Elf32_External_Dyn * dyncon; 5353 Elf32_External_Dyn * dynconend; 5354 5355 BFD_ASSERT (sdyn != NULL); 5356 5357 dyncon = (Elf32_External_Dyn *) sdyn->contents; 5358 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 5359 5360 for (; dyncon < dynconend; dyncon++) 5361 { 5362 Elf_Internal_Dyn dyn; 5363 asection * s; 5364 5365 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 5366 5367 switch (dyn.d_tag) 5368 { 5369 default: 5370 break; 5371 5372 case DT_PLTGOT: 5373 s = htab->root.sgot; 5374 goto get_vma; 5375 5376 case DT_JMPREL: 5377 s = htab->root.srelplt; 5378 get_vma: 5379 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 5380 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 5381 break; 5382 5383 case DT_PLTRELSZ: 5384 s = htab->root.srelplt; 5385 dyn.d_un.d_val = s->size; 5386 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 5387 break; 5388 } 5389 } 5390 5391 /* Fill in the first entry in the procedure linkage table. */ 5392 splt = htab->root.splt; 5393 if (splt && splt->size > 0) 5394 { 5395 if (bfd_link_pic (info)) 5396 { 5397 memcpy (splt->contents, elf_mn10300_pic_plt_entry, 5398 elf_mn10300_sizeof_plt (info)); 5399 } 5400 else 5401 { 5402 memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE); 5403 bfd_put_32 (output_bfd, 5404 sgot->output_section->vma + sgot->output_offset + 4, 5405 splt->contents + elf_mn10300_plt0_gotid_offset (info)); 5406 bfd_put_32 (output_bfd, 5407 sgot->output_section->vma + sgot->output_offset + 8, 5408 splt->contents + elf_mn10300_plt0_linker_offset (info)); 5409 } 5410 5411 /* UnixWare sets the entsize of .plt to 4, although that doesn't 5412 really seem like the right value. */ 5413 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; 5414 5415 /* UnixWare sets the entsize of .plt to 4, but this is incorrect 5416 as it means that the size of the PLT0 section (15 bytes) is not 5417 a multiple of the sh_entsize. Some ELF tools flag this as an 5418 error. We could pad PLT0 to 16 bytes, but that would introduce 5419 compatibilty issues with previous toolchains, so instead we 5420 just set the entry size to 1. */ 5421 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1; 5422 } 5423 } 5424 5425 /* Fill in the first three entries in the global offset table. */ 5426 if (sgot->size > 0) 5427 { 5428 if (sdyn == NULL) 5429 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 5430 else 5431 bfd_put_32 (output_bfd, 5432 sdyn->output_section->vma + sdyn->output_offset, 5433 sgot->contents); 5434 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 5435 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 5436 } 5437 5438 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 5439 5440 return true; 5441 } 5442 5443 /* Classify relocation types, such that combreloc can sort them 5444 properly. */ 5445 5446 static enum elf_reloc_type_class 5447 _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 5448 const asection *rel_sec ATTRIBUTE_UNUSED, 5449 const Elf_Internal_Rela *rela) 5450 { 5451 switch ((int) ELF32_R_TYPE (rela->r_info)) 5452 { 5453 case R_MN10300_RELATIVE: return reloc_class_relative; 5454 case R_MN10300_JMP_SLOT: return reloc_class_plt; 5455 case R_MN10300_COPY: return reloc_class_copy; 5456 default: return reloc_class_normal; 5457 } 5458 } 5459 5460 /* Allocate space for an MN10300 extension to the bfd elf data structure. */ 5461 5462 static bool 5463 mn10300_elf_mkobject (bfd *abfd) 5464 { 5465 return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata), 5466 MN10300_ELF_DATA); 5467 } 5468 5469 #define bfd_elf32_mkobject mn10300_elf_mkobject 5470 5471 #ifndef ELF_ARCH 5472 #define TARGET_LITTLE_SYM mn10300_elf32_vec 5473 #define TARGET_LITTLE_NAME "elf32-mn10300" 5474 #define ELF_ARCH bfd_arch_mn10300 5475 #define ELF_TARGET_ID MN10300_ELF_DATA 5476 #define ELF_MACHINE_CODE EM_MN10300 5477 #define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300 5478 #define ELF_MAXPAGESIZE 0x1000 5479 #endif 5480 5481 #define elf_info_to_howto mn10300_info_to_howto 5482 #define elf_info_to_howto_rel NULL 5483 #define elf_backend_can_gc_sections 1 5484 #define elf_backend_rela_normal 1 5485 #define elf_backend_check_relocs mn10300_elf_check_relocs 5486 #define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook 5487 #define elf_backend_relocate_section mn10300_elf_relocate_section 5488 #define bfd_elf32_bfd_relax_section mn10300_elf_relax_section 5489 #define bfd_elf32_bfd_get_relocated_section_contents \ 5490 mn10300_elf_get_relocated_section_contents 5491 #define bfd_elf32_bfd_link_hash_table_create \ 5492 elf32_mn10300_link_hash_table_create 5493 5494 #ifndef elf_symbol_leading_char 5495 #define elf_symbol_leading_char '_' 5496 #endif 5497 5498 /* So we can set bits in e_flags. */ 5499 #define elf_backend_final_write_processing \ 5500 _bfd_mn10300_elf_final_write_processing 5501 #define elf_backend_object_p _bfd_mn10300_elf_object_p 5502 5503 #define bfd_elf32_bfd_merge_private_bfd_data \ 5504 _bfd_mn10300_elf_merge_private_bfd_data 5505 5506 #define elf_backend_can_gc_sections 1 5507 #define elf_backend_create_dynamic_sections \ 5508 _bfd_mn10300_elf_create_dynamic_sections 5509 #define elf_backend_adjust_dynamic_symbol \ 5510 _bfd_mn10300_elf_adjust_dynamic_symbol 5511 #define elf_backend_size_dynamic_sections \ 5512 _bfd_mn10300_elf_size_dynamic_sections 5513 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all 5514 #define elf_backend_finish_dynamic_symbol \ 5515 _bfd_mn10300_elf_finish_dynamic_symbol 5516 #define elf_backend_finish_dynamic_sections \ 5517 _bfd_mn10300_elf_finish_dynamic_sections 5518 #define elf_backend_copy_indirect_symbol \ 5519 _bfd_mn10300_copy_indirect_symbol 5520 #define elf_backend_reloc_type_class \ 5521 _bfd_mn10300_elf_reloc_type_class 5522 5523 #define elf_backend_want_got_plt 1 5524 #define elf_backend_plt_readonly 1 5525 #define elf_backend_want_plt_sym 0 5526 #define elf_backend_got_header_size 12 5527 #define elf_backend_dtrel_excludes_plt 1 5528 5529 #include "elf32-target.h" 5530