1 /* BFD back-end for Renesas Super-H COFF binaries. 2 Copyright (C) 1993-2022 Free Software Foundation, Inc. 3 Contributed by Cygnus Support. 4 Written by Steve Chamberlain, <sac@cygnus.com>. 5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 #include "sysdep.h" 25 #include "bfd.h" 26 #include "libiberty.h" 27 #include "libbfd.h" 28 #include "bfdlink.h" 29 #include "coff/sh.h" 30 #include "coff/internal.h" 31 32 #undef bfd_pe_print_pdata 33 34 #ifdef COFF_WITH_PE 35 #include "coff/pe.h" 36 37 #ifndef COFF_IMAGE_WITH_PE 38 static bool sh_align_load_span 39 (bfd *, asection *, bfd_byte *, 40 bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma), 41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *); 42 43 #define _bfd_sh_align_load_span sh_align_load_span 44 #endif 45 46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata 47 48 #else 49 50 #define bfd_pe_print_pdata NULL 51 52 #endif /* COFF_WITH_PE. */ 53 54 #include "libcoff.h" 55 56 /* Internal functions. */ 57 58 #ifdef COFF_WITH_PE 59 /* Can't build import tables with 2**4 alignment. */ 60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2 61 #else 62 /* Default section alignment to 2**4. */ 63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4 64 #endif 65 66 #ifdef COFF_IMAGE_WITH_PE 67 /* Align PE executables. */ 68 #define COFF_PAGE_SIZE 0x1000 69 #endif 70 71 /* Generate long file names. */ 72 #define COFF_LONG_FILENAMES 73 74 #ifdef COFF_WITH_PE 75 /* Return TRUE if this relocation should 76 appear in the output .reloc section. */ 77 78 static bool 79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED, 80 reloc_howto_type * howto) 81 { 82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; 83 } 84 #endif 85 86 static bfd_reloc_status_type 87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 88 static bool 89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, 90 bfd_byte *, struct internal_reloc *, 91 struct internal_syment *, asection **); 92 static bool 93 sh_align_loads (bfd *, asection *, struct internal_reloc *, 94 bfd_byte *, bool *); 95 96 /* The supported relocations. There are a lot of relocations defined 97 in coff/internal.h which we do not expect to ever see. */ 98 static reloc_howto_type sh_coff_howtos[] = 99 { 100 EMPTY_HOWTO (0), 101 EMPTY_HOWTO (1), 102 #ifdef COFF_WITH_PE 103 /* Windows CE */ 104 HOWTO (R_SH_IMM32CE, /* type */ 105 0, /* rightshift */ 106 4, /* size */ 107 32, /* bitsize */ 108 false, /* pc_relative */ 109 0, /* bitpos */ 110 complain_overflow_bitfield, /* complain_on_overflow */ 111 sh_reloc, /* special_function */ 112 "r_imm32ce", /* name */ 113 true, /* partial_inplace */ 114 0xffffffff, /* src_mask */ 115 0xffffffff, /* dst_mask */ 116 false), /* pcrel_offset */ 117 #else 118 EMPTY_HOWTO (2), 119 #endif 120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */ 121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */ 122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */ 123 EMPTY_HOWTO (6), /* R_SH_IMM24 */ 124 EMPTY_HOWTO (7), /* R_SH_LOW16 */ 125 EMPTY_HOWTO (8), 126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ 127 128 HOWTO (R_SH_PCDISP8BY2, /* type */ 129 1, /* rightshift */ 130 2, /* size */ 131 8, /* bitsize */ 132 true, /* pc_relative */ 133 0, /* bitpos */ 134 complain_overflow_signed, /* complain_on_overflow */ 135 sh_reloc, /* special_function */ 136 "r_pcdisp8by2", /* name */ 137 true, /* partial_inplace */ 138 0xff, /* src_mask */ 139 0xff, /* dst_mask */ 140 true), /* pcrel_offset */ 141 142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ 143 144 HOWTO (R_SH_PCDISP, /* type */ 145 1, /* rightshift */ 146 2, /* size */ 147 12, /* bitsize */ 148 true, /* pc_relative */ 149 0, /* bitpos */ 150 complain_overflow_signed, /* complain_on_overflow */ 151 sh_reloc, /* special_function */ 152 "r_pcdisp12by2", /* name */ 153 true, /* partial_inplace */ 154 0xfff, /* src_mask */ 155 0xfff, /* dst_mask */ 156 true), /* pcrel_offset */ 157 158 EMPTY_HOWTO (13), 159 160 HOWTO (R_SH_IMM32, /* type */ 161 0, /* rightshift */ 162 4, /* size */ 163 32, /* bitsize */ 164 false, /* pc_relative */ 165 0, /* bitpos */ 166 complain_overflow_bitfield, /* complain_on_overflow */ 167 sh_reloc, /* special_function */ 168 "r_imm32", /* name */ 169 true, /* partial_inplace */ 170 0xffffffff, /* src_mask */ 171 0xffffffff, /* dst_mask */ 172 false), /* pcrel_offset */ 173 174 EMPTY_HOWTO (15), 175 #ifdef COFF_WITH_PE 176 HOWTO (R_SH_IMAGEBASE, /* type */ 177 0, /* rightshift */ 178 4, /* size */ 179 32, /* bitsize */ 180 false, /* pc_relative */ 181 0, /* bitpos */ 182 complain_overflow_bitfield, /* complain_on_overflow */ 183 sh_reloc, /* special_function */ 184 "rva32", /* name */ 185 true, /* partial_inplace */ 186 0xffffffff, /* src_mask */ 187 0xffffffff, /* dst_mask */ 188 false), /* pcrel_offset */ 189 #else 190 EMPTY_HOWTO (16), /* R_SH_IMM8 */ 191 #endif 192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ 193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ 194 EMPTY_HOWTO (19), /* R_SH_IMM4 */ 195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ 196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ 197 198 HOWTO (R_SH_PCRELIMM8BY2, /* type */ 199 1, /* rightshift */ 200 2, /* size */ 201 8, /* bitsize */ 202 true, /* pc_relative */ 203 0, /* bitpos */ 204 complain_overflow_unsigned, /* complain_on_overflow */ 205 sh_reloc, /* special_function */ 206 "r_pcrelimm8by2", /* name */ 207 true, /* partial_inplace */ 208 0xff, /* src_mask */ 209 0xff, /* dst_mask */ 210 true), /* pcrel_offset */ 211 212 HOWTO (R_SH_PCRELIMM8BY4, /* type */ 213 2, /* rightshift */ 214 2, /* size */ 215 8, /* bitsize */ 216 true, /* pc_relative */ 217 0, /* bitpos */ 218 complain_overflow_unsigned, /* complain_on_overflow */ 219 sh_reloc, /* special_function */ 220 "r_pcrelimm8by4", /* name */ 221 true, /* partial_inplace */ 222 0xff, /* src_mask */ 223 0xff, /* dst_mask */ 224 true), /* pcrel_offset */ 225 226 HOWTO (R_SH_IMM16, /* type */ 227 0, /* rightshift */ 228 2, /* size */ 229 16, /* bitsize */ 230 false, /* pc_relative */ 231 0, /* bitpos */ 232 complain_overflow_bitfield, /* complain_on_overflow */ 233 sh_reloc, /* special_function */ 234 "r_imm16", /* name */ 235 true, /* partial_inplace */ 236 0xffff, /* src_mask */ 237 0xffff, /* dst_mask */ 238 false), /* pcrel_offset */ 239 240 HOWTO (R_SH_SWITCH16, /* type */ 241 0, /* rightshift */ 242 2, /* size */ 243 16, /* bitsize */ 244 false, /* pc_relative */ 245 0, /* bitpos */ 246 complain_overflow_bitfield, /* complain_on_overflow */ 247 sh_reloc, /* special_function */ 248 "r_switch16", /* name */ 249 true, /* partial_inplace */ 250 0xffff, /* src_mask */ 251 0xffff, /* dst_mask */ 252 false), /* pcrel_offset */ 253 254 HOWTO (R_SH_SWITCH32, /* type */ 255 0, /* rightshift */ 256 4, /* size */ 257 32, /* bitsize */ 258 false, /* pc_relative */ 259 0, /* bitpos */ 260 complain_overflow_bitfield, /* complain_on_overflow */ 261 sh_reloc, /* special_function */ 262 "r_switch32", /* name */ 263 true, /* partial_inplace */ 264 0xffffffff, /* src_mask */ 265 0xffffffff, /* dst_mask */ 266 false), /* pcrel_offset */ 267 268 HOWTO (R_SH_USES, /* type */ 269 0, /* rightshift */ 270 2, /* size */ 271 16, /* bitsize */ 272 false, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield, /* complain_on_overflow */ 275 sh_reloc, /* special_function */ 276 "r_uses", /* name */ 277 true, /* partial_inplace */ 278 0xffff, /* src_mask */ 279 0xffff, /* dst_mask */ 280 false), /* pcrel_offset */ 281 282 HOWTO (R_SH_COUNT, /* type */ 283 0, /* rightshift */ 284 4, /* size */ 285 32, /* bitsize */ 286 false, /* pc_relative */ 287 0, /* bitpos */ 288 complain_overflow_bitfield, /* complain_on_overflow */ 289 sh_reloc, /* special_function */ 290 "r_count", /* name */ 291 true, /* partial_inplace */ 292 0xffffffff, /* src_mask */ 293 0xffffffff, /* dst_mask */ 294 false), /* pcrel_offset */ 295 296 HOWTO (R_SH_ALIGN, /* type */ 297 0, /* rightshift */ 298 4, /* size */ 299 32, /* bitsize */ 300 false, /* pc_relative */ 301 0, /* bitpos */ 302 complain_overflow_bitfield, /* complain_on_overflow */ 303 sh_reloc, /* special_function */ 304 "r_align", /* name */ 305 true, /* partial_inplace */ 306 0xffffffff, /* src_mask */ 307 0xffffffff, /* dst_mask */ 308 false), /* pcrel_offset */ 309 310 HOWTO (R_SH_CODE, /* type */ 311 0, /* rightshift */ 312 4, /* size */ 313 32, /* bitsize */ 314 false, /* pc_relative */ 315 0, /* bitpos */ 316 complain_overflow_bitfield, /* complain_on_overflow */ 317 sh_reloc, /* special_function */ 318 "r_code", /* name */ 319 true, /* partial_inplace */ 320 0xffffffff, /* src_mask */ 321 0xffffffff, /* dst_mask */ 322 false), /* pcrel_offset */ 323 324 HOWTO (R_SH_DATA, /* type */ 325 0, /* rightshift */ 326 4, /* size */ 327 32, /* bitsize */ 328 false, /* pc_relative */ 329 0, /* bitpos */ 330 complain_overflow_bitfield, /* complain_on_overflow */ 331 sh_reloc, /* special_function */ 332 "r_data", /* name */ 333 true, /* partial_inplace */ 334 0xffffffff, /* src_mask */ 335 0xffffffff, /* dst_mask */ 336 false), /* pcrel_offset */ 337 338 HOWTO (R_SH_LABEL, /* type */ 339 0, /* rightshift */ 340 4, /* size */ 341 32, /* bitsize */ 342 false, /* pc_relative */ 343 0, /* bitpos */ 344 complain_overflow_bitfield, /* complain_on_overflow */ 345 sh_reloc, /* special_function */ 346 "r_label", /* name */ 347 true, /* partial_inplace */ 348 0xffffffff, /* src_mask */ 349 0xffffffff, /* dst_mask */ 350 false), /* pcrel_offset */ 351 352 HOWTO (R_SH_SWITCH8, /* type */ 353 0, /* rightshift */ 354 1, /* size */ 355 8, /* bitsize */ 356 false, /* pc_relative */ 357 0, /* bitpos */ 358 complain_overflow_bitfield, /* complain_on_overflow */ 359 sh_reloc, /* special_function */ 360 "r_switch8", /* name */ 361 true, /* partial_inplace */ 362 0xff, /* src_mask */ 363 0xff, /* dst_mask */ 364 false) /* pcrel_offset */ 365 }; 366 367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) 368 369 /* Check for a bad magic number. */ 370 #define BADMAG(x) SHBADMAG(x) 371 372 /* Customize coffcode.h (this is not currently used). */ 373 #define SH 1 374 375 /* FIXME: This should not be set here. */ 376 #define __A_MAGIC_SET__ 377 378 #ifndef COFF_WITH_PE 379 /* Swap the r_offset field in and out. */ 380 #define SWAP_IN_RELOC_OFFSET H_GET_32 381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32 382 383 /* Swap out extra information in the reloc structure. */ 384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ 385 do \ 386 { \ 387 dst->r_stuff[0] = 'S'; \ 388 dst->r_stuff[1] = 'C'; \ 389 } \ 390 while (0) 391 #endif 392 393 /* Get the value of a symbol, when performing a relocation. */ 394 395 static long 396 get_symbol_value (asymbol *symbol) 397 { 398 bfd_vma relocation; 399 400 if (bfd_is_com_section (symbol->section)) 401 relocation = 0; 402 else 403 relocation = (symbol->value + 404 symbol->section->output_section->vma + 405 symbol->section->output_offset); 406 407 return relocation; 408 } 409 410 #ifdef COFF_WITH_PE 411 /* Convert an rtype to howto for the COFF backend linker. 412 Copied from coff-i386. */ 413 #define coff_rtype_to_howto coff_sh_rtype_to_howto 414 415 416 static reloc_howto_type * 417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED, 418 asection * sec, 419 struct internal_reloc * rel, 420 struct coff_link_hash_entry * h, 421 struct internal_syment * sym, 422 bfd_vma * addendp) 423 { 424 reloc_howto_type * howto; 425 426 howto = sh_coff_howtos + rel->r_type; 427 428 *addendp = 0; 429 430 if (howto->pc_relative) 431 *addendp += sec->vma; 432 433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) 434 { 435 /* This is a common symbol. The section contents include the 436 size (sym->n_value) as an addend. The relocate_section 437 function will be adding in the final value of the symbol. We 438 need to subtract out the current size in order to get the 439 correct result. */ 440 BFD_ASSERT (h != NULL); 441 } 442 443 if (howto->pc_relative) 444 { 445 *addendp -= 4; 446 447 /* If the symbol is defined, then the generic code is going to 448 add back the symbol value in order to cancel out an 449 adjustment it made to the addend. However, we set the addend 450 to 0 at the start of this function. We need to adjust here, 451 to avoid the adjustment the generic code will make. FIXME: 452 This is getting a bit hackish. */ 453 if (sym != NULL && sym->n_scnum != 0) 454 *addendp -= sym->n_value; 455 } 456 457 if (rel->r_type == R_SH_IMAGEBASE) 458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; 459 460 return howto; 461 } 462 463 #endif /* COFF_WITH_PE */ 464 465 /* This structure is used to map BFD reloc codes to SH PE relocs. */ 466 struct shcoff_reloc_map 467 { 468 bfd_reloc_code_real_type bfd_reloc_val; 469 unsigned char shcoff_reloc_val; 470 }; 471 472 #ifdef COFF_WITH_PE 473 /* An array mapping BFD reloc codes to SH PE relocs. */ 474 static const struct shcoff_reloc_map sh_reloc_map[] = 475 { 476 { BFD_RELOC_32, R_SH_IMM32CE }, 477 { BFD_RELOC_RVA, R_SH_IMAGEBASE }, 478 { BFD_RELOC_CTOR, R_SH_IMM32CE }, 479 }; 480 #else 481 /* An array mapping BFD reloc codes to SH PE relocs. */ 482 static const struct shcoff_reloc_map sh_reloc_map[] = 483 { 484 { BFD_RELOC_32, R_SH_IMM32 }, 485 { BFD_RELOC_CTOR, R_SH_IMM32 }, 486 }; 487 #endif 488 489 /* Given a BFD reloc code, return the howto structure for the 490 corresponding SH PE reloc. */ 491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup 492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup 493 494 static reloc_howto_type * 495 sh_coff_reloc_type_lookup (bfd *abfd, 496 bfd_reloc_code_real_type code) 497 { 498 unsigned int i; 499 500 for (i = ARRAY_SIZE (sh_reloc_map); i--;) 501 if (sh_reloc_map[i].bfd_reloc_val == code) 502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; 503 504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 505 abfd, (unsigned int) code); 506 return NULL; 507 } 508 509 static reloc_howto_type * 510 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 511 const char *r_name) 512 { 513 unsigned int i; 514 515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) 516 if (sh_coff_howtos[i].name != NULL 517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0) 518 return &sh_coff_howtos[i]; 519 520 return NULL; 521 } 522 523 /* This macro is used in coffcode.h to get the howto corresponding to 524 an internal reloc. */ 525 526 #define RTYPE2HOWTO(relent, internal) \ 527 ((relent)->howto = \ 528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \ 529 ? &sh_coff_howtos[(internal)->r_type] \ 530 : (reloc_howto_type *) NULL)) 531 532 /* This is the same as the macro in coffcode.h, except that it copies 533 r_offset into reloc_entry->addend for some relocs. */ 534 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \ 535 { \ 536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \ 537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \ 538 coffsym = (obj_symbols (abfd) \ 539 + (cache_ptr->sym_ptr_ptr - symbols)); \ 540 else if (ptr) \ 541 coffsym = coff_symbol_from (ptr); \ 542 if (coffsym != (coff_symbol_type *) NULL \ 543 && coffsym->native->u.syment.n_scnum == 0) \ 544 cache_ptr->addend = 0; \ 545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \ 546 && ptr->section != (asection *) NULL) \ 547 cache_ptr->addend = - (ptr->section->vma + ptr->value); \ 548 else \ 549 cache_ptr->addend = 0; \ 550 if ((reloc).r_type == R_SH_SWITCH8 \ 551 || (reloc).r_type == R_SH_SWITCH16 \ 552 || (reloc).r_type == R_SH_SWITCH32 \ 553 || (reloc).r_type == R_SH_USES \ 554 || (reloc).r_type == R_SH_COUNT \ 555 || (reloc).r_type == R_SH_ALIGN) \ 556 cache_ptr->addend = (reloc).r_offset; \ 557 } 558 559 /* This is the howto function for the SH relocations. */ 560 561 static bfd_reloc_status_type 562 sh_reloc (bfd * abfd, 563 arelent * reloc_entry, 564 asymbol * symbol_in, 565 void * data, 566 asection * input_section, 567 bfd * output_bfd, 568 char ** error_message ATTRIBUTE_UNUSED) 569 { 570 bfd_vma insn; 571 bfd_vma sym_value; 572 unsigned short r_type; 573 bfd_vma addr = reloc_entry->address; 574 bfd_byte *hit_data = addr + (bfd_byte *) data; 575 576 r_type = reloc_entry->howto->type; 577 578 if (output_bfd != NULL) 579 { 580 /* Partial linking--do nothing. */ 581 reloc_entry->address += input_section->output_offset; 582 return bfd_reloc_ok; 583 } 584 585 /* Almost all relocs have to do with relaxing. If any work must be 586 done for them, it has been done in sh_relax_section. */ 587 if (r_type != R_SH_IMM32 588 #ifdef COFF_WITH_PE 589 && r_type != R_SH_IMM32CE 590 && r_type != R_SH_IMAGEBASE 591 #endif 592 && (r_type != R_SH_PCDISP 593 || (symbol_in->flags & BSF_LOCAL) != 0)) 594 return bfd_reloc_ok; 595 596 if (symbol_in != NULL 597 && bfd_is_und_section (symbol_in->section)) 598 return bfd_reloc_undefined; 599 600 if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, 601 addr)) 602 return bfd_reloc_outofrange; 603 604 sym_value = get_symbol_value (symbol_in); 605 606 switch (r_type) 607 { 608 case R_SH_IMM32: 609 #ifdef COFF_WITH_PE 610 case R_SH_IMM32CE: 611 #endif 612 insn = bfd_get_32 (abfd, hit_data); 613 insn += sym_value + reloc_entry->addend; 614 bfd_put_32 (abfd, insn, hit_data); 615 break; 616 #ifdef COFF_WITH_PE 617 case R_SH_IMAGEBASE: 618 insn = bfd_get_32 (abfd, hit_data); 619 insn += sym_value + reloc_entry->addend; 620 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; 621 bfd_put_32 (abfd, insn, hit_data); 622 break; 623 #endif 624 case R_SH_PCDISP: 625 insn = bfd_get_16 (abfd, hit_data); 626 sym_value += reloc_entry->addend; 627 sym_value -= (input_section->output_section->vma 628 + input_section->output_offset 629 + addr 630 + 4); 631 sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1; 632 insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff); 633 bfd_put_16 (abfd, insn, hit_data); 634 if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0) 635 return bfd_reloc_overflow; 636 break; 637 default: 638 abort (); 639 break; 640 } 641 642 return bfd_reloc_ok; 643 } 644 645 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match 646 647 /* We can do relaxing. */ 648 #define coff_bfd_relax_section sh_relax_section 649 650 /* We use the special COFF backend linker. */ 651 #define coff_relocate_section sh_relocate_section 652 653 /* When relaxing, we need to use special code to get the relocated 654 section contents. */ 655 #define coff_bfd_get_relocated_section_contents \ 656 sh_coff_get_relocated_section_contents 657 658 #include "coffcode.h" 659 660 static bool 661 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int); 662 663 /* This function handles relaxing on the SH. 664 665 Function calls on the SH look like this: 666 667 movl L1,r0 668 ... 669 jsr @r0 670 ... 671 L1: 672 .long function 673 674 The compiler and assembler will cooperate to create R_SH_USES 675 relocs on the jsr instructions. The r_offset field of the 676 R_SH_USES reloc is the PC relative offset to the instruction which 677 loads the register (the r_offset field is computed as though it 678 were a jump instruction, so the offset value is actually from four 679 bytes past the instruction). The linker can use this reloc to 680 determine just which function is being called, and thus decide 681 whether it is possible to replace the jsr with a bsr. 682 683 If multiple function calls are all based on a single register load 684 (i.e., the same function is called multiple times), the compiler 685 guarantees that each function call will have an R_SH_USES reloc. 686 Therefore, if the linker is able to convert each R_SH_USES reloc 687 which refers to that address, it can safely eliminate the register 688 load. 689 690 When the assembler creates an R_SH_USES reloc, it examines it to 691 determine which address is being loaded (L1 in the above example). 692 It then counts the number of references to that address, and 693 creates an R_SH_COUNT reloc at that address. The r_offset field of 694 the R_SH_COUNT reloc will be the number of references. If the 695 linker is able to eliminate a register load, it can use the 696 R_SH_COUNT reloc to see whether it can also eliminate the function 697 address. 698 699 SH relaxing also handles another, unrelated, matter. On the SH, if 700 a load or store instruction is not aligned on a four byte boundary, 701 the memory cycle interferes with the 32 bit instruction fetch, 702 causing a one cycle bubble in the pipeline. Therefore, we try to 703 align load and store instructions on four byte boundaries if we 704 can, by swapping them with one of the adjacent instructions. */ 705 706 static bool 707 sh_relax_section (bfd *abfd, 708 asection *sec, 709 struct bfd_link_info *link_info, 710 bool *again) 711 { 712 struct internal_reloc *internal_relocs; 713 bool have_code; 714 struct internal_reloc *irel, *irelend; 715 bfd_byte *contents = NULL; 716 717 *again = false; 718 719 if (bfd_link_relocatable (link_info) 720 || (sec->flags & SEC_RELOC) == 0 721 || sec->reloc_count == 0) 722 return true; 723 724 if (coff_section_data (abfd, sec) == NULL) 725 { 726 size_t amt = sizeof (struct coff_section_tdata); 727 sec->used_by_bfd = bfd_zalloc (abfd, amt); 728 if (sec->used_by_bfd == NULL) 729 return false; 730 } 731 732 internal_relocs = (_bfd_coff_read_internal_relocs 733 (abfd, sec, link_info->keep_memory, 734 (bfd_byte *) NULL, false, 735 (struct internal_reloc *) NULL)); 736 if (internal_relocs == NULL) 737 goto error_return; 738 739 have_code = false; 740 741 irelend = internal_relocs + sec->reloc_count; 742 for (irel = internal_relocs; irel < irelend; irel++) 743 { 744 bfd_vma laddr, paddr, symval; 745 unsigned short insn; 746 struct internal_reloc *irelfn, *irelscan, *irelcount; 747 struct internal_syment sym; 748 bfd_signed_vma foff; 749 750 if (irel->r_type == R_SH_CODE) 751 have_code = true; 752 753 if (irel->r_type != R_SH_USES) 754 continue; 755 756 /* Get the section contents. */ 757 if (contents == NULL) 758 { 759 if (coff_section_data (abfd, sec)->contents != NULL) 760 contents = coff_section_data (abfd, sec)->contents; 761 else 762 { 763 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 764 goto error_return; 765 } 766 } 767 768 /* The r_offset field of the R_SH_USES reloc will point us to 769 the register load. The 4 is because the r_offset field is 770 computed as though it were a jump offset, which are based 771 from 4 bytes after the jump instruction. */ 772 laddr = irel->r_vaddr - sec->vma + 4; 773 /* Careful to sign extend the 32-bit offset. */ 774 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; 775 if (laddr >= sec->size) 776 { 777 /* xgettext: c-format */ 778 _bfd_error_handler 779 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"), 780 abfd, (uint64_t) irel->r_vaddr); 781 continue; 782 } 783 insn = bfd_get_16 (abfd, contents + laddr); 784 785 /* If the instruction is not mov.l NN,rN, we don't know what to do. */ 786 if ((insn & 0xf000) != 0xd000) 787 { 788 _bfd_error_handler 789 /* xgettext: c-format */ 790 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"), 791 abfd, (uint64_t) irel->r_vaddr, insn); 792 continue; 793 } 794 795 /* Get the address from which the register is being loaded. The 796 displacement in the mov.l instruction is quadrupled. It is a 797 displacement from four bytes after the movl instruction, but, 798 before adding in the PC address, two least significant bits 799 of the PC are cleared. We assume that the section is aligned 800 on a four byte boundary. */ 801 paddr = insn & 0xff; 802 paddr *= 4; 803 paddr += (laddr + 4) &~ (bfd_vma) 3; 804 if (paddr >= sec->size) 805 { 806 _bfd_error_handler 807 /* xgettext: c-format */ 808 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"), 809 abfd, (uint64_t) irel->r_vaddr); 810 continue; 811 } 812 813 /* Get the reloc for the address from which the register is 814 being loaded. This reloc will tell us which function is 815 actually being called. */ 816 paddr += sec->vma; 817 for (irelfn = internal_relocs; irelfn < irelend; irelfn++) 818 if (irelfn->r_vaddr == paddr 819 #ifdef COFF_WITH_PE 820 && (irelfn->r_type == R_SH_IMM32 821 || irelfn->r_type == R_SH_IMM32CE 822 || irelfn->r_type == R_SH_IMAGEBASE) 823 824 #else 825 && irelfn->r_type == R_SH_IMM32 826 #endif 827 ) 828 break; 829 if (irelfn >= irelend) 830 { 831 _bfd_error_handler 832 /* xgettext: c-format */ 833 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"), 834 abfd, (uint64_t) paddr); 835 continue; 836 } 837 838 /* Get the value of the symbol referred to by the reloc. */ 839 if (! _bfd_coff_get_external_symbols (abfd)) 840 goto error_return; 841 bfd_coff_swap_sym_in (abfd, 842 ((bfd_byte *) obj_coff_external_syms (abfd) 843 + (irelfn->r_symndx 844 * bfd_coff_symesz (abfd))), 845 &sym); 846 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) 847 { 848 _bfd_error_handler 849 /* xgettext: c-format */ 850 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"), 851 abfd, (uint64_t) paddr); 852 continue; 853 } 854 855 if (sym.n_sclass != C_EXT) 856 { 857 symval = (sym.n_value 858 - sec->vma 859 + sec->output_section->vma 860 + sec->output_offset); 861 } 862 else 863 { 864 struct coff_link_hash_entry *h; 865 866 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; 867 BFD_ASSERT (h != NULL); 868 if (h->root.type != bfd_link_hash_defined 869 && h->root.type != bfd_link_hash_defweak) 870 { 871 /* This appears to be a reference to an undefined 872 symbol. Just ignore it--it will be caught by the 873 regular reloc processing. */ 874 continue; 875 } 876 877 symval = (h->root.u.def.value 878 + h->root.u.def.section->output_section->vma 879 + h->root.u.def.section->output_offset); 880 } 881 882 symval += bfd_get_32 (abfd, contents + paddr - sec->vma); 883 884 /* See if this function call can be shortened. */ 885 foff = (symval 886 - (irel->r_vaddr 887 - sec->vma 888 + sec->output_section->vma 889 + sec->output_offset 890 + 4)); 891 if (foff < -0x1000 || foff >= 0x1000) 892 { 893 /* After all that work, we can't shorten this function call. */ 894 continue; 895 } 896 897 /* Shorten the function call. */ 898 899 /* For simplicity of coding, we are going to modify the section 900 contents, the section relocs, and the BFD symbol table. We 901 must tell the rest of the code not to free up this 902 information. It would be possible to instead create a table 903 of changes which have to be made, as is done in coff-mips.c; 904 that would be more work, but would require less memory when 905 the linker is run. */ 906 907 coff_section_data (abfd, sec)->relocs = internal_relocs; 908 coff_section_data (abfd, sec)->keep_relocs = true; 909 910 coff_section_data (abfd, sec)->contents = contents; 911 coff_section_data (abfd, sec)->keep_contents = true; 912 913 obj_coff_keep_syms (abfd) = true; 914 915 /* Replace the jsr with a bsr. */ 916 917 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and 918 replace the jsr with a bsr. */ 919 irel->r_type = R_SH_PCDISP; 920 irel->r_symndx = irelfn->r_symndx; 921 if (sym.n_sclass != C_EXT) 922 { 923 /* If this needs to be changed because of future relaxing, 924 it will be handled here like other internal PCDISP 925 relocs. */ 926 bfd_put_16 (abfd, 927 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), 928 contents + irel->r_vaddr - sec->vma); 929 } 930 else 931 { 932 /* We can't fully resolve this yet, because the external 933 symbol value may be changed by future relaxing. We let 934 the final link phase handle it. */ 935 bfd_put_16 (abfd, (bfd_vma) 0xb000, 936 contents + irel->r_vaddr - sec->vma); 937 } 938 939 /* See if there is another R_SH_USES reloc referring to the same 940 register load. */ 941 for (irelscan = internal_relocs; irelscan < irelend; irelscan++) 942 if (irelscan->r_type == R_SH_USES 943 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) 944 break; 945 if (irelscan < irelend) 946 { 947 /* Some other function call depends upon this register load, 948 and we have not yet converted that function call. 949 Indeed, we may never be able to convert it. There is 950 nothing else we can do at this point. */ 951 continue; 952 } 953 954 /* Look for a R_SH_COUNT reloc on the location where the 955 function address is stored. Do this before deleting any 956 bytes, to avoid confusion about the address. */ 957 for (irelcount = internal_relocs; irelcount < irelend; irelcount++) 958 if (irelcount->r_vaddr == paddr 959 && irelcount->r_type == R_SH_COUNT) 960 break; 961 962 /* Delete the register load. */ 963 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) 964 goto error_return; 965 966 /* That will change things, so, just in case it permits some 967 other function call to come within range, we should relax 968 again. Note that this is not required, and it may be slow. */ 969 *again = true; 970 971 /* Now check whether we got a COUNT reloc. */ 972 if (irelcount >= irelend) 973 { 974 _bfd_error_handler 975 /* xgettext: c-format */ 976 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"), 977 abfd, (uint64_t) paddr); 978 continue; 979 } 980 981 /* The number of uses is stored in the r_offset field. We've 982 just deleted one. */ 983 if (irelcount->r_offset == 0) 984 { 985 /* xgettext: c-format */ 986 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"), 987 abfd, (uint64_t) paddr); 988 continue; 989 } 990 991 --irelcount->r_offset; 992 993 /* If there are no more uses, we can delete the address. Reload 994 the address from irelfn, in case it was changed by the 995 previous call to sh_relax_delete_bytes. */ 996 if (irelcount->r_offset == 0) 997 { 998 if (! sh_relax_delete_bytes (abfd, sec, 999 irelfn->r_vaddr - sec->vma, 4)) 1000 goto error_return; 1001 } 1002 1003 /* We've done all we can with that function call. */ 1004 } 1005 1006 /* Look for load and store instructions that we can align on four 1007 byte boundaries. */ 1008 if (have_code) 1009 { 1010 bool swapped; 1011 1012 /* Get the section contents. */ 1013 if (contents == NULL) 1014 { 1015 if (coff_section_data (abfd, sec)->contents != NULL) 1016 contents = coff_section_data (abfd, sec)->contents; 1017 else 1018 { 1019 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 1020 goto error_return; 1021 } 1022 } 1023 1024 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) 1025 goto error_return; 1026 1027 if (swapped) 1028 { 1029 coff_section_data (abfd, sec)->relocs = internal_relocs; 1030 coff_section_data (abfd, sec)->keep_relocs = true; 1031 1032 coff_section_data (abfd, sec)->contents = contents; 1033 coff_section_data (abfd, sec)->keep_contents = true; 1034 1035 obj_coff_keep_syms (abfd) = true; 1036 } 1037 } 1038 1039 if (internal_relocs != NULL 1040 && internal_relocs != coff_section_data (abfd, sec)->relocs) 1041 { 1042 if (! link_info->keep_memory) 1043 free (internal_relocs); 1044 else 1045 coff_section_data (abfd, sec)->relocs = internal_relocs; 1046 } 1047 1048 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) 1049 { 1050 if (! link_info->keep_memory) 1051 free (contents); 1052 else 1053 /* Cache the section contents for coff_link_input_bfd. */ 1054 coff_section_data (abfd, sec)->contents = contents; 1055 } 1056 1057 return true; 1058 1059 error_return: 1060 if (internal_relocs != coff_section_data (abfd, sec)->relocs) 1061 free (internal_relocs); 1062 if (contents != coff_section_data (abfd, sec)->contents) 1063 free (contents); 1064 return false; 1065 } 1066 1067 /* Delete some bytes from a section while relaxing. */ 1068 1069 static bool 1070 sh_relax_delete_bytes (bfd *abfd, 1071 asection *sec, 1072 bfd_vma addr, 1073 int count) 1074 { 1075 bfd_byte *contents; 1076 struct internal_reloc *irel, *irelend; 1077 struct internal_reloc *irelalign; 1078 bfd_vma toaddr; 1079 bfd_byte *esym, *esymend; 1080 bfd_size_type symesz; 1081 struct coff_link_hash_entry **sym_hash; 1082 asection *o; 1083 1084 contents = coff_section_data (abfd, sec)->contents; 1085 1086 /* The deletion must stop at the next ALIGN reloc for an alignment 1087 power larger than the number of bytes we are deleting. */ 1088 1089 irelalign = NULL; 1090 toaddr = sec->size; 1091 1092 irel = coff_section_data (abfd, sec)->relocs; 1093 irelend = irel + sec->reloc_count; 1094 for (; irel < irelend; irel++) 1095 { 1096 if (irel->r_type == R_SH_ALIGN 1097 && irel->r_vaddr - sec->vma > addr 1098 && count < (1 << irel->r_offset)) 1099 { 1100 irelalign = irel; 1101 toaddr = irel->r_vaddr - sec->vma; 1102 break; 1103 } 1104 } 1105 1106 /* Actually delete the bytes. */ 1107 memmove (contents + addr, contents + addr + count, 1108 (size_t) (toaddr - addr - count)); 1109 if (irelalign == NULL) 1110 sec->size -= count; 1111 else 1112 { 1113 int i; 1114 1115 #define NOP_OPCODE (0x0009) 1116 1117 BFD_ASSERT ((count & 1) == 0); 1118 for (i = 0; i < count; i += 2) 1119 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); 1120 } 1121 1122 /* Adjust all the relocs. */ 1123 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) 1124 { 1125 bfd_vma nraddr, stop; 1126 bfd_vma start = 0; 1127 int insn = 0; 1128 struct internal_syment sym; 1129 int off, adjust, oinsn; 1130 bfd_signed_vma voff = 0; 1131 bool overflow; 1132 1133 /* Get the new reloc address. */ 1134 nraddr = irel->r_vaddr - sec->vma; 1135 if ((irel->r_vaddr - sec->vma > addr 1136 && irel->r_vaddr - sec->vma < toaddr) 1137 || (irel->r_type == R_SH_ALIGN 1138 && irel->r_vaddr - sec->vma == toaddr)) 1139 nraddr -= count; 1140 1141 /* See if this reloc was for the bytes we have deleted, in which 1142 case we no longer care about it. Don't delete relocs which 1143 represent addresses, though. */ 1144 if (irel->r_vaddr - sec->vma >= addr 1145 && irel->r_vaddr - sec->vma < addr + count 1146 && irel->r_type != R_SH_ALIGN 1147 && irel->r_type != R_SH_CODE 1148 && irel->r_type != R_SH_DATA 1149 && irel->r_type != R_SH_LABEL) 1150 irel->r_type = R_SH_UNUSED; 1151 1152 /* If this is a PC relative reloc, see if the range it covers 1153 includes the bytes we have deleted. */ 1154 switch (irel->r_type) 1155 { 1156 default: 1157 break; 1158 1159 case R_SH_PCDISP8BY2: 1160 case R_SH_PCDISP: 1161 case R_SH_PCRELIMM8BY2: 1162 case R_SH_PCRELIMM8BY4: 1163 start = irel->r_vaddr - sec->vma; 1164 insn = bfd_get_16 (abfd, contents + nraddr); 1165 break; 1166 } 1167 1168 switch (irel->r_type) 1169 { 1170 default: 1171 start = stop = addr; 1172 break; 1173 1174 case R_SH_IMM32: 1175 #ifdef COFF_WITH_PE 1176 case R_SH_IMM32CE: 1177 case R_SH_IMAGEBASE: 1178 #endif 1179 /* If this reloc is against a symbol defined in this 1180 section, and the symbol will not be adjusted below, we 1181 must check the addend to see it will put the value in 1182 range to be adjusted, and hence must be changed. */ 1183 bfd_coff_swap_sym_in (abfd, 1184 ((bfd_byte *) obj_coff_external_syms (abfd) 1185 + (irel->r_symndx 1186 * bfd_coff_symesz (abfd))), 1187 &sym); 1188 if (sym.n_sclass != C_EXT 1189 && sym.n_scnum == sec->target_index 1190 && ((bfd_vma) sym.n_value <= addr 1191 || (bfd_vma) sym.n_value >= toaddr)) 1192 { 1193 bfd_vma val; 1194 1195 val = bfd_get_32 (abfd, contents + nraddr); 1196 val += sym.n_value; 1197 if (val > addr && val < toaddr) 1198 bfd_put_32 (abfd, val - count, contents + nraddr); 1199 } 1200 start = stop = addr; 1201 break; 1202 1203 case R_SH_PCDISP8BY2: 1204 off = insn & 0xff; 1205 if (off & 0x80) 1206 off -= 0x100; 1207 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); 1208 break; 1209 1210 case R_SH_PCDISP: 1211 bfd_coff_swap_sym_in (abfd, 1212 ((bfd_byte *) obj_coff_external_syms (abfd) 1213 + (irel->r_symndx 1214 * bfd_coff_symesz (abfd))), 1215 &sym); 1216 if (sym.n_sclass == C_EXT) 1217 start = stop = addr; 1218 else 1219 { 1220 off = insn & 0xfff; 1221 if (off & 0x800) 1222 off -= 0x1000; 1223 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); 1224 } 1225 break; 1226 1227 case R_SH_PCRELIMM8BY2: 1228 off = insn & 0xff; 1229 stop = start + 4 + off * 2; 1230 break; 1231 1232 case R_SH_PCRELIMM8BY4: 1233 off = insn & 0xff; 1234 stop = (start &~ (bfd_vma) 3) + 4 + off * 4; 1235 break; 1236 1237 case R_SH_SWITCH8: 1238 case R_SH_SWITCH16: 1239 case R_SH_SWITCH32: 1240 /* These relocs types represent 1241 .word L2-L1 1242 The r_offset field holds the difference between the reloc 1243 address and L1. That is the start of the reloc, and 1244 adding in the contents gives us the top. We must adjust 1245 both the r_offset field and the section contents. */ 1246 1247 start = irel->r_vaddr - sec->vma; 1248 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); 1249 1250 if (start > addr 1251 && start < toaddr 1252 && (stop <= addr || stop >= toaddr)) 1253 irel->r_offset += count; 1254 else if (stop > addr 1255 && stop < toaddr 1256 && (start <= addr || start >= toaddr)) 1257 irel->r_offset -= count; 1258 1259 start = stop; 1260 1261 if (irel->r_type == R_SH_SWITCH16) 1262 voff = bfd_get_signed_16 (abfd, contents + nraddr); 1263 else if (irel->r_type == R_SH_SWITCH8) 1264 voff = bfd_get_8 (abfd, contents + nraddr); 1265 else 1266 voff = bfd_get_signed_32 (abfd, contents + nraddr); 1267 stop = (bfd_vma) ((bfd_signed_vma) start + voff); 1268 1269 break; 1270 1271 case R_SH_USES: 1272 start = irel->r_vaddr - sec->vma; 1273 stop = (bfd_vma) ((bfd_signed_vma) start 1274 + (long) irel->r_offset 1275 + 4); 1276 break; 1277 } 1278 1279 if (start > addr 1280 && start < toaddr 1281 && (stop <= addr || stop >= toaddr)) 1282 adjust = count; 1283 else if (stop > addr 1284 && stop < toaddr 1285 && (start <= addr || start >= toaddr)) 1286 adjust = - count; 1287 else 1288 adjust = 0; 1289 1290 if (adjust != 0) 1291 { 1292 oinsn = insn; 1293 overflow = false; 1294 switch (irel->r_type) 1295 { 1296 default: 1297 abort (); 1298 break; 1299 1300 case R_SH_PCDISP8BY2: 1301 case R_SH_PCRELIMM8BY2: 1302 insn += adjust / 2; 1303 if ((oinsn & 0xff00) != (insn & 0xff00)) 1304 overflow = true; 1305 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); 1306 break; 1307 1308 case R_SH_PCDISP: 1309 insn += adjust / 2; 1310 if ((oinsn & 0xf000) != (insn & 0xf000)) 1311 overflow = true; 1312 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); 1313 break; 1314 1315 case R_SH_PCRELIMM8BY4: 1316 BFD_ASSERT (adjust == count || count >= 4); 1317 if (count >= 4) 1318 insn += adjust / 4; 1319 else 1320 { 1321 if ((irel->r_vaddr & 3) == 0) 1322 ++insn; 1323 } 1324 if ((oinsn & 0xff00) != (insn & 0xff00)) 1325 overflow = true; 1326 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); 1327 break; 1328 1329 case R_SH_SWITCH8: 1330 voff += adjust; 1331 if (voff < 0 || voff >= 0xff) 1332 overflow = true; 1333 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); 1334 break; 1335 1336 case R_SH_SWITCH16: 1337 voff += adjust; 1338 if (voff < - 0x8000 || voff >= 0x8000) 1339 overflow = true; 1340 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); 1341 break; 1342 1343 case R_SH_SWITCH32: 1344 voff += adjust; 1345 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); 1346 break; 1347 1348 case R_SH_USES: 1349 irel->r_offset += adjust; 1350 break; 1351 } 1352 1353 if (overflow) 1354 { 1355 _bfd_error_handler 1356 /* xgettext: c-format */ 1357 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), 1358 abfd, (uint64_t) irel->r_vaddr); 1359 bfd_set_error (bfd_error_bad_value); 1360 return false; 1361 } 1362 } 1363 1364 irel->r_vaddr = nraddr + sec->vma; 1365 } 1366 1367 /* Look through all the other sections. If there contain any IMM32 1368 relocs against internal symbols which we are not going to adjust 1369 below, we may need to adjust the addends. */ 1370 for (o = abfd->sections; o != NULL; o = o->next) 1371 { 1372 struct internal_reloc *internal_relocs; 1373 struct internal_reloc *irelscan, *irelscanend; 1374 bfd_byte *ocontents; 1375 1376 if (o == sec 1377 || (o->flags & SEC_RELOC) == 0 1378 || o->reloc_count == 0) 1379 continue; 1380 1381 /* We always cache the relocs. Perhaps, if info->keep_memory is 1382 FALSE, we should free them, if we are permitted to, when we 1383 leave sh_coff_relax_section. */ 1384 internal_relocs = (_bfd_coff_read_internal_relocs 1385 (abfd, o, true, (bfd_byte *) NULL, false, 1386 (struct internal_reloc *) NULL)); 1387 if (internal_relocs == NULL) 1388 return false; 1389 1390 ocontents = NULL; 1391 irelscanend = internal_relocs + o->reloc_count; 1392 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) 1393 { 1394 struct internal_syment sym; 1395 1396 #ifdef COFF_WITH_PE 1397 if (irelscan->r_type != R_SH_IMM32 1398 && irelscan->r_type != R_SH_IMAGEBASE 1399 && irelscan->r_type != R_SH_IMM32CE) 1400 #else 1401 if (irelscan->r_type != R_SH_IMM32) 1402 #endif 1403 continue; 1404 1405 bfd_coff_swap_sym_in (abfd, 1406 ((bfd_byte *) obj_coff_external_syms (abfd) 1407 + (irelscan->r_symndx 1408 * bfd_coff_symesz (abfd))), 1409 &sym); 1410 if (sym.n_sclass != C_EXT 1411 && sym.n_scnum == sec->target_index 1412 && ((bfd_vma) sym.n_value <= addr 1413 || (bfd_vma) sym.n_value >= toaddr)) 1414 { 1415 bfd_vma val; 1416 1417 if (ocontents == NULL) 1418 { 1419 if (coff_section_data (abfd, o)->contents != NULL) 1420 ocontents = coff_section_data (abfd, o)->contents; 1421 else 1422 { 1423 if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) 1424 return false; 1425 /* We always cache the section contents. 1426 Perhaps, if info->keep_memory is FALSE, we 1427 should free them, if we are permitted to, 1428 when we leave sh_coff_relax_section. */ 1429 coff_section_data (abfd, o)->contents = ocontents; 1430 } 1431 } 1432 1433 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); 1434 val += sym.n_value; 1435 if (val > addr && val < toaddr) 1436 bfd_put_32 (abfd, val - count, 1437 ocontents + irelscan->r_vaddr - o->vma); 1438 1439 coff_section_data (abfd, o)->keep_contents = true; 1440 } 1441 } 1442 } 1443 1444 /* Adjusting the internal symbols will not work if something has 1445 already retrieved the generic symbols. It would be possible to 1446 make this work by adjusting the generic symbols at the same time. 1447 However, this case should not arise in normal usage. */ 1448 if (obj_symbols (abfd) != NULL 1449 || obj_raw_syments (abfd) != NULL) 1450 { 1451 _bfd_error_handler 1452 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd); 1453 bfd_set_error (bfd_error_invalid_operation); 1454 return false; 1455 } 1456 1457 /* Adjust all the symbols. */ 1458 sym_hash = obj_coff_sym_hashes (abfd); 1459 symesz = bfd_coff_symesz (abfd); 1460 esym = (bfd_byte *) obj_coff_external_syms (abfd); 1461 esymend = esym + obj_raw_syment_count (abfd) * symesz; 1462 while (esym < esymend) 1463 { 1464 struct internal_syment isym; 1465 1466 bfd_coff_swap_sym_in (abfd, esym, &isym); 1467 1468 if (isym.n_scnum == sec->target_index 1469 && (bfd_vma) isym.n_value > addr 1470 && (bfd_vma) isym.n_value < toaddr) 1471 { 1472 isym.n_value -= count; 1473 1474 bfd_coff_swap_sym_out (abfd, &isym, esym); 1475 1476 if (*sym_hash != NULL) 1477 { 1478 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined 1479 || (*sym_hash)->root.type == bfd_link_hash_defweak); 1480 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr 1481 && (*sym_hash)->root.u.def.value < toaddr); 1482 (*sym_hash)->root.u.def.value -= count; 1483 } 1484 } 1485 1486 esym += (isym.n_numaux + 1) * symesz; 1487 sym_hash += isym.n_numaux + 1; 1488 } 1489 1490 /* See if we can move the ALIGN reloc forward. We have adjusted 1491 r_vaddr for it already. */ 1492 if (irelalign != NULL) 1493 { 1494 bfd_vma alignto, alignaddr; 1495 1496 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); 1497 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, 1498 1 << irelalign->r_offset); 1499 if (alignto != alignaddr) 1500 { 1501 /* Tail recursion. */ 1502 return sh_relax_delete_bytes (abfd, sec, alignaddr, 1503 (int) (alignto - alignaddr)); 1504 } 1505 } 1506 1507 return true; 1508 } 1509 1510 /* This is yet another version of the SH opcode table, used to rapidly 1511 get information about a particular instruction. */ 1512 1513 /* The opcode map is represented by an array of these structures. The 1514 array is indexed by the high order four bits in the instruction. */ 1515 1516 struct sh_major_opcode 1517 { 1518 /* A pointer to the instruction list. This is an array which 1519 contains all the instructions with this major opcode. */ 1520 const struct sh_minor_opcode *minor_opcodes; 1521 /* The number of elements in minor_opcodes. */ 1522 unsigned short count; 1523 }; 1524 1525 /* This structure holds information for a set of SH opcodes. The 1526 instruction code is anded with the mask value, and the resulting 1527 value is used to search the order opcode list. */ 1528 1529 struct sh_minor_opcode 1530 { 1531 /* The sorted opcode list. */ 1532 const struct sh_opcode *opcodes; 1533 /* The number of elements in opcodes. */ 1534 unsigned short count; 1535 /* The mask value to use when searching the opcode list. */ 1536 unsigned short mask; 1537 }; 1538 1539 /* This structure holds information for an SH instruction. An array 1540 of these structures is sorted in order by opcode. */ 1541 1542 struct sh_opcode 1543 { 1544 /* The code for this instruction, after it has been anded with the 1545 mask value in the sh_major_opcode structure. */ 1546 unsigned short opcode; 1547 /* Flags for this instruction. */ 1548 unsigned long flags; 1549 }; 1550 1551 /* Flag which appear in the sh_opcode structure. */ 1552 1553 /* This instruction loads a value from memory. */ 1554 #define LOAD (0x1) 1555 1556 /* This instruction stores a value to memory. */ 1557 #define STORE (0x2) 1558 1559 /* This instruction is a branch. */ 1560 #define BRANCH (0x4) 1561 1562 /* This instruction has a delay slot. */ 1563 #define DELAY (0x8) 1564 1565 /* This instruction uses the value in the register in the field at 1566 mask 0x0f00 of the instruction. */ 1567 #define USES1 (0x10) 1568 #define USES1_REG(x) ((x & 0x0f00) >> 8) 1569 1570 /* This instruction uses the value in the register in the field at 1571 mask 0x00f0 of the instruction. */ 1572 #define USES2 (0x20) 1573 #define USES2_REG(x) ((x & 0x00f0) >> 4) 1574 1575 /* This instruction uses the value in register 0. */ 1576 #define USESR0 (0x40) 1577 1578 /* This instruction sets the value in the register in the field at 1579 mask 0x0f00 of the instruction. */ 1580 #define SETS1 (0x80) 1581 #define SETS1_REG(x) ((x & 0x0f00) >> 8) 1582 1583 /* This instruction sets the value in the register in the field at 1584 mask 0x00f0 of the instruction. */ 1585 #define SETS2 (0x100) 1586 #define SETS2_REG(x) ((x & 0x00f0) >> 4) 1587 1588 /* This instruction sets register 0. */ 1589 #define SETSR0 (0x200) 1590 1591 /* This instruction sets a special register. */ 1592 #define SETSSP (0x400) 1593 1594 /* This instruction uses a special register. */ 1595 #define USESSP (0x800) 1596 1597 /* This instruction uses the floating point register in the field at 1598 mask 0x0f00 of the instruction. */ 1599 #define USESF1 (0x1000) 1600 #define USESF1_REG(x) ((x & 0x0f00) >> 8) 1601 1602 /* This instruction uses the floating point register in the field at 1603 mask 0x00f0 of the instruction. */ 1604 #define USESF2 (0x2000) 1605 #define USESF2_REG(x) ((x & 0x00f0) >> 4) 1606 1607 /* This instruction uses floating point register 0. */ 1608 #define USESF0 (0x4000) 1609 1610 /* This instruction sets the floating point register in the field at 1611 mask 0x0f00 of the instruction. */ 1612 #define SETSF1 (0x8000) 1613 #define SETSF1_REG(x) ((x & 0x0f00) >> 8) 1614 1615 #define USESAS (0x10000) 1616 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) 1617 #define USESR8 (0x20000) 1618 #define SETSAS (0x40000) 1619 #define SETSAS_REG(x) USESAS_REG (x) 1620 1621 #define MAP(a) a, sizeof a / sizeof a[0] 1622 1623 #ifndef COFF_IMAGE_WITH_PE 1624 1625 /* The opcode maps. */ 1626 1627 static const struct sh_opcode sh_opcode00[] = 1628 { 1629 { 0x0008, SETSSP }, /* clrt */ 1630 { 0x0009, 0 }, /* nop */ 1631 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */ 1632 { 0x0018, SETSSP }, /* sett */ 1633 { 0x0019, SETSSP }, /* div0u */ 1634 { 0x001b, 0 }, /* sleep */ 1635 { 0x0028, SETSSP }, /* clrmac */ 1636 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */ 1637 { 0x0038, USESSP | SETSSP }, /* ldtlb */ 1638 { 0x0048, SETSSP }, /* clrs */ 1639 { 0x0058, SETSSP } /* sets */ 1640 }; 1641 1642 static const struct sh_opcode sh_opcode01[] = 1643 { 1644 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */ 1645 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */ 1646 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */ 1647 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */ 1648 { 0x0029, SETS1 | USESSP }, /* movt rn */ 1649 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */ 1650 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */ 1651 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */ 1652 { 0x0083, LOAD | USES1 }, /* pref @rn */ 1653 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */ 1654 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */ 1655 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */ 1656 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */ 1657 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */ 1658 }; 1659 1660 static const struct sh_opcode sh_opcode02[] = 1661 { 1662 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */ 1663 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */ 1664 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */ 1665 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */ 1666 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */ 1667 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */ 1668 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */ 1669 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */ 1670 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ 1671 }; 1672 1673 static const struct sh_minor_opcode sh_opcode0[] = 1674 { 1675 { MAP (sh_opcode00), 0xffff }, 1676 { MAP (sh_opcode01), 0xf0ff }, 1677 { MAP (sh_opcode02), 0xf00f } 1678 }; 1679 1680 static const struct sh_opcode sh_opcode10[] = 1681 { 1682 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */ 1683 }; 1684 1685 static const struct sh_minor_opcode sh_opcode1[] = 1686 { 1687 { MAP (sh_opcode10), 0xf000 } 1688 }; 1689 1690 static const struct sh_opcode sh_opcode20[] = 1691 { 1692 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */ 1693 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */ 1694 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */ 1695 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */ 1696 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */ 1697 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */ 1698 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */ 1699 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */ 1700 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */ 1701 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */ 1702 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */ 1703 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */ 1704 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */ 1705 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */ 1706 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */ 1707 }; 1708 1709 static const struct sh_minor_opcode sh_opcode2[] = 1710 { 1711 { MAP (sh_opcode20), 0xf00f } 1712 }; 1713 1714 static const struct sh_opcode sh_opcode30[] = 1715 { 1716 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */ 1717 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */ 1718 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */ 1719 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */ 1720 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */ 1721 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */ 1722 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */ 1723 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */ 1724 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ 1725 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */ 1726 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */ 1727 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */ 1728 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ 1729 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */ 1730 }; 1731 1732 static const struct sh_minor_opcode sh_opcode3[] = 1733 { 1734 { MAP (sh_opcode30), 0xf00f } 1735 }; 1736 1737 static const struct sh_opcode sh_opcode40[] = 1738 { 1739 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */ 1740 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */ 1741 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */ 1742 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */ 1743 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */ 1744 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */ 1745 { 0x4008, SETS1 | USES1 }, /* shll2 rn */ 1746 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */ 1747 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */ 1748 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */ 1749 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */ 1750 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */ 1751 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */ 1752 { 0x4014, SETSSP | USES1 }, /* setrc rm */ 1753 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */ 1754 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */ 1755 { 0x4018, SETS1 | USES1 }, /* shll8 rn */ 1756 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */ 1757 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */ 1758 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */ 1759 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */ 1760 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */ 1761 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */ 1762 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */ 1763 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */ 1764 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */ 1765 { 0x4028, SETS1 | USES1 }, /* shll16 rn */ 1766 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */ 1767 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */ 1768 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */ 1769 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */ 1770 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */ 1771 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */ 1772 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */ 1773 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */ 1774 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */ 1775 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */ 1776 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */ 1777 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */ 1778 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */ 1779 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */ 1780 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */ 1781 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */ 1782 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */ 1783 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */ 1784 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */ 1785 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */ 1786 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */ 1787 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */ 1788 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */ 1789 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */ 1790 }; 1791 1792 static const struct sh_opcode sh_opcode41[] = 1793 { 1794 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */ 1795 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */ 1796 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */ 1797 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */ 1798 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */ 1799 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ 1800 }; 1801 1802 static const struct sh_minor_opcode sh_opcode4[] = 1803 { 1804 { MAP (sh_opcode40), 0xf0ff }, 1805 { MAP (sh_opcode41), 0xf00f } 1806 }; 1807 1808 static const struct sh_opcode sh_opcode50[] = 1809 { 1810 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */ 1811 }; 1812 1813 static const struct sh_minor_opcode sh_opcode5[] = 1814 { 1815 { MAP (sh_opcode50), 0xf000 } 1816 }; 1817 1818 static const struct sh_opcode sh_opcode60[] = 1819 { 1820 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */ 1821 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */ 1822 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */ 1823 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */ 1824 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */ 1825 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */ 1826 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */ 1827 { 0x6007, SETS1 | USES2 }, /* not rm,rn */ 1828 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */ 1829 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */ 1830 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */ 1831 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */ 1832 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */ 1833 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */ 1834 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */ 1835 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */ 1836 }; 1837 1838 static const struct sh_minor_opcode sh_opcode6[] = 1839 { 1840 { MAP (sh_opcode60), 0xf00f } 1841 }; 1842 1843 static const struct sh_opcode sh_opcode70[] = 1844 { 1845 { 0x7000, SETS1 | USES1 } /* add #imm,rn */ 1846 }; 1847 1848 static const struct sh_minor_opcode sh_opcode7[] = 1849 { 1850 { MAP (sh_opcode70), 0xf000 } 1851 }; 1852 1853 static const struct sh_opcode sh_opcode80[] = 1854 { 1855 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */ 1856 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */ 1857 { 0x8200, SETSSP }, /* setrc #imm */ 1858 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */ 1859 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */ 1860 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */ 1861 { 0x8900, BRANCH | USESSP }, /* bt label */ 1862 { 0x8b00, BRANCH | USESSP }, /* bf label */ 1863 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */ 1864 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */ 1865 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */ 1866 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */ 1867 }; 1868 1869 static const struct sh_minor_opcode sh_opcode8[] = 1870 { 1871 { MAP (sh_opcode80), 0xff00 } 1872 }; 1873 1874 static const struct sh_opcode sh_opcode90[] = 1875 { 1876 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */ 1877 }; 1878 1879 static const struct sh_minor_opcode sh_opcode9[] = 1880 { 1881 { MAP (sh_opcode90), 0xf000 } 1882 }; 1883 1884 static const struct sh_opcode sh_opcodea0[] = 1885 { 1886 { 0xa000, BRANCH | DELAY } /* bra label */ 1887 }; 1888 1889 static const struct sh_minor_opcode sh_opcodea[] = 1890 { 1891 { MAP (sh_opcodea0), 0xf000 } 1892 }; 1893 1894 static const struct sh_opcode sh_opcodeb0[] = 1895 { 1896 { 0xb000, BRANCH | DELAY } /* bsr label */ 1897 }; 1898 1899 static const struct sh_minor_opcode sh_opcodeb[] = 1900 { 1901 { MAP (sh_opcodeb0), 0xf000 } 1902 }; 1903 1904 static const struct sh_opcode sh_opcodec0[] = 1905 { 1906 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */ 1907 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */ 1908 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */ 1909 { 0xc300, BRANCH | USESSP }, /* trapa #imm */ 1910 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */ 1911 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */ 1912 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */ 1913 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */ 1914 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */ 1915 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */ 1916 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */ 1917 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */ 1918 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */ 1919 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */ 1920 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */ 1921 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */ 1922 }; 1923 1924 static const struct sh_minor_opcode sh_opcodec[] = 1925 { 1926 { MAP (sh_opcodec0), 0xff00 } 1927 }; 1928 1929 static const struct sh_opcode sh_opcoded0[] = 1930 { 1931 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */ 1932 }; 1933 1934 static const struct sh_minor_opcode sh_opcoded[] = 1935 { 1936 { MAP (sh_opcoded0), 0xf000 } 1937 }; 1938 1939 static const struct sh_opcode sh_opcodee0[] = 1940 { 1941 { 0xe000, SETS1 } /* mov #imm,rn */ 1942 }; 1943 1944 static const struct sh_minor_opcode sh_opcodee[] = 1945 { 1946 { MAP (sh_opcodee0), 0xf000 } 1947 }; 1948 1949 static const struct sh_opcode sh_opcodef0[] = 1950 { 1951 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */ 1952 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */ 1953 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */ 1954 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */ 1955 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */ 1956 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */ 1957 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */ 1958 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */ 1959 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */ 1960 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */ 1961 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */ 1962 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */ 1963 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */ 1964 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */ 1965 }; 1966 1967 static const struct sh_opcode sh_opcodef1[] = 1968 { 1969 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */ 1970 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */ 1971 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */ 1972 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */ 1973 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */ 1974 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */ 1975 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */ 1976 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */ 1977 { 0xf08d, SETSF1 }, /* fldi0 fn */ 1978 { 0xf09d, SETSF1 } /* fldi1 fn */ 1979 }; 1980 1981 static const struct sh_minor_opcode sh_opcodef[] = 1982 { 1983 { MAP (sh_opcodef0), 0xf00f }, 1984 { MAP (sh_opcodef1), 0xf0ff } 1985 }; 1986 1987 static struct sh_major_opcode sh_opcodes[] = 1988 { 1989 { MAP (sh_opcode0) }, 1990 { MAP (sh_opcode1) }, 1991 { MAP (sh_opcode2) }, 1992 { MAP (sh_opcode3) }, 1993 { MAP (sh_opcode4) }, 1994 { MAP (sh_opcode5) }, 1995 { MAP (sh_opcode6) }, 1996 { MAP (sh_opcode7) }, 1997 { MAP (sh_opcode8) }, 1998 { MAP (sh_opcode9) }, 1999 { MAP (sh_opcodea) }, 2000 { MAP (sh_opcodeb) }, 2001 { MAP (sh_opcodec) }, 2002 { MAP (sh_opcoded) }, 2003 { MAP (sh_opcodee) }, 2004 { MAP (sh_opcodef) } 2005 }; 2006 2007 /* The double data transfer / parallel processing insns are not 2008 described here. This will cause sh_align_load_span to leave them alone. */ 2009 2010 static const struct sh_opcode sh_dsp_opcodef0[] = 2011 { 2012 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */ 2013 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */ 2014 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */ 2015 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */ 2016 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */ 2017 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */ 2018 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */ 2019 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */ 2020 }; 2021 2022 static const struct sh_minor_opcode sh_dsp_opcodef[] = 2023 { 2024 { MAP (sh_dsp_opcodef0), 0xfc0d } 2025 }; 2026 2027 /* Given an instruction, return a pointer to the corresponding 2028 sh_opcode structure. Return NULL if the instruction is not 2029 recognized. */ 2030 2031 static const struct sh_opcode * 2032 sh_insn_info (unsigned int insn) 2033 { 2034 const struct sh_major_opcode *maj; 2035 const struct sh_minor_opcode *min, *minend; 2036 2037 maj = &sh_opcodes[(insn & 0xf000) >> 12]; 2038 min = maj->minor_opcodes; 2039 minend = min + maj->count; 2040 for (; min < minend; min++) 2041 { 2042 unsigned int l; 2043 const struct sh_opcode *op, *opend; 2044 2045 l = insn & min->mask; 2046 op = min->opcodes; 2047 opend = op + min->count; 2048 2049 /* Since the opcodes tables are sorted, we could use a binary 2050 search here if the count were above some cutoff value. */ 2051 for (; op < opend; op++) 2052 if (op->opcode == l) 2053 return op; 2054 } 2055 2056 return NULL; 2057 } 2058 2059 /* See whether an instruction uses a general purpose register. */ 2060 2061 static bool 2062 sh_insn_uses_reg (unsigned int insn, 2063 const struct sh_opcode *op, 2064 unsigned int reg) 2065 { 2066 unsigned int f; 2067 2068 f = op->flags; 2069 2070 if ((f & USES1) != 0 2071 && USES1_REG (insn) == reg) 2072 return true; 2073 if ((f & USES2) != 0 2074 && USES2_REG (insn) == reg) 2075 return true; 2076 if ((f & USESR0) != 0 2077 && reg == 0) 2078 return true; 2079 if ((f & USESAS) && reg == USESAS_REG (insn)) 2080 return true; 2081 if ((f & USESR8) && reg == 8) 2082 return true; 2083 2084 return false; 2085 } 2086 2087 /* See whether an instruction sets a general purpose register. */ 2088 2089 static bool 2090 sh_insn_sets_reg (unsigned int insn, 2091 const struct sh_opcode *op, 2092 unsigned int reg) 2093 { 2094 unsigned int f; 2095 2096 f = op->flags; 2097 2098 if ((f & SETS1) != 0 2099 && SETS1_REG (insn) == reg) 2100 return true; 2101 if ((f & SETS2) != 0 2102 && SETS2_REG (insn) == reg) 2103 return true; 2104 if ((f & SETSR0) != 0 2105 && reg == 0) 2106 return true; 2107 if ((f & SETSAS) && reg == SETSAS_REG (insn)) 2108 return true; 2109 2110 return false; 2111 } 2112 2113 /* See whether an instruction uses or sets a general purpose register */ 2114 2115 static bool 2116 sh_insn_uses_or_sets_reg (unsigned int insn, 2117 const struct sh_opcode *op, 2118 unsigned int reg) 2119 { 2120 if (sh_insn_uses_reg (insn, op, reg)) 2121 return true; 2122 2123 return sh_insn_sets_reg (insn, op, reg); 2124 } 2125 2126 /* See whether an instruction uses a floating point register. */ 2127 2128 static bool 2129 sh_insn_uses_freg (unsigned int insn, 2130 const struct sh_opcode *op, 2131 unsigned int freg) 2132 { 2133 unsigned int f; 2134 2135 f = op->flags; 2136 2137 /* We can't tell if this is a double-precision insn, so just play safe 2138 and assume that it might be. So not only have we test FREG against 2139 itself, but also even FREG against FREG+1 - if the using insn uses 2140 just the low part of a double precision value - but also an odd 2141 FREG against FREG-1 - if the setting insn sets just the low part 2142 of a double precision value. 2143 So what this all boils down to is that we have to ignore the lowest 2144 bit of the register number. */ 2145 2146 if ((f & USESF1) != 0 2147 && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) 2148 return true; 2149 if ((f & USESF2) != 0 2150 && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) 2151 return true; 2152 if ((f & USESF0) != 0 2153 && freg == 0) 2154 return true; 2155 2156 return false; 2157 } 2158 2159 /* See whether an instruction sets a floating point register. */ 2160 2161 static bool 2162 sh_insn_sets_freg (unsigned int insn, 2163 const struct sh_opcode *op, 2164 unsigned int freg) 2165 { 2166 unsigned int f; 2167 2168 f = op->flags; 2169 2170 /* We can't tell if this is a double-precision insn, so just play safe 2171 and assume that it might be. So not only have we test FREG against 2172 itself, but also even FREG against FREG+1 - if the using insn uses 2173 just the low part of a double precision value - but also an odd 2174 FREG against FREG-1 - if the setting insn sets just the low part 2175 of a double precision value. 2176 So what this all boils down to is that we have to ignore the lowest 2177 bit of the register number. */ 2178 2179 if ((f & SETSF1) != 0 2180 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) 2181 return true; 2182 2183 return false; 2184 } 2185 2186 /* See whether an instruction uses or sets a floating point register */ 2187 2188 static bool 2189 sh_insn_uses_or_sets_freg (unsigned int insn, 2190 const struct sh_opcode *op, 2191 unsigned int reg) 2192 { 2193 if (sh_insn_uses_freg (insn, op, reg)) 2194 return true; 2195 2196 return sh_insn_sets_freg (insn, op, reg); 2197 } 2198 2199 /* See whether instructions I1 and I2 conflict, assuming I1 comes 2200 before I2. OP1 and OP2 are the corresponding sh_opcode structures. 2201 This should return TRUE if there is a conflict, or FALSE if the 2202 instructions can be swapped safely. */ 2203 2204 static bool 2205 sh_insns_conflict (unsigned int i1, 2206 const struct sh_opcode *op1, 2207 unsigned int i2, 2208 const struct sh_opcode *op2) 2209 { 2210 unsigned int f1, f2; 2211 2212 f1 = op1->flags; 2213 f2 = op2->flags; 2214 2215 /* Load of fpscr conflicts with floating point operations. 2216 FIXME: shouldn't test raw opcodes here. */ 2217 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) 2218 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) 2219 return true; 2220 2221 if ((f1 & (BRANCH | DELAY)) != 0 2222 || (f2 & (BRANCH | DELAY)) != 0) 2223 return true; 2224 2225 if (((f1 | f2) & SETSSP) 2226 && (f1 & (SETSSP | USESSP)) 2227 && (f2 & (SETSSP | USESSP))) 2228 return true; 2229 2230 if ((f1 & SETS1) != 0 2231 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) 2232 return true; 2233 if ((f1 & SETS2) != 0 2234 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) 2235 return true; 2236 if ((f1 & SETSR0) != 0 2237 && sh_insn_uses_or_sets_reg (i2, op2, 0)) 2238 return true; 2239 if ((f1 & SETSAS) 2240 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) 2241 return true; 2242 if ((f1 & SETSF1) != 0 2243 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) 2244 return true; 2245 2246 if ((f2 & SETS1) != 0 2247 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) 2248 return true; 2249 if ((f2 & SETS2) != 0 2250 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) 2251 return true; 2252 if ((f2 & SETSR0) != 0 2253 && sh_insn_uses_or_sets_reg (i1, op1, 0)) 2254 return true; 2255 if ((f2 & SETSAS) 2256 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) 2257 return true; 2258 if ((f2 & SETSF1) != 0 2259 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) 2260 return true; 2261 2262 /* The instructions do not conflict. */ 2263 return false; 2264 } 2265 2266 /* I1 is a load instruction, and I2 is some other instruction. Return 2267 TRUE if I1 loads a register which I2 uses. */ 2268 2269 static bool 2270 sh_load_use (unsigned int i1, 2271 const struct sh_opcode *op1, 2272 unsigned int i2, 2273 const struct sh_opcode *op2) 2274 { 2275 unsigned int f1; 2276 2277 f1 = op1->flags; 2278 2279 if ((f1 & LOAD) == 0) 2280 return false; 2281 2282 /* If both SETS1 and SETSSP are set, that means a load to a special 2283 register using postincrement addressing mode, which we don't care 2284 about here. */ 2285 if ((f1 & SETS1) != 0 2286 && (f1 & SETSSP) == 0 2287 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) 2288 return true; 2289 2290 if ((f1 & SETSR0) != 0 2291 && sh_insn_uses_reg (i2, op2, 0)) 2292 return true; 2293 2294 if ((f1 & SETSF1) != 0 2295 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) 2296 return true; 2297 2298 return false; 2299 } 2300 2301 /* Try to align loads and stores within a span of memory. This is 2302 called by both the ELF and the COFF sh targets. ABFD and SEC are 2303 the BFD and section we are examining. CONTENTS is the contents of 2304 the section. SWAP is the routine to call to swap two instructions. 2305 RELOCS is a pointer to the internal relocation information, to be 2306 passed to SWAP. PLABEL is a pointer to the current label in a 2307 sorted list of labels; LABEL_END is the end of the list. START and 2308 STOP are the range of memory to examine. If a swap is made, 2309 *PSWAPPED is set to TRUE. */ 2310 2311 #ifdef COFF_WITH_PE 2312 static 2313 #endif 2314 bool 2315 _bfd_sh_align_load_span (bfd *abfd, 2316 asection *sec, 2317 bfd_byte *contents, 2318 bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma), 2319 void * relocs, 2320 bfd_vma **plabel, 2321 bfd_vma *label_end, 2322 bfd_vma start, 2323 bfd_vma stop, 2324 bool *pswapped) 2325 { 2326 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp 2327 || abfd->arch_info->mach == bfd_mach_sh3_dsp); 2328 bfd_vma i; 2329 2330 /* The SH4 has a Harvard architecture, hence aligning loads is not 2331 desirable. In fact, it is counter-productive, since it interferes 2332 with the schedules generated by the compiler. */ 2333 if (abfd->arch_info->mach == bfd_mach_sh4) 2334 return true; 2335 2336 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP 2337 instructions. */ 2338 if (dsp) 2339 { 2340 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; 2341 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0]; 2342 } 2343 2344 /* Instructions should be aligned on 2 byte boundaries. */ 2345 if ((start & 1) == 1) 2346 ++start; 2347 2348 /* Now look through the unaligned addresses. */ 2349 i = start; 2350 if ((i & 2) == 0) 2351 i += 2; 2352 for (; i < stop; i += 4) 2353 { 2354 unsigned int insn; 2355 const struct sh_opcode *op; 2356 unsigned int prev_insn = 0; 2357 const struct sh_opcode *prev_op = NULL; 2358 2359 insn = bfd_get_16 (abfd, contents + i); 2360 op = sh_insn_info (insn); 2361 if (op == NULL 2362 || (op->flags & (LOAD | STORE)) == 0) 2363 continue; 2364 2365 /* This is a load or store which is not on a four byte boundary. */ 2366 2367 while (*plabel < label_end && **plabel < i) 2368 ++*plabel; 2369 2370 if (i > start) 2371 { 2372 prev_insn = bfd_get_16 (abfd, contents + i - 2); 2373 /* If INSN is the field b of a parallel processing insn, it is not 2374 a load / store after all. Note that the test here might mistake 2375 the field_b of a pcopy insn for the starting code of a parallel 2376 processing insn; this might miss a swapping opportunity, but at 2377 least we're on the safe side. */ 2378 if (dsp && (prev_insn & 0xfc00) == 0xf800) 2379 continue; 2380 2381 /* Check if prev_insn is actually the field b of a parallel 2382 processing insn. Again, this can give a spurious match 2383 after a pcopy. */ 2384 if (dsp && i - 2 > start) 2385 { 2386 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); 2387 2388 if ((pprev_insn & 0xfc00) == 0xf800) 2389 prev_op = NULL; 2390 else 2391 prev_op = sh_insn_info (prev_insn); 2392 } 2393 else 2394 prev_op = sh_insn_info (prev_insn); 2395 2396 /* If the load/store instruction is in a delay slot, we 2397 can't swap. */ 2398 if (prev_op == NULL 2399 || (prev_op->flags & DELAY) != 0) 2400 continue; 2401 } 2402 if (i > start 2403 && (*plabel >= label_end || **plabel != i) 2404 && prev_op != NULL 2405 && (prev_op->flags & (LOAD | STORE)) == 0 2406 && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) 2407 { 2408 bool ok; 2409 2410 /* The load/store instruction does not have a label, and 2411 there is a previous instruction; PREV_INSN is not 2412 itself a load/store instruction, and PREV_INSN and 2413 INSN do not conflict. */ 2414 2415 ok = true; 2416 2417 if (i >= start + 4) 2418 { 2419 unsigned int prev2_insn; 2420 const struct sh_opcode *prev2_op; 2421 2422 prev2_insn = bfd_get_16 (abfd, contents + i - 4); 2423 prev2_op = sh_insn_info (prev2_insn); 2424 2425 /* If the instruction before PREV_INSN has a delay 2426 slot--that is, PREV_INSN is in a delay slot--we 2427 can not swap. */ 2428 if (prev2_op == NULL 2429 || (prev2_op->flags & DELAY) != 0) 2430 ok = false; 2431 2432 /* If the instruction before PREV_INSN is a load, 2433 and it sets a register which INSN uses, then 2434 putting INSN immediately after PREV_INSN will 2435 cause a pipeline bubble, so there is no point to 2436 making the swap. */ 2437 if (ok 2438 && (prev2_op->flags & LOAD) != 0 2439 && sh_load_use (prev2_insn, prev2_op, insn, op)) 2440 ok = false; 2441 } 2442 2443 if (ok) 2444 { 2445 if (! (*swap) (abfd, sec, relocs, contents, i - 2)) 2446 return false; 2447 *pswapped = true; 2448 continue; 2449 } 2450 } 2451 2452 while (*plabel < label_end && **plabel < i + 2) 2453 ++*plabel; 2454 2455 if (i + 2 < stop 2456 && (*plabel >= label_end || **plabel != i + 2)) 2457 { 2458 unsigned int next_insn; 2459 const struct sh_opcode *next_op; 2460 2461 /* There is an instruction after the load/store 2462 instruction, and it does not have a label. */ 2463 next_insn = bfd_get_16 (abfd, contents + i + 2); 2464 next_op = sh_insn_info (next_insn); 2465 if (next_op != NULL 2466 && (next_op->flags & (LOAD | STORE)) == 0 2467 && ! sh_insns_conflict (insn, op, next_insn, next_op)) 2468 { 2469 bool ok; 2470 2471 /* NEXT_INSN is not itself a load/store instruction, 2472 and it does not conflict with INSN. */ 2473 2474 ok = true; 2475 2476 /* If PREV_INSN is a load, and it sets a register 2477 which NEXT_INSN uses, then putting NEXT_INSN 2478 immediately after PREV_INSN will cause a pipeline 2479 bubble, so there is no reason to make this swap. */ 2480 if (prev_op != NULL 2481 && (prev_op->flags & LOAD) != 0 2482 && sh_load_use (prev_insn, prev_op, next_insn, next_op)) 2483 ok = false; 2484 2485 /* If INSN is a load, and it sets a register which 2486 the insn after NEXT_INSN uses, then doing the 2487 swap will cause a pipeline bubble, so there is no 2488 reason to make the swap. However, if the insn 2489 after NEXT_INSN is itself a load or store 2490 instruction, then it is misaligned, so 2491 optimistically hope that it will be swapped 2492 itself, and just live with the pipeline bubble if 2493 it isn't. */ 2494 if (ok 2495 && i + 4 < stop 2496 && (op->flags & LOAD) != 0) 2497 { 2498 unsigned int next2_insn; 2499 const struct sh_opcode *next2_op; 2500 2501 next2_insn = bfd_get_16 (abfd, contents + i + 4); 2502 next2_op = sh_insn_info (next2_insn); 2503 if (next2_op == NULL 2504 || ((next2_op->flags & (LOAD | STORE)) == 0 2505 && sh_load_use (insn, op, next2_insn, next2_op))) 2506 ok = false; 2507 } 2508 2509 if (ok) 2510 { 2511 if (! (*swap) (abfd, sec, relocs, contents, i)) 2512 return false; 2513 *pswapped = true; 2514 continue; 2515 } 2516 } 2517 } 2518 } 2519 2520 return true; 2521 } 2522 #endif /* not COFF_IMAGE_WITH_PE */ 2523 2524 /* Swap two SH instructions. */ 2525 2526 static bool 2527 sh_swap_insns (bfd * abfd, 2528 asection * sec, 2529 void * relocs, 2530 bfd_byte * contents, 2531 bfd_vma addr) 2532 { 2533 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; 2534 unsigned short i1, i2; 2535 struct internal_reloc *irel, *irelend; 2536 2537 /* Swap the instructions themselves. */ 2538 i1 = bfd_get_16 (abfd, contents + addr); 2539 i2 = bfd_get_16 (abfd, contents + addr + 2); 2540 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); 2541 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); 2542 2543 /* Adjust all reloc addresses. */ 2544 irelend = internal_relocs + sec->reloc_count; 2545 for (irel = internal_relocs; irel < irelend; irel++) 2546 { 2547 int type, add; 2548 2549 /* There are a few special types of relocs that we don't want to 2550 adjust. These relocs do not apply to the instruction itself, 2551 but are only associated with the address. */ 2552 type = irel->r_type; 2553 if (type == R_SH_ALIGN 2554 || type == R_SH_CODE 2555 || type == R_SH_DATA 2556 || type == R_SH_LABEL) 2557 continue; 2558 2559 /* If an R_SH_USES reloc points to one of the addresses being 2560 swapped, we must adjust it. It would be incorrect to do this 2561 for a jump, though, since we want to execute both 2562 instructions after the jump. (We have avoided swapping 2563 around a label, so the jump will not wind up executing an 2564 instruction it shouldn't). */ 2565 if (type == R_SH_USES) 2566 { 2567 bfd_vma off; 2568 2569 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; 2570 if (off == addr) 2571 irel->r_offset += 2; 2572 else if (off == addr + 2) 2573 irel->r_offset -= 2; 2574 } 2575 2576 if (irel->r_vaddr - sec->vma == addr) 2577 { 2578 irel->r_vaddr += 2; 2579 add = -2; 2580 } 2581 else if (irel->r_vaddr - sec->vma == addr + 2) 2582 { 2583 irel->r_vaddr -= 2; 2584 add = 2; 2585 } 2586 else 2587 add = 0; 2588 2589 if (add != 0) 2590 { 2591 bfd_byte *loc; 2592 unsigned short insn, oinsn; 2593 bool overflow; 2594 2595 loc = contents + irel->r_vaddr - sec->vma; 2596 overflow = false; 2597 switch (type) 2598 { 2599 default: 2600 break; 2601 2602 case R_SH_PCDISP8BY2: 2603 case R_SH_PCRELIMM8BY2: 2604 insn = bfd_get_16 (abfd, loc); 2605 oinsn = insn; 2606 insn += add / 2; 2607 if ((oinsn & 0xff00) != (insn & 0xff00)) 2608 overflow = true; 2609 bfd_put_16 (abfd, (bfd_vma) insn, loc); 2610 break; 2611 2612 case R_SH_PCDISP: 2613 insn = bfd_get_16 (abfd, loc); 2614 oinsn = insn; 2615 insn += add / 2; 2616 if ((oinsn & 0xf000) != (insn & 0xf000)) 2617 overflow = true; 2618 bfd_put_16 (abfd, (bfd_vma) insn, loc); 2619 break; 2620 2621 case R_SH_PCRELIMM8BY4: 2622 /* This reloc ignores the least significant 3 bits of 2623 the program counter before adding in the offset. 2624 This means that if ADDR is at an even address, the 2625 swap will not affect the offset. If ADDR is an at an 2626 odd address, then the instruction will be crossing a 2627 four byte boundary, and must be adjusted. */ 2628 if ((addr & 3) != 0) 2629 { 2630 insn = bfd_get_16 (abfd, loc); 2631 oinsn = insn; 2632 insn += add / 2; 2633 if ((oinsn & 0xff00) != (insn & 0xff00)) 2634 overflow = true; 2635 bfd_put_16 (abfd, (bfd_vma) insn, loc); 2636 } 2637 2638 break; 2639 } 2640 2641 if (overflow) 2642 { 2643 _bfd_error_handler 2644 /* xgettext: c-format */ 2645 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), 2646 abfd, (uint64_t) irel->r_vaddr); 2647 bfd_set_error (bfd_error_bad_value); 2648 return false; 2649 } 2650 } 2651 } 2652 2653 return true; 2654 } 2655 2656 /* Look for loads and stores which we can align to four byte 2657 boundaries. See the longer comment above sh_relax_section for why 2658 this is desirable. This sets *PSWAPPED if some instruction was 2659 swapped. */ 2660 2661 static bool 2662 sh_align_loads (bfd *abfd, 2663 asection *sec, 2664 struct internal_reloc *internal_relocs, 2665 bfd_byte *contents, 2666 bool *pswapped) 2667 { 2668 struct internal_reloc *irel, *irelend; 2669 bfd_vma *labels = NULL; 2670 bfd_vma *label, *label_end; 2671 bfd_size_type amt; 2672 2673 *pswapped = false; 2674 2675 irelend = internal_relocs + sec->reloc_count; 2676 2677 /* Get all the addresses with labels on them. */ 2678 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); 2679 labels = (bfd_vma *) bfd_malloc (amt); 2680 if (labels == NULL) 2681 goto error_return; 2682 label_end = labels; 2683 for (irel = internal_relocs; irel < irelend; irel++) 2684 { 2685 if (irel->r_type == R_SH_LABEL) 2686 { 2687 *label_end = irel->r_vaddr - sec->vma; 2688 ++label_end; 2689 } 2690 } 2691 2692 /* Note that the assembler currently always outputs relocs in 2693 address order. If that ever changes, this code will need to sort 2694 the label values and the relocs. */ 2695 2696 label = labels; 2697 2698 for (irel = internal_relocs; irel < irelend; irel++) 2699 { 2700 bfd_vma start, stop; 2701 2702 if (irel->r_type != R_SH_CODE) 2703 continue; 2704 2705 start = irel->r_vaddr - sec->vma; 2706 2707 for (irel++; irel < irelend; irel++) 2708 if (irel->r_type == R_SH_DATA) 2709 break; 2710 if (irel < irelend) 2711 stop = irel->r_vaddr - sec->vma; 2712 else 2713 stop = sec->size; 2714 2715 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, 2716 internal_relocs, &label, 2717 label_end, start, stop, pswapped)) 2718 goto error_return; 2719 } 2720 2721 free (labels); 2722 2723 return true; 2724 2725 error_return: 2726 free (labels); 2727 return false; 2728 } 2729 2730 /* This is a modification of _bfd_coff_generic_relocate_section, which 2731 will handle SH relaxing. */ 2732 2733 static bool 2734 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 2735 struct bfd_link_info *info, 2736 bfd *input_bfd, 2737 asection *input_section, 2738 bfd_byte *contents, 2739 struct internal_reloc *relocs, 2740 struct internal_syment *syms, 2741 asection **sections) 2742 { 2743 struct internal_reloc *rel; 2744 struct internal_reloc *relend; 2745 2746 rel = relocs; 2747 relend = rel + input_section->reloc_count; 2748 for (; rel < relend; rel++) 2749 { 2750 long symndx; 2751 struct coff_link_hash_entry *h; 2752 struct internal_syment *sym; 2753 bfd_vma addend; 2754 bfd_vma val; 2755 reloc_howto_type *howto; 2756 bfd_reloc_status_type rstat; 2757 2758 /* Almost all relocs have to do with relaxing. If any work must 2759 be done for them, it has been done in sh_relax_section. */ 2760 if (rel->r_type != R_SH_IMM32 2761 #ifdef COFF_WITH_PE 2762 && rel->r_type != R_SH_IMM32CE 2763 && rel->r_type != R_SH_IMAGEBASE 2764 #endif 2765 && rel->r_type != R_SH_PCDISP) 2766 continue; 2767 2768 symndx = rel->r_symndx; 2769 2770 if (symndx == -1) 2771 { 2772 h = NULL; 2773 sym = NULL; 2774 } 2775 else 2776 { 2777 if (symndx < 0 2778 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) 2779 { 2780 _bfd_error_handler 2781 /* xgettext: c-format */ 2782 (_("%pB: illegal symbol index %ld in relocs"), 2783 input_bfd, symndx); 2784 bfd_set_error (bfd_error_bad_value); 2785 return false; 2786 } 2787 h = obj_coff_sym_hashes (input_bfd)[symndx]; 2788 sym = syms + symndx; 2789 } 2790 2791 if (sym != NULL && sym->n_scnum != 0) 2792 addend = - sym->n_value; 2793 else 2794 addend = 0; 2795 2796 if (rel->r_type == R_SH_PCDISP) 2797 addend -= 4; 2798 2799 if (rel->r_type >= SH_COFF_HOWTO_COUNT) 2800 howto = NULL; 2801 else 2802 howto = &sh_coff_howtos[rel->r_type]; 2803 2804 if (howto == NULL) 2805 { 2806 bfd_set_error (bfd_error_bad_value); 2807 return false; 2808 } 2809 2810 #ifdef COFF_WITH_PE 2811 if (rel->r_type == R_SH_IMAGEBASE) 2812 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; 2813 #endif 2814 2815 val = 0; 2816 2817 if (h == NULL) 2818 { 2819 asection *sec; 2820 2821 /* There is nothing to do for an internal PCDISP reloc. */ 2822 if (rel->r_type == R_SH_PCDISP) 2823 continue; 2824 2825 if (symndx == -1) 2826 { 2827 sec = bfd_abs_section_ptr; 2828 val = 0; 2829 } 2830 else 2831 { 2832 sec = sections[symndx]; 2833 val = (sec->output_section->vma 2834 + sec->output_offset 2835 + sym->n_value 2836 - sec->vma); 2837 } 2838 } 2839 else 2840 { 2841 if (h->root.type == bfd_link_hash_defined 2842 || h->root.type == bfd_link_hash_defweak) 2843 { 2844 asection *sec; 2845 2846 sec = h->root.u.def.section; 2847 val = (h->root.u.def.value 2848 + sec->output_section->vma 2849 + sec->output_offset); 2850 } 2851 else if (! bfd_link_relocatable (info)) 2852 (*info->callbacks->undefined_symbol) 2853 (info, h->root.root.string, input_bfd, input_section, 2854 rel->r_vaddr - input_section->vma, true); 2855 } 2856 2857 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, 2858 contents, 2859 rel->r_vaddr - input_section->vma, 2860 val, addend); 2861 2862 switch (rstat) 2863 { 2864 default: 2865 abort (); 2866 case bfd_reloc_ok: 2867 break; 2868 case bfd_reloc_overflow: 2869 { 2870 const char *name; 2871 char buf[SYMNMLEN + 1]; 2872 2873 if (symndx == -1) 2874 name = "*ABS*"; 2875 else if (h != NULL) 2876 name = NULL; 2877 else if (sym->_n._n_n._n_zeroes == 0 2878 && sym->_n._n_n._n_offset != 0) 2879 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; 2880 else 2881 { 2882 strncpy (buf, sym->_n._n_name, SYMNMLEN); 2883 buf[SYMNMLEN] = '\0'; 2884 name = buf; 2885 } 2886 2887 (*info->callbacks->reloc_overflow) 2888 (info, (h ? &h->root : NULL), name, howto->name, 2889 (bfd_vma) 0, input_bfd, input_section, 2890 rel->r_vaddr - input_section->vma); 2891 } 2892 } 2893 } 2894 2895 return true; 2896 } 2897 2898 /* This is a version of bfd_generic_get_relocated_section_contents 2899 which uses sh_relocate_section. */ 2900 2901 static bfd_byte * 2902 sh_coff_get_relocated_section_contents (bfd *output_bfd, 2903 struct bfd_link_info *link_info, 2904 struct bfd_link_order *link_order, 2905 bfd_byte *data, 2906 bool relocatable, 2907 asymbol **symbols) 2908 { 2909 asection *input_section = link_order->u.indirect.section; 2910 bfd *input_bfd = input_section->owner; 2911 asection **sections = NULL; 2912 struct internal_reloc *internal_relocs = NULL; 2913 struct internal_syment *internal_syms = NULL; 2914 2915 /* We only need to handle the case of relaxing, or of having a 2916 particular set of section contents, specially. */ 2917 if (relocatable 2918 || coff_section_data (input_bfd, input_section) == NULL 2919 || coff_section_data (input_bfd, input_section)->contents == NULL) 2920 return bfd_generic_get_relocated_section_contents (output_bfd, link_info, 2921 link_order, data, 2922 relocatable, 2923 symbols); 2924 2925 bfd_byte *orig_data = data; 2926 if (data == NULL) 2927 { 2928 data = bfd_malloc (input_section->size); 2929 if (data == NULL) 2930 return NULL; 2931 } 2932 memcpy (data, coff_section_data (input_bfd, input_section)->contents, 2933 (size_t) input_section->size); 2934 2935 if ((input_section->flags & SEC_RELOC) != 0 2936 && input_section->reloc_count > 0) 2937 { 2938 bfd_size_type symesz = bfd_coff_symesz (input_bfd); 2939 bfd_byte *esym, *esymend; 2940 struct internal_syment *isymp; 2941 asection **secpp; 2942 bfd_size_type amt; 2943 2944 if (! _bfd_coff_get_external_symbols (input_bfd)) 2945 goto error_return; 2946 2947 internal_relocs = (_bfd_coff_read_internal_relocs 2948 (input_bfd, input_section, false, (bfd_byte *) NULL, 2949 false, (struct internal_reloc *) NULL)); 2950 if (internal_relocs == NULL) 2951 goto error_return; 2952 2953 amt = obj_raw_syment_count (input_bfd); 2954 amt *= sizeof (struct internal_syment); 2955 internal_syms = (struct internal_syment *) bfd_malloc (amt); 2956 if (internal_syms == NULL) 2957 goto error_return; 2958 2959 amt = obj_raw_syment_count (input_bfd); 2960 amt *= sizeof (asection *); 2961 sections = (asection **) bfd_malloc (amt); 2962 if (sections == NULL) 2963 goto error_return; 2964 2965 isymp = internal_syms; 2966 secpp = sections; 2967 esym = (bfd_byte *) obj_coff_external_syms (input_bfd); 2968 esymend = esym + obj_raw_syment_count (input_bfd) * symesz; 2969 while (esym < esymend) 2970 { 2971 bfd_coff_swap_sym_in (input_bfd, esym, isymp); 2972 2973 if (isymp->n_scnum != 0) 2974 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); 2975 else 2976 { 2977 if (isymp->n_value == 0) 2978 *secpp = bfd_und_section_ptr; 2979 else 2980 *secpp = bfd_com_section_ptr; 2981 } 2982 2983 esym += (isymp->n_numaux + 1) * symesz; 2984 secpp += isymp->n_numaux + 1; 2985 isymp += isymp->n_numaux + 1; 2986 } 2987 2988 if (! sh_relocate_section (output_bfd, link_info, input_bfd, 2989 input_section, data, internal_relocs, 2990 internal_syms, sections)) 2991 goto error_return; 2992 2993 free (sections); 2994 sections = NULL; 2995 free (internal_syms); 2996 internal_syms = NULL; 2997 free (internal_relocs); 2998 internal_relocs = NULL; 2999 } 3000 3001 return data; 3002 3003 error_return: 3004 free (internal_relocs); 3005 free (internal_syms); 3006 free (sections); 3007 if (orig_data == NULL) 3008 free (data); 3009 return NULL; 3010 } 3011 3012 /* The target vectors. */ 3013 3014 #ifndef TARGET_SHL_SYM 3015 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) 3016 #endif 3017 3018 #ifdef TARGET_SHL_SYM 3019 #define TARGET_SYM TARGET_SHL_SYM 3020 #else 3021 #define TARGET_SYM sh_coff_le_vec 3022 #endif 3023 3024 #ifndef TARGET_SHL_NAME 3025 #define TARGET_SHL_NAME "coff-shl" 3026 #endif 3027 3028 #ifdef COFF_WITH_PE 3029 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, 3030 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); 3031 #else 3032 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, 3033 0, '_', NULL, COFF_SWAP_TABLE) 3034 #endif 3035 3036 #ifndef TARGET_SHL_SYM 3037 3038 /* Some people want versions of the SH COFF target which do not align 3039 to 16 byte boundaries. We implement that by adding a couple of new 3040 target vectors. These are just like the ones above, but they 3041 change the default section alignment. To generate them in the 3042 assembler, use -small. To use them in the linker, use -b 3043 coff-sh{l}-small and -oformat coff-sh{l}-small. 3044 3045 Yes, this is a horrible hack. A general solution for setting 3046 section alignment in COFF is rather complex. ELF handles this 3047 correctly. */ 3048 3049 /* Only recognize the small versions if the target was not defaulted. 3050 Otherwise we won't recognize the non default endianness. */ 3051 3052 static bfd_cleanup 3053 coff_small_object_p (bfd *abfd) 3054 { 3055 if (abfd->target_defaulted) 3056 { 3057 bfd_set_error (bfd_error_wrong_format); 3058 return NULL; 3059 } 3060 return coff_object_p (abfd); 3061 } 3062 3063 /* Set the section alignment for the small versions. */ 3064 3065 static bool 3066 coff_small_new_section_hook (bfd *abfd, asection *section) 3067 { 3068 if (! coff_new_section_hook (abfd, section)) 3069 return false; 3070 3071 /* We must align to at least a four byte boundary, because longword 3072 accesses must be on a four byte boundary. */ 3073 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) 3074 section->alignment_power = 2; 3075 3076 return true; 3077 } 3078 3079 /* This is copied from bfd_coff_std_swap_table so that we can change 3080 the default section alignment power. */ 3081 3082 static bfd_coff_backend_data bfd_coff_small_swap_table = 3083 { 3084 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, 3085 coff_swap_aux_out, coff_swap_sym_out, 3086 coff_swap_lineno_out, coff_swap_reloc_out, 3087 coff_swap_filehdr_out, coff_swap_aouthdr_out, 3088 coff_swap_scnhdr_out, 3089 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, 3090 #ifdef COFF_LONG_FILENAMES 3091 true, 3092 #else 3093 false, 3094 #endif 3095 COFF_DEFAULT_LONG_SECTION_NAMES, 3096 2, 3097 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS 3098 true, 3099 #else 3100 false, 3101 #endif 3102 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX 3103 4, 3104 #else 3105 2, 3106 #endif 3107 32768, 3108 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, 3109 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, 3110 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, 3111 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, 3112 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, 3113 coff_classify_symbol, coff_compute_section_file_positions, 3114 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, 3115 coff_adjust_symndx, coff_link_add_one_symbol, 3116 coff_link_output_has_begun, coff_final_link_postscript, 3117 bfd_pe_print_pdata 3118 }; 3119 3120 #define coff_small_close_and_cleanup \ 3121 coff_close_and_cleanup 3122 #define coff_small_bfd_free_cached_info \ 3123 coff_bfd_free_cached_info 3124 #define coff_small_get_section_contents \ 3125 coff_get_section_contents 3126 #define coff_small_get_section_contents_in_window \ 3127 coff_get_section_contents_in_window 3128 3129 extern const bfd_target sh_coff_small_le_vec; 3130 3131 const bfd_target sh_coff_small_vec = 3132 { 3133 "coff-sh-small", /* name */ 3134 bfd_target_coff_flavour, 3135 BFD_ENDIAN_BIG, /* data byte order is big */ 3136 BFD_ENDIAN_BIG, /* header byte order is big */ 3137 3138 (HAS_RELOC | EXEC_P /* object flags */ 3139 | HAS_LINENO | HAS_DEBUG 3140 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), 3141 3142 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), 3143 '_', /* leading symbol underscore */ 3144 '/', /* ar_pad_char */ 3145 15, /* ar_max_namelen */ 3146 0, /* match priority. */ 3147 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */ 3148 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 3149 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 3150 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ 3151 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 3152 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 3153 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ 3154 3155 { /* bfd_check_format */ 3156 _bfd_dummy_target, 3157 coff_small_object_p, 3158 bfd_generic_archive_p, 3159 _bfd_dummy_target 3160 }, 3161 { /* bfd_set_format */ 3162 _bfd_bool_bfd_false_error, 3163 coff_mkobject, 3164 _bfd_generic_mkarchive, 3165 _bfd_bool_bfd_false_error 3166 }, 3167 { /* bfd_write_contents */ 3168 _bfd_bool_bfd_false_error, 3169 coff_write_object_contents, 3170 _bfd_write_archive_contents, 3171 _bfd_bool_bfd_false_error 3172 }, 3173 3174 BFD_JUMP_TABLE_GENERIC (coff_small), 3175 BFD_JUMP_TABLE_COPY (coff), 3176 BFD_JUMP_TABLE_CORE (_bfd_nocore), 3177 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), 3178 BFD_JUMP_TABLE_SYMBOLS (coff), 3179 BFD_JUMP_TABLE_RELOCS (coff), 3180 BFD_JUMP_TABLE_WRITE (coff), 3181 BFD_JUMP_TABLE_LINK (coff), 3182 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 3183 3184 &sh_coff_small_le_vec, 3185 3186 &bfd_coff_small_swap_table 3187 }; 3188 3189 const bfd_target sh_coff_small_le_vec = 3190 { 3191 "coff-shl-small", /* name */ 3192 bfd_target_coff_flavour, 3193 BFD_ENDIAN_LITTLE, /* data byte order is little */ 3194 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/ 3195 3196 (HAS_RELOC | EXEC_P /* object flags */ 3197 | HAS_LINENO | HAS_DEBUG 3198 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), 3199 3200 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), 3201 '_', /* leading symbol underscore */ 3202 '/', /* ar_pad_char */ 3203 15, /* ar_max_namelen */ 3204 0, /* match priority. */ 3205 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */ 3206 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 3207 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 3208 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ 3209 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 3210 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 3211 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ 3212 3213 { /* bfd_check_format */ 3214 _bfd_dummy_target, 3215 coff_small_object_p, 3216 bfd_generic_archive_p, 3217 _bfd_dummy_target 3218 }, 3219 { /* bfd_set_format */ 3220 _bfd_bool_bfd_false_error, 3221 coff_mkobject, 3222 _bfd_generic_mkarchive, 3223 _bfd_bool_bfd_false_error 3224 }, 3225 { /* bfd_write_contents */ 3226 _bfd_bool_bfd_false_error, 3227 coff_write_object_contents, 3228 _bfd_write_archive_contents, 3229 _bfd_bool_bfd_false_error 3230 }, 3231 3232 BFD_JUMP_TABLE_GENERIC (coff_small), 3233 BFD_JUMP_TABLE_COPY (coff), 3234 BFD_JUMP_TABLE_CORE (_bfd_nocore), 3235 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), 3236 BFD_JUMP_TABLE_SYMBOLS (coff), 3237 BFD_JUMP_TABLE_RELOCS (coff), 3238 BFD_JUMP_TABLE_WRITE (coff), 3239 BFD_JUMP_TABLE_LINK (coff), 3240 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 3241 3242 &sh_coff_small_vec, 3243 3244 &bfd_coff_small_swap_table 3245 }; 3246 #endif 3247