xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/std/future (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1// <future> -*- C++ -*-
2
3// Copyright (C) 2009-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/future
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_FUTURE
30#define _GLIBCXX_FUTURE 1
31
32#pragma GCC system_header
33
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <functional>
39#include <mutex>
40#include <thread>
41#include <condition_variable>
42#include <system_error>
43#include <atomic>
44#include <bits/atomic_futex.h>
45#include <bits/functexcept.h>
46#include <bits/unique_ptr.h>
47#include <bits/shared_ptr.h>
48#include <bits/uses_allocator.h>
49#include <bits/allocated_ptr.h>
50#include <ext/aligned_buffer.h>
51
52namespace std _GLIBCXX_VISIBILITY(default)
53{
54_GLIBCXX_BEGIN_NAMESPACE_VERSION
55
56  /**
57   * @defgroup futures Futures
58   * @ingroup concurrency
59   *
60   * Classes for futures support.
61   * @{
62   */
63
64  /// Error code for futures
65  enum class future_errc
66  {
67    future_already_retrieved = 1,
68    promise_already_satisfied,
69    no_state,
70    broken_promise
71  };
72
73  /// Specialization.
74  template<>
75    struct is_error_code_enum<future_errc> : public true_type { };
76
77  /// Points to a statically-allocated object derived from error_category.
78  const error_category&
79  future_category() noexcept;
80
81  /// Overload for make_error_code.
82  inline error_code
83  make_error_code(future_errc __errc) noexcept
84  { return error_code(static_cast<int>(__errc), future_category()); }
85
86  /// Overload for make_error_condition.
87  inline error_condition
88  make_error_condition(future_errc __errc) noexcept
89  { return error_condition(static_cast<int>(__errc), future_category()); }
90
91  /**
92   *  @brief Exception type thrown by futures.
93   *  @ingroup exceptions
94   */
95  class future_error : public logic_error
96  {
97    error_code 			_M_code;
98
99  public:
100    explicit future_error(error_code __ec)
101    : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
102    { }
103
104    virtual ~future_error() noexcept;
105
106    virtual const char*
107    what() const noexcept;
108
109    const error_code&
110    code() const noexcept { return _M_code; }
111  };
112
113  // Forward declarations.
114  template<typename _Res>
115    class future;
116
117  template<typename _Res>
118    class shared_future;
119
120  template<typename _Signature>
121    class packaged_task;
122
123  template<typename _Res>
124    class promise;
125
126  /// Launch code for futures
127  enum class launch
128  {
129    async = 1,
130    deferred = 2
131  };
132
133  constexpr launch operator&(launch __x, launch __y)
134  {
135    return static_cast<launch>(
136	static_cast<int>(__x) & static_cast<int>(__y));
137  }
138
139  constexpr launch operator|(launch __x, launch __y)
140  {
141    return static_cast<launch>(
142	static_cast<int>(__x) | static_cast<int>(__y));
143  }
144
145  constexpr launch operator^(launch __x, launch __y)
146  {
147    return static_cast<launch>(
148	static_cast<int>(__x) ^ static_cast<int>(__y));
149  }
150
151  constexpr launch operator~(launch __x)
152  { return static_cast<launch>(~static_cast<int>(__x)); }
153
154  inline launch& operator&=(launch& __x, launch __y)
155  { return __x = __x & __y; }
156
157  inline launch& operator|=(launch& __x, launch __y)
158  { return __x = __x | __y; }
159
160  inline launch& operator^=(launch& __x, launch __y)
161  { return __x = __x ^ __y; }
162
163  /// Status code for futures
164  enum class future_status
165  {
166    ready,
167    timeout,
168    deferred
169  };
170
171  // _GLIBCXX_RESOLVE_LIB_DEFECTS
172  // 2021. Further incorrect usages of result_of
173  template<typename _Fn, typename... _Args>
174    using __async_result_of = typename result_of<
175      typename decay<_Fn>::type(typename decay<_Args>::type...)>::type;
176
177  template<typename _Fn, typename... _Args>
178    future<__async_result_of<_Fn, _Args...>>
179    async(launch __policy, _Fn&& __fn, _Args&&... __args);
180
181  template<typename _Fn, typename... _Args>
182    future<__async_result_of<_Fn, _Args...>>
183    async(_Fn&& __fn, _Args&&... __args);
184
185#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
186  && (ATOMIC_INT_LOCK_FREE > 1)
187
188  /// Base class and enclosing scope.
189  struct __future_base
190  {
191    /// Base class for results.
192    struct _Result_base
193    {
194      exception_ptr		_M_error;
195
196      _Result_base(const _Result_base&) = delete;
197      _Result_base& operator=(const _Result_base&) = delete;
198
199      // _M_destroy() allows derived classes to control deallocation
200      virtual void _M_destroy() = 0;
201
202      struct _Deleter
203      {
204	void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
205      };
206
207    protected:
208      _Result_base();
209      virtual ~_Result_base();
210    };
211
212    /// A unique_ptr for result objects.
213    template<typename _Res>
214      using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
215
216    /// A result object that has storage for an object of type _Res.
217    template<typename _Res>
218      struct _Result : _Result_base
219      {
220      private:
221	__gnu_cxx::__aligned_buffer<_Res>	_M_storage;
222	bool 					_M_initialized;
223
224      public:
225	typedef _Res result_type;
226
227	_Result() noexcept : _M_initialized() { }
228
229	~_Result()
230	{
231	  if (_M_initialized)
232	    _M_value().~_Res();
233	}
234
235	// Return lvalue, future will add const or rvalue-reference
236	_Res&
237	_M_value() noexcept { return *_M_storage._M_ptr(); }
238
239	void
240	_M_set(const _Res& __res)
241	{
242	  ::new (_M_storage._M_addr()) _Res(__res);
243	  _M_initialized = true;
244	}
245
246	void
247	_M_set(_Res&& __res)
248	{
249	  ::new (_M_storage._M_addr()) _Res(std::move(__res));
250	  _M_initialized = true;
251	}
252
253      private:
254	void _M_destroy() { delete this; }
255    };
256
257    /// A result object that uses an allocator.
258    template<typename _Res, typename _Alloc>
259      struct _Result_alloc final : _Result<_Res>, _Alloc
260      {
261	using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
262
263        explicit
264	_Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
265	{ }
266
267      private:
268	void _M_destroy()
269	{
270	  __allocator_type __a(*this);
271	  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
272	  this->~_Result_alloc();
273	}
274      };
275
276    // Create a result object that uses an allocator.
277    template<typename _Res, typename _Allocator>
278      static _Ptr<_Result_alloc<_Res, _Allocator>>
279      _S_allocate_result(const _Allocator& __a)
280      {
281	using __result_type = _Result_alloc<_Res, _Allocator>;
282	typename __result_type::__allocator_type __a2(__a);
283	auto __guard = std::__allocate_guarded(__a2);
284	__result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
285	__guard = nullptr;
286	return _Ptr<__result_type>(__p);
287      }
288
289    // Keep it simple for std::allocator.
290    template<typename _Res, typename _Tp>
291      static _Ptr<_Result<_Res>>
292      _S_allocate_result(const std::allocator<_Tp>& __a)
293      {
294	return _Ptr<_Result<_Res>>(new _Result<_Res>);
295      }
296
297    // Base class for various types of shared state created by an
298    // asynchronous provider (such as a std::promise) and shared with one
299    // or more associated futures.
300    class _State_baseV2
301    {
302      typedef _Ptr<_Result_base> _Ptr_type;
303
304      enum _Status : unsigned {
305	__not_ready,
306	__ready
307      };
308
309      _Ptr_type			_M_result;
310      __atomic_futex_unsigned<>	_M_status;
311      atomic_flag         	_M_retrieved = ATOMIC_FLAG_INIT;
312      once_flag			_M_once;
313
314    public:
315      _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
316	{ }
317      _State_baseV2(const _State_baseV2&) = delete;
318      _State_baseV2& operator=(const _State_baseV2&) = delete;
319      virtual ~_State_baseV2() = default;
320
321      _Result_base&
322      wait()
323      {
324	// Run any deferred function or join any asynchronous thread:
325	_M_complete_async();
326	// Acquire MO makes sure this synchronizes with the thread that made
327	// the future ready.
328	_M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
329	return *_M_result;
330      }
331
332      template<typename _Rep, typename _Period>
333        future_status
334        wait_for(const chrono::duration<_Rep, _Period>& __rel)
335        {
336	  // First, check if the future has been made ready.  Use acquire MO
337	  // to synchronize with the thread that made it ready.
338	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
339	    return future_status::ready;
340	  if (_M_is_deferred_future())
341	    return future_status::deferred;
342	  if (_M_status._M_load_when_equal_for(_Status::__ready,
343	      memory_order_acquire, __rel))
344	    {
345	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
346	      // 2100.  timed waiting functions must also join
347	      // This call is a no-op by default except on an async future,
348	      // in which case the async thread is joined.  It's also not a
349	      // no-op for a deferred future, but such a future will never
350	      // reach this point because it returns future_status::deferred
351	      // instead of waiting for the future to become ready (see
352	      // above).  Async futures synchronize in this call, so we need
353	      // no further synchronization here.
354	      _M_complete_async();
355
356	      return future_status::ready;
357	    }
358	  return future_status::timeout;
359	}
360
361      template<typename _Clock, typename _Duration>
362        future_status
363        wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
364        {
365	  // First, check if the future has been made ready.  Use acquire MO
366	  // to synchronize with the thread that made it ready.
367	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
368	    return future_status::ready;
369	  if (_M_is_deferred_future())
370	    return future_status::deferred;
371	  if (_M_status._M_load_when_equal_until(_Status::__ready,
372	      memory_order_acquire, __abs))
373	    {
374	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
375	      // 2100.  timed waiting functions must also join
376	      // See wait_for(...) above.
377	      _M_complete_async();
378
379	      return future_status::ready;
380	    }
381	  return future_status::timeout;
382	}
383
384      // Provide a result to the shared state and make it ready.
385      // Calls at most once: _M_result = __res();
386      void
387      _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
388      {
389	bool __did_set = false;
390        // all calls to this function are serialized,
391        // side-effects of invoking __res only happen once
392	call_once(_M_once, &_State_baseV2::_M_do_set, this,
393		  std::__addressof(__res), std::__addressof(__did_set));
394	if (__did_set)
395	  // Use release MO to synchronize with observers of the ready state.
396	  _M_status._M_store_notify_all(_Status::__ready,
397					memory_order_release);
398	else if (!__ignore_failure)
399          __throw_future_error(int(future_errc::promise_already_satisfied));
400      }
401
402      // Provide a result to the shared state but delay making it ready
403      // until the calling thread exits.
404      // Calls at most once: _M_result = __res();
405      void
406      _M_set_delayed_result(function<_Ptr_type()> __res,
407			    weak_ptr<_State_baseV2> __self)
408      {
409	bool __did_set = false;
410	unique_ptr<_Make_ready> __mr{new _Make_ready};
411        // all calls to this function are serialized,
412        // side-effects of invoking __res only happen once
413	call_once(_M_once, &_State_baseV2::_M_do_set, this,
414		  std::__addressof(__res), std::__addressof(__did_set));
415	if (!__did_set)
416          __throw_future_error(int(future_errc::promise_already_satisfied));
417	__mr->_M_shared_state = std::move(__self);
418	__mr->_M_set();
419	__mr.release();
420      }
421
422      // Abandon this shared state.
423      void
424      _M_break_promise(_Ptr_type __res)
425      {
426	if (static_cast<bool>(__res))
427	  {
428	    error_code __ec(make_error_code(future_errc::broken_promise));
429	    __res->_M_error = make_exception_ptr(future_error(__ec));
430	    // This function is only called when the last asynchronous result
431	    // provider is abandoning this shared state, so noone can be
432	    // trying to make the shared state ready at the same time, and
433	    // we can access _M_result directly instead of through call_once.
434	    _M_result.swap(__res);
435	    // Use release MO to synchronize with observers of the ready state.
436	    _M_status._M_store_notify_all(_Status::__ready,
437					  memory_order_release);
438	  }
439      }
440
441      // Called when this object is first passed to a future.
442      void
443      _M_set_retrieved_flag()
444      {
445	if (_M_retrieved.test_and_set())
446	  __throw_future_error(int(future_errc::future_already_retrieved));
447      }
448
449      template<typename _Res, typename _Arg>
450        struct _Setter;
451
452      // set lvalues
453      template<typename _Res, typename _Arg>
454        struct _Setter<_Res, _Arg&>
455        {
456          // check this is only used by promise<R>::set_value(const R&)
457          // or promise<R&>::set_value(R&)
458          static_assert(is_same<_Res, _Arg&>::value  // promise<R&>
459              || is_same<const _Res, _Arg>::value,   // promise<R>
460              "Invalid specialisation");
461
462	  // Used by std::promise to copy construct the result.
463          typename promise<_Res>::_Ptr_type operator()() const
464          {
465            _State_baseV2::_S_check(_M_promise->_M_future);
466            _M_promise->_M_storage->_M_set(*_M_arg);
467            return std::move(_M_promise->_M_storage);
468          }
469          promise<_Res>*    _M_promise;
470          _Arg*             _M_arg;
471        };
472
473      // set rvalues
474      template<typename _Res>
475        struct _Setter<_Res, _Res&&>
476        {
477	  // Used by std::promise to move construct the result.
478          typename promise<_Res>::_Ptr_type operator()() const
479          {
480            _State_baseV2::_S_check(_M_promise->_M_future);
481            _M_promise->_M_storage->_M_set(std::move(*_M_arg));
482            return std::move(_M_promise->_M_storage);
483          }
484          promise<_Res>*    _M_promise;
485          _Res*             _M_arg;
486        };
487
488      struct __exception_ptr_tag { };
489
490      // set exceptions
491      template<typename _Res>
492        struct _Setter<_Res, __exception_ptr_tag>
493        {
494	  // Used by std::promise to store an exception as the result.
495          typename promise<_Res>::_Ptr_type operator()() const
496          {
497            _State_baseV2::_S_check(_M_promise->_M_future);
498            _M_promise->_M_storage->_M_error = *_M_ex;
499            return std::move(_M_promise->_M_storage);
500          }
501
502          promise<_Res>*   _M_promise;
503          exception_ptr*    _M_ex;
504        };
505
506      template<typename _Res, typename _Arg>
507        static _Setter<_Res, _Arg&&>
508        __setter(promise<_Res>* __prom, _Arg&& __arg)
509        {
510          return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
511        }
512
513      template<typename _Res>
514        static _Setter<_Res, __exception_ptr_tag>
515        __setter(exception_ptr& __ex, promise<_Res>* __prom)
516        {
517          return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
518        }
519
520      template<typename _Tp>
521        static void
522        _S_check(const shared_ptr<_Tp>& __p)
523        {
524          if (!static_cast<bool>(__p))
525            __throw_future_error((int)future_errc::no_state);
526        }
527
528    private:
529      // The function invoked with std::call_once(_M_once, ...).
530      void
531      _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
532      {
533        _Ptr_type __res = (*__f)();
534        // Notify the caller that we did try to set; if we do not throw an
535        // exception, the caller will be aware that it did set (e.g., see
536        // _M_set_result).
537	*__did_set = true;
538        _M_result.swap(__res); // nothrow
539      }
540
541      // Wait for completion of async function.
542      virtual void _M_complete_async() { }
543
544      // Return true if state corresponds to a deferred function.
545      virtual bool _M_is_deferred_future() const { return false; }
546
547      struct _Make_ready final : __at_thread_exit_elt
548      {
549	weak_ptr<_State_baseV2> _M_shared_state;
550	static void _S_run(void*);
551	void _M_set();
552      };
553    };
554
555#ifdef _GLIBCXX_ASYNC_ABI_COMPAT
556    class _State_base;
557    class _Async_state_common;
558#else
559    using _State_base = _State_baseV2;
560    class _Async_state_commonV2;
561#endif
562
563    template<typename _BoundFn, typename = typename _BoundFn::result_type>
564      class _Deferred_state;
565
566    template<typename _BoundFn, typename = typename _BoundFn::result_type>
567      class _Async_state_impl;
568
569    template<typename _Signature>
570      class _Task_state_base;
571
572    template<typename _Fn, typename _Alloc, typename _Signature>
573      class _Task_state;
574
575    template<typename _BoundFn>
576      static std::shared_ptr<_State_base>
577      _S_make_deferred_state(_BoundFn&& __fn);
578
579    template<typename _BoundFn>
580      static std::shared_ptr<_State_base>
581      _S_make_async_state(_BoundFn&& __fn);
582
583    template<typename _Res_ptr, typename _Fn,
584	     typename _Res = typename _Res_ptr::element_type::result_type>
585      struct _Task_setter;
586
587    template<typename _Res_ptr, typename _BoundFn>
588      static _Task_setter<_Res_ptr, _BoundFn>
589      _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
590      {
591	return { std::__addressof(__ptr), std::__addressof(__call) };
592      }
593  };
594
595  /// Partial specialization for reference types.
596  template<typename _Res>
597    struct __future_base::_Result<_Res&> : __future_base::_Result_base
598    {
599      typedef _Res& result_type;
600
601      _Result() noexcept : _M_value_ptr() { }
602
603      void
604      _M_set(_Res& __res) noexcept
605      { _M_value_ptr = std::addressof(__res); }
606
607      _Res& _M_get() noexcept { return *_M_value_ptr; }
608
609    private:
610      _Res* 			_M_value_ptr;
611
612      void _M_destroy() { delete this; }
613    };
614
615  /// Explicit specialization for void.
616  template<>
617    struct __future_base::_Result<void> : __future_base::_Result_base
618    {
619      typedef void result_type;
620
621    private:
622      void _M_destroy() { delete this; }
623    };
624
625#ifndef _GLIBCXX_ASYNC_ABI_COMPAT
626
627  // Allow _Setter objects to be stored locally in std::function
628  template<typename _Res, typename _Arg>
629    struct __is_location_invariant
630    <__future_base::_State_base::_Setter<_Res, _Arg>>
631    : true_type { };
632
633  // Allow _Task_setter objects to be stored locally in std::function
634  template<typename _Res_ptr, typename _Fn, typename _Res>
635    struct __is_location_invariant
636    <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
637    : true_type { };
638
639  /// Common implementation for future and shared_future.
640  template<typename _Res>
641    class __basic_future : public __future_base
642    {
643    protected:
644      typedef shared_ptr<_State_base>		__state_type;
645      typedef __future_base::_Result<_Res>&	__result_type;
646
647    private:
648      __state_type 		_M_state;
649
650    public:
651      // Disable copying.
652      __basic_future(const __basic_future&) = delete;
653      __basic_future& operator=(const __basic_future&) = delete;
654
655      bool
656      valid() const noexcept { return static_cast<bool>(_M_state); }
657
658      void
659      wait() const
660      {
661        _State_base::_S_check(_M_state);
662        _M_state->wait();
663      }
664
665      template<typename _Rep, typename _Period>
666        future_status
667        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
668        {
669          _State_base::_S_check(_M_state);
670          return _M_state->wait_for(__rel);
671        }
672
673      template<typename _Clock, typename _Duration>
674        future_status
675        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
676        {
677          _State_base::_S_check(_M_state);
678          return _M_state->wait_until(__abs);
679        }
680
681    protected:
682      /// Wait for the state to be ready and rethrow any stored exception
683      __result_type
684      _M_get_result() const
685      {
686        _State_base::_S_check(_M_state);
687        _Result_base& __res = _M_state->wait();
688        if (!(__res._M_error == 0))
689          rethrow_exception(__res._M_error);
690        return static_cast<__result_type>(__res);
691      }
692
693      void _M_swap(__basic_future& __that) noexcept
694      {
695        _M_state.swap(__that._M_state);
696      }
697
698      // Construction of a future by promise::get_future()
699      explicit
700      __basic_future(const __state_type& __state) : _M_state(__state)
701      {
702        _State_base::_S_check(_M_state);
703        _M_state->_M_set_retrieved_flag();
704      }
705
706      // Copy construction from a shared_future
707      explicit
708      __basic_future(const shared_future<_Res>&) noexcept;
709
710      // Move construction from a shared_future
711      explicit
712      __basic_future(shared_future<_Res>&&) noexcept;
713
714      // Move construction from a future
715      explicit
716      __basic_future(future<_Res>&&) noexcept;
717
718      constexpr __basic_future() noexcept : _M_state() { }
719
720      struct _Reset
721      {
722        explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
723        ~_Reset() { _M_fut._M_state.reset(); }
724        __basic_future& _M_fut;
725      };
726    };
727
728
729  /// Primary template for future.
730  template<typename _Res>
731    class future : public __basic_future<_Res>
732    {
733      friend class promise<_Res>;
734      template<typename> friend class packaged_task;
735      template<typename _Fn, typename... _Args>
736        friend future<__async_result_of<_Fn, _Args...>>
737        async(launch, _Fn&&, _Args&&...);
738
739      typedef __basic_future<_Res> _Base_type;
740      typedef typename _Base_type::__state_type __state_type;
741
742      explicit
743      future(const __state_type& __state) : _Base_type(__state) { }
744
745    public:
746      constexpr future() noexcept : _Base_type() { }
747
748      /// Move constructor
749      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
750
751      // Disable copying
752      future(const future&) = delete;
753      future& operator=(const future&) = delete;
754
755      future& operator=(future&& __fut) noexcept
756      {
757        future(std::move(__fut))._M_swap(*this);
758        return *this;
759      }
760
761      /// Retrieving the value
762      _Res
763      get()
764      {
765        typename _Base_type::_Reset __reset(*this);
766        return std::move(this->_M_get_result()._M_value());
767      }
768
769      shared_future<_Res> share();
770    };
771
772  /// Partial specialization for future<R&>
773  template<typename _Res>
774    class future<_Res&> : public __basic_future<_Res&>
775    {
776      friend class promise<_Res&>;
777      template<typename> friend class packaged_task;
778      template<typename _Fn, typename... _Args>
779        friend future<__async_result_of<_Fn, _Args...>>
780        async(launch, _Fn&&, _Args&&...);
781
782      typedef __basic_future<_Res&> _Base_type;
783      typedef typename _Base_type::__state_type __state_type;
784
785      explicit
786      future(const __state_type& __state) : _Base_type(__state) { }
787
788    public:
789      constexpr future() noexcept : _Base_type() { }
790
791      /// Move constructor
792      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
793
794      // Disable copying
795      future(const future&) = delete;
796      future& operator=(const future&) = delete;
797
798      future& operator=(future&& __fut) noexcept
799      {
800        future(std::move(__fut))._M_swap(*this);
801        return *this;
802      }
803
804      /// Retrieving the value
805      _Res&
806      get()
807      {
808        typename _Base_type::_Reset __reset(*this);
809        return this->_M_get_result()._M_get();
810      }
811
812      shared_future<_Res&> share();
813    };
814
815  /// Explicit specialization for future<void>
816  template<>
817    class future<void> : public __basic_future<void>
818    {
819      friend class promise<void>;
820      template<typename> friend class packaged_task;
821      template<typename _Fn, typename... _Args>
822        friend future<__async_result_of<_Fn, _Args...>>
823        async(launch, _Fn&&, _Args&&...);
824
825      typedef __basic_future<void> _Base_type;
826      typedef typename _Base_type::__state_type __state_type;
827
828      explicit
829      future(const __state_type& __state) : _Base_type(__state) { }
830
831    public:
832      constexpr future() noexcept : _Base_type() { }
833
834      /// Move constructor
835      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
836
837      // Disable copying
838      future(const future&) = delete;
839      future& operator=(const future&) = delete;
840
841      future& operator=(future&& __fut) noexcept
842      {
843        future(std::move(__fut))._M_swap(*this);
844        return *this;
845      }
846
847      /// Retrieving the value
848      void
849      get()
850      {
851        typename _Base_type::_Reset __reset(*this);
852        this->_M_get_result();
853      }
854
855      shared_future<void> share();
856    };
857
858
859  /// Primary template for shared_future.
860  template<typename _Res>
861    class shared_future : public __basic_future<_Res>
862    {
863      typedef __basic_future<_Res> _Base_type;
864
865    public:
866      constexpr shared_future() noexcept : _Base_type() { }
867
868      /// Copy constructor
869      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
870
871      /// Construct from a future rvalue
872      shared_future(future<_Res>&& __uf) noexcept
873      : _Base_type(std::move(__uf))
874      { }
875
876      /// Construct from a shared_future rvalue
877      shared_future(shared_future&& __sf) noexcept
878      : _Base_type(std::move(__sf))
879      { }
880
881      shared_future& operator=(const shared_future& __sf)
882      {
883        shared_future(__sf)._M_swap(*this);
884        return *this;
885      }
886
887      shared_future& operator=(shared_future&& __sf) noexcept
888      {
889        shared_future(std::move(__sf))._M_swap(*this);
890        return *this;
891      }
892
893      /// Retrieving the value
894      const _Res&
895      get() const { return this->_M_get_result()._M_value(); }
896    };
897
898  /// Partial specialization for shared_future<R&>
899  template<typename _Res>
900    class shared_future<_Res&> : public __basic_future<_Res&>
901    {
902      typedef __basic_future<_Res&>           _Base_type;
903
904    public:
905      constexpr shared_future() noexcept : _Base_type() { }
906
907      /// Copy constructor
908      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
909
910      /// Construct from a future rvalue
911      shared_future(future<_Res&>&& __uf) noexcept
912      : _Base_type(std::move(__uf))
913      { }
914
915      /// Construct from a shared_future rvalue
916      shared_future(shared_future&& __sf) noexcept
917      : _Base_type(std::move(__sf))
918      { }
919
920      shared_future& operator=(const shared_future& __sf)
921      {
922        shared_future(__sf)._M_swap(*this);
923        return *this;
924      }
925
926      shared_future& operator=(shared_future&& __sf) noexcept
927      {
928        shared_future(std::move(__sf))._M_swap(*this);
929        return *this;
930      }
931
932      /// Retrieving the value
933      _Res&
934      get() const { return this->_M_get_result()._M_get(); }
935    };
936
937  /// Explicit specialization for shared_future<void>
938  template<>
939    class shared_future<void> : public __basic_future<void>
940    {
941      typedef __basic_future<void> _Base_type;
942
943    public:
944      constexpr shared_future() noexcept : _Base_type() { }
945
946      /// Copy constructor
947      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
948
949      /// Construct from a future rvalue
950      shared_future(future<void>&& __uf) noexcept
951      : _Base_type(std::move(__uf))
952      { }
953
954      /// Construct from a shared_future rvalue
955      shared_future(shared_future&& __sf) noexcept
956      : _Base_type(std::move(__sf))
957      { }
958
959      shared_future& operator=(const shared_future& __sf)
960      {
961        shared_future(__sf)._M_swap(*this);
962        return *this;
963      }
964
965      shared_future& operator=(shared_future&& __sf) noexcept
966      {
967        shared_future(std::move(__sf))._M_swap(*this);
968        return *this;
969      }
970
971      // Retrieving the value
972      void
973      get() const { this->_M_get_result(); }
974    };
975
976  // Now we can define the protected __basic_future constructors.
977  template<typename _Res>
978    inline __basic_future<_Res>::
979    __basic_future(const shared_future<_Res>& __sf) noexcept
980    : _M_state(__sf._M_state)
981    { }
982
983  template<typename _Res>
984    inline __basic_future<_Res>::
985    __basic_future(shared_future<_Res>&& __sf) noexcept
986    : _M_state(std::move(__sf._M_state))
987    { }
988
989  template<typename _Res>
990    inline __basic_future<_Res>::
991    __basic_future(future<_Res>&& __uf) noexcept
992    : _M_state(std::move(__uf._M_state))
993    { }
994
995  template<typename _Res>
996    inline shared_future<_Res>
997    future<_Res>::share()
998    { return shared_future<_Res>(std::move(*this)); }
999
1000  template<typename _Res>
1001    inline shared_future<_Res&>
1002    future<_Res&>::share()
1003    { return shared_future<_Res&>(std::move(*this)); }
1004
1005  inline shared_future<void>
1006  future<void>::share()
1007  { return shared_future<void>(std::move(*this)); }
1008
1009  /// Primary template for promise
1010  template<typename _Res>
1011    class promise
1012    {
1013      typedef __future_base::_State_base 	_State;
1014      typedef __future_base::_Result<_Res>	_Res_type;
1015      typedef __future_base::_Ptr<_Res_type>	_Ptr_type;
1016      template<typename, typename> friend class _State::_Setter;
1017
1018      shared_ptr<_State>                        _M_future;
1019      _Ptr_type                                 _M_storage;
1020
1021    public:
1022      promise()
1023      : _M_future(std::make_shared<_State>()),
1024	_M_storage(new _Res_type())
1025      { }
1026
1027      promise(promise&& __rhs) noexcept
1028      : _M_future(std::move(__rhs._M_future)),
1029	_M_storage(std::move(__rhs._M_storage))
1030      { }
1031
1032      template<typename _Allocator>
1033        promise(allocator_arg_t, const _Allocator& __a)
1034        : _M_future(std::allocate_shared<_State>(__a)),
1035	  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1036        { }
1037
1038      template<typename _Allocator>
1039        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1040        : _M_future(std::move(__rhs._M_future)),
1041	  _M_storage(std::move(__rhs._M_storage))
1042        { }
1043
1044      promise(const promise&) = delete;
1045
1046      ~promise()
1047      {
1048        if (static_cast<bool>(_M_future) && !_M_future.unique())
1049          _M_future->_M_break_promise(std::move(_M_storage));
1050      }
1051
1052      // Assignment
1053      promise&
1054      operator=(promise&& __rhs) noexcept
1055      {
1056        promise(std::move(__rhs)).swap(*this);
1057        return *this;
1058      }
1059
1060      promise& operator=(const promise&) = delete;
1061
1062      void
1063      swap(promise& __rhs) noexcept
1064      {
1065        _M_future.swap(__rhs._M_future);
1066        _M_storage.swap(__rhs._M_storage);
1067      }
1068
1069      // Retrieving the result
1070      future<_Res>
1071      get_future()
1072      { return future<_Res>(_M_future); }
1073
1074      // Setting the result
1075      void
1076      set_value(const _Res& __r)
1077      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1078
1079      void
1080      set_value(_Res&& __r)
1081      { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1082
1083      void
1084      set_exception(exception_ptr __p)
1085      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1086
1087      void
1088      set_value_at_thread_exit(const _Res& __r)
1089      {
1090	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1091					 _M_future);
1092      }
1093
1094      void
1095      set_value_at_thread_exit(_Res&& __r)
1096      {
1097	_M_future->_M_set_delayed_result(
1098	    _State::__setter(this, std::move(__r)), _M_future);
1099      }
1100
1101      void
1102      set_exception_at_thread_exit(exception_ptr __p)
1103      {
1104	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1105					 _M_future);
1106      }
1107    };
1108
1109  template<typename _Res>
1110    inline void
1111    swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1112    { __x.swap(__y); }
1113
1114  template<typename _Res, typename _Alloc>
1115    struct uses_allocator<promise<_Res>, _Alloc>
1116    : public true_type { };
1117
1118
1119  /// Partial specialization for promise<R&>
1120  template<typename _Res>
1121    class promise<_Res&>
1122    {
1123      typedef __future_base::_State_base	_State;
1124      typedef __future_base::_Result<_Res&>	_Res_type;
1125      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1126      template<typename, typename> friend class _State::_Setter;
1127
1128      shared_ptr<_State>                        _M_future;
1129      _Ptr_type                                 _M_storage;
1130
1131    public:
1132      promise()
1133      : _M_future(std::make_shared<_State>()),
1134	_M_storage(new _Res_type())
1135      { }
1136
1137      promise(promise&& __rhs) noexcept
1138      : _M_future(std::move(__rhs._M_future)),
1139	_M_storage(std::move(__rhs._M_storage))
1140      { }
1141
1142      template<typename _Allocator>
1143        promise(allocator_arg_t, const _Allocator& __a)
1144        : _M_future(std::allocate_shared<_State>(__a)),
1145	  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1146        { }
1147
1148      template<typename _Allocator>
1149        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1150        : _M_future(std::move(__rhs._M_future)),
1151	  _M_storage(std::move(__rhs._M_storage))
1152        { }
1153
1154      promise(const promise&) = delete;
1155
1156      ~promise()
1157      {
1158        if (static_cast<bool>(_M_future) && !_M_future.unique())
1159          _M_future->_M_break_promise(std::move(_M_storage));
1160      }
1161
1162      // Assignment
1163      promise&
1164      operator=(promise&& __rhs) noexcept
1165      {
1166        promise(std::move(__rhs)).swap(*this);
1167        return *this;
1168      }
1169
1170      promise& operator=(const promise&) = delete;
1171
1172      void
1173      swap(promise& __rhs) noexcept
1174      {
1175        _M_future.swap(__rhs._M_future);
1176        _M_storage.swap(__rhs._M_storage);
1177      }
1178
1179      // Retrieving the result
1180      future<_Res&>
1181      get_future()
1182      { return future<_Res&>(_M_future); }
1183
1184      // Setting the result
1185      void
1186      set_value(_Res& __r)
1187      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1188
1189      void
1190      set_exception(exception_ptr __p)
1191      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1192
1193      void
1194      set_value_at_thread_exit(_Res& __r)
1195      {
1196	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1197					 _M_future);
1198      }
1199
1200      void
1201      set_exception_at_thread_exit(exception_ptr __p)
1202      {
1203	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1204					 _M_future);
1205      }
1206    };
1207
1208  /// Explicit specialization for promise<void>
1209  template<>
1210    class promise<void>
1211    {
1212      typedef __future_base::_State_base	_State;
1213      typedef __future_base::_Result<void>	_Res_type;
1214      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1215      template<typename, typename> friend class _State::_Setter;
1216
1217      shared_ptr<_State>                        _M_future;
1218      _Ptr_type                                 _M_storage;
1219
1220    public:
1221      promise()
1222      : _M_future(std::make_shared<_State>()),
1223	_M_storage(new _Res_type())
1224      { }
1225
1226      promise(promise&& __rhs) noexcept
1227      : _M_future(std::move(__rhs._M_future)),
1228	_M_storage(std::move(__rhs._M_storage))
1229      { }
1230
1231      template<typename _Allocator>
1232        promise(allocator_arg_t, const _Allocator& __a)
1233        : _M_future(std::allocate_shared<_State>(__a)),
1234	  _M_storage(__future_base::_S_allocate_result<void>(__a))
1235        { }
1236
1237      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1238      // 2095.  missing constructors needed for uses-allocator construction
1239      template<typename _Allocator>
1240        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1241        : _M_future(std::move(__rhs._M_future)),
1242	  _M_storage(std::move(__rhs._M_storage))
1243        { }
1244
1245      promise(const promise&) = delete;
1246
1247      ~promise()
1248      {
1249        if (static_cast<bool>(_M_future) && !_M_future.unique())
1250          _M_future->_M_break_promise(std::move(_M_storage));
1251      }
1252
1253      // Assignment
1254      promise&
1255      operator=(promise&& __rhs) noexcept
1256      {
1257        promise(std::move(__rhs)).swap(*this);
1258        return *this;
1259      }
1260
1261      promise& operator=(const promise&) = delete;
1262
1263      void
1264      swap(promise& __rhs) noexcept
1265      {
1266        _M_future.swap(__rhs._M_future);
1267        _M_storage.swap(__rhs._M_storage);
1268      }
1269
1270      // Retrieving the result
1271      future<void>
1272      get_future()
1273      { return future<void>(_M_future); }
1274
1275      // Setting the result
1276      void set_value();
1277
1278      void
1279      set_exception(exception_ptr __p)
1280      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1281
1282      void
1283      set_value_at_thread_exit();
1284
1285      void
1286      set_exception_at_thread_exit(exception_ptr __p)
1287      {
1288	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1289					 _M_future);
1290      }
1291    };
1292
1293  // set void
1294  template<>
1295    struct __future_base::_State_base::_Setter<void, void>
1296    {
1297      promise<void>::_Ptr_type operator()() const
1298      {
1299        _State_base::_S_check(_M_promise->_M_future);
1300        return std::move(_M_promise->_M_storage);
1301      }
1302
1303      promise<void>*    _M_promise;
1304    };
1305
1306  inline void
1307  promise<void>::set_value()
1308  { _M_future->_M_set_result(_State::_Setter<void, void>{ this }); }
1309
1310  inline void
1311  promise<void>::set_value_at_thread_exit()
1312  {
1313    _M_future->_M_set_delayed_result(_State::_Setter<void, void>{this},
1314				     _M_future);
1315  }
1316
1317  template<typename _Ptr_type, typename _Fn, typename _Res>
1318    struct __future_base::_Task_setter
1319    {
1320      // Invoke the function and provide the result to the caller.
1321      _Ptr_type operator()() const
1322      {
1323	__try
1324	  {
1325	    (*_M_result)->_M_set((*_M_fn)());
1326	  }
1327	__catch(const __cxxabiv1::__forced_unwind&)
1328	  {
1329	    __throw_exception_again; // will cause broken_promise
1330	  }
1331	__catch(...)
1332	  {
1333	    (*_M_result)->_M_error = current_exception();
1334	  }
1335	return std::move(*_M_result);
1336      }
1337      _Ptr_type*	_M_result;
1338      _Fn*		_M_fn;
1339    };
1340
1341  template<typename _Ptr_type, typename _Fn>
1342    struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1343    {
1344      _Ptr_type operator()() const
1345      {
1346	__try
1347	  {
1348	    (*_M_fn)();
1349	  }
1350	__catch(const __cxxabiv1::__forced_unwind&)
1351	  {
1352	    __throw_exception_again; // will cause broken_promise
1353	  }
1354	__catch(...)
1355	  {
1356	    (*_M_result)->_M_error = current_exception();
1357	  }
1358	return std::move(*_M_result);
1359      }
1360      _Ptr_type*	_M_result;
1361      _Fn*		_M_fn;
1362    };
1363
1364  // Holds storage for a packaged_task's result.
1365  template<typename _Res, typename... _Args>
1366    struct __future_base::_Task_state_base<_Res(_Args...)>
1367    : __future_base::_State_base
1368    {
1369      typedef _Res _Res_type;
1370
1371      template<typename _Alloc>
1372	_Task_state_base(const _Alloc& __a)
1373	: _M_result(_S_allocate_result<_Res>(__a))
1374	{ }
1375
1376      // Invoke the stored task and make the state ready.
1377      virtual void
1378      _M_run(_Args&&... __args) = 0;
1379
1380      // Invoke the stored task and make the state ready at thread exit.
1381      virtual void
1382      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1383
1384      virtual shared_ptr<_Task_state_base>
1385      _M_reset() = 0;
1386
1387      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1388      _Ptr_type _M_result;
1389    };
1390
1391  // Holds a packaged_task's stored task.
1392  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1393    struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1394    : __future_base::_Task_state_base<_Res(_Args...)>
1395    {
1396      template<typename _Fn2>
1397	_Task_state(_Fn2&& __fn, const _Alloc& __a)
1398	: _Task_state_base<_Res(_Args...)>(__a),
1399	  _M_impl(std::forward<_Fn2>(__fn), __a)
1400	{ }
1401
1402    private:
1403      virtual void
1404      _M_run(_Args&&... __args)
1405      {
1406	// bound arguments decay so wrap lvalue references
1407	auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1408	    _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1409	this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1410      }
1411
1412      virtual void
1413      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1414      {
1415	// bound arguments decay so wrap lvalue references
1416	auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1417	    _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1418	this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1419				    std::move(__self));
1420      }
1421
1422      virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1423      _M_reset();
1424
1425      template<typename _Tp>
1426	static reference_wrapper<_Tp>
1427	_S_maybe_wrap_ref(_Tp& __t)
1428	{ return std::ref(__t); }
1429
1430      template<typename _Tp>
1431	static
1432	typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp>::type&&
1433	_S_maybe_wrap_ref(_Tp&& __t)
1434	{ return std::forward<_Tp>(__t); }
1435
1436      struct _Impl : _Alloc
1437      {
1438	template<typename _Fn2>
1439	  _Impl(_Fn2&& __fn, const _Alloc& __a)
1440	  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1441	_Fn _M_fn;
1442      } _M_impl;
1443    };
1444
1445  template<typename _Signature, typename _Fn, typename _Alloc>
1446    static shared_ptr<__future_base::_Task_state_base<_Signature>>
1447    __create_task_state(_Fn&& __fn, const _Alloc& __a)
1448    {
1449      typedef typename decay<_Fn>::type _Fn2;
1450      typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1451      return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1452    }
1453
1454  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1455    shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1456    __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1457    {
1458      return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1459						 static_cast<_Alloc&>(_M_impl));
1460    }
1461
1462  template<typename _Task, typename _Fn, bool
1463	   = is_same<_Task, typename decay<_Fn>::type>::value>
1464    struct __constrain_pkgdtask
1465    { typedef void __type; };
1466
1467  template<typename _Task, typename _Fn>
1468    struct __constrain_pkgdtask<_Task, _Fn, true>
1469    { };
1470
1471  /// packaged_task
1472  template<typename _Res, typename... _ArgTypes>
1473    class packaged_task<_Res(_ArgTypes...)>
1474    {
1475      typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1476      shared_ptr<_State_type>                   _M_state;
1477
1478    public:
1479      // Construction and destruction
1480      packaged_task() noexcept { }
1481
1482      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1483      // 2095.  missing constructors needed for uses-allocator construction
1484      template<typename _Allocator>
1485	packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1486	{ }
1487
1488      template<typename _Fn, typename = typename
1489	       __constrain_pkgdtask<packaged_task, _Fn>::__type>
1490	explicit
1491	packaged_task(_Fn&& __fn)
1492	: packaged_task(allocator_arg, std::allocator<int>(),
1493			std::forward<_Fn>(__fn))
1494	{ }
1495
1496      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1497      // 2097.  packaged_task constructors should be constrained
1498      // 2407. [this constructor should not be] explicit
1499      template<typename _Fn, typename _Alloc, typename = typename
1500	       __constrain_pkgdtask<packaged_task, _Fn>::__type>
1501	packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1502	: _M_state(__create_task_state<_Res(_ArgTypes...)>(
1503		    std::forward<_Fn>(__fn), __a))
1504	{ }
1505
1506      ~packaged_task()
1507      {
1508        if (static_cast<bool>(_M_state) && !_M_state.unique())
1509	  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1510      }
1511
1512      // No copy
1513      packaged_task(const packaged_task&) = delete;
1514      packaged_task& operator=(const packaged_task&) = delete;
1515
1516      template<typename _Allocator>
1517	packaged_task(allocator_arg_t, const _Allocator&,
1518		      const packaged_task&) = delete;
1519
1520      // Move support
1521      packaged_task(packaged_task&& __other) noexcept
1522      { this->swap(__other); }
1523
1524      template<typename _Allocator>
1525	packaged_task(allocator_arg_t, const _Allocator&,
1526		      packaged_task&& __other) noexcept
1527	{ this->swap(__other); }
1528
1529      packaged_task& operator=(packaged_task&& __other) noexcept
1530      {
1531	packaged_task(std::move(__other)).swap(*this);
1532	return *this;
1533      }
1534
1535      void
1536      swap(packaged_task& __other) noexcept
1537      { _M_state.swap(__other._M_state); }
1538
1539      bool
1540      valid() const noexcept
1541      { return static_cast<bool>(_M_state); }
1542
1543      // Result retrieval
1544      future<_Res>
1545      get_future()
1546      { return future<_Res>(_M_state); }
1547
1548      // Execution
1549      void
1550      operator()(_ArgTypes... __args)
1551      {
1552	__future_base::_State_base::_S_check(_M_state);
1553	_M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1554      }
1555
1556      void
1557      make_ready_at_thread_exit(_ArgTypes... __args)
1558      {
1559	__future_base::_State_base::_S_check(_M_state);
1560	_M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1561      }
1562
1563      void
1564      reset()
1565      {
1566	__future_base::_State_base::_S_check(_M_state);
1567	packaged_task __tmp;
1568	__tmp._M_state = _M_state;
1569	_M_state = _M_state->_M_reset();
1570      }
1571    };
1572
1573  /// swap
1574  template<typename _Res, typename... _ArgTypes>
1575    inline void
1576    swap(packaged_task<_Res(_ArgTypes...)>& __x,
1577	 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1578    { __x.swap(__y); }
1579
1580  template<typename _Res, typename _Alloc>
1581    struct uses_allocator<packaged_task<_Res>, _Alloc>
1582    : public true_type { };
1583
1584
1585  // Shared state created by std::async().
1586  // Holds a deferred function and storage for its result.
1587  template<typename _BoundFn, typename _Res>
1588    class __future_base::_Deferred_state final
1589    : public __future_base::_State_base
1590    {
1591    public:
1592      explicit
1593      _Deferred_state(_BoundFn&& __fn)
1594      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1595      { }
1596
1597    private:
1598      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1599      _Ptr_type _M_result;
1600      _BoundFn _M_fn;
1601
1602      // Run the deferred function.
1603      virtual void
1604      _M_complete_async()
1605      {
1606	// Multiple threads can call a waiting function on the future and
1607	// reach this point at the same time. The call_once in _M_set_result
1608	// ensures only the first one run the deferred function, stores the
1609	// result in _M_result, swaps that with the base _M_result and makes
1610	// the state ready. Tell _M_set_result to ignore failure so all later
1611	// calls do nothing.
1612        _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1613      }
1614
1615      // Caller should check whether the state is ready first, because this
1616      // function will return true even after the deferred function has run.
1617      virtual bool _M_is_deferred_future() const { return true; }
1618    };
1619
1620  // Common functionality hoisted out of the _Async_state_impl template.
1621  class __future_base::_Async_state_commonV2
1622    : public __future_base::_State_base
1623  {
1624  protected:
1625    ~_Async_state_commonV2() = default;
1626
1627    // Make waiting functions block until the thread completes, as if joined.
1628    //
1629    // This function is used by wait() to satisfy the first requirement below
1630    // and by wait_for() / wait_until() to satisfy the second.
1631    //
1632    // [futures.async]:
1633    //
1634    // — a call to a waiting function on an asynchronous return object that
1635    // shares the shared state created by this async call shall block until
1636    // the associated thread has completed, as if joined, or else time out.
1637    //
1638    // — the associated thread completion synchronizes with the return from
1639    // the first function that successfully detects the ready status of the
1640    // shared state or with the return from the last function that releases
1641    // the shared state, whichever happens first.
1642    virtual void _M_complete_async() { _M_join(); }
1643
1644    void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1645
1646    thread _M_thread;
1647    once_flag _M_once;
1648  };
1649
1650  // Shared state created by std::async().
1651  // Starts a new thread that runs a function and makes the shared state ready.
1652  template<typename _BoundFn, typename _Res>
1653    class __future_base::_Async_state_impl final
1654    : public __future_base::_Async_state_commonV2
1655    {
1656    public:
1657      explicit
1658      _Async_state_impl(_BoundFn&& __fn)
1659      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1660      {
1661	_M_thread = std::thread{ [this] {
1662	    __try
1663	      {
1664		_M_set_result(_S_task_setter(_M_result, _M_fn));
1665	      }
1666	    __catch (const __cxxabiv1::__forced_unwind&)
1667	      {
1668		// make the shared state ready on thread cancellation
1669		if (static_cast<bool>(_M_result))
1670		  this->_M_break_promise(std::move(_M_result));
1671		__throw_exception_again;
1672	      }
1673        } };
1674      }
1675
1676      // Must not destroy _M_result and _M_fn until the thread finishes.
1677      // Call join() directly rather than through _M_join() because no other
1678      // thread can be referring to this state if it is being destroyed.
1679      ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1680
1681    private:
1682      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1683      _Ptr_type _M_result;
1684      _BoundFn _M_fn;
1685    };
1686
1687  template<typename _BoundFn>
1688    inline std::shared_ptr<__future_base::_State_base>
1689    __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1690    {
1691      typedef typename remove_reference<_BoundFn>::type __fn_type;
1692      typedef _Deferred_state<__fn_type> __state_type;
1693      return std::make_shared<__state_type>(std::move(__fn));
1694    }
1695
1696  template<typename _BoundFn>
1697    inline std::shared_ptr<__future_base::_State_base>
1698    __future_base::_S_make_async_state(_BoundFn&& __fn)
1699    {
1700      typedef typename remove_reference<_BoundFn>::type __fn_type;
1701      typedef _Async_state_impl<__fn_type> __state_type;
1702      return std::make_shared<__state_type>(std::move(__fn));
1703    }
1704
1705
1706  /// async
1707  template<typename _Fn, typename... _Args>
1708    future<__async_result_of<_Fn, _Args...>>
1709    async(launch __policy, _Fn&& __fn, _Args&&... __args)
1710    {
1711      std::shared_ptr<__future_base::_State_base> __state;
1712      if ((__policy & launch::async) == launch::async)
1713	{
1714	  __try
1715	    {
1716	      __state = __future_base::_S_make_async_state(std::__bind_simple(
1717		  std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1718	    }
1719#if __cpp_exceptions
1720	  catch(const system_error& __e)
1721	    {
1722	      if (__e.code() != errc::resource_unavailable_try_again
1723		  || (__policy & launch::deferred) != launch::deferred)
1724		throw;
1725	    }
1726#endif
1727	}
1728      if (!__state)
1729	{
1730	  __state = __future_base::_S_make_deferred_state(std::__bind_simple(
1731              std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1732	}
1733      return future<__async_result_of<_Fn, _Args...>>(__state);
1734    }
1735
1736  /// async, potential overload
1737  template<typename _Fn, typename... _Args>
1738    inline future<__async_result_of<_Fn, _Args...>>
1739    async(_Fn&& __fn, _Args&&... __args)
1740    {
1741      return std::async(launch::async|launch::deferred,
1742			std::forward<_Fn>(__fn),
1743			std::forward<_Args>(__args)...);
1744    }
1745
1746#endif // _GLIBCXX_ASYNC_ABI_COMPAT
1747#endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
1748       // && ATOMIC_INT_LOCK_FREE
1749
1750  // @} group futures
1751_GLIBCXX_END_NAMESPACE_VERSION
1752} // namespace
1753
1754#endif // C++11
1755
1756#endif // _GLIBCXX_FUTURE
1757