xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/std/future (revision 0a3071956a3a9fdebdbf7f338cf2d439b45fc728)
1// <future> -*- C++ -*-
2
3// Copyright (C) 2009-2022 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/future
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_FUTURE
30#define _GLIBCXX_FUTURE 1
31
32#pragma GCC system_header
33
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <mutex>	      // call_once
39#include <condition_variable> // __at_thread_exit_elt
40#include <system_error>
41#include <bits/atomic_base.h> // atomic_flag
42#include <bits/allocated_ptr.h>
43#include <bits/atomic_futex.h>
44#include <bits/exception_defines.h>
45#include <bits/invoke.h>
46#include <bits/unique_ptr.h>
47#include <bits/shared_ptr.h>
48#include <bits/std_function.h>
49#include <bits/std_thread.h>
50#include <bits/uses_allocator.h>
51#include <ext/aligned_buffer.h>
52
53namespace std _GLIBCXX_VISIBILITY(default)
54{
55_GLIBCXX_BEGIN_NAMESPACE_VERSION
56
57  /**
58   * @defgroup futures Futures
59   * @ingroup concurrency
60   *
61   * Futures and promises provide support for retrieving the result from
62   * an asynchronous function, e.g. one that is running in another thread.
63   * A `std::future` represents an asynchronous result that will become
64   * ready at some later time. A consumer can wait on a future until the
65   * result is ready to be accessed.
66   *
67   * @since C++11
68   * @{
69   */
70
71  /// Error code for futures
72  enum class future_errc
73  {
74    future_already_retrieved = 1,
75    promise_already_satisfied,
76    no_state,
77    broken_promise
78  };
79
80  /// Specialization that allows `future_errc` to convert to `error_code`.
81  template<>
82    struct is_error_code_enum<future_errc> : public true_type { };
83
84  /// Points to a statically-allocated object derived from error_category.
85  [[__nodiscard__, __gnu__::__const__]]
86  const error_category&
87  future_category() noexcept;
88
89  /// Overload of make_error_code for `future_errc`.
90  [[__nodiscard__]]
91  inline error_code
92  make_error_code(future_errc __errc) noexcept
93  { return error_code(static_cast<int>(__errc), future_category()); }
94
95  /// Overload of make_error_condition for `future_errc`.
96  [[__nodiscard__]]
97  inline error_condition
98  make_error_condition(future_errc __errc) noexcept
99  { return error_condition(static_cast<int>(__errc), future_category()); }
100
101  /**
102   *  @brief Exception type thrown by futures.
103   *  @ingroup exceptions
104   *  @since C++11
105   */
106  class future_error : public logic_error
107  {
108  public:
109    explicit
110    future_error(future_errc __errc)
111    : future_error(std::make_error_code(__errc))
112    { }
113
114    virtual ~future_error() noexcept;
115
116    virtual const char*
117    what() const noexcept;
118
119    const error_code&
120    code() const noexcept { return _M_code; }
121
122  private:
123    explicit
124    future_error(error_code __ec)
125    : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
126    { }
127
128    friend void __throw_future_error(int);
129
130    error_code 			_M_code;
131  };
132
133  // Forward declarations.
134  template<typename _Res>
135    class future;
136
137  template<typename _Res>
138    class shared_future;
139
140  template<typename _Signature>
141    class packaged_task;
142
143  template<typename _Res>
144    class promise;
145
146  /// Launch code for futures
147  enum class launch
148  {
149    async = 1,
150    deferred = 2
151  };
152
153  constexpr launch operator&(launch __x, launch __y) noexcept
154  {
155    return static_cast<launch>(
156	static_cast<int>(__x) & static_cast<int>(__y));
157  }
158
159  constexpr launch operator|(launch __x, launch __y) noexcept
160  {
161    return static_cast<launch>(
162	static_cast<int>(__x) | static_cast<int>(__y));
163  }
164
165  constexpr launch operator^(launch __x, launch __y) noexcept
166  {
167    return static_cast<launch>(
168	static_cast<int>(__x) ^ static_cast<int>(__y));
169  }
170
171  constexpr launch operator~(launch __x) noexcept
172  { return static_cast<launch>(~static_cast<int>(__x)); }
173
174  inline launch& operator&=(launch& __x, launch __y) noexcept
175  { return __x = __x & __y; }
176
177  inline launch& operator|=(launch& __x, launch __y) noexcept
178  { return __x = __x | __y; }
179
180  inline launch& operator^=(launch& __x, launch __y) noexcept
181  { return __x = __x ^ __y; }
182
183  /// Status code for futures
184  enum class future_status
185  {
186    ready,
187    timeout,
188    deferred
189  };
190
191  /// @cond undocumented
192  // _GLIBCXX_RESOLVE_LIB_DEFECTS
193  // 2021. Further incorrect usages of result_of
194  template<typename _Fn, typename... _Args>
195    using __async_result_of = typename __invoke_result<
196      typename decay<_Fn>::type, typename decay<_Args>::type...>::type;
197  /// @endcond
198
199  template<typename _Fn, typename... _Args>
200    future<__async_result_of<_Fn, _Args...>>
201    async(launch __policy, _Fn&& __fn, _Args&&... __args);
202
203  template<typename _Fn, typename... _Args>
204    future<__async_result_of<_Fn, _Args...>>
205    async(_Fn&& __fn, _Args&&... __args);
206
207#if defined(_GLIBCXX_HAS_GTHREADS)
208
209  /// @cond undocumented
210
211  /// Base class and enclosing scope.
212  struct __future_base
213  {
214    /// Base class for results.
215    struct _Result_base
216    {
217      exception_ptr		_M_error;
218
219      _Result_base(const _Result_base&) = delete;
220      _Result_base& operator=(const _Result_base&) = delete;
221
222      // _M_destroy() allows derived classes to control deallocation
223      virtual void _M_destroy() = 0;
224
225      struct _Deleter
226      {
227	void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
228      };
229
230    protected:
231      _Result_base();
232      virtual ~_Result_base();
233    };
234
235    /// A unique_ptr for result objects.
236    template<typename _Res>
237      using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
238
239    /// A result object that has storage for an object of type _Res.
240    template<typename _Res>
241      struct _Result : _Result_base
242      {
243      private:
244	__gnu_cxx::__aligned_buffer<_Res>	_M_storage;
245	bool 					_M_initialized;
246
247      public:
248	typedef _Res result_type;
249
250	_Result() noexcept : _M_initialized() { }
251
252	~_Result()
253	{
254	  if (_M_initialized)
255	    _M_value().~_Res();
256	}
257
258	// Return lvalue, future will add const or rvalue-reference
259	_Res&
260	_M_value() noexcept { return *_M_storage._M_ptr(); }
261
262	void
263	_M_set(const _Res& __res)
264	{
265	  ::new (_M_storage._M_addr()) _Res(__res);
266	  _M_initialized = true;
267	}
268
269	void
270	_M_set(_Res&& __res)
271	{
272	  ::new (_M_storage._M_addr()) _Res(std::move(__res));
273	  _M_initialized = true;
274	}
275
276      private:
277	void _M_destroy() { delete this; }
278    };
279
280    /// A result object that uses an allocator.
281    template<typename _Res, typename _Alloc>
282      struct _Result_alloc final : _Result<_Res>, _Alloc
283      {
284	using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
285
286        explicit
287	_Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
288	{ }
289
290      private:
291	void _M_destroy()
292	{
293	  __allocator_type __a(*this);
294	  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
295	  this->~_Result_alloc();
296	}
297      };
298
299    // Create a result object that uses an allocator.
300    template<typename _Res, typename _Allocator>
301      static _Ptr<_Result_alloc<_Res, _Allocator>>
302      _S_allocate_result(const _Allocator& __a)
303      {
304	using __result_type = _Result_alloc<_Res, _Allocator>;
305	typename __result_type::__allocator_type __a2(__a);
306	auto __guard = std::__allocate_guarded(__a2);
307	__result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
308	__guard = nullptr;
309	return _Ptr<__result_type>(__p);
310      }
311
312    // Keep it simple for std::allocator.
313    template<typename _Res, typename _Tp>
314      static _Ptr<_Result<_Res>>
315      _S_allocate_result(const std::allocator<_Tp>& __a)
316      {
317	return _Ptr<_Result<_Res>>(new _Result<_Res>);
318      }
319
320    // Base class for various types of shared state created by an
321    // asynchronous provider (such as a std::promise) and shared with one
322    // or more associated futures.
323    class _State_baseV2
324    {
325      typedef _Ptr<_Result_base> _Ptr_type;
326
327      enum _Status : unsigned {
328	__not_ready,
329	__ready
330      };
331
332      _Ptr_type			_M_result;
333      __atomic_futex_unsigned<>	_M_status;
334      atomic_flag         	_M_retrieved = ATOMIC_FLAG_INIT;
335      once_flag			_M_once;
336
337    public:
338      _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
339	{ }
340      _State_baseV2(const _State_baseV2&) = delete;
341      _State_baseV2& operator=(const _State_baseV2&) = delete;
342      virtual ~_State_baseV2() = default;
343
344      _Result_base&
345      wait()
346      {
347	// Run any deferred function or join any asynchronous thread:
348	_M_complete_async();
349	// Acquire MO makes sure this synchronizes with the thread that made
350	// the future ready.
351	_M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
352	return *_M_result;
353      }
354
355      template<typename _Rep, typename _Period>
356        future_status
357        wait_for(const chrono::duration<_Rep, _Period>& __rel)
358        {
359	  // First, check if the future has been made ready.  Use acquire MO
360	  // to synchronize with the thread that made it ready.
361	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
362	    return future_status::ready;
363
364	  if (_M_is_deferred_future())
365	    return future_status::deferred;
366
367	  // Don't wait unless the relative time is greater than zero.
368	  if (__rel > __rel.zero()
369	      && _M_status._M_load_when_equal_for(_Status::__ready,
370						  memory_order_acquire,
371						  __rel))
372	    {
373	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
374	      // 2100.  timed waiting functions must also join
375	      // This call is a no-op by default except on an async future,
376	      // in which case the async thread is joined.  It's also not a
377	      // no-op for a deferred future, but such a future will never
378	      // reach this point because it returns future_status::deferred
379	      // instead of waiting for the future to become ready (see
380	      // above).  Async futures synchronize in this call, so we need
381	      // no further synchronization here.
382	      _M_complete_async();
383
384	      return future_status::ready;
385	    }
386	  return future_status::timeout;
387	}
388
389      template<typename _Clock, typename _Duration>
390        future_status
391        wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
392        {
393#if __cplusplus > 201703L
394	  static_assert(chrono::is_clock_v<_Clock>);
395#endif
396	  // First, check if the future has been made ready.  Use acquire MO
397	  // to synchronize with the thread that made it ready.
398	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
399	    return future_status::ready;
400
401	  if (_M_is_deferred_future())
402	    return future_status::deferred;
403
404	  if (_M_status._M_load_when_equal_until(_Status::__ready,
405						 memory_order_acquire,
406						 __abs))
407	    {
408	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
409	      // 2100.  timed waiting functions must also join
410	      // See wait_for(...) above.
411	      _M_complete_async();
412
413	      return future_status::ready;
414	    }
415	  return future_status::timeout;
416	}
417
418      // Provide a result to the shared state and make it ready.
419      // Calls at most once: _M_result = __res();
420      void
421      _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
422      {
423	bool __did_set = false;
424        // all calls to this function are serialized,
425        // side-effects of invoking __res only happen once
426	call_once(_M_once, &_State_baseV2::_M_do_set, this,
427		  std::__addressof(__res), std::__addressof(__did_set));
428	if (__did_set)
429	  // Use release MO to synchronize with observers of the ready state.
430	  _M_status._M_store_notify_all(_Status::__ready,
431					memory_order_release);
432	else if (!__ignore_failure)
433          __throw_future_error(int(future_errc::promise_already_satisfied));
434      }
435
436      // Provide a result to the shared state but delay making it ready
437      // until the calling thread exits.
438      // Calls at most once: _M_result = __res();
439      void
440      _M_set_delayed_result(function<_Ptr_type()> __res,
441			    weak_ptr<_State_baseV2> __self)
442      {
443	bool __did_set = false;
444	unique_ptr<_Make_ready> __mr{new _Make_ready};
445        // all calls to this function are serialized,
446        // side-effects of invoking __res only happen once
447	call_once(_M_once, &_State_baseV2::_M_do_set, this,
448		  std::__addressof(__res), std::__addressof(__did_set));
449	if (!__did_set)
450          __throw_future_error(int(future_errc::promise_already_satisfied));
451	__mr->_M_shared_state = std::move(__self);
452	__mr->_M_set();
453	__mr.release();
454      }
455
456      // Abandon this shared state.
457      void
458      _M_break_promise(_Ptr_type __res)
459      {
460	if (static_cast<bool>(__res))
461	  {
462	    __res->_M_error =
463	      make_exception_ptr(future_error(future_errc::broken_promise));
464	    // This function is only called when the last asynchronous result
465	    // provider is abandoning this shared state, so noone can be
466	    // trying to make the shared state ready at the same time, and
467	    // we can access _M_result directly instead of through call_once.
468	    _M_result.swap(__res);
469	    // Use release MO to synchronize with observers of the ready state.
470	    _M_status._M_store_notify_all(_Status::__ready,
471					  memory_order_release);
472	  }
473      }
474
475      // Called when this object is first passed to a future.
476      void
477      _M_set_retrieved_flag()
478      {
479	if (_M_retrieved.test_and_set())
480	  __throw_future_error(int(future_errc::future_already_retrieved));
481      }
482
483      template<typename _Res, typename _Arg>
484        struct _Setter;
485
486      // set lvalues
487      template<typename _Res, typename _Arg>
488        struct _Setter<_Res, _Arg&>
489        {
490          // check this is only used by promise<R>::set_value(const R&)
491          // or promise<R&>::set_value(R&)
492          static_assert(is_same<_Res, _Arg&>::value  // promise<R&>
493              || is_same<const _Res, _Arg>::value,   // promise<R>
494              "Invalid specialisation");
495
496	  // Used by std::promise to copy construct the result.
497          typename promise<_Res>::_Ptr_type operator()() const
498          {
499            _M_promise->_M_storage->_M_set(*_M_arg);
500            return std::move(_M_promise->_M_storage);
501          }
502          promise<_Res>*    _M_promise;
503          _Arg*             _M_arg;
504        };
505
506      // set rvalues
507      template<typename _Res>
508        struct _Setter<_Res, _Res&&>
509        {
510	  // Used by std::promise to move construct the result.
511          typename promise<_Res>::_Ptr_type operator()() const
512          {
513            _M_promise->_M_storage->_M_set(std::move(*_M_arg));
514            return std::move(_M_promise->_M_storage);
515          }
516          promise<_Res>*    _M_promise;
517          _Res*             _M_arg;
518        };
519
520      // set void
521      template<typename _Res>
522	struct _Setter<_Res, void>
523	{
524	  static_assert(is_void<_Res>::value, "Only used for promise<void>");
525
526	  typename promise<_Res>::_Ptr_type operator()() const
527	  { return std::move(_M_promise->_M_storage); }
528
529	  promise<_Res>*    _M_promise;
530	};
531
532      struct __exception_ptr_tag { };
533
534      // set exceptions
535      template<typename _Res>
536        struct _Setter<_Res, __exception_ptr_tag>
537        {
538	  // Used by std::promise to store an exception as the result.
539          typename promise<_Res>::_Ptr_type operator()() const
540          {
541            _M_promise->_M_storage->_M_error = *_M_ex;
542            return std::move(_M_promise->_M_storage);
543          }
544
545          promise<_Res>*   _M_promise;
546          exception_ptr*    _M_ex;
547        };
548
549      template<typename _Res, typename _Arg>
550	__attribute__((__always_inline__))
551        static _Setter<_Res, _Arg&&>
552        __setter(promise<_Res>* __prom, _Arg&& __arg) noexcept
553        {
554          return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
555        }
556
557      template<typename _Res>
558	__attribute__((__always_inline__))
559        static _Setter<_Res, __exception_ptr_tag>
560        __setter(exception_ptr& __ex, promise<_Res>* __prom) noexcept
561        {
562          __glibcxx_assert(__ex != nullptr); // LWG 2276
563          return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
564        }
565
566      template<typename _Res>
567	__attribute__((__always_inline__))
568	static _Setter<_Res, void>
569	__setter(promise<_Res>* __prom) noexcept
570	{
571	  return _Setter<_Res, void>{ __prom };
572	}
573
574      template<typename _Tp>
575        static void
576        _S_check(const shared_ptr<_Tp>& __p)
577        {
578          if (!static_cast<bool>(__p))
579            __throw_future_error((int)future_errc::no_state);
580        }
581
582    private:
583      // The function invoked with std::call_once(_M_once, ...).
584      void
585      _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
586      {
587        _Ptr_type __res = (*__f)();
588        // Notify the caller that we did try to set; if we do not throw an
589        // exception, the caller will be aware that it did set (e.g., see
590        // _M_set_result).
591	*__did_set = true;
592        _M_result.swap(__res); // nothrow
593      }
594
595      // Wait for completion of async function.
596      virtual void _M_complete_async() { }
597
598      // Return true if state corresponds to a deferred function.
599      virtual bool _M_is_deferred_future() const { return false; }
600
601      struct _Make_ready final : __at_thread_exit_elt
602      {
603	weak_ptr<_State_baseV2> _M_shared_state;
604	static void _S_run(void*);
605	void _M_set();
606      };
607    };
608
609#ifdef _GLIBCXX_ASYNC_ABI_COMPAT
610    class _State_base;
611    class _Async_state_common;
612#else
613    using _State_base = _State_baseV2;
614    class _Async_state_commonV2;
615#endif
616
617    template<typename _BoundFn,
618	     typename _Res = decltype(std::declval<_BoundFn&>()())>
619      class _Deferred_state;
620
621    template<typename _BoundFn,
622	     typename _Res = decltype(std::declval<_BoundFn&>()())>
623      class _Async_state_impl;
624
625    template<typename _Signature>
626      struct _Task_state_base;
627
628    template<typename _Fn, typename _Alloc, typename _Signature>
629      struct _Task_state;
630
631    template<typename _Res_ptr, typename _Fn,
632	     typename _Res = typename _Res_ptr::element_type::result_type>
633      struct _Task_setter;
634
635    template<typename _Res_ptr, typename _BoundFn>
636      static _Task_setter<_Res_ptr, _BoundFn>
637      _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
638      {
639	return { std::__addressof(__ptr), std::__addressof(__call) };
640      }
641  };
642
643  /// Partial specialization for reference types.
644  template<typename _Res>
645    struct __future_base::_Result<_Res&> : __future_base::_Result_base
646    {
647      typedef _Res& result_type;
648
649      _Result() noexcept : _M_value_ptr() { }
650
651      void
652      _M_set(_Res& __res) noexcept
653      { _M_value_ptr = std::addressof(__res); }
654
655      _Res& _M_get() noexcept { return *_M_value_ptr; }
656
657    private:
658      _Res* 			_M_value_ptr;
659
660      void _M_destroy() { delete this; }
661    };
662
663  /// Explicit specialization for void.
664  template<>
665    struct __future_base::_Result<void> : __future_base::_Result_base
666    {
667      typedef void result_type;
668
669    private:
670      void _M_destroy() { delete this; }
671    };
672
673  /// @endcond
674
675#ifndef _GLIBCXX_ASYNC_ABI_COMPAT
676
677  /// @cond undocumented
678  // Allow _Setter objects to be stored locally in std::function
679  template<typename _Res, typename _Arg>
680    struct __is_location_invariant
681    <__future_base::_State_base::_Setter<_Res, _Arg>>
682    : true_type { };
683
684  // Allow _Task_setter objects to be stored locally in std::function
685  template<typename _Res_ptr, typename _Fn, typename _Res>
686    struct __is_location_invariant
687    <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
688    : true_type { };
689  /// @endcond
690
691  /// Common implementation for future and shared_future.
692  template<typename _Res>
693    class __basic_future : public __future_base
694    {
695    protected:
696      typedef shared_ptr<_State_base>		__state_type;
697      typedef __future_base::_Result<_Res>&	__result_type;
698
699    private:
700      __state_type 		_M_state;
701
702    public:
703      // Disable copying.
704      __basic_future(const __basic_future&) = delete;
705      __basic_future& operator=(const __basic_future&) = delete;
706
707      bool
708      valid() const noexcept { return static_cast<bool>(_M_state); }
709
710      void
711      wait() const
712      {
713        _State_base::_S_check(_M_state);
714        _M_state->wait();
715      }
716
717      template<typename _Rep, typename _Period>
718        future_status
719        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
720        {
721          _State_base::_S_check(_M_state);
722          return _M_state->wait_for(__rel);
723        }
724
725      template<typename _Clock, typename _Duration>
726        future_status
727        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
728        {
729          _State_base::_S_check(_M_state);
730          return _M_state->wait_until(__abs);
731        }
732
733    protected:
734      /// Wait for the state to be ready and rethrow any stored exception
735      __result_type
736      _M_get_result() const
737      {
738        _State_base::_S_check(_M_state);
739        _Result_base& __res = _M_state->wait();
740        if (!(__res._M_error == nullptr))
741          rethrow_exception(__res._M_error);
742        return static_cast<__result_type>(__res);
743      }
744
745      void _M_swap(__basic_future& __that) noexcept
746      {
747        _M_state.swap(__that._M_state);
748      }
749
750      // Construction of a future by promise::get_future()
751      explicit
752      __basic_future(const __state_type& __state) : _M_state(__state)
753      {
754        _State_base::_S_check(_M_state);
755        _M_state->_M_set_retrieved_flag();
756      }
757
758      // Copy construction from a shared_future
759      explicit
760      __basic_future(const shared_future<_Res>&) noexcept;
761
762      // Move construction from a shared_future
763      explicit
764      __basic_future(shared_future<_Res>&&) noexcept;
765
766      // Move construction from a future
767      explicit
768      __basic_future(future<_Res>&&) noexcept;
769
770      constexpr __basic_future() noexcept : _M_state() { }
771
772      struct _Reset
773      {
774        explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
775        ~_Reset() { _M_fut._M_state.reset(); }
776        __basic_future& _M_fut;
777      };
778    };
779
780
781  /// Primary template for future.
782  template<typename _Res>
783    class future : public __basic_future<_Res>
784    {
785      // _GLIBCXX_RESOLVE_LIB_DEFECTS
786      // 3458. Is shared_future intended to work with arrays or function types?
787      static_assert(!is_array<_Res>{}, "result type must not be an array");
788      static_assert(!is_function<_Res>{}, "result type must not be a function");
789      static_assert(is_destructible<_Res>{},
790		    "result type must be destructible");
791
792      friend class promise<_Res>;
793      template<typename> friend class packaged_task;
794      template<typename _Fn, typename... _Args>
795        friend future<__async_result_of<_Fn, _Args...>>
796        async(launch, _Fn&&, _Args&&...);
797
798      typedef __basic_future<_Res> _Base_type;
799      typedef typename _Base_type::__state_type __state_type;
800
801      explicit
802      future(const __state_type& __state) : _Base_type(__state) { }
803
804    public:
805      constexpr future() noexcept : _Base_type() { }
806
807      /// Move constructor
808      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
809
810      // Disable copying
811      future(const future&) = delete;
812      future& operator=(const future&) = delete;
813
814      future& operator=(future&& __fut) noexcept
815      {
816        future(std::move(__fut))._M_swap(*this);
817        return *this;
818      }
819
820      /// Retrieving the value
821      _Res
822      get()
823      {
824        typename _Base_type::_Reset __reset(*this);
825        return std::move(this->_M_get_result()._M_value());
826      }
827
828      shared_future<_Res> share() noexcept;
829    };
830
831  /// Partial specialization for future<R&>
832  template<typename _Res>
833    class future<_Res&> : public __basic_future<_Res&>
834    {
835      friend class promise<_Res&>;
836      template<typename> friend class packaged_task;
837      template<typename _Fn, typename... _Args>
838        friend future<__async_result_of<_Fn, _Args...>>
839        async(launch, _Fn&&, _Args&&...);
840
841      typedef __basic_future<_Res&> _Base_type;
842      typedef typename _Base_type::__state_type __state_type;
843
844      explicit
845      future(const __state_type& __state) : _Base_type(__state) { }
846
847    public:
848      constexpr future() noexcept : _Base_type() { }
849
850      /// Move constructor
851      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
852
853      // Disable copying
854      future(const future&) = delete;
855      future& operator=(const future&) = delete;
856
857      future& operator=(future&& __fut) noexcept
858      {
859        future(std::move(__fut))._M_swap(*this);
860        return *this;
861      }
862
863      /// Retrieving the value
864      _Res&
865      get()
866      {
867        typename _Base_type::_Reset __reset(*this);
868        return this->_M_get_result()._M_get();
869      }
870
871      shared_future<_Res&> share() noexcept;
872    };
873
874  /// Explicit specialization for future<void>
875  template<>
876    class future<void> : public __basic_future<void>
877    {
878      friend class promise<void>;
879      template<typename> friend class packaged_task;
880      template<typename _Fn, typename... _Args>
881        friend future<__async_result_of<_Fn, _Args...>>
882        async(launch, _Fn&&, _Args&&...);
883
884      typedef __basic_future<void> _Base_type;
885      typedef typename _Base_type::__state_type __state_type;
886
887      explicit
888      future(const __state_type& __state) : _Base_type(__state) { }
889
890    public:
891      constexpr future() noexcept : _Base_type() { }
892
893      /// Move constructor
894      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
895
896      // Disable copying
897      future(const future&) = delete;
898      future& operator=(const future&) = delete;
899
900      future& operator=(future&& __fut) noexcept
901      {
902        future(std::move(__fut))._M_swap(*this);
903        return *this;
904      }
905
906      /// Retrieving the value
907      void
908      get()
909      {
910        typename _Base_type::_Reset __reset(*this);
911        this->_M_get_result();
912      }
913
914      shared_future<void> share() noexcept;
915    };
916
917
918  /// Primary template for shared_future.
919  template<typename _Res>
920    class shared_future : public __basic_future<_Res>
921    {
922      // _GLIBCXX_RESOLVE_LIB_DEFECTS
923      // 3458. Is shared_future intended to work with arrays or function types?
924      static_assert(!is_array<_Res>{}, "result type must not be an array");
925      static_assert(!is_function<_Res>{}, "result type must not be a function");
926      static_assert(is_destructible<_Res>{},
927		    "result type must be destructible");
928
929      typedef __basic_future<_Res> _Base_type;
930
931    public:
932      constexpr shared_future() noexcept : _Base_type() { }
933
934      /// Copy constructor
935      shared_future(const shared_future& __sf) noexcept : _Base_type(__sf) { }
936
937      /// Construct from a future rvalue
938      shared_future(future<_Res>&& __uf) noexcept
939      : _Base_type(std::move(__uf))
940      { }
941
942      /// Construct from a shared_future rvalue
943      shared_future(shared_future&& __sf) noexcept
944      : _Base_type(std::move(__sf))
945      { }
946
947      shared_future& operator=(const shared_future& __sf) noexcept
948      {
949        shared_future(__sf)._M_swap(*this);
950        return *this;
951      }
952
953      shared_future& operator=(shared_future&& __sf) noexcept
954      {
955        shared_future(std::move(__sf))._M_swap(*this);
956        return *this;
957      }
958
959      /// Retrieving the value
960      const _Res&
961      get() const { return this->_M_get_result()._M_value(); }
962    };
963
964  /// Partial specialization for shared_future<R&>
965  template<typename _Res>
966    class shared_future<_Res&> : public __basic_future<_Res&>
967    {
968      typedef __basic_future<_Res&>           _Base_type;
969
970    public:
971      constexpr shared_future() noexcept : _Base_type() { }
972
973      /// Copy constructor
974      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
975
976      /// Construct from a future rvalue
977      shared_future(future<_Res&>&& __uf) noexcept
978      : _Base_type(std::move(__uf))
979      { }
980
981      /// Construct from a shared_future rvalue
982      shared_future(shared_future&& __sf) noexcept
983      : _Base_type(std::move(__sf))
984      { }
985
986      shared_future& operator=(const shared_future& __sf)
987      {
988        shared_future(__sf)._M_swap(*this);
989        return *this;
990      }
991
992      shared_future& operator=(shared_future&& __sf) noexcept
993      {
994        shared_future(std::move(__sf))._M_swap(*this);
995        return *this;
996      }
997
998      /// Retrieving the value
999      _Res&
1000      get() const { return this->_M_get_result()._M_get(); }
1001    };
1002
1003  /// Explicit specialization for shared_future<void>
1004  template<>
1005    class shared_future<void> : public __basic_future<void>
1006    {
1007      typedef __basic_future<void> _Base_type;
1008
1009    public:
1010      constexpr shared_future() noexcept : _Base_type() { }
1011
1012      /// Copy constructor
1013      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
1014
1015      /// Construct from a future rvalue
1016      shared_future(future<void>&& __uf) noexcept
1017      : _Base_type(std::move(__uf))
1018      { }
1019
1020      /// Construct from a shared_future rvalue
1021      shared_future(shared_future&& __sf) noexcept
1022      : _Base_type(std::move(__sf))
1023      { }
1024
1025      shared_future& operator=(const shared_future& __sf)
1026      {
1027        shared_future(__sf)._M_swap(*this);
1028        return *this;
1029      }
1030
1031      shared_future& operator=(shared_future&& __sf) noexcept
1032      {
1033        shared_future(std::move(__sf))._M_swap(*this);
1034        return *this;
1035      }
1036
1037      // Retrieving the value
1038      void
1039      get() const { this->_M_get_result(); }
1040    };
1041
1042  // Now we can define the protected __basic_future constructors.
1043  template<typename _Res>
1044    inline __basic_future<_Res>::
1045    __basic_future(const shared_future<_Res>& __sf) noexcept
1046    : _M_state(__sf._M_state)
1047    { }
1048
1049  template<typename _Res>
1050    inline __basic_future<_Res>::
1051    __basic_future(shared_future<_Res>&& __sf) noexcept
1052    : _M_state(std::move(__sf._M_state))
1053    { }
1054
1055  template<typename _Res>
1056    inline __basic_future<_Res>::
1057    __basic_future(future<_Res>&& __uf) noexcept
1058    : _M_state(std::move(__uf._M_state))
1059    { }
1060
1061  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1062  // 2556. Wide contract for future::share()
1063  template<typename _Res>
1064    inline shared_future<_Res>
1065    future<_Res>::share() noexcept
1066    { return shared_future<_Res>(std::move(*this)); }
1067
1068  template<typename _Res>
1069    inline shared_future<_Res&>
1070    future<_Res&>::share() noexcept
1071    { return shared_future<_Res&>(std::move(*this)); }
1072
1073  inline shared_future<void>
1074  future<void>::share() noexcept
1075  { return shared_future<void>(std::move(*this)); }
1076
1077  /// Primary template for promise
1078  template<typename _Res>
1079    class promise
1080    {
1081      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1082      // 3466: Specify the requirements for promise/future/[...] consistently
1083      static_assert(!is_array<_Res>{}, "result type must not be an array");
1084      static_assert(!is_function<_Res>{}, "result type must not be a function");
1085      static_assert(is_destructible<_Res>{},
1086		    "result type must be destructible");
1087
1088      typedef __future_base::_State_base 	_State;
1089      typedef __future_base::_Result<_Res>	_Res_type;
1090      typedef __future_base::_Ptr<_Res_type>	_Ptr_type;
1091      template<typename, typename> friend struct _State::_Setter;
1092      friend _State;
1093
1094      shared_ptr<_State>                        _M_future;
1095      _Ptr_type                                 _M_storage;
1096
1097    public:
1098      promise()
1099      : _M_future(std::make_shared<_State>()),
1100	_M_storage(new _Res_type())
1101      { }
1102
1103      promise(promise&& __rhs) noexcept
1104      : _M_future(std::move(__rhs._M_future)),
1105	_M_storage(std::move(__rhs._M_storage))
1106      { }
1107
1108      template<typename _Allocator>
1109        promise(allocator_arg_t, const _Allocator& __a)
1110        : _M_future(std::allocate_shared<_State>(__a)),
1111	  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1112        { }
1113
1114      template<typename _Allocator>
1115        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1116        : _M_future(std::move(__rhs._M_future)),
1117	  _M_storage(std::move(__rhs._M_storage))
1118        { }
1119
1120      promise(const promise&) = delete;
1121
1122      ~promise()
1123      {
1124        if (static_cast<bool>(_M_future) && !_M_future.unique())
1125          _M_future->_M_break_promise(std::move(_M_storage));
1126      }
1127
1128      // Assignment
1129      promise&
1130      operator=(promise&& __rhs) noexcept
1131      {
1132        promise(std::move(__rhs)).swap(*this);
1133        return *this;
1134      }
1135
1136      promise& operator=(const promise&) = delete;
1137
1138      void
1139      swap(promise& __rhs) noexcept
1140      {
1141        _M_future.swap(__rhs._M_future);
1142        _M_storage.swap(__rhs._M_storage);
1143      }
1144
1145      // Retrieving the result
1146      future<_Res>
1147      get_future()
1148      { return future<_Res>(_M_future); }
1149
1150      // Setting the result
1151      void
1152      set_value(const _Res& __r)
1153      { _M_state()._M_set_result(_State::__setter(this, __r)); }
1154
1155      void
1156      set_value(_Res&& __r)
1157      { _M_state()._M_set_result(_State::__setter(this, std::move(__r))); }
1158
1159      void
1160      set_exception(exception_ptr __p)
1161      { _M_state()._M_set_result(_State::__setter(__p, this)); }
1162
1163      void
1164      set_value_at_thread_exit(const _Res& __r)
1165      {
1166	_M_state()._M_set_delayed_result(_State::__setter(this, __r),
1167					 _M_future);
1168      }
1169
1170      void
1171      set_value_at_thread_exit(_Res&& __r)
1172      {
1173	_M_state()._M_set_delayed_result(
1174	    _State::__setter(this, std::move(__r)), _M_future);
1175      }
1176
1177      void
1178      set_exception_at_thread_exit(exception_ptr __p)
1179      {
1180	_M_state()._M_set_delayed_result(_State::__setter(__p, this),
1181					 _M_future);
1182      }
1183
1184    private:
1185      _State&
1186      _M_state()
1187      {
1188	__future_base::_State_base::_S_check(_M_future);
1189	return *_M_future;
1190      }
1191    };
1192
1193  template<typename _Res>
1194    inline void
1195    swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1196    { __x.swap(__y); }
1197
1198  template<typename _Res, typename _Alloc>
1199    struct uses_allocator<promise<_Res>, _Alloc>
1200    : public true_type { };
1201
1202
1203  /// Partial specialization for promise<R&>
1204  template<typename _Res>
1205    class promise<_Res&>
1206    {
1207      typedef __future_base::_State_base	_State;
1208      typedef __future_base::_Result<_Res&>	_Res_type;
1209      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1210      template<typename, typename> friend struct _State::_Setter;
1211      friend _State;
1212
1213      shared_ptr<_State>                        _M_future;
1214      _Ptr_type                                 _M_storage;
1215
1216    public:
1217      promise()
1218      : _M_future(std::make_shared<_State>()),
1219	_M_storage(new _Res_type())
1220      { }
1221
1222      promise(promise&& __rhs) noexcept
1223      : _M_future(std::move(__rhs._M_future)),
1224	_M_storage(std::move(__rhs._M_storage))
1225      { }
1226
1227      template<typename _Allocator>
1228        promise(allocator_arg_t, const _Allocator& __a)
1229        : _M_future(std::allocate_shared<_State>(__a)),
1230	  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1231        { }
1232
1233      template<typename _Allocator>
1234        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1235        : _M_future(std::move(__rhs._M_future)),
1236	  _M_storage(std::move(__rhs._M_storage))
1237        { }
1238
1239      promise(const promise&) = delete;
1240
1241      ~promise()
1242      {
1243        if (static_cast<bool>(_M_future) && !_M_future.unique())
1244          _M_future->_M_break_promise(std::move(_M_storage));
1245      }
1246
1247      // Assignment
1248      promise&
1249      operator=(promise&& __rhs) noexcept
1250      {
1251        promise(std::move(__rhs)).swap(*this);
1252        return *this;
1253      }
1254
1255      promise& operator=(const promise&) = delete;
1256
1257      void
1258      swap(promise& __rhs) noexcept
1259      {
1260        _M_future.swap(__rhs._M_future);
1261        _M_storage.swap(__rhs._M_storage);
1262      }
1263
1264      // Retrieving the result
1265      future<_Res&>
1266      get_future()
1267      { return future<_Res&>(_M_future); }
1268
1269      // Setting the result
1270      void
1271      set_value(_Res& __r)
1272      { _M_state()._M_set_result(_State::__setter(this, __r)); }
1273
1274      void
1275      set_exception(exception_ptr __p)
1276      { _M_state()._M_set_result(_State::__setter(__p, this)); }
1277
1278      void
1279      set_value_at_thread_exit(_Res& __r)
1280      {
1281	_M_state()._M_set_delayed_result(_State::__setter(this, __r),
1282					 _M_future);
1283      }
1284
1285      void
1286      set_exception_at_thread_exit(exception_ptr __p)
1287      {
1288	_M_state()._M_set_delayed_result(_State::__setter(__p, this),
1289					 _M_future);
1290      }
1291
1292    private:
1293      _State&
1294      _M_state()
1295      {
1296	__future_base::_State_base::_S_check(_M_future);
1297	return *_M_future;
1298      }
1299    };
1300
1301  /// Explicit specialization for promise<void>
1302  template<>
1303    class promise<void>
1304    {
1305      typedef __future_base::_State_base	_State;
1306      typedef __future_base::_Result<void>	_Res_type;
1307      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1308      template<typename, typename> friend struct _State::_Setter;
1309      friend _State;
1310
1311      shared_ptr<_State>                        _M_future;
1312      _Ptr_type                                 _M_storage;
1313
1314    public:
1315      promise()
1316      : _M_future(std::make_shared<_State>()),
1317	_M_storage(new _Res_type())
1318      { }
1319
1320      promise(promise&& __rhs) noexcept
1321      : _M_future(std::move(__rhs._M_future)),
1322	_M_storage(std::move(__rhs._M_storage))
1323      { }
1324
1325      template<typename _Allocator>
1326        promise(allocator_arg_t, const _Allocator& __a)
1327        : _M_future(std::allocate_shared<_State>(__a)),
1328	  _M_storage(__future_base::_S_allocate_result<void>(__a))
1329        { }
1330
1331      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1332      // 2095.  missing constructors needed for uses-allocator construction
1333      template<typename _Allocator>
1334        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1335        : _M_future(std::move(__rhs._M_future)),
1336	  _M_storage(std::move(__rhs._M_storage))
1337        { }
1338
1339      promise(const promise&) = delete;
1340
1341      ~promise()
1342      {
1343        if (static_cast<bool>(_M_future) && !_M_future.unique())
1344          _M_future->_M_break_promise(std::move(_M_storage));
1345      }
1346
1347      // Assignment
1348      promise&
1349      operator=(promise&& __rhs) noexcept
1350      {
1351        promise(std::move(__rhs)).swap(*this);
1352        return *this;
1353      }
1354
1355      promise& operator=(const promise&) = delete;
1356
1357      void
1358      swap(promise& __rhs) noexcept
1359      {
1360        _M_future.swap(__rhs._M_future);
1361        _M_storage.swap(__rhs._M_storage);
1362      }
1363
1364      // Retrieving the result
1365      future<void>
1366      get_future()
1367      { return future<void>(_M_future); }
1368
1369      // Setting the result
1370      void
1371      set_value()
1372      { _M_state()._M_set_result(_State::__setter(this)); }
1373
1374      void
1375      set_exception(exception_ptr __p)
1376      { _M_state()._M_set_result(_State::__setter(__p, this)); }
1377
1378      void
1379      set_value_at_thread_exit()
1380      { _M_state()._M_set_delayed_result(_State::__setter(this), _M_future); }
1381
1382      void
1383      set_exception_at_thread_exit(exception_ptr __p)
1384      {
1385	_M_state()._M_set_delayed_result(_State::__setter(__p, this),
1386					 _M_future);
1387      }
1388
1389    private:
1390      _State&
1391      _M_state()
1392      {
1393	__future_base::_State_base::_S_check(_M_future);
1394	return *_M_future;
1395      }
1396    };
1397
1398  /// @cond undocumented
1399  template<typename _Ptr_type, typename _Fn, typename _Res>
1400    struct __future_base::_Task_setter
1401    {
1402      // Invoke the function and provide the result to the caller.
1403      _Ptr_type operator()() const
1404      {
1405	__try
1406	  {
1407	    (*_M_result)->_M_set((*_M_fn)());
1408	  }
1409	__catch(const __cxxabiv1::__forced_unwind&)
1410	  {
1411	    __throw_exception_again; // will cause broken_promise
1412	  }
1413	__catch(...)
1414	  {
1415	    (*_M_result)->_M_error = current_exception();
1416	  }
1417	return std::move(*_M_result);
1418      }
1419      _Ptr_type*	_M_result;
1420      _Fn*		_M_fn;
1421    };
1422
1423  template<typename _Ptr_type, typename _Fn>
1424    struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1425    {
1426      _Ptr_type operator()() const
1427      {
1428	__try
1429	  {
1430	    (*_M_fn)();
1431	  }
1432	__catch(const __cxxabiv1::__forced_unwind&)
1433	  {
1434	    __throw_exception_again; // will cause broken_promise
1435	  }
1436	__catch(...)
1437	  {
1438	    (*_M_result)->_M_error = current_exception();
1439	  }
1440	return std::move(*_M_result);
1441      }
1442      _Ptr_type*	_M_result;
1443      _Fn*		_M_fn;
1444    };
1445
1446  // Holds storage for a packaged_task's result.
1447  template<typename _Res, typename... _Args>
1448    struct __future_base::_Task_state_base<_Res(_Args...)>
1449    : __future_base::_State_base
1450    {
1451      typedef _Res _Res_type;
1452
1453      template<typename _Alloc>
1454	_Task_state_base(const _Alloc& __a)
1455	: _M_result(_S_allocate_result<_Res>(__a))
1456	{ }
1457
1458      // Invoke the stored task and make the state ready.
1459      virtual void
1460      _M_run(_Args&&... __args) = 0;
1461
1462      // Invoke the stored task and make the state ready at thread exit.
1463      virtual void
1464      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1465
1466      virtual shared_ptr<_Task_state_base>
1467      _M_reset() = 0;
1468
1469      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1470      _Ptr_type _M_result;
1471    };
1472
1473  // Holds a packaged_task's stored task.
1474  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1475    struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1476    : __future_base::_Task_state_base<_Res(_Args...)>
1477    {
1478      template<typename _Fn2>
1479	_Task_state(_Fn2&& __fn, const _Alloc& __a)
1480	: _Task_state_base<_Res(_Args...)>(__a),
1481	  _M_impl(std::forward<_Fn2>(__fn), __a)
1482	{ }
1483
1484    private:
1485      virtual void
1486      _M_run(_Args&&... __args)
1487      {
1488	auto __boundfn = [&] () -> _Res {
1489	    return std::__invoke_r<_Res>(_M_impl._M_fn,
1490					 std::forward<_Args>(__args)...);
1491	};
1492	this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1493      }
1494
1495      virtual void
1496      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1497      {
1498	auto __boundfn = [&] () -> _Res {
1499	    return std::__invoke_r<_Res>(_M_impl._M_fn,
1500					 std::forward<_Args>(__args)...);
1501	};
1502	this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1503				    std::move(__self));
1504      }
1505
1506      virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1507      _M_reset();
1508
1509      struct _Impl : _Alloc
1510      {
1511	template<typename _Fn2>
1512	  _Impl(_Fn2&& __fn, const _Alloc& __a)
1513	  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1514	_Fn _M_fn;
1515      } _M_impl;
1516    };
1517
1518  template<typename _Signature, typename _Fn,
1519	   typename _Alloc = std::allocator<int>>
1520    static shared_ptr<__future_base::_Task_state_base<_Signature>>
1521    __create_task_state(_Fn&& __fn, const _Alloc& __a = _Alloc())
1522    {
1523      typedef typename decay<_Fn>::type _Fn2;
1524      typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1525      return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1526    }
1527
1528  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1529    shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1530    __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1531    {
1532      return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1533						 static_cast<_Alloc&>(_M_impl));
1534    }
1535  /// @endcond
1536
1537  /// packaged_task
1538  template<typename _Res, typename... _ArgTypes>
1539    class packaged_task<_Res(_ArgTypes...)>
1540    {
1541      typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1542      shared_ptr<_State_type>                   _M_state;
1543
1544      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1545      // 3039. Unnecessary decay in thread and packaged_task
1546      template<typename _Fn, typename _Fn2 = __remove_cvref_t<_Fn>>
1547	using __not_same
1548	  = typename enable_if<!is_same<packaged_task, _Fn2>::value>::type;
1549
1550    public:
1551      // Construction and destruction
1552      packaged_task() noexcept { }
1553
1554      template<typename _Fn, typename = __not_same<_Fn>>
1555	explicit
1556	packaged_task(_Fn&& __fn)
1557	: _M_state(
1558	    __create_task_state<_Res(_ArgTypes...)>(std::forward<_Fn>(__fn)))
1559	{ }
1560
1561#if __cplusplus < 201703L
1562      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1563      // 2097. packaged_task constructors should be constrained
1564      // 2407. [this constructor should not be] explicit
1565      // 2921. packaged_task and type-erased allocators
1566      template<typename _Fn, typename _Alloc, typename = __not_same<_Fn>>
1567	packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1568	: _M_state(__create_task_state<_Res(_ArgTypes...)>(
1569		   std::forward<_Fn>(__fn), __a))
1570	{ }
1571
1572      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1573      // 2095.  missing constructors needed for uses-allocator construction
1574      template<typename _Allocator>
1575	packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1576	{ }
1577
1578      template<typename _Allocator>
1579	packaged_task(allocator_arg_t, const _Allocator&,
1580		      const packaged_task&) = delete;
1581
1582      template<typename _Allocator>
1583	packaged_task(allocator_arg_t, const _Allocator&,
1584		      packaged_task&& __other) noexcept
1585	{ this->swap(__other); }
1586#endif
1587
1588      ~packaged_task()
1589      {
1590        if (static_cast<bool>(_M_state) && !_M_state.unique())
1591	  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1592      }
1593
1594      // No copy
1595      packaged_task(const packaged_task&) = delete;
1596      packaged_task& operator=(const packaged_task&) = delete;
1597
1598      // Move support
1599      packaged_task(packaged_task&& __other) noexcept
1600      { this->swap(__other); }
1601
1602      packaged_task& operator=(packaged_task&& __other) noexcept
1603      {
1604	packaged_task(std::move(__other)).swap(*this);
1605	return *this;
1606      }
1607
1608      void
1609      swap(packaged_task& __other) noexcept
1610      { _M_state.swap(__other._M_state); }
1611
1612      bool
1613      valid() const noexcept
1614      { return static_cast<bool>(_M_state); }
1615
1616      // Result retrieval
1617      future<_Res>
1618      get_future()
1619      { return future<_Res>(_M_state); }
1620
1621      // Execution
1622      void
1623      operator()(_ArgTypes... __args)
1624      {
1625	__future_base::_State_base::_S_check(_M_state);
1626	_M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1627      }
1628
1629      void
1630      make_ready_at_thread_exit(_ArgTypes... __args)
1631      {
1632	__future_base::_State_base::_S_check(_M_state);
1633	_M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1634      }
1635
1636      void
1637      reset()
1638      {
1639	__future_base::_State_base::_S_check(_M_state);
1640	packaged_task __tmp;
1641	__tmp._M_state = _M_state;
1642	_M_state = _M_state->_M_reset();
1643      }
1644    };
1645
1646  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1647  // 3117. Missing packaged_task deduction guides
1648#if __cpp_deduction_guides >= 201606
1649  template<typename _Res, typename... _ArgTypes>
1650    packaged_task(_Res(*)(_ArgTypes...)) -> packaged_task<_Res(_ArgTypes...)>;
1651
1652  template<typename _Fun, typename _Signature = typename
1653	   __function_guide_helper<decltype(&_Fun::operator())>::type>
1654    packaged_task(_Fun) -> packaged_task<_Signature>;
1655#endif
1656
1657  /// swap
1658  template<typename _Res, typename... _ArgTypes>
1659    inline void
1660    swap(packaged_task<_Res(_ArgTypes...)>& __x,
1661	 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1662    { __x.swap(__y); }
1663
1664#if __cplusplus < 201703L
1665  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1666  // 2976. Dangling uses_allocator specialization for packaged_task
1667  template<typename _Res, typename _Alloc>
1668    struct uses_allocator<packaged_task<_Res>, _Alloc>
1669    : public true_type { };
1670#endif
1671
1672  /// @cond undocumented
1673
1674  // Shared state created by std::async().
1675  // Holds a deferred function and storage for its result.
1676  template<typename _BoundFn, typename _Res>
1677    class __future_base::_Deferred_state final
1678    : public __future_base::_State_base
1679    {
1680    public:
1681      template<typename... _Args>
1682	explicit
1683	_Deferred_state(_Args&&... __args)
1684	: _M_result(new _Result<_Res>()),
1685	  _M_fn(std::forward<_Args>(__args)...)
1686	{ }
1687
1688    private:
1689      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1690      _Ptr_type _M_result;
1691      _BoundFn _M_fn;
1692
1693      // Run the deferred function.
1694      virtual void
1695      _M_complete_async()
1696      {
1697	// Multiple threads can call a waiting function on the future and
1698	// reach this point at the same time. The call_once in _M_set_result
1699	// ensures only the first one run the deferred function, stores the
1700	// result in _M_result, swaps that with the base _M_result and makes
1701	// the state ready. Tell _M_set_result to ignore failure so all later
1702	// calls do nothing.
1703        _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1704      }
1705
1706      // Caller should check whether the state is ready first, because this
1707      // function will return true even after the deferred function has run.
1708      virtual bool _M_is_deferred_future() const { return true; }
1709    };
1710
1711  // Common functionality hoisted out of the _Async_state_impl template.
1712  class __future_base::_Async_state_commonV2
1713    : public __future_base::_State_base
1714  {
1715  protected:
1716    ~_Async_state_commonV2() = default;
1717
1718    // Make waiting functions block until the thread completes, as if joined.
1719    //
1720    // This function is used by wait() to satisfy the first requirement below
1721    // and by wait_for() / wait_until() to satisfy the second.
1722    //
1723    // [futures.async]:
1724    //
1725    // - a call to a waiting function on an asynchronous return object that
1726    // shares the shared state created by this async call shall block until
1727    // the associated thread has completed, as if joined, or else time out.
1728    //
1729    // - the associated thread completion synchronizes with the return from
1730    // the first function that successfully detects the ready status of the
1731    // shared state or with the return from the last function that releases
1732    // the shared state, whichever happens first.
1733    virtual void _M_complete_async() { _M_join(); }
1734
1735    void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1736
1737    thread _M_thread;
1738    once_flag _M_once;
1739  };
1740
1741  // Shared state created by std::async().
1742  // Starts a new thread that runs a function and makes the shared state ready.
1743  template<typename _BoundFn, typename _Res>
1744    class __future_base::_Async_state_impl final
1745    : public __future_base::_Async_state_commonV2
1746    {
1747    public:
1748      template<typename... _Args>
1749	explicit
1750	_Async_state_impl(_Args&&... __args)
1751	: _M_result(new _Result<_Res>()),
1752	  _M_fn(std::forward<_Args>(__args)...)
1753	{
1754	  _M_thread = std::thread{&_Async_state_impl::_M_run, this};
1755	}
1756
1757      // Must not destroy _M_result and _M_fn until the thread finishes.
1758      // Call join() directly rather than through _M_join() because no other
1759      // thread can be referring to this state if it is being destroyed.
1760      ~_Async_state_impl()
1761      {
1762	if (_M_thread.joinable())
1763	  _M_thread.join();
1764      }
1765
1766    private:
1767      void
1768      _M_run()
1769      {
1770	__try
1771	  {
1772	    _M_set_result(_S_task_setter(_M_result, _M_fn));
1773	  }
1774	__catch (const __cxxabiv1::__forced_unwind&)
1775	  {
1776	    // make the shared state ready on thread cancellation
1777	    if (static_cast<bool>(_M_result))
1778	      this->_M_break_promise(std::move(_M_result));
1779	    __throw_exception_again;
1780	  }
1781      }
1782
1783      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1784      _Ptr_type _M_result;
1785      _BoundFn _M_fn;
1786    };
1787  /// @endcond
1788
1789  /// async
1790  template<typename _Fn, typename... _Args>
1791    _GLIBCXX_NODISCARD future<__async_result_of<_Fn, _Args...>>
1792    async(launch __policy, _Fn&& __fn, _Args&&... __args)
1793    {
1794      using _Wr = std::thread::_Call_wrapper<_Fn, _Args...>;
1795      using _As = __future_base::_Async_state_impl<_Wr>;
1796      using _Ds = __future_base::_Deferred_state<_Wr>;
1797
1798      std::shared_ptr<__future_base::_State_base> __state;
1799      if ((__policy & launch::async) == launch::async)
1800	{
1801	  __try
1802	    {
1803	      __state = std::make_shared<_As>(std::forward<_Fn>(__fn),
1804					      std::forward<_Args>(__args)...);
1805	    }
1806#if __cpp_exceptions
1807	  catch(const system_error& __e)
1808	    {
1809	      if (__e.code() != errc::resource_unavailable_try_again
1810		  || (__policy & launch::deferred) != launch::deferred)
1811		throw;
1812	    }
1813#endif
1814	}
1815      if (!__state)
1816	{
1817	  __state = std::make_shared<_Ds>(std::forward<_Fn>(__fn),
1818					  std::forward<_Args>(__args)...);
1819	}
1820      return future<__async_result_of<_Fn, _Args...>>(std::move(__state));
1821    }
1822
1823  /// async, potential overload
1824  template<typename _Fn, typename... _Args>
1825    _GLIBCXX_NODISCARD inline future<__async_result_of<_Fn, _Args...>>
1826    async(_Fn&& __fn, _Args&&... __args)
1827    {
1828      return std::async(launch::async|launch::deferred,
1829			std::forward<_Fn>(__fn),
1830			std::forward<_Args>(__args)...);
1831    }
1832
1833#endif // _GLIBCXX_ASYNC_ABI_COMPAT
1834#endif // _GLIBCXX_HAS_GTHREADS
1835
1836  /// @} group futures
1837_GLIBCXX_END_NAMESPACE_VERSION
1838} // namespace
1839
1840#endif // C++11
1841
1842#endif // _GLIBCXX_FUTURE
1843