xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/std/future (revision 82d56013d7b633d116a93943de88e08335357a7c)
1// <future> -*- C++ -*-
2
3// Copyright (C) 2009-2020 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/future
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_FUTURE
30#define _GLIBCXX_FUTURE 1
31
32#pragma GCC system_header
33
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <mutex>
39#include <thread>
40#include <condition_variable>
41#include <system_error>
42#include <atomic>
43#include <bits/atomic_futex.h>
44#include <bits/functexcept.h>
45#include <bits/invoke.h>
46#include <bits/unique_ptr.h>
47#include <bits/shared_ptr.h>
48#include <bits/std_function.h>
49#include <bits/uses_allocator.h>
50#include <bits/allocated_ptr.h>
51#include <ext/aligned_buffer.h>
52
53namespace std _GLIBCXX_VISIBILITY(default)
54{
55_GLIBCXX_BEGIN_NAMESPACE_VERSION
56
57  /**
58   * @defgroup futures Futures
59   * @ingroup concurrency
60   *
61   * Classes for futures support.
62   * @{
63   */
64
65  /// Error code for futures
66  enum class future_errc
67  {
68    future_already_retrieved = 1,
69    promise_already_satisfied,
70    no_state,
71    broken_promise
72  };
73
74  /// Specialization.
75  template<>
76    struct is_error_code_enum<future_errc> : public true_type { };
77
78  /// Points to a statically-allocated object derived from error_category.
79  const error_category&
80  future_category() noexcept;
81
82  /// Overload for make_error_code.
83  inline error_code
84  make_error_code(future_errc __errc) noexcept
85  { return error_code(static_cast<int>(__errc), future_category()); }
86
87  /// Overload for make_error_condition.
88  inline error_condition
89  make_error_condition(future_errc __errc) noexcept
90  { return error_condition(static_cast<int>(__errc), future_category()); }
91
92  /**
93   *  @brief Exception type thrown by futures.
94   *  @ingroup exceptions
95   */
96  class future_error : public logic_error
97  {
98  public:
99    explicit
100    future_error(future_errc __errc)
101    : future_error(std::make_error_code(__errc))
102    { }
103
104    virtual ~future_error() noexcept;
105
106    virtual const char*
107    what() const noexcept;
108
109    const error_code&
110    code() const noexcept { return _M_code; }
111
112  private:
113    explicit
114    future_error(error_code __ec)
115    : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
116    { }
117
118    friend void __throw_future_error(int);
119
120    error_code 			_M_code;
121  };
122
123  // Forward declarations.
124  template<typename _Res>
125    class future;
126
127  template<typename _Res>
128    class shared_future;
129
130  template<typename _Signature>
131    class packaged_task;
132
133  template<typename _Res>
134    class promise;
135
136  /// Launch code for futures
137  enum class launch
138  {
139    async = 1,
140    deferred = 2
141  };
142
143  constexpr launch operator&(launch __x, launch __y)
144  {
145    return static_cast<launch>(
146	static_cast<int>(__x) & static_cast<int>(__y));
147  }
148
149  constexpr launch operator|(launch __x, launch __y)
150  {
151    return static_cast<launch>(
152	static_cast<int>(__x) | static_cast<int>(__y));
153  }
154
155  constexpr launch operator^(launch __x, launch __y)
156  {
157    return static_cast<launch>(
158	static_cast<int>(__x) ^ static_cast<int>(__y));
159  }
160
161  constexpr launch operator~(launch __x)
162  { return static_cast<launch>(~static_cast<int>(__x)); }
163
164  inline launch& operator&=(launch& __x, launch __y)
165  { return __x = __x & __y; }
166
167  inline launch& operator|=(launch& __x, launch __y)
168  { return __x = __x | __y; }
169
170  inline launch& operator^=(launch& __x, launch __y)
171  { return __x = __x ^ __y; }
172
173  /// Status code for futures
174  enum class future_status
175  {
176    ready,
177    timeout,
178    deferred
179  };
180
181  // _GLIBCXX_RESOLVE_LIB_DEFECTS
182  // 2021. Further incorrect usages of result_of
183  template<typename _Fn, typename... _Args>
184    using __async_result_of = typename __invoke_result<
185      typename decay<_Fn>::type, typename decay<_Args>::type...>::type;
186
187  template<typename _Fn, typename... _Args>
188    future<__async_result_of<_Fn, _Args...>>
189    async(launch __policy, _Fn&& __fn, _Args&&... __args);
190
191  template<typename _Fn, typename... _Args>
192    future<__async_result_of<_Fn, _Args...>>
193    async(_Fn&& __fn, _Args&&... __args);
194
195#if defined(_GLIBCXX_HAS_GTHREADS)
196
197  /// Base class and enclosing scope.
198  struct __future_base
199  {
200    /// Base class for results.
201    struct _Result_base
202    {
203      exception_ptr		_M_error;
204
205      _Result_base(const _Result_base&) = delete;
206      _Result_base& operator=(const _Result_base&) = delete;
207
208      // _M_destroy() allows derived classes to control deallocation
209      virtual void _M_destroy() = 0;
210
211      struct _Deleter
212      {
213	void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
214      };
215
216    protected:
217      _Result_base();
218      virtual ~_Result_base();
219    };
220
221    /// A unique_ptr for result objects.
222    template<typename _Res>
223      using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
224
225    /// A result object that has storage for an object of type _Res.
226    template<typename _Res>
227      struct _Result : _Result_base
228      {
229      private:
230	__gnu_cxx::__aligned_buffer<_Res>	_M_storage;
231	bool 					_M_initialized;
232
233      public:
234	typedef _Res result_type;
235
236	_Result() noexcept : _M_initialized() { }
237
238	~_Result()
239	{
240	  if (_M_initialized)
241	    _M_value().~_Res();
242	}
243
244	// Return lvalue, future will add const or rvalue-reference
245	_Res&
246	_M_value() noexcept { return *_M_storage._M_ptr(); }
247
248	void
249	_M_set(const _Res& __res)
250	{
251	  ::new (_M_storage._M_addr()) _Res(__res);
252	  _M_initialized = true;
253	}
254
255	void
256	_M_set(_Res&& __res)
257	{
258	  ::new (_M_storage._M_addr()) _Res(std::move(__res));
259	  _M_initialized = true;
260	}
261
262      private:
263	void _M_destroy() { delete this; }
264    };
265
266    /// A result object that uses an allocator.
267    template<typename _Res, typename _Alloc>
268      struct _Result_alloc final : _Result<_Res>, _Alloc
269      {
270	using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
271
272        explicit
273	_Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
274	{ }
275
276      private:
277	void _M_destroy()
278	{
279	  __allocator_type __a(*this);
280	  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
281	  this->~_Result_alloc();
282	}
283      };
284
285    // Create a result object that uses an allocator.
286    template<typename _Res, typename _Allocator>
287      static _Ptr<_Result_alloc<_Res, _Allocator>>
288      _S_allocate_result(const _Allocator& __a)
289      {
290	using __result_type = _Result_alloc<_Res, _Allocator>;
291	typename __result_type::__allocator_type __a2(__a);
292	auto __guard = std::__allocate_guarded(__a2);
293	__result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
294	__guard = nullptr;
295	return _Ptr<__result_type>(__p);
296      }
297
298    // Keep it simple for std::allocator.
299    template<typename _Res, typename _Tp>
300      static _Ptr<_Result<_Res>>
301      _S_allocate_result(const std::allocator<_Tp>& __a)
302      {
303	return _Ptr<_Result<_Res>>(new _Result<_Res>);
304      }
305
306    // Base class for various types of shared state created by an
307    // asynchronous provider (such as a std::promise) and shared with one
308    // or more associated futures.
309    class _State_baseV2
310    {
311      typedef _Ptr<_Result_base> _Ptr_type;
312
313      enum _Status : unsigned {
314	__not_ready,
315	__ready
316      };
317
318      _Ptr_type			_M_result;
319      __atomic_futex_unsigned<>	_M_status;
320      atomic_flag         	_M_retrieved = ATOMIC_FLAG_INIT;
321      once_flag			_M_once;
322
323    public:
324      _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
325	{ }
326      _State_baseV2(const _State_baseV2&) = delete;
327      _State_baseV2& operator=(const _State_baseV2&) = delete;
328      virtual ~_State_baseV2() = default;
329
330      _Result_base&
331      wait()
332      {
333	// Run any deferred function or join any asynchronous thread:
334	_M_complete_async();
335	// Acquire MO makes sure this synchronizes with the thread that made
336	// the future ready.
337	_M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
338	return *_M_result;
339      }
340
341      template<typename _Rep, typename _Period>
342        future_status
343        wait_for(const chrono::duration<_Rep, _Period>& __rel)
344        {
345	  // First, check if the future has been made ready.  Use acquire MO
346	  // to synchronize with the thread that made it ready.
347	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
348	    return future_status::ready;
349
350	  if (_M_is_deferred_future())
351	    return future_status::deferred;
352
353	  // Don't wait unless the relative time is greater than zero.
354	  if (__rel > __rel.zero()
355	      && _M_status._M_load_when_equal_for(_Status::__ready,
356						  memory_order_acquire,
357						  __rel))
358	    {
359	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
360	      // 2100.  timed waiting functions must also join
361	      // This call is a no-op by default except on an async future,
362	      // in which case the async thread is joined.  It's also not a
363	      // no-op for a deferred future, but such a future will never
364	      // reach this point because it returns future_status::deferred
365	      // instead of waiting for the future to become ready (see
366	      // above).  Async futures synchronize in this call, so we need
367	      // no further synchronization here.
368	      _M_complete_async();
369
370	      return future_status::ready;
371	    }
372	  return future_status::timeout;
373	}
374
375      template<typename _Clock, typename _Duration>
376        future_status
377        wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
378        {
379#if __cplusplus > 201703L
380	  static_assert(chrono::is_clock_v<_Clock>);
381#endif
382	  // First, check if the future has been made ready.  Use acquire MO
383	  // to synchronize with the thread that made it ready.
384	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
385	    return future_status::ready;
386
387	  if (_M_is_deferred_future())
388	    return future_status::deferred;
389
390	  if (_M_status._M_load_when_equal_until(_Status::__ready,
391						 memory_order_acquire,
392						 __abs))
393	    {
394	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
395	      // 2100.  timed waiting functions must also join
396	      // See wait_for(...) above.
397	      _M_complete_async();
398
399	      return future_status::ready;
400	    }
401	  return future_status::timeout;
402	}
403
404      // Provide a result to the shared state and make it ready.
405      // Calls at most once: _M_result = __res();
406      void
407      _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
408      {
409	bool __did_set = false;
410        // all calls to this function are serialized,
411        // side-effects of invoking __res only happen once
412	call_once(_M_once, &_State_baseV2::_M_do_set, this,
413		  std::__addressof(__res), std::__addressof(__did_set));
414	if (__did_set)
415	  // Use release MO to synchronize with observers of the ready state.
416	  _M_status._M_store_notify_all(_Status::__ready,
417					memory_order_release);
418	else if (!__ignore_failure)
419          __throw_future_error(int(future_errc::promise_already_satisfied));
420      }
421
422      // Provide a result to the shared state but delay making it ready
423      // until the calling thread exits.
424      // Calls at most once: _M_result = __res();
425      void
426      _M_set_delayed_result(function<_Ptr_type()> __res,
427			    weak_ptr<_State_baseV2> __self)
428      {
429	bool __did_set = false;
430	unique_ptr<_Make_ready> __mr{new _Make_ready};
431        // all calls to this function are serialized,
432        // side-effects of invoking __res only happen once
433	call_once(_M_once, &_State_baseV2::_M_do_set, this,
434		  std::__addressof(__res), std::__addressof(__did_set));
435	if (!__did_set)
436          __throw_future_error(int(future_errc::promise_already_satisfied));
437	__mr->_M_shared_state = std::move(__self);
438	__mr->_M_set();
439	__mr.release();
440      }
441
442      // Abandon this shared state.
443      void
444      _M_break_promise(_Ptr_type __res)
445      {
446	if (static_cast<bool>(__res))
447	  {
448	    __res->_M_error =
449	      make_exception_ptr(future_error(future_errc::broken_promise));
450	    // This function is only called when the last asynchronous result
451	    // provider is abandoning this shared state, so noone can be
452	    // trying to make the shared state ready at the same time, and
453	    // we can access _M_result directly instead of through call_once.
454	    _M_result.swap(__res);
455	    // Use release MO to synchronize with observers of the ready state.
456	    _M_status._M_store_notify_all(_Status::__ready,
457					  memory_order_release);
458	  }
459      }
460
461      // Called when this object is first passed to a future.
462      void
463      _M_set_retrieved_flag()
464      {
465	if (_M_retrieved.test_and_set())
466	  __throw_future_error(int(future_errc::future_already_retrieved));
467      }
468
469      template<typename _Res, typename _Arg>
470        struct _Setter;
471
472      // set lvalues
473      template<typename _Res, typename _Arg>
474        struct _Setter<_Res, _Arg&>
475        {
476          // check this is only used by promise<R>::set_value(const R&)
477          // or promise<R&>::set_value(R&)
478          static_assert(is_same<_Res, _Arg&>::value  // promise<R&>
479              || is_same<const _Res, _Arg>::value,   // promise<R>
480              "Invalid specialisation");
481
482	  // Used by std::promise to copy construct the result.
483          typename promise<_Res>::_Ptr_type operator()() const
484          {
485            _M_promise->_M_storage->_M_set(*_M_arg);
486            return std::move(_M_promise->_M_storage);
487          }
488          promise<_Res>*    _M_promise;
489          _Arg*             _M_arg;
490        };
491
492      // set rvalues
493      template<typename _Res>
494        struct _Setter<_Res, _Res&&>
495        {
496	  // Used by std::promise to move construct the result.
497          typename promise<_Res>::_Ptr_type operator()() const
498          {
499            _M_promise->_M_storage->_M_set(std::move(*_M_arg));
500            return std::move(_M_promise->_M_storage);
501          }
502          promise<_Res>*    _M_promise;
503          _Res*             _M_arg;
504        };
505
506      // set void
507      template<typename _Res>
508	struct _Setter<_Res, void>
509	{
510	  static_assert(is_void<_Res>::value, "Only used for promise<void>");
511
512	  typename promise<_Res>::_Ptr_type operator()() const
513	  { return std::move(_M_promise->_M_storage); }
514
515	  promise<_Res>*    _M_promise;
516	};
517
518      struct __exception_ptr_tag { };
519
520      // set exceptions
521      template<typename _Res>
522        struct _Setter<_Res, __exception_ptr_tag>
523        {
524	  // Used by std::promise to store an exception as the result.
525          typename promise<_Res>::_Ptr_type operator()() const
526          {
527            _M_promise->_M_storage->_M_error = *_M_ex;
528            return std::move(_M_promise->_M_storage);
529          }
530
531          promise<_Res>*   _M_promise;
532          exception_ptr*    _M_ex;
533        };
534
535      template<typename _Res, typename _Arg>
536        static _Setter<_Res, _Arg&&>
537        __setter(promise<_Res>* __prom, _Arg&& __arg)
538        {
539	  _S_check(__prom->_M_future);
540          return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
541        }
542
543      template<typename _Res>
544        static _Setter<_Res, __exception_ptr_tag>
545        __setter(exception_ptr& __ex, promise<_Res>* __prom)
546        {
547	  _S_check(__prom->_M_future);
548          return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
549        }
550
551      template<typename _Res>
552	static _Setter<_Res, void>
553	__setter(promise<_Res>* __prom)
554	{
555	  _S_check(__prom->_M_future);
556	  return _Setter<_Res, void>{ __prom };
557	}
558
559      template<typename _Tp>
560        static void
561        _S_check(const shared_ptr<_Tp>& __p)
562        {
563          if (!static_cast<bool>(__p))
564            __throw_future_error((int)future_errc::no_state);
565        }
566
567    private:
568      // The function invoked with std::call_once(_M_once, ...).
569      void
570      _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
571      {
572        _Ptr_type __res = (*__f)();
573        // Notify the caller that we did try to set; if we do not throw an
574        // exception, the caller will be aware that it did set (e.g., see
575        // _M_set_result).
576	*__did_set = true;
577        _M_result.swap(__res); // nothrow
578      }
579
580      // Wait for completion of async function.
581      virtual void _M_complete_async() { }
582
583      // Return true if state corresponds to a deferred function.
584      virtual bool _M_is_deferred_future() const { return false; }
585
586      struct _Make_ready final : __at_thread_exit_elt
587      {
588	weak_ptr<_State_baseV2> _M_shared_state;
589	static void _S_run(void*);
590	void _M_set();
591      };
592    };
593
594#ifdef _GLIBCXX_ASYNC_ABI_COMPAT
595    class _State_base;
596    class _Async_state_common;
597#else
598    using _State_base = _State_baseV2;
599    class _Async_state_commonV2;
600#endif
601
602    template<typename _BoundFn,
603	     typename _Res = decltype(std::declval<_BoundFn&>()())>
604      class _Deferred_state;
605
606    template<typename _BoundFn,
607	     typename _Res = decltype(std::declval<_BoundFn&>()())>
608      class _Async_state_impl;
609
610    template<typename _Signature>
611      class _Task_state_base;
612
613    template<typename _Fn, typename _Alloc, typename _Signature>
614      class _Task_state;
615
616    template<typename _BoundFn>
617      static std::shared_ptr<_State_base>
618      _S_make_deferred_state(_BoundFn&& __fn);
619
620    template<typename _BoundFn>
621      static std::shared_ptr<_State_base>
622      _S_make_async_state(_BoundFn&& __fn);
623
624    template<typename _Res_ptr, typename _Fn,
625	     typename _Res = typename _Res_ptr::element_type::result_type>
626      struct _Task_setter;
627
628    template<typename _Res_ptr, typename _BoundFn>
629      static _Task_setter<_Res_ptr, _BoundFn>
630      _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
631      {
632	return { std::__addressof(__ptr), std::__addressof(__call) };
633      }
634  };
635
636  /// Partial specialization for reference types.
637  template<typename _Res>
638    struct __future_base::_Result<_Res&> : __future_base::_Result_base
639    {
640      typedef _Res& result_type;
641
642      _Result() noexcept : _M_value_ptr() { }
643
644      void
645      _M_set(_Res& __res) noexcept
646      { _M_value_ptr = std::addressof(__res); }
647
648      _Res& _M_get() noexcept { return *_M_value_ptr; }
649
650    private:
651      _Res* 			_M_value_ptr;
652
653      void _M_destroy() { delete this; }
654    };
655
656  /// Explicit specialization for void.
657  template<>
658    struct __future_base::_Result<void> : __future_base::_Result_base
659    {
660      typedef void result_type;
661
662    private:
663      void _M_destroy() { delete this; }
664    };
665
666#ifndef _GLIBCXX_ASYNC_ABI_COMPAT
667
668  // Allow _Setter objects to be stored locally in std::function
669  template<typename _Res, typename _Arg>
670    struct __is_location_invariant
671    <__future_base::_State_base::_Setter<_Res, _Arg>>
672    : true_type { };
673
674  // Allow _Task_setter objects to be stored locally in std::function
675  template<typename _Res_ptr, typename _Fn, typename _Res>
676    struct __is_location_invariant
677    <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
678    : true_type { };
679
680  /// Common implementation for future and shared_future.
681  template<typename _Res>
682    class __basic_future : public __future_base
683    {
684    protected:
685      typedef shared_ptr<_State_base>		__state_type;
686      typedef __future_base::_Result<_Res>&	__result_type;
687
688    private:
689      __state_type 		_M_state;
690
691    public:
692      // Disable copying.
693      __basic_future(const __basic_future&) = delete;
694      __basic_future& operator=(const __basic_future&) = delete;
695
696      bool
697      valid() const noexcept { return static_cast<bool>(_M_state); }
698
699      void
700      wait() const
701      {
702        _State_base::_S_check(_M_state);
703        _M_state->wait();
704      }
705
706      template<typename _Rep, typename _Period>
707        future_status
708        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
709        {
710          _State_base::_S_check(_M_state);
711          return _M_state->wait_for(__rel);
712        }
713
714      template<typename _Clock, typename _Duration>
715        future_status
716        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
717        {
718          _State_base::_S_check(_M_state);
719          return _M_state->wait_until(__abs);
720        }
721
722    protected:
723      /// Wait for the state to be ready and rethrow any stored exception
724      __result_type
725      _M_get_result() const
726      {
727        _State_base::_S_check(_M_state);
728        _Result_base& __res = _M_state->wait();
729        if (!(__res._M_error == 0))
730          rethrow_exception(__res._M_error);
731        return static_cast<__result_type>(__res);
732      }
733
734      void _M_swap(__basic_future& __that) noexcept
735      {
736        _M_state.swap(__that._M_state);
737      }
738
739      // Construction of a future by promise::get_future()
740      explicit
741      __basic_future(const __state_type& __state) : _M_state(__state)
742      {
743        _State_base::_S_check(_M_state);
744        _M_state->_M_set_retrieved_flag();
745      }
746
747      // Copy construction from a shared_future
748      explicit
749      __basic_future(const shared_future<_Res>&) noexcept;
750
751      // Move construction from a shared_future
752      explicit
753      __basic_future(shared_future<_Res>&&) noexcept;
754
755      // Move construction from a future
756      explicit
757      __basic_future(future<_Res>&&) noexcept;
758
759      constexpr __basic_future() noexcept : _M_state() { }
760
761      struct _Reset
762      {
763        explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
764        ~_Reset() { _M_fut._M_state.reset(); }
765        __basic_future& _M_fut;
766      };
767    };
768
769
770  /// Primary template for future.
771  template<typename _Res>
772    class future : public __basic_future<_Res>
773    {
774      friend class promise<_Res>;
775      template<typename> friend class packaged_task;
776      template<typename _Fn, typename... _Args>
777        friend future<__async_result_of<_Fn, _Args...>>
778        async(launch, _Fn&&, _Args&&...);
779
780      typedef __basic_future<_Res> _Base_type;
781      typedef typename _Base_type::__state_type __state_type;
782
783      explicit
784      future(const __state_type& __state) : _Base_type(__state) { }
785
786    public:
787      constexpr future() noexcept : _Base_type() { }
788
789      /// Move constructor
790      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
791
792      // Disable copying
793      future(const future&) = delete;
794      future& operator=(const future&) = delete;
795
796      future& operator=(future&& __fut) noexcept
797      {
798        future(std::move(__fut))._M_swap(*this);
799        return *this;
800      }
801
802      /// Retrieving the value
803      _Res
804      get()
805      {
806        typename _Base_type::_Reset __reset(*this);
807        return std::move(this->_M_get_result()._M_value());
808      }
809
810      shared_future<_Res> share() noexcept;
811    };
812
813  /// Partial specialization for future<R&>
814  template<typename _Res>
815    class future<_Res&> : public __basic_future<_Res&>
816    {
817      friend class promise<_Res&>;
818      template<typename> friend class packaged_task;
819      template<typename _Fn, typename... _Args>
820        friend future<__async_result_of<_Fn, _Args...>>
821        async(launch, _Fn&&, _Args&&...);
822
823      typedef __basic_future<_Res&> _Base_type;
824      typedef typename _Base_type::__state_type __state_type;
825
826      explicit
827      future(const __state_type& __state) : _Base_type(__state) { }
828
829    public:
830      constexpr future() noexcept : _Base_type() { }
831
832      /// Move constructor
833      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
834
835      // Disable copying
836      future(const future&) = delete;
837      future& operator=(const future&) = delete;
838
839      future& operator=(future&& __fut) noexcept
840      {
841        future(std::move(__fut))._M_swap(*this);
842        return *this;
843      }
844
845      /// Retrieving the value
846      _Res&
847      get()
848      {
849        typename _Base_type::_Reset __reset(*this);
850        return this->_M_get_result()._M_get();
851      }
852
853      shared_future<_Res&> share() noexcept;
854    };
855
856  /// Explicit specialization for future<void>
857  template<>
858    class future<void> : public __basic_future<void>
859    {
860      friend class promise<void>;
861      template<typename> friend class packaged_task;
862      template<typename _Fn, typename... _Args>
863        friend future<__async_result_of<_Fn, _Args...>>
864        async(launch, _Fn&&, _Args&&...);
865
866      typedef __basic_future<void> _Base_type;
867      typedef typename _Base_type::__state_type __state_type;
868
869      explicit
870      future(const __state_type& __state) : _Base_type(__state) { }
871
872    public:
873      constexpr future() noexcept : _Base_type() { }
874
875      /// Move constructor
876      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
877
878      // Disable copying
879      future(const future&) = delete;
880      future& operator=(const future&) = delete;
881
882      future& operator=(future&& __fut) noexcept
883      {
884        future(std::move(__fut))._M_swap(*this);
885        return *this;
886      }
887
888      /// Retrieving the value
889      void
890      get()
891      {
892        typename _Base_type::_Reset __reset(*this);
893        this->_M_get_result();
894      }
895
896      shared_future<void> share() noexcept;
897    };
898
899
900  /// Primary template for shared_future.
901  template<typename _Res>
902    class shared_future : public __basic_future<_Res>
903    {
904      typedef __basic_future<_Res> _Base_type;
905
906    public:
907      constexpr shared_future() noexcept : _Base_type() { }
908
909      /// Copy constructor
910      shared_future(const shared_future& __sf) noexcept : _Base_type(__sf) { }
911
912      /// Construct from a future rvalue
913      shared_future(future<_Res>&& __uf) noexcept
914      : _Base_type(std::move(__uf))
915      { }
916
917      /// Construct from a shared_future rvalue
918      shared_future(shared_future&& __sf) noexcept
919      : _Base_type(std::move(__sf))
920      { }
921
922      shared_future& operator=(const shared_future& __sf) noexcept
923      {
924        shared_future(__sf)._M_swap(*this);
925        return *this;
926      }
927
928      shared_future& operator=(shared_future&& __sf) noexcept
929      {
930        shared_future(std::move(__sf))._M_swap(*this);
931        return *this;
932      }
933
934      /// Retrieving the value
935      const _Res&
936      get() const { return this->_M_get_result()._M_value(); }
937    };
938
939  /// Partial specialization for shared_future<R&>
940  template<typename _Res>
941    class shared_future<_Res&> : public __basic_future<_Res&>
942    {
943      typedef __basic_future<_Res&>           _Base_type;
944
945    public:
946      constexpr shared_future() noexcept : _Base_type() { }
947
948      /// Copy constructor
949      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
950
951      /// Construct from a future rvalue
952      shared_future(future<_Res&>&& __uf) noexcept
953      : _Base_type(std::move(__uf))
954      { }
955
956      /// Construct from a shared_future rvalue
957      shared_future(shared_future&& __sf) noexcept
958      : _Base_type(std::move(__sf))
959      { }
960
961      shared_future& operator=(const shared_future& __sf)
962      {
963        shared_future(__sf)._M_swap(*this);
964        return *this;
965      }
966
967      shared_future& operator=(shared_future&& __sf) noexcept
968      {
969        shared_future(std::move(__sf))._M_swap(*this);
970        return *this;
971      }
972
973      /// Retrieving the value
974      _Res&
975      get() const { return this->_M_get_result()._M_get(); }
976    };
977
978  /// Explicit specialization for shared_future<void>
979  template<>
980    class shared_future<void> : public __basic_future<void>
981    {
982      typedef __basic_future<void> _Base_type;
983
984    public:
985      constexpr shared_future() noexcept : _Base_type() { }
986
987      /// Copy constructor
988      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
989
990      /// Construct from a future rvalue
991      shared_future(future<void>&& __uf) noexcept
992      : _Base_type(std::move(__uf))
993      { }
994
995      /// Construct from a shared_future rvalue
996      shared_future(shared_future&& __sf) noexcept
997      : _Base_type(std::move(__sf))
998      { }
999
1000      shared_future& operator=(const shared_future& __sf)
1001      {
1002        shared_future(__sf)._M_swap(*this);
1003        return *this;
1004      }
1005
1006      shared_future& operator=(shared_future&& __sf) noexcept
1007      {
1008        shared_future(std::move(__sf))._M_swap(*this);
1009        return *this;
1010      }
1011
1012      // Retrieving the value
1013      void
1014      get() const { this->_M_get_result(); }
1015    };
1016
1017  // Now we can define the protected __basic_future constructors.
1018  template<typename _Res>
1019    inline __basic_future<_Res>::
1020    __basic_future(const shared_future<_Res>& __sf) noexcept
1021    : _M_state(__sf._M_state)
1022    { }
1023
1024  template<typename _Res>
1025    inline __basic_future<_Res>::
1026    __basic_future(shared_future<_Res>&& __sf) noexcept
1027    : _M_state(std::move(__sf._M_state))
1028    { }
1029
1030  template<typename _Res>
1031    inline __basic_future<_Res>::
1032    __basic_future(future<_Res>&& __uf) noexcept
1033    : _M_state(std::move(__uf._M_state))
1034    { }
1035
1036  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1037  // 2556. Wide contract for future::share()
1038  template<typename _Res>
1039    inline shared_future<_Res>
1040    future<_Res>::share() noexcept
1041    { return shared_future<_Res>(std::move(*this)); }
1042
1043  template<typename _Res>
1044    inline shared_future<_Res&>
1045    future<_Res&>::share() noexcept
1046    { return shared_future<_Res&>(std::move(*this)); }
1047
1048  inline shared_future<void>
1049  future<void>::share() noexcept
1050  { return shared_future<void>(std::move(*this)); }
1051
1052  /// Primary template for promise
1053  template<typename _Res>
1054    class promise
1055    {
1056      typedef __future_base::_State_base 	_State;
1057      typedef __future_base::_Result<_Res>	_Res_type;
1058      typedef __future_base::_Ptr<_Res_type>	_Ptr_type;
1059      template<typename, typename> friend class _State::_Setter;
1060      friend _State;
1061
1062      shared_ptr<_State>                        _M_future;
1063      _Ptr_type                                 _M_storage;
1064
1065    public:
1066      promise()
1067      : _M_future(std::make_shared<_State>()),
1068	_M_storage(new _Res_type())
1069      { }
1070
1071      promise(promise&& __rhs) noexcept
1072      : _M_future(std::move(__rhs._M_future)),
1073	_M_storage(std::move(__rhs._M_storage))
1074      { }
1075
1076      template<typename _Allocator>
1077        promise(allocator_arg_t, const _Allocator& __a)
1078        : _M_future(std::allocate_shared<_State>(__a)),
1079	  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1080        { }
1081
1082      template<typename _Allocator>
1083        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1084        : _M_future(std::move(__rhs._M_future)),
1085	  _M_storage(std::move(__rhs._M_storage))
1086        { }
1087
1088      promise(const promise&) = delete;
1089
1090      ~promise()
1091      {
1092        if (static_cast<bool>(_M_future) && !_M_future.unique())
1093          _M_future->_M_break_promise(std::move(_M_storage));
1094      }
1095
1096      // Assignment
1097      promise&
1098      operator=(promise&& __rhs) noexcept
1099      {
1100        promise(std::move(__rhs)).swap(*this);
1101        return *this;
1102      }
1103
1104      promise& operator=(const promise&) = delete;
1105
1106      void
1107      swap(promise& __rhs) noexcept
1108      {
1109        _M_future.swap(__rhs._M_future);
1110        _M_storage.swap(__rhs._M_storage);
1111      }
1112
1113      // Retrieving the result
1114      future<_Res>
1115      get_future()
1116      { return future<_Res>(_M_future); }
1117
1118      // Setting the result
1119      void
1120      set_value(const _Res& __r)
1121      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1122
1123      void
1124      set_value(_Res&& __r)
1125      { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1126
1127      void
1128      set_exception(exception_ptr __p)
1129      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1130
1131      void
1132      set_value_at_thread_exit(const _Res& __r)
1133      {
1134	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1135					 _M_future);
1136      }
1137
1138      void
1139      set_value_at_thread_exit(_Res&& __r)
1140      {
1141	_M_future->_M_set_delayed_result(
1142	    _State::__setter(this, std::move(__r)), _M_future);
1143      }
1144
1145      void
1146      set_exception_at_thread_exit(exception_ptr __p)
1147      {
1148	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1149					 _M_future);
1150      }
1151    };
1152
1153  template<typename _Res>
1154    inline void
1155    swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1156    { __x.swap(__y); }
1157
1158  template<typename _Res, typename _Alloc>
1159    struct uses_allocator<promise<_Res>, _Alloc>
1160    : public true_type { };
1161
1162
1163  /// Partial specialization for promise<R&>
1164  template<typename _Res>
1165    class promise<_Res&>
1166    {
1167      typedef __future_base::_State_base	_State;
1168      typedef __future_base::_Result<_Res&>	_Res_type;
1169      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1170      template<typename, typename> friend class _State::_Setter;
1171      friend _State;
1172
1173      shared_ptr<_State>                        _M_future;
1174      _Ptr_type                                 _M_storage;
1175
1176    public:
1177      promise()
1178      : _M_future(std::make_shared<_State>()),
1179	_M_storage(new _Res_type())
1180      { }
1181
1182      promise(promise&& __rhs) noexcept
1183      : _M_future(std::move(__rhs._M_future)),
1184	_M_storage(std::move(__rhs._M_storage))
1185      { }
1186
1187      template<typename _Allocator>
1188        promise(allocator_arg_t, const _Allocator& __a)
1189        : _M_future(std::allocate_shared<_State>(__a)),
1190	  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1191        { }
1192
1193      template<typename _Allocator>
1194        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1195        : _M_future(std::move(__rhs._M_future)),
1196	  _M_storage(std::move(__rhs._M_storage))
1197        { }
1198
1199      promise(const promise&) = delete;
1200
1201      ~promise()
1202      {
1203        if (static_cast<bool>(_M_future) && !_M_future.unique())
1204          _M_future->_M_break_promise(std::move(_M_storage));
1205      }
1206
1207      // Assignment
1208      promise&
1209      operator=(promise&& __rhs) noexcept
1210      {
1211        promise(std::move(__rhs)).swap(*this);
1212        return *this;
1213      }
1214
1215      promise& operator=(const promise&) = delete;
1216
1217      void
1218      swap(promise& __rhs) noexcept
1219      {
1220        _M_future.swap(__rhs._M_future);
1221        _M_storage.swap(__rhs._M_storage);
1222      }
1223
1224      // Retrieving the result
1225      future<_Res&>
1226      get_future()
1227      { return future<_Res&>(_M_future); }
1228
1229      // Setting the result
1230      void
1231      set_value(_Res& __r)
1232      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1233
1234      void
1235      set_exception(exception_ptr __p)
1236      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1237
1238      void
1239      set_value_at_thread_exit(_Res& __r)
1240      {
1241	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1242					 _M_future);
1243      }
1244
1245      void
1246      set_exception_at_thread_exit(exception_ptr __p)
1247      {
1248	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1249					 _M_future);
1250      }
1251    };
1252
1253  /// Explicit specialization for promise<void>
1254  template<>
1255    class promise<void>
1256    {
1257      typedef __future_base::_State_base	_State;
1258      typedef __future_base::_Result<void>	_Res_type;
1259      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1260      template<typename, typename> friend class _State::_Setter;
1261      friend _State;
1262
1263      shared_ptr<_State>                        _M_future;
1264      _Ptr_type                                 _M_storage;
1265
1266    public:
1267      promise()
1268      : _M_future(std::make_shared<_State>()),
1269	_M_storage(new _Res_type())
1270      { }
1271
1272      promise(promise&& __rhs) noexcept
1273      : _M_future(std::move(__rhs._M_future)),
1274	_M_storage(std::move(__rhs._M_storage))
1275      { }
1276
1277      template<typename _Allocator>
1278        promise(allocator_arg_t, const _Allocator& __a)
1279        : _M_future(std::allocate_shared<_State>(__a)),
1280	  _M_storage(__future_base::_S_allocate_result<void>(__a))
1281        { }
1282
1283      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1284      // 2095.  missing constructors needed for uses-allocator construction
1285      template<typename _Allocator>
1286        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1287        : _M_future(std::move(__rhs._M_future)),
1288	  _M_storage(std::move(__rhs._M_storage))
1289        { }
1290
1291      promise(const promise&) = delete;
1292
1293      ~promise()
1294      {
1295        if (static_cast<bool>(_M_future) && !_M_future.unique())
1296          _M_future->_M_break_promise(std::move(_M_storage));
1297      }
1298
1299      // Assignment
1300      promise&
1301      operator=(promise&& __rhs) noexcept
1302      {
1303        promise(std::move(__rhs)).swap(*this);
1304        return *this;
1305      }
1306
1307      promise& operator=(const promise&) = delete;
1308
1309      void
1310      swap(promise& __rhs) noexcept
1311      {
1312        _M_future.swap(__rhs._M_future);
1313        _M_storage.swap(__rhs._M_storage);
1314      }
1315
1316      // Retrieving the result
1317      future<void>
1318      get_future()
1319      { return future<void>(_M_future); }
1320
1321      // Setting the result
1322      void
1323      set_value()
1324      { _M_future->_M_set_result(_State::__setter(this)); }
1325
1326      void
1327      set_exception(exception_ptr __p)
1328      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1329
1330      void
1331      set_value_at_thread_exit()
1332      { _M_future->_M_set_delayed_result(_State::__setter(this), _M_future); }
1333
1334      void
1335      set_exception_at_thread_exit(exception_ptr __p)
1336      {
1337	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1338					 _M_future);
1339      }
1340    };
1341
1342  template<typename _Ptr_type, typename _Fn, typename _Res>
1343    struct __future_base::_Task_setter
1344    {
1345      // Invoke the function and provide the result to the caller.
1346      _Ptr_type operator()() const
1347      {
1348	__try
1349	  {
1350	    (*_M_result)->_M_set((*_M_fn)());
1351	  }
1352	__catch(const __cxxabiv1::__forced_unwind&)
1353	  {
1354	    __throw_exception_again; // will cause broken_promise
1355	  }
1356	__catch(...)
1357	  {
1358	    (*_M_result)->_M_error = current_exception();
1359	  }
1360	return std::move(*_M_result);
1361      }
1362      _Ptr_type*	_M_result;
1363      _Fn*		_M_fn;
1364    };
1365
1366  template<typename _Ptr_type, typename _Fn>
1367    struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1368    {
1369      _Ptr_type operator()() const
1370      {
1371	__try
1372	  {
1373	    (*_M_fn)();
1374	  }
1375	__catch(const __cxxabiv1::__forced_unwind&)
1376	  {
1377	    __throw_exception_again; // will cause broken_promise
1378	  }
1379	__catch(...)
1380	  {
1381	    (*_M_result)->_M_error = current_exception();
1382	  }
1383	return std::move(*_M_result);
1384      }
1385      _Ptr_type*	_M_result;
1386      _Fn*		_M_fn;
1387    };
1388
1389  // Holds storage for a packaged_task's result.
1390  template<typename _Res, typename... _Args>
1391    struct __future_base::_Task_state_base<_Res(_Args...)>
1392    : __future_base::_State_base
1393    {
1394      typedef _Res _Res_type;
1395
1396      template<typename _Alloc>
1397	_Task_state_base(const _Alloc& __a)
1398	: _M_result(_S_allocate_result<_Res>(__a))
1399	{ }
1400
1401      // Invoke the stored task and make the state ready.
1402      virtual void
1403      _M_run(_Args&&... __args) = 0;
1404
1405      // Invoke the stored task and make the state ready at thread exit.
1406      virtual void
1407      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1408
1409      virtual shared_ptr<_Task_state_base>
1410      _M_reset() = 0;
1411
1412      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1413      _Ptr_type _M_result;
1414    };
1415
1416  // Holds a packaged_task's stored task.
1417  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1418    struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1419    : __future_base::_Task_state_base<_Res(_Args...)>
1420    {
1421      template<typename _Fn2>
1422	_Task_state(_Fn2&& __fn, const _Alloc& __a)
1423	: _Task_state_base<_Res(_Args...)>(__a),
1424	  _M_impl(std::forward<_Fn2>(__fn), __a)
1425	{ }
1426
1427    private:
1428      virtual void
1429      _M_run(_Args&&... __args)
1430      {
1431	auto __boundfn = [&] () -> _Res {
1432	    return std::__invoke_r<_Res>(_M_impl._M_fn,
1433					 std::forward<_Args>(__args)...);
1434	};
1435	this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1436      }
1437
1438      virtual void
1439      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1440      {
1441	auto __boundfn = [&] () -> _Res {
1442	    return std::__invoke_r<_Res>(_M_impl._M_fn,
1443					 std::forward<_Args>(__args)...);
1444	};
1445	this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1446				    std::move(__self));
1447      }
1448
1449      virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1450      _M_reset();
1451
1452      struct _Impl : _Alloc
1453      {
1454	template<typename _Fn2>
1455	  _Impl(_Fn2&& __fn, const _Alloc& __a)
1456	  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1457	_Fn _M_fn;
1458      } _M_impl;
1459    };
1460
1461  template<typename _Signature, typename _Fn,
1462	   typename _Alloc = std::allocator<int>>
1463    static shared_ptr<__future_base::_Task_state_base<_Signature>>
1464    __create_task_state(_Fn&& __fn, const _Alloc& __a = _Alloc())
1465    {
1466      typedef typename decay<_Fn>::type _Fn2;
1467      typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1468      return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1469    }
1470
1471  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1472    shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1473    __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1474    {
1475      return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1476						 static_cast<_Alloc&>(_M_impl));
1477    }
1478
1479  /// packaged_task
1480  template<typename _Res, typename... _ArgTypes>
1481    class packaged_task<_Res(_ArgTypes...)>
1482    {
1483      typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1484      shared_ptr<_State_type>                   _M_state;
1485
1486      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1487      // 3039. Unnecessary decay in thread and packaged_task
1488      template<typename _Fn, typename _Fn2 = __remove_cvref_t<_Fn>>
1489	using __not_same
1490	  = typename enable_if<!is_same<packaged_task, _Fn2>::value>::type;
1491
1492    public:
1493      // Construction and destruction
1494      packaged_task() noexcept { }
1495
1496      template<typename _Fn, typename = __not_same<_Fn>>
1497	explicit
1498	packaged_task(_Fn&& __fn)
1499	: _M_state(
1500	    __create_task_state<_Res(_ArgTypes...)>(std::forward<_Fn>(__fn)))
1501	{ }
1502
1503#if __cplusplus < 201703L
1504      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1505      // 2097. packaged_task constructors should be constrained
1506      // 2407. [this constructor should not be] explicit
1507      // 2921. packaged_task and type-erased allocators
1508      template<typename _Fn, typename _Alloc, typename = __not_same<_Fn>>
1509	packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1510	: _M_state(__create_task_state<_Res(_ArgTypes...)>(
1511		   std::forward<_Fn>(__fn), __a))
1512	{ }
1513
1514      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1515      // 2095.  missing constructors needed for uses-allocator construction
1516      template<typename _Allocator>
1517	packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1518	{ }
1519
1520      template<typename _Allocator>
1521	packaged_task(allocator_arg_t, const _Allocator&,
1522		      const packaged_task&) = delete;
1523
1524      template<typename _Allocator>
1525	packaged_task(allocator_arg_t, const _Allocator&,
1526		      packaged_task&& __other) noexcept
1527	{ this->swap(__other); }
1528#endif
1529
1530      ~packaged_task()
1531      {
1532        if (static_cast<bool>(_M_state) && !_M_state.unique())
1533	  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1534      }
1535
1536      // No copy
1537      packaged_task(const packaged_task&) = delete;
1538      packaged_task& operator=(const packaged_task&) = delete;
1539
1540      // Move support
1541      packaged_task(packaged_task&& __other) noexcept
1542      { this->swap(__other); }
1543
1544      packaged_task& operator=(packaged_task&& __other) noexcept
1545      {
1546	packaged_task(std::move(__other)).swap(*this);
1547	return *this;
1548      }
1549
1550      void
1551      swap(packaged_task& __other) noexcept
1552      { _M_state.swap(__other._M_state); }
1553
1554      bool
1555      valid() const noexcept
1556      { return static_cast<bool>(_M_state); }
1557
1558      // Result retrieval
1559      future<_Res>
1560      get_future()
1561      { return future<_Res>(_M_state); }
1562
1563      // Execution
1564      void
1565      operator()(_ArgTypes... __args)
1566      {
1567	__future_base::_State_base::_S_check(_M_state);
1568	_M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1569      }
1570
1571      void
1572      make_ready_at_thread_exit(_ArgTypes... __args)
1573      {
1574	__future_base::_State_base::_S_check(_M_state);
1575	_M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1576      }
1577
1578      void
1579      reset()
1580      {
1581	__future_base::_State_base::_S_check(_M_state);
1582	packaged_task __tmp;
1583	__tmp._M_state = _M_state;
1584	_M_state = _M_state->_M_reset();
1585      }
1586    };
1587
1588  /// swap
1589  template<typename _Res, typename... _ArgTypes>
1590    inline void
1591    swap(packaged_task<_Res(_ArgTypes...)>& __x,
1592	 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1593    { __x.swap(__y); }
1594
1595#if __cplusplus < 201703L
1596  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1597  // 2976. Dangling uses_allocator specialization for packaged_task
1598  template<typename _Res, typename _Alloc>
1599    struct uses_allocator<packaged_task<_Res>, _Alloc>
1600    : public true_type { };
1601#endif
1602
1603  // Shared state created by std::async().
1604  // Holds a deferred function and storage for its result.
1605  template<typename _BoundFn, typename _Res>
1606    class __future_base::_Deferred_state final
1607    : public __future_base::_State_base
1608    {
1609    public:
1610      explicit
1611      _Deferred_state(_BoundFn&& __fn)
1612      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1613      { }
1614
1615    private:
1616      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1617      _Ptr_type _M_result;
1618      _BoundFn _M_fn;
1619
1620      // Run the deferred function.
1621      virtual void
1622      _M_complete_async()
1623      {
1624	// Multiple threads can call a waiting function on the future and
1625	// reach this point at the same time. The call_once in _M_set_result
1626	// ensures only the first one run the deferred function, stores the
1627	// result in _M_result, swaps that with the base _M_result and makes
1628	// the state ready. Tell _M_set_result to ignore failure so all later
1629	// calls do nothing.
1630        _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1631      }
1632
1633      // Caller should check whether the state is ready first, because this
1634      // function will return true even after the deferred function has run.
1635      virtual bool _M_is_deferred_future() const { return true; }
1636    };
1637
1638  // Common functionality hoisted out of the _Async_state_impl template.
1639  class __future_base::_Async_state_commonV2
1640    : public __future_base::_State_base
1641  {
1642  protected:
1643    ~_Async_state_commonV2() = default;
1644
1645    // Make waiting functions block until the thread completes, as if joined.
1646    //
1647    // This function is used by wait() to satisfy the first requirement below
1648    // and by wait_for() / wait_until() to satisfy the second.
1649    //
1650    // [futures.async]:
1651    //
1652    // - a call to a waiting function on an asynchronous return object that
1653    // shares the shared state created by this async call shall block until
1654    // the associated thread has completed, as if joined, or else time out.
1655    //
1656    // - the associated thread completion synchronizes with the return from
1657    // the first function that successfully detects the ready status of the
1658    // shared state or with the return from the last function that releases
1659    // the shared state, whichever happens first.
1660    virtual void _M_complete_async() { _M_join(); }
1661
1662    void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1663
1664    thread _M_thread;
1665    once_flag _M_once;
1666  };
1667
1668  // Shared state created by std::async().
1669  // Starts a new thread that runs a function and makes the shared state ready.
1670  template<typename _BoundFn, typename _Res>
1671    class __future_base::_Async_state_impl final
1672    : public __future_base::_Async_state_commonV2
1673    {
1674    public:
1675      explicit
1676      _Async_state_impl(_BoundFn&& __fn)
1677      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1678      {
1679	_M_thread = std::thread{ [this] {
1680	    __try
1681	      {
1682		_M_set_result(_S_task_setter(_M_result, _M_fn));
1683	      }
1684	    __catch (const __cxxabiv1::__forced_unwind&)
1685	      {
1686		// make the shared state ready on thread cancellation
1687		if (static_cast<bool>(_M_result))
1688		  this->_M_break_promise(std::move(_M_result));
1689		__throw_exception_again;
1690	      }
1691        } };
1692      }
1693
1694      // Must not destroy _M_result and _M_fn until the thread finishes.
1695      // Call join() directly rather than through _M_join() because no other
1696      // thread can be referring to this state if it is being destroyed.
1697      ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1698
1699    private:
1700      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1701      _Ptr_type _M_result;
1702      _BoundFn _M_fn;
1703    };
1704
1705  template<typename _BoundFn>
1706    inline std::shared_ptr<__future_base::_State_base>
1707    __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1708    {
1709      typedef typename remove_reference<_BoundFn>::type __fn_type;
1710      typedef _Deferred_state<__fn_type> __state_type;
1711      return std::make_shared<__state_type>(std::move(__fn));
1712    }
1713
1714  template<typename _BoundFn>
1715    inline std::shared_ptr<__future_base::_State_base>
1716    __future_base::_S_make_async_state(_BoundFn&& __fn)
1717    {
1718      typedef typename remove_reference<_BoundFn>::type __fn_type;
1719      typedef _Async_state_impl<__fn_type> __state_type;
1720      return std::make_shared<__state_type>(std::move(__fn));
1721    }
1722
1723
1724  /// async
1725  template<typename _Fn, typename... _Args>
1726    _GLIBCXX_NODISCARD future<__async_result_of<_Fn, _Args...>>
1727    async(launch __policy, _Fn&& __fn, _Args&&... __args)
1728    {
1729      std::shared_ptr<__future_base::_State_base> __state;
1730      if ((__policy & launch::async) == launch::async)
1731	{
1732	  __try
1733	    {
1734	      __state = __future_base::_S_make_async_state(
1735		  std::thread::__make_invoker(std::forward<_Fn>(__fn),
1736					      std::forward<_Args>(__args)...)
1737		  );
1738	    }
1739#if __cpp_exceptions
1740	  catch(const system_error& __e)
1741	    {
1742	      if (__e.code() != errc::resource_unavailable_try_again
1743		  || (__policy & launch::deferred) != launch::deferred)
1744		throw;
1745	    }
1746#endif
1747	}
1748      if (!__state)
1749	{
1750	  __state = __future_base::_S_make_deferred_state(
1751	      std::thread::__make_invoker(std::forward<_Fn>(__fn),
1752					  std::forward<_Args>(__args)...));
1753	}
1754      return future<__async_result_of<_Fn, _Args...>>(__state);
1755    }
1756
1757  /// async, potential overload
1758  template<typename _Fn, typename... _Args>
1759    _GLIBCXX_NODISCARD inline future<__async_result_of<_Fn, _Args...>>
1760    async(_Fn&& __fn, _Args&&... __args)
1761    {
1762      return std::async(launch::async|launch::deferred,
1763			std::forward<_Fn>(__fn),
1764			std::forward<_Args>(__args)...);
1765    }
1766
1767#endif // _GLIBCXX_ASYNC_ABI_COMPAT
1768#endif // _GLIBCXX_HAS_GTHREADS
1769
1770  // @} group futures
1771_GLIBCXX_END_NAMESPACE_VERSION
1772} // namespace
1773
1774#endif // C++11
1775
1776#endif // _GLIBCXX_FUTURE
1777