xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/ext/bitmap_allocator.h (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/bitmap_allocator.h
26  *  This file is a GNU extension to the Standard C++ Library.
27  */
28 
29 #ifndef _BITMAP_ALLOCATOR_H
30 #define _BITMAP_ALLOCATOR_H 1
31 
32 #include <utility> // For std::pair.
33 #include <bits/functexcept.h> // For __throw_bad_alloc().
34 #include <bits/stl_function.h> // For greater_equal, and less_equal.
35 #include <new> // For operator new.
36 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37 #include <ext/concurrence.h>
38 #include <bits/move.h>
39 
40 /** @brief The constant in the expression below is the alignment
41  * required in bytes.
42  */
43 #define _BALLOC_ALIGN_BYTES 8
44 
_GLIBCXX_VISIBILITY(default)45 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46 {
47 _GLIBCXX_BEGIN_NAMESPACE_VERSION
48 
49   namespace __detail
50   {
51     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
52      *
53      *  @brief  __mini_vector<> is a stripped down version of the
54      *  full-fledged std::vector<>.
55      *
56      *  It is to be used only for built-in types or PODs. Notable
57      *  differences are:
58      *
59      *  1. Not all accessor functions are present.
60      *  2. Used ONLY for PODs.
61      *  3. No Allocator template argument. Uses ::operator new() to get
62      *  memory, and ::operator delete() to free it.
63      *  Caveat: The dtor does NOT free the memory allocated, so this a
64      *  memory-leaking vector!
65      */
66     template<typename _Tp>
67       class __mini_vector
68       {
69 	__mini_vector(const __mini_vector&);
70 	__mini_vector& operator=(const __mini_vector&);
71 
72       public:
73 	typedef _Tp value_type;
74 	typedef _Tp* pointer;
75 	typedef _Tp& reference;
76 	typedef const _Tp& const_reference;
77 	typedef std::size_t size_type;
78 	typedef std::ptrdiff_t difference_type;
79 	typedef pointer iterator;
80 
81       private:
82 	pointer _M_start;
83 	pointer _M_finish;
84 	pointer _M_end_of_storage;
85 
86 	size_type
87 	_M_space_left() const throw()
88 	{ return _M_end_of_storage - _M_finish; }
89 
90 	_GLIBCXX_NODISCARD pointer
91 	allocate(size_type __n)
92 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
93 
94 	void
95 	deallocate(pointer __p, size_type)
96 	{ ::operator delete(__p); }
97 
98       public:
99 	// Members used: size(), push_back(), pop_back(),
100 	// insert(iterator, const_reference), erase(iterator),
101 	// begin(), end(), back(), operator[].
102 
103 	__mini_vector()
104         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
105 
106 	size_type
107 	size() const throw()
108 	{ return _M_finish - _M_start; }
109 
110 	iterator
111 	begin() const throw()
112 	{ return this->_M_start; }
113 
114 	iterator
115 	end() const throw()
116 	{ return this->_M_finish; }
117 
118 	reference
119 	back() const throw()
120 	{ return *(this->end() - 1); }
121 
122 	reference
123 	operator[](const size_type __pos) const throw()
124 	{ return this->_M_start[__pos]; }
125 
126 	void
127 	insert(iterator __pos, const_reference __x);
128 
129 	void
130 	push_back(const_reference __x)
131 	{
132 	  if (this->_M_space_left())
133 	    {
134 	      *this->end() = __x;
135 	      ++this->_M_finish;
136 	    }
137 	  else
138 	    this->insert(this->end(), __x);
139 	}
140 
141 	void
142 	pop_back() throw()
143 	{ --this->_M_finish; }
144 
145 	void
146 	erase(iterator __pos) throw();
147 
148 	void
149 	clear() throw()
150 	{ this->_M_finish = this->_M_start; }
151       };
152 
153     // Out of line function definitions.
154     template<typename _Tp>
155       void __mini_vector<_Tp>::
156       insert(iterator __pos, const_reference __x)
157       {
158 	if (this->_M_space_left())
159 	  {
160 	    size_type __to_move = this->_M_finish - __pos;
161 	    iterator __dest = this->end();
162 	    iterator __src = this->end() - 1;
163 
164 	    ++this->_M_finish;
165 	    while (__to_move)
166 	      {
167 		*__dest = *__src;
168 		--__dest; --__src; --__to_move;
169 	      }
170 	    *__pos = __x;
171 	  }
172 	else
173 	  {
174 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
175 	    iterator __new_start = this->allocate(__new_size);
176 	    iterator __first = this->begin();
177 	    iterator __start = __new_start;
178 	    while (__first != __pos)
179 	      {
180 		*__start = *__first;
181 		++__start; ++__first;
182 	      }
183 	    *__start = __x;
184 	    ++__start;
185 	    while (__first != this->end())
186 	      {
187 		*__start = *__first;
188 		++__start; ++__first;
189 	      }
190 	    if (this->_M_start)
191 	      this->deallocate(this->_M_start, this->size());
192 
193 	    this->_M_start = __new_start;
194 	    this->_M_finish = __start;
195 	    this->_M_end_of_storage = this->_M_start + __new_size;
196 	  }
197       }
198 
199     template<typename _Tp>
200       void __mini_vector<_Tp>::
201       erase(iterator __pos) throw()
202       {
203 	while (__pos + 1 != this->end())
204 	  {
205 	    *__pos = __pos[1];
206 	    ++__pos;
207 	  }
208 	--this->_M_finish;
209       }
210 
211 
212     template<typename _Tp>
213       struct __mv_iter_traits
214       {
215 	typedef typename _Tp::value_type value_type;
216 	typedef typename _Tp::difference_type difference_type;
217       };
218 
219     template<typename _Tp>
220       struct __mv_iter_traits<_Tp*>
221       {
222 	typedef _Tp value_type;
223 	typedef std::ptrdiff_t difference_type;
224       };
225 
226     enum
227       {
228 	bits_per_byte = 8,
229 	bits_per_block = sizeof(std::size_t) * std::size_t(bits_per_byte)
230       };
231 
232     template<typename _ForwardIterator, typename _Tp, typename _Compare>
233       _ForwardIterator
234       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
235 		    const _Tp& __val, _Compare __comp)
236       {
237 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
238 	  _DistanceType;
239 
240 	_DistanceType __len = __last - __first;
241 	_DistanceType __half;
242 	_ForwardIterator __middle;
243 
244 	while (__len > 0)
245 	  {
246 	    __half = __len >> 1;
247 	    __middle = __first;
248 	    __middle += __half;
249 	    if (__comp(*__middle, __val))
250 	      {
251 		__first = __middle;
252 		++__first;
253 		__len = __len - __half - 1;
254 	      }
255 	    else
256 	      __len = __half;
257 	  }
258 	return __first;
259       }
260 
261     /** @brief The number of Blocks pointed to by the address pair
262      *  passed to the function.
263      */
264     template<typename _AddrPair>
265       inline std::size_t
266       __num_blocks(_AddrPair __ap)
267       { return (__ap.second - __ap.first) + 1; }
268 
269     /** @brief The number of Bit-maps pointed to by the address pair
270      *  passed to the function.
271      */
272     template<typename _AddrPair>
273       inline std::size_t
274       __num_bitmaps(_AddrPair __ap)
275       { return __num_blocks(__ap) / std::size_t(bits_per_block); }
276 
277     // _Tp should be a pointer type.
278     template<typename _Tp>
279       class _Inclusive_between
280       {
281 	typedef _Tp pointer;
282 	pointer _M_ptr_value;
283 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
284 
285       public:
286 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
287 	{ }
288 
289 	bool
290 	operator()(_Block_pair __bp) const throw()
291 	{
292 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
293 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
294 	    return true;
295 	  else
296 	    return false;
297 	}
298       };
299 
300     // Used to pass a Functor to functions by reference.
301     template<typename _Functor>
302       class _Functor_Ref
303       {
304 	_Functor& _M_fref;
305 
306       public:
307 	typedef typename _Functor::argument_type argument_type;
308 	typedef typename _Functor::result_type result_type;
309 
310 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
311 	{ }
312 
313 	result_type
314 	operator()(argument_type __arg)
315 	{ return _M_fref(__arg); }
316       };
317 
318     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
319      *
320      *  @brief  The class which acts as a predicate for applying the
321      *  first-fit memory allocation policy for the bitmap allocator.
322      */
323     // _Tp should be a pointer type, and _Alloc is the Allocator for
324     // the vector.
325     template<typename _Tp>
326       class _Ffit_finder
327       {
328 	typedef std::pair<_Tp, _Tp> _Block_pair;
329 	typedef __detail::__mini_vector<_Block_pair> _BPVector;
330 	typedef typename _BPVector::difference_type _Counter_type;
331 
332 	std::size_t* _M_pbitmap;
333 	_Counter_type _M_data_offset;
334 
335       public:
336 	typedef bool result_type;
337 	typedef _Block_pair argument_type;
338 
339 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
340 	{ }
341 
342 	bool
343 	operator()(_Block_pair __bp) throw()
344 	{
345 	  using std::size_t;
346 	  // Set the _rover to the last physical location bitmap,
347 	  // which is the bitmap which belongs to the first free
348 	  // block. Thus, the bitmaps are in exact reverse order of
349 	  // the actual memory layout. So, we count down the bitmaps,
350 	  // which is the same as moving up the memory.
351 
352 	  // If the used count stored at the start of the Bit Map headers
353 	  // is equal to the number of Objects that the current Block can
354 	  // store, then there is definitely no space for another single
355 	  // object, so just return false.
356 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
357 
358 	  if (*(reinterpret_cast<size_t*>
359 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
360 	    return false;
361 
362 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
363 
364 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
365 	    {
366 	      _M_data_offset = __i;
367 	      if (*__rover)
368 		{
369 		  _M_pbitmap = __rover;
370 		  return true;
371 		}
372 	      --__rover;
373 	    }
374 	  return false;
375 	}
376 
377 	std::size_t*
378 	_M_get() const throw()
379 	{ return _M_pbitmap; }
380 
381 	_Counter_type
382 	_M_offset() const throw()
383 	{ return _M_data_offset * std::size_t(bits_per_block); }
384       };
385 
386     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
387      *
388      *  @brief  The bitmap counter which acts as the bitmap
389      *  manipulator, and manages the bit-manipulation functions and
390      *  the searching and identification functions on the bit-map.
391      */
392     // _Tp should be a pointer type.
393     template<typename _Tp>
394       class _Bitmap_counter
395       {
396 	typedef typename
397 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
398 	typedef typename _BPVector::size_type _Index_type;
399 	typedef _Tp pointer;
400 
401 	_BPVector& _M_vbp;
402 	std::size_t* _M_curr_bmap;
403 	std::size_t* _M_last_bmap_in_block;
404 	_Index_type _M_curr_index;
405 
406       public:
407 	// Use the 2nd parameter with care. Make sure that such an
408 	// entry exists in the vector before passing that particular
409 	// index to this ctor.
410 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
411 	{ this->_M_reset(__index); }
412 
413 	void
414 	_M_reset(long __index = -1) throw()
415 	{
416 	  if (__index == -1)
417 	    {
418 	      _M_curr_bmap = 0;
419 	      _M_curr_index = static_cast<_Index_type>(-1);
420 	      return;
421 	    }
422 
423 	  _M_curr_index = __index;
424 	  _M_curr_bmap = reinterpret_cast<std::size_t*>
425 	    (_M_vbp[_M_curr_index].first) - 1;
426 
427 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
428 
429 	  _M_last_bmap_in_block = _M_curr_bmap
430 	    - ((_M_vbp[_M_curr_index].second
431 		- _M_vbp[_M_curr_index].first + 1)
432 	       / std::size_t(bits_per_block) - 1);
433 	}
434 
435 	// Dangerous Function! Use with extreme care. Pass to this
436 	// function ONLY those values that are known to be correct,
437 	// otherwise this will mess up big time.
438 	void
439 	_M_set_internal_bitmap(std::size_t* __new_internal_marker) throw()
440 	{ _M_curr_bmap = __new_internal_marker; }
441 
442 	bool
443 	_M_finished() const throw()
444 	{ return(_M_curr_bmap == 0); }
445 
446 	_Bitmap_counter&
447 	operator++() throw()
448 	{
449 	  if (_M_curr_bmap == _M_last_bmap_in_block)
450 	    {
451 	      if (++_M_curr_index == _M_vbp.size())
452 		_M_curr_bmap = 0;
453 	      else
454 		this->_M_reset(_M_curr_index);
455 	    }
456 	  else
457 	    --_M_curr_bmap;
458 	  return *this;
459 	}
460 
461 	std::size_t*
462 	_M_get() const throw()
463 	{ return _M_curr_bmap; }
464 
465 	pointer
466 	_M_base() const throw()
467 	{ return _M_vbp[_M_curr_index].first; }
468 
469 	_Index_type
470 	_M_offset() const throw()
471 	{
472 	  return std::size_t(bits_per_block)
473 	    * ((reinterpret_cast<std::size_t*>(this->_M_base())
474 		- _M_curr_bmap) - 1);
475 	}
476 
477 	_Index_type
478 	_M_where() const throw()
479 	{ return _M_curr_index; }
480       };
481 
482     /** @brief  Mark a memory address as allocated by re-setting the
483      *  corresponding bit in the bit-map.
484      */
485     inline void
486     __bit_allocate(std::size_t* __pbmap, std::size_t __pos) throw()
487     {
488       std::size_t __mask = 1 << __pos;
489       __mask = ~__mask;
490       *__pbmap &= __mask;
491     }
492 
493     /** @brief  Mark a memory address as free by setting the
494      *  corresponding bit in the bit-map.
495      */
496     inline void
497     __bit_free(std::size_t* __pbmap, std::size_t __pos) throw()
498     {
499       std::size_t __mask = 1 << __pos;
500       *__pbmap |= __mask;
501     }
502   } // namespace __detail
503 
504   /** @brief  Generic Version of the bsf instruction.
505    */
506   inline std::size_t
507   _Bit_scan_forward(std::size_t __num)
508   { return static_cast<std::size_t>(__builtin_ctzl(__num)); }
509 
510   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
511    *
512    *  @brief  The free list class for managing chunks of memory to be
513    *  given to and returned by the bitmap_allocator.
514    */
515   class free_list
516   {
517   public:
518     typedef std::size_t* 			value_type;
519     typedef __detail::__mini_vector<value_type> vector_type;
520     typedef vector_type::iterator 		iterator;
521     typedef __mutex				__mutex_type;
522 
523   private:
524     struct _LT_pointer_compare
525     {
526       bool
527       operator()(const std::size_t* __pui,
528 		 const std::size_t __cui) const throw()
529       { return *__pui < __cui; }
530     };
531 
532 #if defined __GTHREADS
533     __mutex_type&
534     _M_get_mutex()
535     {
536       static __mutex_type _S_mutex;
537       return _S_mutex;
538     }
539 #endif
540 
541     vector_type&
542     _M_get_free_list()
543     {
544       static vector_type _S_free_list;
545       return _S_free_list;
546     }
547 
548     /** @brief  Performs validation of memory based on their size.
549      *
550      *  @param  __addr The pointer to the memory block to be
551      *  validated.
552      *
553      *  Validates the memory block passed to this function and
554      *  appropriately performs the action of managing the free list of
555      *  blocks by adding this block to the free list or deleting this
556      *  or larger blocks from the free list.
557      */
558     void
559     _M_validate(std::size_t* __addr) throw()
560     {
561       vector_type& __free_list = _M_get_free_list();
562       const vector_type::size_type __max_size = 64;
563       if (__free_list.size() >= __max_size)
564 	{
565 	  // Ok, the threshold value has been reached.  We determine
566 	  // which block to remove from the list of free blocks.
567 	  if (*__addr >= *__free_list.back())
568 	    {
569 	      // Ok, the new block is greater than or equal to the
570 	      // last block in the list of free blocks. We just free
571 	      // the new block.
572 	      ::operator delete(static_cast<void*>(__addr));
573 	      return;
574 	    }
575 	  else
576 	    {
577 	      // Deallocate the last block in the list of free lists,
578 	      // and insert the new one in its correct position.
579 	      ::operator delete(static_cast<void*>(__free_list.back()));
580 	      __free_list.pop_back();
581 	    }
582 	}
583 
584       // Just add the block to the list of free lists unconditionally.
585       iterator __temp = __detail::__lower_bound
586 	(__free_list.begin(), __free_list.end(),
587 	 *__addr, _LT_pointer_compare());
588 
589       // We may insert the new free list before _temp;
590       __free_list.insert(__temp, __addr);
591     }
592 
593     /** @brief  Decides whether the wastage of memory is acceptable for
594      *  the current memory request and returns accordingly.
595      *
596      *  @param __block_size The size of the block available in the free
597      *  list.
598      *
599      *  @param __required_size The required size of the memory block.
600      *
601      *  @return true if the wastage incurred is acceptable, else returns
602      *  false.
603      */
604     bool
605     _M_should_i_give(std::size_t __block_size,
606 		     std::size_t __required_size) throw()
607     {
608       const std::size_t __max_wastage_percentage = 36;
609       if (__block_size >= __required_size &&
610 	  (((__block_size - __required_size) * 100 / __block_size)
611 	   < __max_wastage_percentage))
612 	return true;
613       else
614 	return false;
615     }
616 
617   public:
618     /** @brief This function returns the block of memory to the
619      *  internal free list.
620      *
621      *  @param  __addr The pointer to the memory block that was given
622      *  by a call to the _M_get function.
623      */
624     inline void
625     _M_insert(std::size_t* __addr) throw()
626     {
627 #if defined __GTHREADS
628       __scoped_lock __bfl_lock(_M_get_mutex());
629 #endif
630       // Call _M_validate to decide what should be done with
631       // this particular free list.
632       this->_M_validate(reinterpret_cast<std::size_t*>(__addr) - 1);
633       // See discussion as to why this is 1!
634     }
635 
636     /** @brief  This function gets a block of memory of the specified
637      *  size from the free list.
638      *
639      *  @param  __sz The size in bytes of the memory required.
640      *
641      *  @return  A pointer to the new memory block of size at least
642      *  equal to that requested.
643      */
644     std::size_t*
645     _M_get(std::size_t __sz) _GLIBCXX_THROW(std::bad_alloc);
646 
647     /** @brief  This function just clears the internal Free List, and
648      *  gives back all the memory to the OS.
649      */
650     void
651     _M_clear();
652   };
653 
654 
655   // Forward declare the class.
656   template<typename _Tp>
657     class bitmap_allocator;
658 
659   // Specialize for void:
660   template<>
661     class bitmap_allocator<void>
662     {
663     public:
664       typedef void*       pointer;
665       typedef const void* const_pointer;
666 
667       // Reference-to-void members are impossible.
668       typedef void  value_type;
669       template<typename _Tp1>
670         struct rebind
671 	{
672 	  typedef bitmap_allocator<_Tp1> other;
673 	};
674     };
675 
676   /**
677    * @brief Bitmap Allocator, primary template.
678    * @ingroup allocators
679    */
680   template<typename _Tp>
681     class bitmap_allocator : private free_list
682     {
683     public:
684       typedef std::size_t    		size_type;
685       typedef std::ptrdiff_t 		difference_type;
686       typedef _Tp*        		pointer;
687       typedef const _Tp*  		const_pointer;
688       typedef _Tp&        		reference;
689       typedef const _Tp&  		const_reference;
690       typedef _Tp         		value_type;
691       typedef free_list::__mutex_type 	__mutex_type;
692 
693       template<typename _Tp1>
694         struct rebind
695 	{
696 	  typedef bitmap_allocator<_Tp1> other;
697 	};
698 
699 #if __cplusplus >= 201103L
700       // _GLIBCXX_RESOLVE_LIB_DEFECTS
701       // 2103. propagate_on_container_move_assignment
702       typedef std::true_type propagate_on_container_move_assignment;
703 #endif
704 
705     private:
706       template<std::size_t _BSize, std::size_t _AlignSize>
707         struct aligned_size
708 	{
709 	  enum
710 	    {
711 	      modulus = _BSize % _AlignSize,
712 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
713 	    };
714 	};
715 
716       struct _Alloc_block
717       {
718 	char __M_unused[aligned_size<sizeof(value_type),
719 			_BALLOC_ALIGN_BYTES>::value];
720       };
721 
722 
723       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
724 
725       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
726       typedef typename _BPVector::iterator _BPiter;
727 
728       template<typename _Predicate>
729         static _BPiter
730         _S_find(_Predicate __p)
731         {
732 	  _BPiter __first = _S_mem_blocks.begin();
733 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
734 	    ++__first;
735 	  return __first;
736 	}
737 
738 #if defined _GLIBCXX_DEBUG
739       // Complexity: O(lg(N)). Where, N is the number of block of size
740       // sizeof(value_type).
741       void
742       _S_check_for_free_blocks() throw()
743       {
744 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
745 	_BPiter __bpi = _S_find(_FFF());
746 
747 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
748       }
749 #endif
750 
751       /** @brief  Responsible for exponentially growing the internal
752        *  memory pool.
753        *
754        *  @throw  std::bad_alloc. If memory cannot be allocated.
755        *
756        *  Complexity: O(1), but internally depends upon the
757        *  complexity of the function free_list::_M_get. The part where
758        *  the bitmap headers are written has complexity: O(X),where X
759        *  is the number of blocks of size sizeof(value_type) within
760        *  the newly acquired block. Having a tight bound.
761        */
762       void
763       _S_refill_pool() _GLIBCXX_THROW(std::bad_alloc)
764       {
765 	using std::size_t;
766 #if defined _GLIBCXX_DEBUG
767 	_S_check_for_free_blocks();
768 #endif
769 
770 	const size_t __num_bitmaps = (_S_block_size
771 				      / size_t(__detail::bits_per_block));
772 	const size_t __size_to_allocate = sizeof(size_t)
773 	  + _S_block_size * sizeof(_Alloc_block)
774 	  + __num_bitmaps * sizeof(size_t);
775 
776 	size_t* __temp =
777 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
778 	*__temp = 0;
779 	++__temp;
780 
781 	// The Header information goes at the Beginning of the Block.
782 	_Block_pair __bp =
783 	  std::make_pair(reinterpret_cast<_Alloc_block*>
784 			 (__temp + __num_bitmaps),
785 			 reinterpret_cast<_Alloc_block*>
786 			 (__temp + __num_bitmaps)
787 			 + _S_block_size - 1);
788 
789 	// Fill the Vector with this information.
790 	_S_mem_blocks.push_back(__bp);
791 
792 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
793 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
794 
795 	_S_block_size *= 2;
796       }
797 
798       static _BPVector _S_mem_blocks;
799       static std::size_t _S_block_size;
800       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
801       static typename _BPVector::size_type _S_last_dealloc_index;
802 #if defined __GTHREADS
803       static __mutex_type _S_mut;
804 #endif
805 
806     public:
807 
808       /** @brief  Allocates memory for a single object of size
809        *  sizeof(_Tp).
810        *
811        *  @throw  std::bad_alloc. If memory cannot be allocated.
812        *
813        *  Complexity: Worst case complexity is O(N), but that
814        *  is hardly ever hit. If and when this particular case is
815        *  encountered, the next few cases are guaranteed to have a
816        *  worst case complexity of O(1)!  That's why this function
817        *  performs very well on average. You can consider this
818        *  function to have a complexity referred to commonly as:
819        *  Amortized Constant time.
820        */
821       pointer
822       _M_allocate_single_object() _GLIBCXX_THROW(std::bad_alloc)
823       {
824 	using std::size_t;
825 #if defined __GTHREADS
826 	__scoped_lock __bit_lock(_S_mut);
827 #endif
828 
829 	// The algorithm is something like this: The last_request
830 	// variable points to the last accessed Bit Map. When such a
831 	// condition occurs, we try to find a free block in the
832 	// current bitmap, or succeeding bitmaps until the last bitmap
833 	// is reached. If no free block turns up, we resort to First
834 	// Fit method.
835 
836 	// WARNING: Do not re-order the condition in the while
837 	// statement below, because it relies on C++'s short-circuit
838 	// evaluation. The return from _S_last_request->_M_get() will
839 	// NOT be dereference able if _S_last_request->_M_finished()
840 	// returns true. This would inevitably lead to a NULL pointer
841 	// dereference if tinkered with.
842 	while (_S_last_request._M_finished() == false
843 	       && (*(_S_last_request._M_get()) == 0))
844 	  _S_last_request.operator++();
845 
846 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
847 	  {
848 	    // Fall Back to First Fit algorithm.
849 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
850 	    _FFF __fff;
851 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
852 
853 	    if (__bpi != _S_mem_blocks.end())
854 	      {
855 		// Search was successful. Ok, now mark the first bit from
856 		// the right as 0, meaning Allocated. This bit is obtained
857 		// by calling _M_get() on __fff.
858 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
859 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
860 
861 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
862 
863 		// Now, get the address of the bit we marked as allocated.
864 		pointer __ret = reinterpret_cast<pointer>
865 		  (__bpi->first + __fff._M_offset() + __nz_bit);
866 		size_t* __puse_count =
867 		  reinterpret_cast<size_t*>
868 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
869 
870 		++(*__puse_count);
871 		return __ret;
872 	      }
873 	    else
874 	      {
875 		// Search was unsuccessful. We Add more memory to the
876 		// pool by calling _S_refill_pool().
877 		_S_refill_pool();
878 
879 		// _M_Reset the _S_last_request structure to the first
880 		// free block's bit map.
881 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
882 
883 		// Now, mark that bit as allocated.
884 	      }
885 	  }
886 
887 	// _S_last_request holds a pointer to a valid bit map, that
888 	// points to a free block in memory.
889 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
890 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
891 
892 	pointer __ret = reinterpret_cast<pointer>
893 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
894 
895 	size_t* __puse_count = reinterpret_cast<size_t*>
896 	  (_S_mem_blocks[_S_last_request._M_where()].first)
897 	  - (__detail::
898 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
899 
900 	++(*__puse_count);
901 	return __ret;
902       }
903 
904       /** @brief  Deallocates memory that belongs to a single object of
905        *  size sizeof(_Tp).
906        *
907        *  Complexity: O(lg(N)), but the worst case is not hit
908        *  often!  This is because containers usually deallocate memory
909        *  close to each other and this case is handled in O(1) time by
910        *  the deallocate function.
911        */
912       void
913       _M_deallocate_single_object(pointer __p) throw()
914       {
915 	using std::size_t;
916 #if defined __GTHREADS
917 	__scoped_lock __bit_lock(_S_mut);
918 #endif
919 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
920 
921 	typedef typename _BPVector::iterator _Iterator;
922 	typedef typename _BPVector::difference_type _Difference_type;
923 
924 	_Difference_type __diff;
925 	long __displacement;
926 
927 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
928 
929 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
930 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
931 	  {
932 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
933 				  <= _S_mem_blocks.size() - 1);
934 
935 	    // Initial Assumption was correct!
936 	    __diff = _S_last_dealloc_index;
937 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
938 	  }
939 	else
940 	  {
941 	    _Iterator _iter = _S_find(__ibt);
942 
943 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
944 
945 	    __diff = _iter - _S_mem_blocks.begin();
946 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
947 	    _S_last_dealloc_index = __diff;
948 	  }
949 
950 	// Get the position of the iterator that has been found.
951 	const size_t __rotate = (__displacement
952 				 % size_t(__detail::bits_per_block));
953 	size_t* __bitmapC =
954 	  reinterpret_cast<size_t*>
955 	  (_S_mem_blocks[__diff].first) - 1;
956 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
957 
958 	__detail::__bit_free(__bitmapC, __rotate);
959 	size_t* __puse_count = reinterpret_cast<size_t*>
960 	  (_S_mem_blocks[__diff].first)
961 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
962 
963 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
964 
965 	--(*__puse_count);
966 
967 	if (__builtin_expect(*__puse_count == 0, false))
968 	  {
969 	    _S_block_size /= 2;
970 
971 	    // We can safely remove this block.
972 	    // _Block_pair __bp = _S_mem_blocks[__diff];
973 	    this->_M_insert(__puse_count);
974 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
975 
976 	    // Reset the _S_last_request variable to reflect the
977 	    // erased block. We do this to protect future requests
978 	    // after the last block has been removed from a particular
979 	    // memory Chunk, which in turn has been returned to the
980 	    // free list, and hence had been erased from the vector,
981 	    // so the size of the vector gets reduced by 1.
982 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
983 	      _S_last_request._M_reset(__diff);
984 
985 	    // If the Index into the vector of the region of memory
986 	    // that might hold the next address that will be passed to
987 	    // deallocated may have been invalidated due to the above
988 	    // erase procedure being called on the vector, hence we
989 	    // try to restore this invariant too.
990 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
991 	      {
992 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
993 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
994 	      }
995 	  }
996       }
997 
998     public:
999       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1000       { }
1001 
1002       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1003       { }
1004 
1005       template<typename _Tp1>
1006         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1007         { }
1008 
1009       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1010       { }
1011 
1012       _GLIBCXX_NODISCARD pointer
1013       allocate(size_type __n)
1014       {
1015 	if (__n > this->max_size())
1016 	  std::__throw_bad_alloc();
1017 
1018 #if __cpp_aligned_new
1019 	if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1020 	  {
1021 	    const size_type __b = __n * sizeof(value_type);
1022 	    std::align_val_t __al = std::align_val_t(alignof(value_type));
1023 	    return static_cast<pointer>(::operator new(__b, __al));
1024 	  }
1025 #endif
1026 
1027 	if (__builtin_expect(__n == 1, true))
1028 	  return this->_M_allocate_single_object();
1029 	else
1030 	  {
1031 	    const size_type __b = __n * sizeof(value_type);
1032 	    return reinterpret_cast<pointer>(::operator new(__b));
1033 	  }
1034       }
1035 
1036       _GLIBCXX_NODISCARD pointer
1037       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1038       { return allocate(__n); }
1039 
1040       void
1041       deallocate(pointer __p, size_type __n) throw()
1042       {
1043 	if (__builtin_expect(__p != 0, true))
1044 	  {
1045 #if __cpp_aligned_new
1046 	    // Types with extended alignment are handled by operator delete.
1047 	    if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1048 	      {
1049 		::operator delete(__p, std::align_val_t(alignof(value_type)));
1050 		return;
1051 	      }
1052 #endif
1053 
1054 	    if (__builtin_expect(__n == 1, true))
1055 	      this->_M_deallocate_single_object(__p);
1056 	    else
1057 	      ::operator delete(__p);
1058 	  }
1059       }
1060 
1061       pointer
1062       address(reference __r) const _GLIBCXX_NOEXCEPT
1063       { return std::__addressof(__r); }
1064 
1065       const_pointer
1066       address(const_reference __r) const _GLIBCXX_NOEXCEPT
1067       { return std::__addressof(__r); }
1068 
1069       size_type
1070       max_size() const _GLIBCXX_USE_NOEXCEPT
1071       { return size_type(-1) / sizeof(value_type); }
1072 
1073 #if __cplusplus >= 201103L
1074       template<typename _Up, typename... _Args>
1075         void
1076         construct(_Up* __p, _Args&&... __args)
1077 	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1078 
1079       template<typename _Up>
1080         void
1081         destroy(_Up* __p)
1082         { __p->~_Up(); }
1083 #else
1084       void
1085       construct(pointer __p, const_reference __data)
1086       { ::new((void *)__p) value_type(__data); }
1087 
1088       void
1089       destroy(pointer __p)
1090       { __p->~value_type(); }
1091 #endif
1092     };
1093 
1094   template<typename _Tp1, typename _Tp2>
1095     bool
1096     operator==(const bitmap_allocator<_Tp1>&,
1097 	       const bitmap_allocator<_Tp2>&) throw()
1098     { return true; }
1099 
1100 #if __cpp_impl_three_way_comparison < 201907L
1101   template<typename _Tp1, typename _Tp2>
1102     bool
1103     operator!=(const bitmap_allocator<_Tp1>&,
1104 	       const bitmap_allocator<_Tp2>&) throw()
1105     { return false; }
1106 #endif
1107 
1108   // Static member definitions.
1109   template<typename _Tp>
1110     typename bitmap_allocator<_Tp>::_BPVector
1111     bitmap_allocator<_Tp>::_S_mem_blocks;
1112 
1113   template<typename _Tp>
1114     std::size_t bitmap_allocator<_Tp>::_S_block_size
1115       = 2 * std::size_t(__detail::bits_per_block);
1116 
1117   template<typename _Tp>
1118     typename bitmap_allocator<_Tp>::_BPVector::size_type
1119     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1120 
1121   template<typename _Tp>
1122     __detail::_Bitmap_counter
1123       <typename bitmap_allocator<_Tp>::_Alloc_block*>
1124     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1125 
1126 #if defined __GTHREADS
1127   template<typename _Tp>
1128     typename bitmap_allocator<_Tp>::__mutex_type
1129     bitmap_allocator<_Tp>::_S_mut;
1130 #endif
1131 
1132 _GLIBCXX_END_NAMESPACE_VERSION
1133 } // namespace __gnu_cxx
1134 
1135 #endif
1136