1// <experimental/internet> -*- C++ -*- 2 3// Copyright (C) 2015-2022 Free Software Foundation, Inc. 4// 5// This file is part of the GNU ISO C++ Library. This library is free 6// software; you can redistribute it and/or modify it under the 7// terms of the GNU General Public License as published by the 8// Free Software Foundation; either version 3, or (at your option) 9// any later version. 10 11// This library is distributed in the hope that it will be useful, 12// but WITHOUT ANY WARRANTY; without even the implied warranty of 13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14// GNU General Public License for more details. 15 16// Under Section 7 of GPL version 3, you are granted additional 17// permissions described in the GCC Runtime Library Exception, version 18// 3.1, as published by the Free Software Foundation. 19 20// You should have received a copy of the GNU General Public License and 21// a copy of the GCC Runtime Library Exception along with this program; 22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23// <http://www.gnu.org/licenses/>. 24 25/** @file experimental/internet 26 * This is a TS C++ Library header. 27 * @ingroup networking-ts 28 */ 29 30#ifndef _GLIBCXX_EXPERIMENTAL_INTERNET 31#define _GLIBCXX_EXPERIMENTAL_INTERNET 32 33#pragma GCC system_header 34 35#if __cplusplus >= 201402L 36 37#include <experimental/netfwd> 38#include <experimental/io_context> 39#include <experimental/bits/net.h> 40#include <array> 41#include <forward_list> 42#include <sstream> 43#include <cstdint> 44#include <experimental/string_view> 45#ifdef _GLIBCXX_HAVE_UNISTD_H 46# include <unistd.h> 47#endif 48#ifdef _GLIBCXX_HAVE_SYS_SOCKET_H 49# include <sys/socket.h> // AF_INET, AF_INET6, SOCK_DGRAM, SOCK_STREAM 50#endif 51#ifdef _GLIBCXX_HAVE_ARPA_INET_H 52# include <arpa/inet.h> // inet_ntop 53#endif 54#ifdef _GLIBCXX_HAVE_NETINET_IN_H 55# include <netinet/in.h> // IPPROTO_IP, IPPROTO_IPV6, in_addr, in6_addr 56#endif 57#ifdef _GLIBCXX_HAVE_NETINET_TCP_H 58# include <netinet/tcp.h> // TCP_NODELAY 59#endif 60#ifdef _GLIBCXX_HAVE_NETDB_H 61# include <netdb.h> // getaddrinfo etc. 62#endif 63 64#if defined _WIN32 && __has_include(<ws2tcpip.h>) 65# include <ws2tcpip.h> 66#endif 67 68namespace std _GLIBCXX_VISIBILITY(default) 69{ 70_GLIBCXX_BEGIN_NAMESPACE_VERSION 71namespace experimental 72{ 73namespace net 74{ 75inline namespace v1 76{ 77namespace ip 78{ 79 /** @addtogroup networking-ts 80 * @{ 81 */ 82 83 /** Error codes for resolver errors. 84 * @{ 85 */ 86 87 enum class resolver_errc : int { 88#ifdef _GLIBCXX_HAVE_NETDB_H 89 host_not_found = EAI_NONAME, 90 host_not_found_try_again = EAI_AGAIN, 91 service_not_found = EAI_SERVICE 92 // N.B. POSIX defines additional errors that have no enumerator here: 93 // EAI_BADFLAGS, EAI_FAIL, EAI_FAMILY, EAI_MEMORY, EAI_SOCKTYPE, EAI_SYSTEM 94 // Some C libraries define additional errors: 95 // EAI_BADHINTS, EAI_OVERFLOW, EAI_PROTOCOL 96 // Some C libraries define additional (obsolete?) errors: 97 // EAI_ADDRFAMILY, EAI_NODATA 98#endif 99 }; 100 101 /// Error category for resolver errors. 102 inline const error_category& resolver_category() noexcept // TODO non-inline 103 { 104 struct __cat : error_category 105 { 106 const char* name() const noexcept { return "resolver"; } 107 std::string message(int __e) const { 108#ifdef _GLIBCXX_HAVE_NETDB_H 109 return ::gai_strerror(__e); 110#else 111 return "name resolution requires <netdb.h>"; 112#endif 113 } 114 virtual void __message(int) { } // TODO dual ABI XXX 115 }; 116 static __cat __c; 117 return __c; 118 } 119 120 inline error_code make_error_code(resolver_errc __e) noexcept 121 { return error_code(static_cast<int>(__e), resolver_category()); } 122 123 inline error_condition make_error_condition(resolver_errc __e) noexcept 124 { return error_condition(static_cast<int>(__e), resolver_category()); } 125 126 /// @cond undocumented 127 inline error_code 128 __make_resolver_error_code(int __ai_err, 129 [[__maybe_unused__]] int __sys_err) noexcept 130 { 131#ifdef EAI_SYSTEM 132 if (__builtin_expect(__ai_err == EAI_SYSTEM, 0)) 133 return error_code(__sys_err, std::generic_category()); 134#endif 135 return error_code(__ai_err, resolver_category()); 136 } 137 /// @endcond 138 139 /// @} 140 141 using port_type = uint_least16_t; ///< Type used for port numbers. 142 using scope_id_type = uint_least32_t; ///< Type used for IPv6 scope IDs. 143 144 /// Convenience alias for constraining allocators for strings. 145 template<typename _Alloc> 146 using __string_with 147 = enable_if_t<std::is_same<typename _Alloc::value_type, char>::value, 148 std::basic_string<char, std::char_traits<char>, _Alloc>>; 149 150 constexpr errc 151 __unsupported_err() noexcept 152 { 153#if defined EAFNOSUPPORT 154 return std::errc::address_family_not_supported; 155#else 156 return std::errc::operation_not_supported; 157#endif 158 } 159 160 /** Tag indicating conversion between IPv4 and IPv4-mapped IPv6 addresses. 161 * @{ 162 */ 163 164 struct v4_mapped_t {}; 165 constexpr v4_mapped_t v4_mapped; 166 167 /// @} 168 169 /// An IPv4 address. 170 class address_v4 171 { 172 public: 173 // types: 174 using uint_type = uint_least32_t; 175 176 struct bytes_type : array<unsigned char, 4> 177 { 178 template<typename... _Tp> 179 explicit constexpr 180 bytes_type(_Tp... __tp) 181 : array<unsigned char, 4>{{static_cast<unsigned char>(__tp)...}} 182 { 183#if UCHAR_MAX > 0xFF 184 for (auto __b : *this) 185 if (__b > 0xFF) 186 __throw_out_of_range("invalid address_v4::bytes_type value"); 187#endif 188 } 189 }; 190 191 // constructors: 192 constexpr address_v4() noexcept : _M_addr(0) { } 193 194 constexpr address_v4(const address_v4& a) noexcept = default; 195 196 constexpr 197 address_v4(const bytes_type& __b) 198 : _M_addr((__b[0] << 24) | (__b[1] << 16) | (__b[2] << 8) | __b[3]) 199 { } 200 201 explicit constexpr 202 address_v4(uint_type __val) : _M_addr(_S_hton_32(__val)) 203 { 204#if UINT_LEAST32_MAX > 0xFFFFFFFF 205 if (__val > 0xFFFFFFFF) 206 __throw_out_of_range("invalid address_v4::uint_type value"); 207#endif 208 } 209 210 // assignment: 211 address_v4& operator=(const address_v4& a) noexcept = default; 212 213 // members: 214 constexpr bool is_unspecified() const noexcept { return to_uint() == 0; } 215 216 constexpr bool 217 is_loopback() const noexcept 218 { return (to_uint() & 0xFF000000) == 0x7F000000; } 219 220 constexpr bool 221 is_multicast() const noexcept 222 { return (to_uint() & 0xF0000000) == 0xE0000000; } 223 224 constexpr bytes_type 225 to_bytes() const noexcept 226 { 227 return bytes_type{ 228 (_M_addr >> 24) & 0xFF, 229 (_M_addr >> 16) & 0xFF, 230 (_M_addr >> 8) & 0xFF, 231 _M_addr & 0xFF 232 }; 233 } 234 235 constexpr uint_type 236 to_uint() const noexcept { return _S_ntoh_32(_M_addr); } 237 238 template<typename _Allocator = allocator<char>> 239 __string_with<_Allocator> 240 to_string(const _Allocator& __a = _Allocator()) const 241 { 242#ifdef _GLIBCXX_HAVE_ARPA_INET_H 243 __string_with<_Allocator> __str(__a); 244 __str.resize(INET_ADDRSTRLEN); 245 if (inet_ntop(AF_INET, &_M_addr, &__str.front(), __str.size())) 246 __str.erase(__str.find('\0')); 247 else 248 __str.resize(0); 249 return __str; 250#else 251 std::__throw_system_error((int)__unsupported_err()); 252#endif 253 } 254 255 // static members: 256 static constexpr address_v4 any() noexcept { return address_v4{}; } 257 258 static constexpr 259 address_v4 loopback() noexcept { return address_v4{0x7F000001}; } 260 261 static constexpr 262 address_v4 broadcast() noexcept { return address_v4{0xFFFFFFFF}; } 263 264 private: 265 template<typename _InternetProtocol> 266 friend class basic_endpoint; 267 268 friend address_v4 make_address_v4(const char*, error_code&) noexcept; 269 270#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 271 static constexpr uint16_t _S_hton_16(uint16_t __h) { return __h; } 272 static constexpr uint16_t _S_ntoh_16(uint16_t __n) { return __n; } 273 static constexpr uint32_t _S_hton_32(uint32_t __h) { return __h; } 274 static constexpr uint32_t _S_ntoh_32(uint32_t __n) { return __n; } 275#else 276 static constexpr uint16_t 277 _S_hton_16(uint16_t __h) { return __builtin_bswap16(__h); } 278 279 static constexpr uint16_t 280 _S_ntoh_16(uint16_t __n) { return __builtin_bswap16(__n); } 281 282 static constexpr uint32_t 283 _S_hton_32(uint32_t __h) { return __builtin_bswap32(__h); } 284 285 static constexpr uint32_t 286 _S_ntoh_32(uint32_t __n) { return __builtin_bswap32(__n); } 287#endif 288 289#ifdef _GLIBCXX_HAVE_ARPA_INET_H 290 in_addr_t _M_addr; // network byte order 291#else 292 uint32_t _M_addr; 293#endif 294 }; 295 296 /// An IPv6 address. 297 class address_v6 298 { 299 public: 300 // types: 301 struct bytes_type : array<unsigned char, 16> 302 { 303 template<typename... _Tp> 304 explicit constexpr 305 bytes_type(_Tp... __t) 306 : array<unsigned char, 16>{{static_cast<unsigned char>(__t)...}} 307 { } 308 }; 309 310 // constructors: 311 constexpr address_v6() noexcept : _M_bytes(), _M_scope_id() { } 312 313 constexpr address_v6(const address_v6& __a) noexcept = default; 314 315 constexpr 316 address_v6(const bytes_type& __bytes, scope_id_type __scope = 0) 317 : _M_bytes(__bytes), _M_scope_id(__scope) 318 { } 319 320 // assignment: 321 address_v6& operator=(const address_v6& __a) noexcept = default; 322 323 // members: 324 void scope_id(scope_id_type __id) noexcept { _M_scope_id = __id; } 325 326 constexpr scope_id_type scope_id() const noexcept { return _M_scope_id; } 327 328 constexpr bool 329 is_unspecified() const noexcept 330 { 331 for (int __i = 0; __i < 16; ++__i) 332 if (_M_bytes[__i] != 0x00) 333 return false; 334 return _M_scope_id == 0; 335 } 336 337 constexpr bool 338 is_loopback() const noexcept 339 { 340 for (int __i = 0; __i < 15; ++__i) 341 if (_M_bytes[__i] != 0x00) 342 return false; 343 return _M_bytes[15] == 0x01 && _M_scope_id == 0; 344 } 345 346 constexpr bool 347 is_multicast() const noexcept { return _M_bytes[0] == 0xFF; } 348 349 constexpr bool 350 is_link_local() const noexcept 351 { return _M_bytes[0] == 0xFE && (_M_bytes[1] & 0xC0) == 0x80; } 352 353 constexpr bool 354 is_site_local() const noexcept 355 { return _M_bytes[0] == 0xFE && (_M_bytes[1] & 0xC0) == 0xC0; } 356 357 constexpr bool 358 is_v4_mapped() const noexcept 359 { 360 const bytes_type& __b = _M_bytes; 361 return __b[0] == 0 && __b[1] == 0 && __b[ 2] == 0 && __b[ 3] == 0 362 && __b[4] == 0 && __b[5] == 0 && __b[ 6] == 0 && __b[ 7] == 0 363 && __b[8] == 0 && __b[9] == 0 && __b[10] == 0xFF && __b[11] == 0xFF; 364 } 365 366 constexpr bool 367 is_multicast_node_local() const noexcept 368 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x01; } 369 370 constexpr bool 371 is_multicast_link_local() const noexcept 372 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x02; } 373 374 constexpr bool 375 is_multicast_site_local() const noexcept 376 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x05; } 377 378 constexpr bool 379 is_multicast_org_local() const noexcept 380 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x08; } 381 382 constexpr bool 383 is_multicast_global() const noexcept 384 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x0b; } 385 386 constexpr bytes_type to_bytes() const noexcept { return _M_bytes; } 387 388 template<typename _Allocator = allocator<char>> 389 __string_with<_Allocator> 390 to_string(const _Allocator& __a = _Allocator()) const 391 { 392#ifdef _GLIBCXX_HAVE_ARPA_INET_H 393 __string_with<_Allocator> __str(__a); 394 __str.resize(INET6_ADDRSTRLEN + (_M_scope_id ? 11 : 0)); 395 char* const __p = &__str.front(); 396 if (inet_ntop(AF_INET6, &_M_bytes, __p, __str.size())) 397 { 398 auto __end = __str.find('\0'); 399 if (unsigned long __scope = _M_scope_id) 400 { 401 __end += 402#if _GLIBCXX_USE_C99_STDIO 403 __builtin_snprintf(__p + __end, __str.size() - __end, 404 "%%%lu", __scope); 405#else 406 __builtin_sprintf(__p + __end, "%%%lu", __scope); 407#endif 408 } 409 __str.erase(__end); 410 } 411 else 412 __str.resize(0); 413 return __str; 414#else 415 std::__throw_system_error((int)__unsupported_err()); 416#endif 417 } 418 419 // static members: 420 421 static constexpr address_v6 422 any() noexcept 423 { 424 return {}; 425 } 426 427 static constexpr address_v6 428 loopback() noexcept 429 { 430 return {bytes_type{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}}; 431 } 432 433 private: 434 template<typename _InternetProtocol> 435 friend class basic_endpoint; 436 437 friend constexpr bool 438 operator==(const address_v6&, const address_v6&) noexcept; 439 440 friend constexpr bool 441 operator< (const address_v6&, const address_v6&) noexcept; 442 443 bytes_type _M_bytes; 444 scope_id_type _M_scope_id; 445 }; 446 447 /// Exception type thrown on misuse of IPv4 addresses as IPv6 or vice versa. 448 class bad_address_cast : public bad_cast 449 { 450 public: 451 bad_address_cast() { } 452 453 const char* what() const noexcept { return "bad address cast"; } 454 }; 455 456 /// An IPv4 or IPv6 address. 457 class address 458 { 459 public: 460 // constructors: 461 constexpr address() noexcept : _M_v4(), _M_is_v4(true) { } 462 463#if __cpp_constexpr_dynamic_alloc 464 constexpr 465#endif 466 address(const address& __a) noexcept : _M_uninit(), _M_is_v4(__a._M_is_v4) 467 { 468 if (_M_is_v4) 469 std::_Construct(std::addressof(_M_v4), __a.to_v4()); 470 else 471 std::_Construct(std::addressof(_M_v6), __a.to_v6()); 472 } 473 474 constexpr 475 address(const address_v4& __a) noexcept : _M_v4(__a), _M_is_v4(true) { } 476 477 constexpr 478 address(const address_v6& __a) noexcept : _M_v6(__a), _M_is_v4(false) { } 479 480 // assignment: 481 address& 482 operator=(const address& __a) noexcept 483 { 484 if (__a._M_is_v4) 485 *this = __a.to_v4(); 486 else 487 *this = __a.to_v6(); 488 return *this; 489 } 490 491 address& 492 operator=(const address_v4& __a) noexcept 493 { 494 std::_Construct(std::addressof(_M_v4), __a); 495 _M_is_v4 = true; 496 return *this; 497 } 498 499 address& 500 operator=(const address_v6& __a) noexcept 501 { 502 std::_Construct(std::addressof(_M_v6), __a); 503 _M_is_v4 = false; 504 return *this; 505 } 506 507 // members: 508 509 constexpr bool is_v4() const noexcept { return _M_is_v4; } 510 constexpr bool is_v6() const noexcept { return !_M_is_v4; } 511 512 constexpr address_v4 513 to_v4() const 514 { 515 if (!is_v4()) 516 _GLIBCXX_THROW_OR_ABORT(bad_address_cast()); 517 return _M_v4; 518 } 519 520 constexpr address_v6 521 to_v6() const 522 { 523 if (!is_v6()) 524 _GLIBCXX_THROW_OR_ABORT(bad_address_cast()); 525 return _M_v6; 526 } 527 528 constexpr bool 529 is_unspecified() const noexcept 530 { return _M_is_v4 ? _M_v4.is_unspecified() : _M_v6.is_unspecified(); } 531 532 constexpr bool 533 is_loopback() const noexcept 534 { return _M_is_v4 ? _M_v4.is_loopback() : _M_v6.is_loopback(); } 535 536 constexpr bool 537 is_multicast() const noexcept 538 { return _M_is_v4 ? _M_v4.is_multicast() : _M_v6.is_multicast(); } 539 540 template<typename _Allocator = allocator<char>> 541 __string_with<_Allocator> 542 to_string(const _Allocator& __a = _Allocator()) const 543 { 544 if (_M_is_v4) 545 return to_v4().to_string(__a); 546 return to_v6().to_string(__a); 547 } 548 549 private: 550 template<typename _InternetProtocol> 551 friend class basic_endpoint; 552 553 friend constexpr bool 554 operator==(const address&, const address&) noexcept; 555 556 friend constexpr bool 557 operator<(const address&, const address&) noexcept; 558 559 union { 560 address_v4 _M_v4; 561 address_v6 _M_v6; 562 bool _M_uninit; 563 }; 564 bool _M_is_v4; 565 }; 566 567 /** ip::address_v4 comparisons 568 * @{ 569 */ 570 571 constexpr bool 572 operator==(const address_v4& __a, const address_v4& __b) noexcept 573 { return __a.to_uint() == __b.to_uint(); } 574 575 constexpr bool 576 operator!=(const address_v4& __a, const address_v4& __b) noexcept 577 { return !(__a == __b); } 578 579 constexpr bool 580 operator< (const address_v4& __a, const address_v4& __b) noexcept 581 { return __a.to_uint() < __b.to_uint(); } 582 583 constexpr bool 584 operator> (const address_v4& __a, const address_v4& __b) noexcept 585 { return __b < __a; } 586 587 constexpr bool 588 operator<=(const address_v4& __a, const address_v4& __b) noexcept 589 { return !(__b < __a); } 590 591 constexpr bool 592 operator>=(const address_v4& __a, const address_v4& __b) noexcept 593 { return !(__a < __b); } 594 595 /// @} 596 597 /** ip::address_v6 comparisons 598 * @{ 599 */ 600 601 constexpr bool 602 operator==(const address_v6& __a, const address_v6& __b) noexcept 603 { 604 const auto& __aa = __a._M_bytes; 605 const auto& __bb = __b._M_bytes; 606 int __i = 0; 607 for (; __i < 16 && __aa[__i] == __bb[__i]; ++__i) 608 ; 609 return __i == 16 ? __a.scope_id() == __b.scope_id() : false; 610 } 611 612 constexpr bool 613 operator!=(const address_v6& __a, const address_v6& __b) noexcept 614 { return !(__a == __b); } 615 616 constexpr bool 617 operator< (const address_v6& __a, const address_v6& __b) noexcept 618 { 619 const auto& __aa = __a._M_bytes; 620 const auto& __bb = __b._M_bytes; 621 int __i = 0; 622 for (; __i < 16 && __aa[__i] == __bb[__i]; ++__i) 623 ; 624 return __i == 16 ? __a.scope_id() < __b.scope_id() : __aa[__i] < __bb[__i]; 625 } 626 627 constexpr bool 628 operator> (const address_v6& __a, const address_v6& __b) noexcept 629 { return __b < __a; } 630 631 constexpr bool 632 operator<=(const address_v6& __a, const address_v6& __b) noexcept 633 { return !(__b < __a); } 634 635 constexpr bool 636 operator>=(const address_v6& __a, const address_v6& __b) noexcept 637 { return !(__a < __b); } 638 639 /// @} 640 641 /** ip::address comparisons 642 * @{ 643 */ 644 645 constexpr bool 646 operator==(const address& __a, const address& __b) noexcept 647 { 648 if (__a.is_v4()) 649 return __b.is_v4() ? __a._M_v4 == __b._M_v4 : false; 650 return __b.is_v4() ? false : __a._M_v6 == __b._M_v6; 651 } 652 653 constexpr bool 654 operator!=(const address& __a, const address& __b) noexcept 655 { return !(__a == __b); } 656 657 constexpr bool 658 operator< (const address& __a, const address& __b) noexcept 659 { 660 if (__a.is_v4()) 661 return __b.is_v4() ? __a._M_v4 < __b._M_v4 : true; 662 return __b.is_v4() ? false : __a._M_v6 < __b._M_v6; 663 } 664 665 constexpr bool 666 operator> (const address& __a, const address& __b) noexcept 667 { return __b < __a; } 668 669 constexpr bool 670 operator<=(const address& __a, const address& __b) noexcept 671 { return !(__b < __a); } 672 673 constexpr bool 674 operator>=(const address& __a, const address& __b) noexcept 675 { return !(__a < __b); } 676 677 /// @} 678 679 /** ip::address_v4 creation 680 * @{ 681 */ 682 683 constexpr address_v4 684 make_address_v4(const address_v4::bytes_type& __b) 685 { return address_v4{__b}; } 686 687 constexpr address_v4 688 make_address_v4(address_v4::uint_type __val) 689 { return address_v4{__val}; } 690 691 constexpr address_v4 692 make_address_v4(v4_mapped_t, const address_v6& __a) 693 { 694 if (!__a.is_v4_mapped()) 695 _GLIBCXX_THROW_OR_ABORT(bad_address_cast()); 696 697 const auto __v6b = __a.to_bytes(); 698 return address_v4::bytes_type(__v6b[12], __v6b[13], __v6b[14], __v6b[15]); 699 } 700 701 inline address_v4 702 make_address_v4(const char* __str, error_code& __ec) noexcept 703 { 704#ifdef _GLIBCXX_HAVE_ARPA_INET_H 705 address_v4 __a; 706 const int __res = ::inet_pton(AF_INET, __str, &__a._M_addr); 707 if (__res == 1) 708 { 709 __ec.clear(); 710 return __a; 711 } 712 if (__res == 0) 713 __ec = std::make_error_code(std::errc::invalid_argument); 714 else 715 __ec.assign(errno, generic_category()); 716#else 717 __ec = std::make_error_code(__unsupported_err()); 718#endif 719 return {}; 720 } 721 722 inline address_v4 723 make_address_v4(const char* __str) 724 { return make_address_v4(__str, __throw_on_error{"make_address_v4"}); } 725 726 inline address_v4 727 make_address_v4(const string& __str, error_code& __ec) noexcept 728 { return make_address_v4(__str.c_str(), __ec); } 729 730 inline address_v4 731 make_address_v4(const string& __str) 732 { return make_address_v4(__str.c_str()); } 733 734 inline address_v4 735 make_address_v4(string_view __str, error_code& __ec) noexcept 736 { 737 char __buf[16]; // INET_ADDRSTRLEN isn't defined on Windows 738 auto __len = __str.copy(__buf, sizeof(__buf)); 739 if (__len == sizeof(__buf)) 740 { 741 __ec = std::make_error_code(std::errc::invalid_argument); 742 return {}; 743 } 744 __ec.clear(); 745 __buf[__len] = '\0'; 746 return make_address_v4(__buf, __ec); 747 } 748 749 inline address_v4 750 make_address_v4(string_view __str) 751 { return make_address_v4(__str, __throw_on_error{"make_address_v4"}); } 752 753 /// @} 754 755 /** ip::address_v6 creation 756 * @{ 757 */ 758 759 constexpr address_v6 760 make_address_v6(const address_v6::bytes_type& __b, scope_id_type __scope = 0) 761 { return address_v6{__b, __scope}; } 762 763 constexpr address_v6 764 make_address_v6(v4_mapped_t, const address_v4& __a) noexcept 765 { 766 const address_v4::bytes_type __v4b = __a.to_bytes(); 767 address_v6::bytes_type __v6b(0, 0, 0, 0, 0, 0, 0, 0, 768 0, 0, 0xFF, 0xFF, 769 __v4b[0], __v4b[1], __v4b[2], __v4b[3]); 770 return address_v6(__v6b); 771 } 772 773 inline address_v6 774 __make_address_v6(const char* __addr, const char* __scope, error_code& __ec) 775 { 776#ifdef _GLIBCXX_HAVE_ARPA_INET_H 777 address_v6::bytes_type __b; 778 const int __res = ::inet_pton(AF_INET6, __addr, __b.data()); 779 if (__res == 1) 780 { 781 __ec.clear(); 782 if (!__scope) 783 { 784 return { __b }; 785 } 786 787 char* __eptr; 788 unsigned long __val = std::strtoul(__scope, &__eptr, 10); 789 if (__eptr != __scope && !*__eptr 790 && __val <= numeric_limits<scope_id_type>::max()) 791 { 792 return { __b, static_cast<scope_id_type>(__val) }; 793 } 794 __ec = std::make_error_code(std::errc::invalid_argument); 795 } 796 else if (__res == 0) 797 __ec = std::make_error_code(std::errc::invalid_argument); 798 else 799 __ec.assign(errno, generic_category()); 800#else 801 __ec = std::make_error_code(__unsupported_err()); 802#endif 803 return {}; 804 } 805 806 inline address_v6 807 make_address_v6(const char* __str, error_code& __ec) noexcept 808 { 809 auto __p = __builtin_strchr(__str, '%'); 810 if (__p == nullptr) 811 return __make_address_v6(__str, nullptr, __ec); 812 char __buf[64]; 813 char* __out = __buf; 814 bool __skip_leading_zero = true; 815 while (__str < __p && __out < std::end(__buf)) 816 { 817 if (!__skip_leading_zero || *__str != '0') 818 { 819 if (*__str == ':' || *__str == '.') 820 __skip_leading_zero = true; 821 else 822 __skip_leading_zero = false; 823 *__out = *__str; 824 } 825 __str++; 826 } 827 if (__out == std::end(__buf)) 828 { 829 __ec = std::make_error_code(std::errc::invalid_argument); 830 return {}; 831 } 832 else 833 { 834 *__out = '\0'; 835 return __make_address_v6(__buf, __p + 1, __ec); 836 } 837 } 838 839 inline address_v6 840 make_address_v6(const char* __str) 841 { return make_address_v6(__str, __throw_on_error{"make_address_v6"}); } 842 843 inline address_v6 844 make_address_v6(const string& __str, error_code& __ec) noexcept 845 { 846 auto __pos = __str.find('%'); 847 if (__pos == string::npos) 848 return __make_address_v6(__str.c_str(), nullptr, __ec); 849 char __buf[64]; 850 char* __out = __buf; 851 bool __skip_leading_zero = true; 852 size_t __n = 0; 853 while (__n < __pos && __out < std::end(__buf)) 854 { 855 if (!__skip_leading_zero || __str[__n] != '0') 856 { 857 if (__str[__n] == ':' || __str[__n] == '.') 858 __skip_leading_zero = true; 859 else 860 __skip_leading_zero = false; 861 *__out = __str[__n]; 862 } 863 __n++; 864 } 865 if (__out == std::end(__buf)) 866 { 867 __ec = std::make_error_code(std::errc::invalid_argument); 868 return {}; 869 } 870 else 871 { 872 *__out = '\0'; 873 return __make_address_v6(__buf, __str.c_str() + __pos + 1, __ec); 874 } 875 } 876 877 inline address_v6 878 make_address_v6(const string& __str) 879 { return make_address_v6(__str, __throw_on_error{"make_address_v6"}); } 880 881 inline address_v6 882 make_address_v6(string_view __str, error_code& __ec) noexcept 883 { 884 char __buf[64]; 885 char* __out = __buf; 886 char* __scope = nullptr; 887 bool __skip_leading_zero = true; 888 size_t __n = 0; 889 while (__n < __str.length() && __out < std::end(__buf)) 890 { 891 if (__str[__n] == '%') 892 { 893 if (__scope) 894 __out = std::end(__buf); 895 else 896 { 897 *__out = '\0'; 898 __scope = ++__out; 899 __skip_leading_zero = true; 900 } 901 } 902 else if (!__skip_leading_zero || __str[__n] != '0') 903 { 904 if (__str[__n] == ':' || __str[__n] == '.') 905 __skip_leading_zero = true; 906 else 907 __skip_leading_zero = false; 908 *__out = __str[__n]; 909 __out++; 910 } 911 __n++; 912 } 913 if (__out == std::end(__buf)) 914 { 915 __ec = std::make_error_code(std::errc::invalid_argument); 916 return {}; 917 } 918 else 919 { 920 *__out = '\0'; 921 return __make_address_v6(__buf, __scope, __ec); 922 } 923 } 924 925 inline address_v6 926 make_address_v6(string_view __str) 927 { return make_address_v6(__str, __throw_on_error{"make_address_v6"}); } 928 929 /// @} 930 931 /** ip::address creation 932 * @{ 933 */ 934 935 inline address 936 make_address(const char* __str, error_code& __ec) noexcept 937 { 938 address __a; 939 address_v6 __v6a = make_address_v6(__str, __ec); 940 if (!__ec) 941 __a = __v6a; 942 else 943 { 944 address_v4 __v4a = make_address_v4(__str, __ec); 945 if (!__ec) 946 __a = __v4a; 947 } 948 return __a; 949 } 950 951 inline address 952 make_address(const char* __str) 953 { return make_address(__str, __throw_on_error{"make_address"}); } 954 955 inline address 956 make_address(const string& __str, error_code& __ec) noexcept; // TODO 957 958 inline address 959 make_address(const string& __str) 960 { return make_address(__str, __throw_on_error{"make_address"}); } 961 962 inline address 963 make_address(string_view __str, error_code& __ec) noexcept 964 { 965 if (__str.rfind('\0') != string_view::npos) 966 return make_address(__str.data(), __ec); 967 return make_address(__str.to_string(), __ec); // TODO don't allocate 968 } 969 970 inline address 971 make_address(string_view __str) 972 { return make_address(__str, __throw_on_error{"make_address"}); } 973 974 /// @} 975 976 /// ip::address I/O 977 template<typename _CharT, typename _Traits> 978 inline basic_ostream<_CharT, _Traits>& 979 operator<<(basic_ostream<_CharT, _Traits>& __os, const address& __a) 980 { return __os << __a.to_string(); } 981 982 /// ip::address_v4 I/O 983 template<typename _CharT, typename _Traits> 984 inline basic_ostream<_CharT, _Traits>& 985 operator<<(basic_ostream<_CharT, _Traits>& __os, const address_v4& __a) 986 { return __os << __a.to_string(); } 987 988 /// ip::address_v6 I/O 989 template<typename _CharT, typename _Traits> 990 inline basic_ostream<_CharT, _Traits>& 991 operator<<(basic_ostream<_CharT, _Traits>& __os, const address_v6& __a) 992 { return __os << __a.to_string(); } 993 994 template<typename> class basic_address_iterator; // not defined 995 996 template<> class basic_address_iterator<address_v4> 997 { 998 public: 999 // types: 1000 using value_type = address_v4; 1001 using difference_type = ptrdiff_t; 1002 using pointer = const address_v4*; 1003 using reference = const address_v4&; 1004 using iterator_category = input_iterator_tag; 1005 1006 // constructors: 1007 basic_address_iterator(const address_v4& __a) noexcept 1008 : _M_address(__a) { } 1009 1010 // members: 1011 reference operator*() const noexcept { return _M_address; } 1012 pointer operator->() const noexcept { return &_M_address; } 1013 1014 basic_address_iterator& 1015 operator++() noexcept 1016 { 1017 _M_address = value_type(_M_address.to_uint() + 1); 1018 return *this; 1019 } 1020 1021 basic_address_iterator operator++(int) noexcept 1022 { 1023 auto __tmp = *this; 1024 ++*this; 1025 return __tmp; 1026 } 1027 1028 basic_address_iterator& operator--() noexcept 1029 { 1030 _M_address = value_type(_M_address.to_uint() - 1); 1031 return *this; 1032 } 1033 1034 basic_address_iterator 1035 operator--(int) noexcept 1036 { 1037 auto __tmp = *this; 1038 --*this; 1039 return __tmp; 1040 } 1041 1042 bool 1043 operator==(const basic_address_iterator& __rhs) const noexcept 1044 { return _M_address == __rhs._M_address; } 1045 1046 bool 1047 operator!=(const basic_address_iterator& __rhs) const noexcept 1048 { return _M_address != __rhs._M_address; } 1049 1050 private: 1051 address_v4 _M_address; 1052 }; 1053 1054 using address_v4_iterator = basic_address_iterator<address_v4>; 1055 1056 template<> class basic_address_iterator<address_v6> 1057 { 1058 public: 1059 // types: 1060 using value_type = address_v6; 1061 using difference_type = ptrdiff_t; 1062 using pointer = const address_v6*; 1063 using reference = const address_v6&; 1064 using iterator_category = input_iterator_tag; 1065 1066 // constructors: 1067 basic_address_iterator(const address_v6& __a) noexcept 1068 : _M_address(__a) { } 1069 1070 // members: 1071 reference operator*() const noexcept { return _M_address; } 1072 pointer operator->() const noexcept { return &_M_address; } 1073 1074 basic_address_iterator& 1075 operator++() noexcept; // TODO 1076 1077 basic_address_iterator 1078 operator++(int) noexcept 1079 { 1080 auto __tmp = *this; 1081 ++*this; 1082 return __tmp; 1083 } 1084 1085 basic_address_iterator& 1086 operator--() noexcept; // TODO 1087 1088 basic_address_iterator 1089 operator--(int) noexcept 1090 { 1091 auto __tmp = *this; 1092 --*this; 1093 return __tmp; 1094 } 1095 1096 bool 1097 operator==(const basic_address_iterator& __rhs) const noexcept 1098 { return _M_address == __rhs._M_address; } 1099 1100 bool 1101 operator!=(const basic_address_iterator& __rhs) const noexcept 1102 { return _M_address != __rhs._M_address; } 1103 1104 private: 1105 address_v6 _M_address; 1106 }; 1107 1108 using address_v6_iterator = basic_address_iterator<address_v6>; 1109 1110 template<typename> class basic_address_range; // not defined 1111 1112 /** An IPv6 address range. 1113 * @{ 1114 */ 1115 1116 template<> class basic_address_range<address_v4> 1117 { 1118 public: 1119 // types: 1120 1121 using iterator = basic_address_iterator<address_v4>; 1122 1123 // constructors: 1124 1125 basic_address_range() noexcept : _M_begin({}), _M_end({}) { } 1126 1127 basic_address_range(const address_v4& __first, 1128 const address_v4& __last) noexcept 1129 : _M_begin(__first), _M_end(__last) { } 1130 1131 // members: 1132 1133 iterator begin() const noexcept { return _M_begin; } 1134 iterator end() const noexcept { return _M_end; } 1135 _GLIBCXX_NODISCARD bool empty() const noexcept { return _M_begin == _M_end; } 1136 1137 size_t 1138 size() const noexcept { return _M_end->to_uint() - _M_begin->to_uint(); } 1139 1140 iterator 1141 find(const address_v4& __addr) const noexcept 1142 { 1143 if (*_M_begin <= __addr && __addr < *_M_end) 1144 return iterator{__addr}; 1145 return end(); 1146 } 1147 1148 private: 1149 iterator _M_begin; 1150 iterator _M_end; 1151 }; 1152 1153 using address_v4_range = basic_address_range<address_v4>; 1154 1155 /// @} 1156 1157 /** An IPv6 address range. 1158 * @{ 1159 */ 1160 1161 template<> class basic_address_range<address_v6> 1162 { 1163 public: 1164 // types: 1165 1166 using iterator = basic_address_iterator<address_v6>; 1167 1168 // constructors: 1169 1170 basic_address_range() noexcept : _M_begin({}), _M_end({}) { } 1171 basic_address_range(const address_v6& __first, 1172 const address_v6& __last) noexcept 1173 : _M_begin(__first), _M_end(__last) { } 1174 1175 // members: 1176 1177 iterator begin() const noexcept { return _M_begin; } 1178 iterator end() const noexcept { return _M_end; } 1179 _GLIBCXX_NODISCARD bool empty() const noexcept { return _M_begin == _M_end; } 1180 1181 iterator 1182 find(const address_v6& __addr) const noexcept 1183 { 1184 if (*_M_begin <= __addr && __addr < *_M_end) 1185 return iterator{__addr}; 1186 return end(); 1187 } 1188 1189 private: 1190 iterator _M_begin; 1191 iterator _M_end; 1192 }; 1193 1194 using address_v6_range = basic_address_range<address_v6>; 1195 1196 /// @} 1197 1198 bool 1199 operator==(const network_v4& __a, const network_v4& __b) noexcept; 1200 1201 bool 1202 operator==(const network_v6& __a, const network_v6& __b) noexcept; 1203 1204 1205 /// An IPv4 network address. 1206 class network_v4 1207 { 1208 public: 1209 // constructors: 1210 constexpr network_v4() noexcept : _M_addr(), _M_prefix_len(0) { } 1211 1212 constexpr 1213 network_v4(const address_v4& __addr, int __prefix_len) 1214 : _M_addr(__addr), _M_prefix_len(__prefix_len) 1215 { 1216 if (_M_prefix_len < 0 || _M_prefix_len > 32) 1217 __throw_out_of_range("network_v4: invalid prefix length"); 1218 } 1219 1220 constexpr 1221 network_v4(const address_v4& __addr, const address_v4& __mask) 1222 : _M_addr(__addr), _M_prefix_len(__builtin_popcount(__mask.to_uint())) 1223 { 1224 if (_M_prefix_len != 0) 1225 { 1226 address_v4::uint_type __mask_uint = __mask.to_uint(); 1227 if (__builtin_ctz(__mask_uint) != (32 - _M_prefix_len)) 1228 __throw_invalid_argument("network_v4: invalid mask"); 1229 if ((__mask_uint & 0x80000000) == 0) 1230 __throw_invalid_argument("network_v4: invalid mask"); 1231 } 1232 } 1233 1234 // members: 1235 1236 constexpr address_v4 address() const noexcept { return _M_addr; } 1237 constexpr int prefix_length() const noexcept { return _M_prefix_len; } 1238 1239 constexpr address_v4 1240 netmask() const noexcept 1241 { 1242 address_v4::uint_type __val = address_v4::broadcast().to_uint(); 1243 __val >>= (32 - _M_prefix_len); 1244 __val <<= (32 - _M_prefix_len); 1245 return address_v4{__val}; 1246 } 1247 1248 constexpr address_v4 1249 network() const noexcept 1250 { return address_v4{_M_addr.to_uint() & netmask().to_uint()}; } 1251 1252 constexpr address_v4 1253 broadcast() const noexcept 1254 { return address_v4{_M_addr.to_uint() | ~netmask().to_uint()}; } 1255 1256 address_v4_range 1257 hosts() const noexcept 1258 { 1259 if (is_host()) 1260 return { address(), *++address_v4_iterator(address()) }; 1261 return { network(), broadcast() }; 1262 } 1263 1264 constexpr network_v4 1265 canonical() const noexcept 1266 { return network_v4(network(), prefix_length()); } 1267 1268 constexpr bool is_host() const noexcept { return _M_prefix_len == 32; } 1269 1270 constexpr bool 1271 is_subnet_of(const network_v4& __other) const noexcept 1272 { 1273 if (__other.prefix_length() < prefix_length()) 1274 { 1275 network_v4 __net(address(), __other.prefix_length()); 1276 return __net.canonical() == __other.canonical(); 1277 } 1278 return false; 1279 } 1280 1281 template<typename _Allocator = allocator<char>> 1282 __string_with<_Allocator> 1283 to_string(const _Allocator& __a = _Allocator()) const 1284 { 1285 return address().to_string(__a) + '/' 1286 + std::to_string(prefix_length()); 1287 } 1288 1289 private: 1290 address_v4 _M_addr; 1291 int _M_prefix_len; 1292 }; 1293 1294 /// An IPv6 network address. 1295 class network_v6 1296 { 1297 public: 1298 // constructors: 1299 constexpr network_v6() noexcept : _M_addr(), _M_prefix_len(0) { } 1300 1301 constexpr 1302 network_v6(const address_v6& __addr, int __prefix_len) 1303 : _M_addr(__addr), _M_prefix_len(__prefix_len) 1304 { 1305 if (_M_prefix_len < 0 || _M_prefix_len > 128) 1306 __throw_out_of_range("network_v6: invalid prefix length"); 1307 } 1308 1309 // members: 1310 constexpr address_v6 address() const noexcept { return _M_addr; } 1311 constexpr int prefix_length() const noexcept { return _M_prefix_len; } 1312 1313 constexpr address_v6 network() const noexcept; // TODO 1314 1315 address_v6_range 1316 hosts() const noexcept 1317 { 1318 if (is_host()) 1319 return { address(), *++address_v6_iterator(address()) }; 1320 return {}; // { network(), XXX broadcast() XXX }; // TODO 1321 } 1322 1323 constexpr network_v6 1324 canonical() const noexcept 1325 { return network_v6{network(), prefix_length()}; } 1326 1327 constexpr bool is_host() const noexcept { return _M_prefix_len == 128; } 1328 1329 constexpr bool 1330 is_subnet_of(const network_v6& __other) const noexcept 1331 { 1332 if (__other.prefix_length() < prefix_length()) 1333 { 1334 network_v6 __net(address(), __other.prefix_length()); 1335 return __net.canonical() == __other.canonical(); 1336 } 1337 return false; 1338 } 1339 1340 template<typename _Allocator = allocator<char>> 1341 __string_with<_Allocator> 1342 to_string(const _Allocator& __a = _Allocator()) const 1343 { 1344 return address().to_string(__a) + '/' 1345 + std::to_string(prefix_length()); 1346 } 1347 1348 private: 1349 address_v6 _M_addr; 1350 int _M_prefix_len; 1351 }; 1352 1353 1354 /** ip::network_v4 comparisons 1355 * @{ 1356 */ 1357 1358 inline bool 1359 operator==(const network_v4& __a, const network_v4& __b) noexcept 1360 { 1361 return __a.address() == __b.address() 1362 && __a.prefix_length() == __b.prefix_length(); 1363 } 1364 1365 inline bool 1366 operator!=(const network_v4& __a, const network_v4& __b) noexcept 1367 { return !(__a == __b); } 1368 1369 /// @} 1370 1371 /** ip::network_v6 comparisons 1372 * @{ 1373 */ 1374 1375 inline bool 1376 operator==(const network_v6& __a, const network_v6& __b) noexcept 1377 { 1378 return __a.address() == __b.address() 1379 && __a.prefix_length() == __b.prefix_length(); 1380 } 1381 1382 inline bool 1383 operator!=(const network_v6& __a, const network_v6& __b) noexcept 1384 { return !(__a == __b); } 1385 1386 /// @} 1387 1388 /** ip::network_v4 creation 1389 * @{ 1390 */ 1391 1392 inline network_v4 1393 make_network_v4(const address_v4& __a, int __prefix_len) 1394 { return network_v4{__a, __prefix_len}; } 1395 1396 inline network_v4 1397 make_network_v4(const address_v4& __a, const address_v4& __mask) 1398 { return network_v4{ __a, __mask }; } 1399 1400 network_v4 make_network_v4(const char*, error_code&) noexcept; // TODO 1401 1402 inline network_v4 1403 make_network_v4(const char* __str) 1404 { return make_network_v4(__str, __throw_on_error{"make_network_v4"}); } 1405 1406 network_v4 make_network_v4(const string&, error_code&) noexcept; // TODO 1407 1408 inline network_v4 1409 make_network_v4(const string& __str) 1410 { return make_network_v4(__str, __throw_on_error{"make_network_v4"}); } 1411 1412 network_v4 make_network_v4(string_view, error_code&) noexcept; // TODO 1413 1414 inline network_v4 1415 make_network_v4(string_view __str) 1416 { return make_network_v4(__str, __throw_on_error{"make_network_v4"}); } 1417 1418 /// @} 1419 1420 /** ip::network_v6 creation 1421 * @{ 1422 */ 1423 1424 inline network_v6 1425 make_network_v6(const address_v6& __a, int __prefix_len) 1426 { return network_v6{__a, __prefix_len}; } 1427 1428 network_v6 make_network_v6(const char*, error_code&) noexcept; // TODO 1429 1430 inline network_v6 1431 make_network_v6(const char* __str) 1432 { return make_network_v6(__str, __throw_on_error{"make_network_v6"}); } 1433 1434 network_v6 make_network_v6(const string&, error_code&) noexcept; // TODO 1435 1436 inline network_v6 1437 make_network_v6(const string& __str) 1438 { return make_network_v6(__str, __throw_on_error{"make_network_v6"}); } 1439 1440 network_v6 make_network_v6(string_view, error_code&) noexcept; // TODO 1441 1442 inline network_v6 1443 make_network_v6(string_view __str) 1444 { return make_network_v6(__str, __throw_on_error{"make_network_v6"}); } 1445 1446 /// @} 1447 1448 /// ip::network_v4 I/O 1449 template<typename _CharT, typename _Traits> 1450 inline basic_ostream<_CharT, _Traits>& 1451 operator<<(basic_ostream<_CharT, _Traits>& __os, const network_v4& __net) 1452 { return __os << __net.to_string(); } 1453 1454 /// ip::network_v6 I/O 1455 template<typename _CharT, typename _Traits> 1456 inline basic_ostream<_CharT, _Traits>& 1457 operator<<(basic_ostream<_CharT, _Traits>& __os, const network_v6& __net) 1458 { return __os << __net.to_string(); } 1459 1460 /// An IP endpoint. 1461 template<typename _InternetProtocol> 1462 class basic_endpoint 1463 { 1464 public: 1465 // types: 1466 using protocol_type = _InternetProtocol; 1467 1468 // constructors: 1469 1470 constexpr 1471 basic_endpoint() noexcept : _M_data() 1472 { _M_data._M_v4.sin_family = protocol_type::v4().family(); } 1473 1474 constexpr 1475 basic_endpoint(const protocol_type& __proto, 1476 port_type __port_num) noexcept 1477 : _M_data() 1478 { 1479 __glibcxx_assert(__proto == protocol_type::v4() 1480 || __proto == protocol_type::v6()); 1481 1482 _M_data._M_v4.sin_family = __proto.family(); 1483 _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); 1484 } 1485 1486 constexpr 1487 basic_endpoint(const ip::address& __addr, 1488 port_type __port_num) noexcept 1489 : _M_data() 1490 { 1491 if (__addr.is_v4()) 1492 { 1493 _M_data._M_v4.sin_family = protocol_type::v4().family(); 1494 _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); 1495 _M_data._M_v4.sin_addr.s_addr = __addr._M_v4._M_addr; 1496 } 1497 else 1498 { 1499 _M_data._M_v6 = {}; 1500 _M_data._M_v6.sin6_family = protocol_type::v6().family(); 1501 _M_data._M_v6.sin6_port = address_v4::_S_hton_16(__port_num); 1502 __builtin_memcpy(_M_data._M_v6.sin6_addr.s6_addr, 1503 __addr._M_v6._M_bytes.data(), 16); 1504 _M_data._M_v6.sin6_scope_id = __addr._M_v6._M_scope_id; 1505 } 1506 } 1507 1508 // members: 1509 constexpr protocol_type protocol() const noexcept 1510 { 1511 return _M_is_v6() ? protocol_type::v6() : protocol_type::v4(); 1512 } 1513 1514 constexpr ip::address 1515 address() const noexcept 1516 { 1517 ip::address __addr; 1518 if (_M_is_v6()) 1519 { 1520 __builtin_memcpy(&__addr._M_v6._M_bytes, 1521 _M_data._M_v6.sin6_addr.s6_addr, 16); 1522 __addr._M_is_v4 = false; 1523 } 1524 else 1525 { 1526 __builtin_memcpy(&__addr._M_v4._M_addr, 1527 &_M_data._M_v4.sin_addr.s_addr, 4); 1528 } 1529 return __addr; 1530 } 1531 1532 void 1533 address(const ip::address& __addr) noexcept 1534 { 1535 if (__addr.is_v6()) 1536 { 1537 _M_data._M_v6 = {}; 1538 _M_data._M_v6.sin6_family = protocol_type::v6().family(); 1539 __builtin_memcpy(_M_data._M_v6.sin6_addr.s6_addr, 1540 __addr._M_v6._M_bytes.data(), 16); 1541 _M_data._M_v6.sin6_scope_id = __addr._M_v6._M_scope_id; 1542 } 1543 else 1544 { 1545 _M_data._M_v4.sin_family = protocol_type::v4().family(); 1546 _M_data._M_v4.sin_addr.s_addr = __addr._M_v4._M_addr; 1547 } 1548 } 1549 1550 constexpr port_type 1551 port() const noexcept 1552 { return address_v4::_S_ntoh_16(_M_data._M_v4.sin_port); } 1553 1554 void 1555 port(port_type __port_num) noexcept 1556 { _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); } 1557 1558 void* data() noexcept { return &_M_data; } 1559 1560 const void* data() const noexcept { return &_M_data; } 1561 1562 constexpr size_t size() const noexcept 1563 { return _M_is_v6() ? sizeof(sockaddr_in6) : sizeof(sockaddr_in); } 1564 1565 void 1566 resize(size_t __s) 1567 { 1568 if (__s != size()) 1569 __throw_length_error("net::ip::basic_endpoint::resize"); 1570 } 1571 1572 constexpr size_t capacity() const noexcept { return sizeof(_M_data); } 1573 1574 private: 1575 union 1576 { 1577 sockaddr_in _M_v4; 1578 sockaddr_in6 _M_v6; 1579 } _M_data; 1580 1581 constexpr bool _M_is_v6() const noexcept 1582 { return _M_data._M_v4.sin_family == AF_INET6; } 1583 }; 1584 1585 /** basic_endpoint comparisons 1586 * @{ 1587 */ 1588 1589 template<typename _InternetProtocol> 1590 inline bool 1591 operator==(const basic_endpoint<_InternetProtocol>& __a, 1592 const basic_endpoint<_InternetProtocol>& __b) 1593 { return __a.address() == __b.address() && __a.port() == __b.port(); } 1594 1595 template<typename _InternetProtocol> 1596 inline bool 1597 operator!=(const basic_endpoint<_InternetProtocol>& __a, 1598 const basic_endpoint<_InternetProtocol>& __b) 1599 { return !(__a == __b); } 1600 1601 template<typename _InternetProtocol> 1602 inline bool 1603 operator< (const basic_endpoint<_InternetProtocol>& __a, 1604 const basic_endpoint<_InternetProtocol>& __b) 1605 { 1606 return __a.address() < __b.address() 1607 || (!(__b.address() < __a.address()) && __a.port() < __b.port()); 1608 } 1609 1610 template<typename _InternetProtocol> 1611 inline bool 1612 operator> (const basic_endpoint<_InternetProtocol>& __a, 1613 const basic_endpoint<_InternetProtocol>& __b) 1614 { return __b < __a; } 1615 1616 template<typename _InternetProtocol> 1617 inline bool 1618 operator<=(const basic_endpoint<_InternetProtocol>& __a, 1619 const basic_endpoint<_InternetProtocol>& __b) 1620 { return !(__b < __a); } 1621 1622 template<typename _InternetProtocol> 1623 inline bool 1624 operator>=(const basic_endpoint<_InternetProtocol>& __a, 1625 const basic_endpoint<_InternetProtocol>& __b) 1626 { return !(__a < __b); } 1627 1628 /// @} 1629 1630 /// basic_endpoint I/O 1631 template<typename _CharT, typename _Traits, typename _InternetProtocol> 1632 inline basic_ostream<_CharT, _Traits>& 1633 operator<<(basic_ostream<_CharT, _Traits>& __os, 1634 const basic_endpoint<_InternetProtocol>& __ep) 1635 { 1636 basic_ostringstream<_CharT, _Traits> __ss; 1637 if (__ep.protocol() 1638 == basic_endpoint<_InternetProtocol>::protocol_type::v6()) 1639 __ss << '[' << __ep.address() << ']'; 1640 else 1641 __ss << __ep.address(); 1642 __ss << ':' << __ep.port(); 1643 __os << __ss.str(); 1644 return __os; 1645 } 1646 1647 /** Type representing a single result of name/address resolution. 1648 * @{ 1649 */ 1650 1651 template<typename _InternetProtocol> 1652 class basic_resolver_entry 1653 { 1654 public: 1655 // types: 1656 using protocol_type = _InternetProtocol; 1657 using endpoint_type = typename _InternetProtocol::endpoint; 1658 1659 // constructors: 1660 basic_resolver_entry() { } 1661 1662 basic_resolver_entry(const endpoint_type& __ep, 1663 string_view __h, string_view __s) 1664 : _M_ep(__ep), _M_host(__h), _M_svc(__s) { } 1665 1666 // members: 1667 endpoint_type endpoint() const { return _M_ep; } 1668 operator endpoint_type() const { return _M_ep; } 1669 1670 template<typename _Allocator = allocator<char>> 1671 __string_with<_Allocator> 1672 host_name(const _Allocator& __a = _Allocator()) const 1673 { return { _M_host, __a }; } 1674 1675 template<typename _Allocator = allocator<char>> 1676 __string_with<_Allocator> 1677 service_name(const _Allocator& __a = _Allocator()) const 1678 { return { _M_svc, __a }; } 1679 1680 private: 1681 basic_endpoint<_InternetProtocol> _M_ep; 1682 string _M_host; 1683 string _M_svc; 1684 }; 1685 1686 template<typename _InternetProtocol> 1687 inline bool 1688 operator==(const basic_resolver_entry<_InternetProtocol>& __a, 1689 const basic_resolver_entry<_InternetProtocol>& __b) 1690 { 1691 return __a.endpoint() == __b.endpoint() 1692 && __a.host_name() == __b.host_name() 1693 && __a.service_name() == __b.service_name(); 1694 } 1695 1696 template<typename _InternetProtocol> 1697 inline bool 1698 operator!=(const basic_resolver_entry<_InternetProtocol>& __a, 1699 const basic_resolver_entry<_InternetProtocol>& __b) 1700 { return !(__a == __b); } 1701 1702 /// @} 1703 1704 /** Base class defining flags for name/address resolution. 1705 * @{ 1706 */ 1707 1708 class resolver_base 1709 { 1710 public: 1711 enum flags : int { }; 1712 static constexpr flags passive = (flags)AI_PASSIVE; 1713 static constexpr flags canonical_name = (flags)AI_CANONNAME; 1714 static constexpr flags numeric_host = (flags)AI_NUMERICHOST; 1715#ifdef AI_NUMERICSERV 1716 static constexpr flags numeric_service = (flags)AI_NUMERICSERV; 1717#endif 1718#ifdef AI_V4MAPPED 1719 static constexpr flags v4_mapped = (flags)AI_V4MAPPED; 1720#endif 1721#ifdef AI_ALL 1722 static constexpr flags all_matching = (flags)AI_ALL; 1723#endif 1724#ifdef AI_ADDRCONFIG 1725 static constexpr flags address_configured = (flags)AI_ADDRCONFIG; 1726#endif 1727 1728 friend constexpr flags 1729 operator&(flags __f1, flags __f2) noexcept 1730 { return flags( int(__f1) & int(__f2) ); } 1731 1732 friend constexpr flags 1733 operator|(flags __f1, flags __f2) noexcept 1734 { return flags( int(__f1) | int(__f2) ); } 1735 1736 friend constexpr flags 1737 operator^(flags __f1, flags __f2) noexcept 1738 { return flags( int(__f1) ^ int(__f2) ); } 1739 1740 friend constexpr flags 1741 operator~(flags __f) noexcept 1742 { return flags( ~int(__f) ); } 1743 1744 friend constexpr flags& 1745 operator&=(flags& __f1, flags __f2) noexcept 1746 { return __f1 = (__f1 & __f2); } 1747 1748 friend constexpr flags& 1749 operator|=(flags& __f1, flags __f2) noexcept 1750 { return __f1 = (__f1 | __f2); } 1751 1752 friend constexpr flags& 1753 operator^=(flags& __f1, flags __f2) noexcept 1754 { return __f1 = (__f1 ^ __f2); } 1755 1756 protected: 1757 resolver_base() = default; 1758 ~resolver_base() = default; 1759 }; 1760 1761 // TODO define resolver_base::flags static constants in .so for C++14 mode 1762 1763 /// @} 1764 1765 /** Container for results of name/address resolution. 1766 * @{ 1767 */ 1768 1769 template<typename _InternetProtocol> 1770 class basic_resolver_results 1771 { 1772 public: 1773 // types: 1774 using protocol_type = _InternetProtocol; 1775 using endpoint_type = typename protocol_type::endpoint; 1776 using value_type = basic_resolver_entry<protocol_type>; 1777 using const_reference = const value_type&; 1778 using reference = value_type&; 1779 using const_iterator = typename forward_list<value_type>::const_iterator; 1780 using iterator = const_iterator; 1781 using difference_type = ptrdiff_t; 1782 using size_type = size_t; 1783 1784 // construct / copy / destroy: 1785 1786 basic_resolver_results() = default; 1787 1788 basic_resolver_results(const basic_resolver_results&) = default; 1789 1790 basic_resolver_results(basic_resolver_results&&) noexcept = default; 1791 1792 basic_resolver_results& 1793 operator=(const basic_resolver_results&) = default; 1794 1795 basic_resolver_results& 1796 operator=(basic_resolver_results&&) = default; 1797 1798 ~basic_resolver_results() = default; 1799 1800 // size: 1801 size_type size() const noexcept { return _M_size; } 1802 size_type max_size() const noexcept { return _M_results.max_size(); } 1803 1804 _GLIBCXX_NODISCARD bool 1805 empty() const noexcept { return _M_results.empty(); } 1806 1807 // element access: 1808 const_iterator begin() const { return _M_results.begin(); } 1809 const_iterator end() const { return _M_results.end(); } 1810 const_iterator cbegin() const { return _M_results.begin(); } 1811 const_iterator cend() const { return _M_results.end(); } 1812 1813 // swap: 1814 void 1815 swap(basic_resolver_results& __that) noexcept 1816 { _M_results.swap(__that._M_results); } 1817 1818 private: 1819 friend class basic_resolver<protocol_type>; 1820 1821 basic_resolver_results(string_view, string_view, resolver_base::flags, 1822 error_code&, protocol_type* = nullptr); 1823 1824 basic_resolver_results(const endpoint_type&, error_code&); 1825 1826 forward_list<value_type> _M_results; 1827 size_t _M_size = 0; 1828 }; 1829 1830 template<typename _InternetProtocol> 1831 inline bool 1832 operator==(const basic_resolver_results<_InternetProtocol>& __a, 1833 const basic_resolver_results<_InternetProtocol>& __b) 1834 { 1835 return __a.size() == __b.size() 1836 && std::equal(__a.begin(), __a.end(), __b.begin()); 1837 } 1838 1839 template<typename _InternetProtocol> 1840 inline bool 1841 operator!=(const basic_resolver_results<_InternetProtocol>& __a, 1842 const basic_resolver_results<_InternetProtocol>& __b) 1843 { return !(__a == __b); } 1844 1845 /// @} 1846 1847 /// Perform name/address resolution. 1848 template<typename _InternetProtocol> 1849 class basic_resolver : public resolver_base 1850 { 1851 public: 1852 // types: 1853 1854 using executor_type = io_context::executor_type; 1855 using protocol_type = _InternetProtocol; 1856 using endpoint_type = typename _InternetProtocol::endpoint; 1857 using results_type = basic_resolver_results<_InternetProtocol>; 1858 1859 // construct / copy / destroy: 1860 1861 explicit basic_resolver(io_context& __ctx) : _M_ctx(&__ctx) { } 1862 1863 basic_resolver(const basic_resolver&) = delete; 1864 1865 basic_resolver(basic_resolver&& __rhs) noexcept 1866 : _M_ctx(__rhs._M_ctx) 1867 { } // TODO move state/tasks etc. 1868 1869 ~basic_resolver() { cancel(); } 1870 1871 basic_resolver& operator=(const basic_resolver&) = delete; 1872 1873 basic_resolver& operator=(basic_resolver&& __rhs) 1874 { 1875 cancel(); 1876 _M_ctx = __rhs._M_ctx; 1877 // TODO move state/tasks etc. 1878 return *this; 1879 } 1880 1881 // basic_resolver operations: 1882 1883 executor_type get_executor() noexcept { return _M_ctx->get_executor(); } 1884 1885 void cancel() { } // TODO 1886 1887 results_type 1888 resolve(string_view __host_name, string_view __service_name) 1889 { 1890 return resolve(__host_name, __service_name, resolver_base::flags(), 1891 __throw_on_error{"basic_resolver::resolve"}); 1892 } 1893 1894 results_type 1895 resolve(string_view __host_name, string_view __service_name, 1896 error_code& __ec) 1897 { 1898 return resolve(__host_name, __service_name, resolver_base::flags(), 1899 __ec); 1900 } 1901 1902 results_type 1903 resolve(string_view __host_name, string_view __service_name, flags __f) 1904 { 1905 return resolve(__host_name, __service_name, __f, 1906 __throw_on_error{"basic_resolver::resolve"}); 1907 } 1908 1909 results_type 1910 resolve(string_view __host_name, string_view __service_name, flags __f, 1911 error_code& __ec) 1912 { return {__host_name, __service_name, __f, __ec}; } 1913 1914 template<typename _CompletionToken> 1915 __deduced_t<_CompletionToken, void(error_code, results_type)> 1916 async_resolve(string_view __host_name, string_view __service_name, 1917 _CompletionToken&& __token) 1918 { 1919 return async_resolve(__host_name, __service_name, 1920 resolver_base::flags(), 1921 forward<_CompletionToken>(__token)); 1922 } 1923 1924 template<typename _CompletionToken> 1925 __deduced_t<_CompletionToken, void(error_code, results_type)> 1926 async_resolve(string_view __host_name, string_view __service_name, 1927 flags __f, _CompletionToken&& __token); // TODO 1928 1929 results_type 1930 resolve(const protocol_type& __protocol, 1931 string_view __host_name, string_view __service_name) 1932 { 1933 return resolve(__protocol, __host_name, __service_name, 1934 resolver_base::flags(), 1935 __throw_on_error{"basic_resolver::resolve"}); 1936 } 1937 1938 results_type 1939 resolve(const protocol_type& __protocol, 1940 string_view __host_name, string_view __service_name, 1941 error_code& __ec) 1942 { 1943 return resolve(__protocol, __host_name, __service_name, 1944 resolver_base::flags(), __ec); 1945 } 1946 1947 results_type 1948 resolve(const protocol_type& __protocol, 1949 string_view __host_name, string_view __service_name, flags __f) 1950 { 1951 return resolve(__protocol, __host_name, __service_name, __f, 1952 __throw_on_error{"basic_resolver::resolve"}); 1953 } 1954 1955 results_type 1956 resolve(const protocol_type& __protocol, 1957 string_view __host_name, string_view __service_name, 1958 flags __f, error_code& __ec) 1959 { return {__host_name, __service_name, __f, __ec, &__protocol}; } 1960 1961 template<typename _CompletionToken> 1962 __deduced_t<_CompletionToken, void(error_code, results_type)> 1963 async_resolve(const protocol_type& __protocol, 1964 string_view __host_name, string_view __service_name, 1965 _CompletionToken&& __token) 1966 { 1967 return async_resolve(__protocol, __host_name, __service_name, 1968 resolver_base::flags(), 1969 forward<_CompletionToken>(__token)); 1970 } 1971 1972 template<typename _CompletionToken> 1973 __deduced_t<_CompletionToken, void(error_code, results_type)> 1974 async_resolve(const protocol_type& __protocol, 1975 string_view __host_name, string_view __service_name, 1976 flags __f, _CompletionToken&& __token); // TODO 1977 1978 results_type 1979 resolve(const endpoint_type& __ep) 1980 { return resolve(__ep, __throw_on_error{"basic_resolver::resolve"}); } 1981 1982 results_type 1983 resolve(const endpoint_type& __ep, error_code& __ec) 1984 { return { __ep, __ec }; } 1985 1986 template<typename _CompletionToken> // TODO 1987 __deduced_t<_CompletionToken, void(error_code, results_type)> 1988 async_resolve(const endpoint_type& __ep, _CompletionToken&& __token); 1989 1990 private: 1991 io_context* _M_ctx; 1992 }; 1993 1994 /// Private constructor to synchronously resolve host and service names. 1995 template<typename _InternetProtocol> 1996 basic_resolver_results<_InternetProtocol>:: 1997 basic_resolver_results(string_view __host_name, string_view __service_name, 1998 resolver_base::flags __f, error_code& __ec, 1999 protocol_type* __protocol) 2000 { 2001#ifdef _GLIBCXX_HAVE_NETDB_H 2002 string __host; 2003 const char* __h = __host_name.data() 2004 ? (__host = __host_name.to_string()).c_str() 2005 : nullptr; 2006 string __svc; 2007 const char* __s = __service_name.data() 2008 ? (__svc = __service_name.to_string()).c_str() 2009 : nullptr; 2010 2011 ::addrinfo __hints{ }; 2012 __hints.ai_flags = static_cast<int>(__f); 2013 if (__protocol) 2014 { 2015 __hints.ai_family = __protocol->family(); 2016 __hints.ai_socktype = __protocol->type(); 2017 __hints.ai_protocol = __protocol->protocol(); 2018 } 2019 else 2020 { 2021 auto __p = endpoint_type{}.protocol(); 2022 __hints.ai_family = AF_UNSPEC; 2023 __hints.ai_socktype = __p.type(); 2024 __hints.ai_protocol = __p.protocol(); 2025 } 2026 2027 struct __scoped_addrinfo 2028 { 2029 ~__scoped_addrinfo() { if (_M_p) ::freeaddrinfo(_M_p); } 2030 ::addrinfo* _M_p = nullptr; 2031 } __sai; 2032 2033 if (int __err = ::getaddrinfo(__h, __s, &__hints, &__sai._M_p)) 2034 { 2035 __ec = ip::__make_resolver_error_code(__err, errno); 2036 return; 2037 } 2038 __ec.clear(); 2039 2040 endpoint_type __ep; 2041 auto __tail = _M_results.before_begin(); 2042 for (auto __ai = __sai._M_p; __ai != nullptr; __ai = __ai->ai_next) 2043 { 2044 if (__ai->ai_family == AF_INET || __ai->ai_family == AF_INET6) 2045 { 2046 if (__ai->ai_addrlen <= __ep.capacity()) 2047 __builtin_memcpy(__ep.data(), __ai->ai_addr, __ai->ai_addrlen); 2048 __ep.resize(__ai->ai_addrlen); 2049 __tail = _M_results.emplace_after(__tail, __ep, __host, __svc); 2050 _M_size++; 2051 } 2052 } 2053#else 2054 __ec = std::make_error_code(errc::operation_not_supported); 2055#endif 2056 } 2057 2058 /// Private constructor to synchronously resolve an endpoint. 2059 template<typename _InternetProtocol> 2060 basic_resolver_results<_InternetProtocol>:: 2061 basic_resolver_results(const endpoint_type& __ep, error_code& __ec) 2062 { 2063#ifdef _GLIBCXX_HAVE_NETDB_H 2064 char __host_name[1025]; // glibc NI_MAXHOST 2065 char __service_name[32]; // glibc NI_MAXSERV 2066 int __flags = 0; 2067 if (__ep.protocol().type() == SOCK_DGRAM) 2068 __flags |= NI_DGRAM; 2069 auto __sa = static_cast<const sockaddr*>(__ep.data()); 2070 int __err = ::getnameinfo(__sa, __ep.size(), 2071 __host_name, sizeof(__host_name), 2072 __service_name, sizeof(__service_name), 2073 __flags); 2074 if (__err) 2075 { 2076 __flags |= NI_NUMERICSERV; 2077 __err = ::getnameinfo(__sa, __ep.size(), 2078 __host_name, sizeof(__host_name), 2079 __service_name, sizeof(__service_name), 2080 __flags); 2081 } 2082 if (__err) 2083 __ec = ip::__make_resolver_error_code(__err, errno); 2084 else 2085 { 2086 __ec.clear(); 2087 _M_results.emplace_front(__ep, __host_name, __service_name); 2088 _M_size = 1; 2089 } 2090#else 2091 __ec = std::make_error_code(errc::operation_not_supported); 2092#endif 2093 } 2094 2095 /** The name of the local host. 2096 * @{ 2097 */ 2098 2099 template<typename _Allocator> 2100 __string_with<_Allocator> 2101 host_name(const _Allocator& __a, error_code& __ec) 2102 { 2103#ifdef HOST_NAME_MAX 2104 constexpr size_t __maxlen = HOST_NAME_MAX; 2105#else 2106 constexpr size_t __maxlen = 256; 2107#endif 2108 char __buf[__maxlen + 1]; 2109 if (::gethostname(__buf, __maxlen) == -1) 2110 __ec.assign(errno, generic_category()); 2111 __buf[__maxlen] = '\0'; 2112 return { __buf, __a }; 2113 } 2114 2115 template<typename _Allocator> 2116 inline __string_with<_Allocator> 2117 host_name(const _Allocator& __a) 2118 { return host_name(__a, __throw_on_error{"host_name"}); } 2119 2120 inline string 2121 host_name(error_code& __ec) 2122 { return host_name(std::allocator<char>{}, __ec); } 2123 2124 inline string 2125 host_name() 2126 { return host_name(std::allocator<char>{}, __throw_on_error{"host_name"}); } 2127 2128 /// @} 2129 2130#ifdef IPPROTO_TCP 2131 /// The TCP byte-stream protocol. 2132 class tcp 2133 { 2134 public: 2135 // types: 2136 using endpoint = basic_endpoint<tcp>; ///< A TCP endpoint. 2137 using resolver = basic_resolver<tcp>; ///< A TCP resolver. 2138 using socket = basic_stream_socket<tcp>; ///< A TCP socket. 2139 using acceptor = basic_socket_acceptor<tcp>; ///< A TCP acceptor. 2140 using iostream = basic_socket_iostream<tcp>; /// A TCP iostream. 2141 2142#ifdef TCP_NODELAY 2143 /// Disable coalescing of small segments (i.e. the Nagle algorithm). 2144 struct no_delay : __sockopt_crtp<no_delay, bool> 2145 { 2146 using __sockopt_crtp::__sockopt_crtp; 2147 using __sockopt_crtp::operator=; 2148 2149 static const int _S_level = IPPROTO_TCP; 2150 static const int _S_name = TCP_NODELAY; 2151 }; 2152#endif 2153 2154 // static members: 2155 2156 /// A protocol object representing IPv4 TCP. 2157 static constexpr tcp v4() noexcept { return tcp(AF_INET); } 2158 /// A protocol object representing IPv6 TCP. 2159 static constexpr tcp v6() noexcept { return tcp(AF_INET6); } 2160 2161 tcp() = delete; 2162 2163 constexpr int family() const noexcept { return _M_family; } 2164 constexpr int type() const noexcept { return SOCK_STREAM; } 2165 constexpr int protocol() const noexcept { return IPPROTO_TCP; } 2166 2167 private: 2168 constexpr explicit tcp(int __family) : _M_family(__family) { } 2169 2170 int _M_family; 2171 }; 2172 2173 /** tcp comparisons 2174 * @{ 2175 */ 2176 2177 constexpr bool 2178 operator==(const tcp& __a, const tcp& __b) noexcept 2179 { return __a.family() == __b.family(); } 2180 2181 constexpr bool 2182 operator!=(const tcp& __a, const tcp& __b) noexcept 2183 { return !(__a == __b); } 2184 2185 /// @} 2186#endif // IPPROTO_TCP 2187 2188#ifdef IPPROTO_UDP 2189 /// The UDP datagram protocol. 2190 class udp 2191 { 2192 public: 2193 // types: 2194 using endpoint = basic_endpoint<udp>; 2195 using resolver = basic_resolver<udp>; 2196 using socket = basic_datagram_socket<udp>; 2197 2198 // static members: 2199 static constexpr udp v4() noexcept { return udp(AF_INET); } 2200 static constexpr udp v6() noexcept { return udp(AF_INET6); } 2201 2202 udp() = delete; 2203 2204 constexpr int family() const noexcept { return _M_family; } 2205 constexpr int type() const noexcept { return SOCK_DGRAM; } 2206 constexpr int protocol() const noexcept { return IPPROTO_UDP; } 2207 2208 private: 2209 constexpr explicit udp(int __family) : _M_family(__family) { } 2210 2211 int _M_family; 2212 }; 2213 2214 /** udp comparisons 2215 * @{ 2216 */ 2217 2218 constexpr bool 2219 operator==(const udp& __a, const udp& __b) noexcept 2220 { return __a.family() == __b.family(); } 2221 2222 constexpr bool 2223 operator!=(const udp& __a, const udp& __b) noexcept 2224 { return !(__a == __b); } 2225 2226 /// @} 2227#endif // IPPROTO_UDP 2228 2229#if defined IPPROTO_IP && defined IPPROTO_IPV6 2230 2231 /// Restrict a socket created for an IPv6 protocol to IPv6 only. 2232 class v6_only : public __sockopt_crtp<v6_only, bool> 2233 { 2234 public: 2235 using __sockopt_crtp::__sockopt_crtp; 2236 using __sockopt_crtp::operator=; 2237 2238 private: 2239 friend __sockopt_crtp<v6_only, bool>; 2240 static const int _S_level = IPPROTO_IPV6; 2241 static const int _S_name = IPV6_V6ONLY; 2242 }; 2243 2244 namespace unicast 2245 { 2246 /// Set the default number of hops (TTL) for outbound datagrams. 2247 class hops : public __sockopt_crtp<hops> 2248 { 2249 public: 2250 using __sockopt_crtp::__sockopt_crtp; 2251 using __sockopt_crtp::operator=; 2252 2253 template<typename _Protocol> 2254 int 2255 level(const _Protocol& __p) const noexcept 2256 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2257 2258 template<typename _Protocol> 2259 int 2260 name(const _Protocol& __p) const noexcept 2261 { return __p.family() == AF_INET6 ? IPV6_UNICAST_HOPS : IP_TTL; } 2262 }; 2263 } // namespace unicast 2264 2265 namespace multicast 2266 { 2267 class __mcastopt 2268 { 2269 public: 2270 explicit 2271 __mcastopt(const address& __grp) noexcept 2272 : __mcastopt(__grp.is_v4() ? __mcastopt(__grp.to_v4()) : __mcastopt(__grp.to_v6())) 2273 { } 2274 2275 explicit 2276 __mcastopt(const address_v4& __grp, 2277 const address_v4& __iface = address_v4::any()) noexcept 2278 { 2279#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 2280 _M_v4.imr_multiaddr.s_addr = __grp.to_uint(); 2281 _M_v4.imr_interface.s_addr = __iface.to_uint(); 2282#else 2283 _M_v4.imr_multiaddr.s_addr = __builtin_bswap32(__grp.to_uint()); 2284 _M_v4.imr_interface.s_addr = __builtin_bswap32(__iface.to_uint()); 2285#endif 2286 } 2287 2288 explicit 2289 __mcastopt(const address_v6& __grp, unsigned int __iface = 0) noexcept 2290 { 2291 const auto __addr = __grp.to_bytes(); 2292 __builtin_memcpy(_M_v6.ipv6mr_multiaddr.s6_addr, __addr.data(), 16); 2293 _M_v6.ipv6mr_interface = __iface; 2294 } 2295 2296 template<typename _Protocol> 2297 int 2298 level(const _Protocol& __p) const noexcept 2299 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2300 2301 template<typename _Protocol> 2302 const void* 2303 data(const _Protocol& __p) const noexcept 2304 { return __p.family() == AF_INET6 ? &_M_v6 : &_M_v4; } 2305 2306 template<typename _Protocol> 2307 size_t 2308 size(const _Protocol& __p) const noexcept 2309 { return __p.family() == AF_INET6 ? sizeof(_M_v6) : sizeof(_M_v4); } 2310 2311 private: 2312 ipv6_mreq _M_v6 = {}; 2313 ip_mreq _M_v4 = {}; 2314 }; 2315 2316 /// Request that a socket joins a multicast group. 2317 class join_group : private __mcastopt 2318 { 2319 public: 2320 using __mcastopt::__mcastopt; 2321 using __mcastopt::level; 2322 using __mcastopt::data; 2323 using __mcastopt::size; 2324 2325 template<typename _Protocol> 2326 int 2327 name(const _Protocol& __p) const noexcept 2328 { 2329 if (__p.family() == AF_INET6) 2330 return IPV6_JOIN_GROUP; 2331 return IP_ADD_MEMBERSHIP; 2332 } 2333 }; 2334 2335 /// Request that a socket leaves a multicast group. 2336 class leave_group : private __mcastopt 2337 { 2338 public: 2339 using __mcastopt::__mcastopt; 2340 using __mcastopt::level; 2341 using __mcastopt::data; 2342 using __mcastopt::size; 2343 2344 template<typename _Protocol> 2345 int 2346 name(const _Protocol& __p) const noexcept 2347 { 2348 if (__p.family() == AF_INET6) 2349 return IPV6_LEAVE_GROUP; 2350 return IP_DROP_MEMBERSHIP; 2351 } 2352 }; 2353 2354 /// Specify the network interface for outgoing multicast datagrams. 2355 class outbound_interface 2356 { 2357 public: 2358 explicit 2359 outbound_interface(const address_v4& __v4) noexcept 2360 { 2361#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 2362 _M_v4.s_addr = __v4.to_uint(); 2363#else 2364 _M_v4.s_addr = __builtin_bswap32(__v4.to_uint()); 2365#endif 2366 } 2367 2368 explicit 2369 outbound_interface(unsigned int __v6) noexcept 2370 : _M_v4(), _M_v6(__v6) 2371 { } 2372 2373 template<typename _Protocol> 2374 int 2375 level(const _Protocol& __p) const noexcept 2376 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2377 2378 template<typename _Protocol> 2379 int 2380 name(const _Protocol& __p) const noexcept 2381 { 2382 return __p.family() == AF_INET6 2383 ? IPV6_MULTICAST_IF : IP_MULTICAST_IF; 2384 } 2385 2386 template<typename _Protocol> 2387 const void* 2388 data(const _Protocol& __p) const noexcept 2389 { return __p.family() == AF_INET6 ? &_M_v6 : &_M_v4; } 2390 2391 template<typename _Protocol> 2392 size_t 2393 size(const _Protocol& __p) const noexcept 2394 { return __p.family() == AF_INET6 ? sizeof(_M_v6) : sizeof(_M_v4); } 2395 2396 private: 2397 in_addr _M_v4; 2398 unsigned _M_v6 = 0; 2399 }; 2400 2401 /// Set the default number of hops (TTL) for outbound datagrams. 2402 class hops : public __sockopt_crtp<hops> 2403 { 2404 public: 2405 using __sockopt_crtp::__sockopt_crtp; 2406 using __sockopt_crtp::operator=; 2407 2408 template<typename _Protocol> 2409 int 2410 level(const _Protocol& __p) const noexcept 2411 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2412 2413 template<typename _Protocol> 2414 int 2415 name(const _Protocol& __p) const noexcept 2416 { 2417 return __p.family() == AF_INET6 2418 ? IPV6_MULTICAST_HOPS : IP_MULTICAST_TTL; 2419 } 2420 }; 2421 2422 /// Set whether datagrams are delivered back to the local application. 2423 class enable_loopback : public __sockopt_crtp<enable_loopback, bool> 2424 { 2425 public: 2426 using __sockopt_crtp::__sockopt_crtp; 2427 using __sockopt_crtp::operator=; 2428 2429 template<typename _Protocol> 2430 int 2431 level(const _Protocol& __p) const noexcept 2432 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2433 2434 template<typename _Protocol> 2435 int 2436 name(const _Protocol& __p) const noexcept 2437 { 2438 return __p.family() == AF_INET6 2439 ? IPV6_MULTICAST_LOOP : IP_MULTICAST_LOOP; 2440 } 2441 }; 2442 2443 } // namespace multicast 2444 2445#endif // IPPROTO_IP && IPPROTO_IPV6 2446 2447 /// @} 2448 2449} // namespace ip 2450} // namespace v1 2451} // namespace net 2452} // namespace experimental 2453 2454 template<> 2455 struct is_error_condition_enum<experimental::net::v1::ip::resolver_errc> 2456 : public true_type {}; 2457 2458 // hash support 2459 template<typename _Tp> struct hash; 2460 template<> 2461 struct hash<experimental::net::v1::ip::address> 2462 : __hash_base<size_t, experimental::net::v1::ip::address> 2463 { 2464 size_t 2465 operator()(const experimental::net::v1::ip::address& __a) const 2466 { 2467 if (__a.is_v4()) 2468 return _Hash_impl::hash(__a.to_v4()); 2469 else 2470 return _Hash_impl::hash(__a.to_v6()); 2471 } 2472 }; 2473 2474 template<> 2475 struct hash<experimental::net::v1::ip::address_v4> 2476 : __hash_base<size_t, experimental::net::v1::ip::address_v4> 2477 { 2478 size_t 2479 operator()(const experimental::net::v1::ip::address_v4& __a) const 2480 { return _Hash_impl::hash(__a.to_bytes()); } 2481 }; 2482 2483 template<> struct hash<experimental::net::v1::ip::address_v6> 2484 : __hash_base<size_t, experimental::net::v1::ip::address_v6> 2485 { 2486 size_t 2487 operator()(const experimental::net::v1::ip::address_v6& __a) const 2488 { return _Hash_impl::hash(__a.to_bytes()); } 2489 }; 2490 2491_GLIBCXX_END_NAMESPACE_VERSION 2492} // namespace std 2493 2494#endif // C++14 2495 2496#endif // _GLIBCXX_EXPERIMENTAL_INTERNET 2497