1// <experimental/internet> -*- C++ -*- 2 3// Copyright (C) 2015-2022 Free Software Foundation, Inc. 4// 5// This file is part of the GNU ISO C++ Library. This library is free 6// software; you can redistribute it and/or modify it under the 7// terms of the GNU General Public License as published by the 8// Free Software Foundation; either version 3, or (at your option) 9// any later version. 10 11// This library is distributed in the hope that it will be useful, 12// but WITHOUT ANY WARRANTY; without even the implied warranty of 13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14// GNU General Public License for more details. 15 16// Under Section 7 of GPL version 3, you are granted additional 17// permissions described in the GCC Runtime Library Exception, version 18// 3.1, as published by the Free Software Foundation. 19 20// You should have received a copy of the GNU General Public License and 21// a copy of the GCC Runtime Library Exception along with this program; 22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23// <http://www.gnu.org/licenses/>. 24 25/** @file experimental/internet 26 * This is a TS C++ Library header. 27 * @ingroup networking-ts 28 */ 29 30#ifndef _GLIBCXX_EXPERIMENTAL_INTERNET 31#define _GLIBCXX_EXPERIMENTAL_INTERNET 32 33#pragma GCC system_header 34 35#if __cplusplus >= 201402L 36 37#include <experimental/netfwd> 38#include <experimental/io_context> 39#include <experimental/bits/net.h> 40#include <array> 41#include <forward_list> 42#include <sstream> 43#include <cstdint> 44#include <experimental/string_view> 45#ifdef _GLIBCXX_HAVE_UNISTD_H 46# include <unistd.h> 47#endif 48#ifdef _GLIBCXX_HAVE_SYS_SOCKET_H 49# include <sys/socket.h> // AF_INET, AF_INET6, SOCK_DGRAM, SOCK_STREAM 50#endif 51#ifdef _GLIBCXX_HAVE_ARPA_INET_H 52# include <arpa/inet.h> // inet_ntop 53#endif 54#ifdef _GLIBCXX_HAVE_NETINET_IN_H 55# include <netinet/in.h> // IPPROTO_IP, IPPROTO_IPV6, in_addr, in6_addr 56#endif 57#ifdef _GLIBCXX_HAVE_NETINET_TCP_H 58# include <netinet/tcp.h> // TCP_NODELAY 59#endif 60#ifdef _GLIBCXX_HAVE_NETDB_H 61# include <netdb.h> // getaddrinfo etc. 62#endif 63 64#if defined _WIN32 && __has_include(<ws2tcpip.h>) 65# include <ws2tcpip.h> 66#endif 67 68namespace std _GLIBCXX_VISIBILITY(default) 69{ 70_GLIBCXX_BEGIN_NAMESPACE_VERSION 71namespace experimental 72{ 73namespace net 74{ 75inline namespace v1 76{ 77namespace ip 78{ 79 /** @addtogroup networking-ts 80 * @{ 81 */ 82 83 /** Error codes for resolver errors. 84 * @{ 85 */ 86 87 enum class resolver_errc : int { 88#ifdef _GLIBCXX_HAVE_NETDB_H 89 host_not_found = EAI_NONAME, 90 host_not_found_try_again = EAI_AGAIN, 91 service_not_found = EAI_SERVICE 92 // N.B. POSIX defines additional errors that have no enumerator here: 93 // EAI_BADFLAGS, EAI_FAIL, EAI_FAMILY, EAI_MEMORY, EAI_SOCKTYPE, EAI_SYSTEM 94 // Some C libraries define additional errors: 95 // EAI_BADHINTS, EAI_OVERFLOW, EAI_PROTOCOL 96 // Some C libraries define additional (obsolete?) errors: 97 // EAI_ADDRFAMILY, EAI_NODATA 98#endif 99 }; 100 101 /// Error category for resolver errors. 102 inline const error_category& resolver_category() noexcept // TODO non-inline 103 { 104 struct __cat : error_category 105 { 106 const char* name() const noexcept { return "resolver"; } 107 std::string message(int __e) const { 108#ifdef _GLIBCXX_HAVE_NETDB_H 109 return ::gai_strerror(__e); 110#else 111 return "name resolution requires <netdb.h>"; 112#endif 113 } 114 virtual void __message(int) { } // TODO dual ABI XXX 115 }; 116 static __cat __c; 117 return __c; 118 } 119 120 inline error_code make_error_code(resolver_errc __e) noexcept 121 { return error_code(static_cast<int>(__e), resolver_category()); } 122 123 inline error_condition make_error_condition(resolver_errc __e) noexcept 124 { return error_condition(static_cast<int>(__e), resolver_category()); } 125 126 /// @cond undocumented 127 inline error_code 128 __make_resolver_error_code(int __ai_err, 129 [[__maybe_unused__]] int __sys_err) noexcept 130 { 131#ifdef EAI_SYSTEM 132 if (__builtin_expect(__ai_err == EAI_SYSTEM, 0)) 133 return error_code(__sys_err, std::generic_category()); 134#endif 135 return error_code(__ai_err, resolver_category()); 136 } 137 /// @endcond 138 139 /// @} 140 141 using port_type = uint_least16_t; ///< Type used for port numbers. 142 using scope_id_type = uint_least32_t; ///< Type used for IPv6 scope IDs. 143 144 /// Convenience alias for constraining allocators for strings. 145 template<typename _Alloc> 146 using __string_with 147 = enable_if_t<std::is_same<typename _Alloc::value_type, char>::value, 148 std::basic_string<char, std::char_traits<char>, _Alloc>>; 149 150 constexpr errc 151 __unsupported_err() noexcept 152 { 153#if defined EAFNOSUPPORT 154 return std::errc::address_family_not_supported; 155#else 156 return std::errc::operation_not_supported; 157#endif 158 } 159 160 /** Tag indicating conversion between IPv4 and IPv4-mapped IPv6 addresses. 161 * @{ 162 */ 163 164 struct v4_mapped_t {}; 165 constexpr v4_mapped_t v4_mapped; 166 167 /// @} 168 169 /// An IPv4 address. 170 class address_v4 171 { 172 public: 173 // types: 174 using uint_type = uint_least32_t; 175 176 struct bytes_type : array<unsigned char, 4> 177 { 178 template<typename... _Tp> 179 explicit constexpr 180 bytes_type(_Tp... __tp) 181 : array<unsigned char, 4>{{static_cast<unsigned char>(__tp)...}} 182 { 183#if UCHAR_MAX > 0xFF 184 for (auto __b : *this) 185 if (__b > 0xFF) 186 __throw_out_of_range("invalid address_v4::bytes_type value"); 187#endif 188 } 189 }; 190 191 // constructors: 192 constexpr address_v4() noexcept : _M_addr(0) { } 193 194 constexpr address_v4(const address_v4& a) noexcept = default; 195 196 constexpr 197 address_v4(const bytes_type& __b) 198 : _M_addr((__b[0] << 24) | (__b[1] << 16) | (__b[2] << 8) | __b[3]) 199 { } 200 201 explicit constexpr 202 address_v4(uint_type __val) : _M_addr(_S_hton_32(__val)) 203 { 204#if UINT_LEAST32_MAX > 0xFFFFFFFF 205 if (__val > 0xFFFFFFFF) 206 __throw_out_of_range("invalid address_v4::uint_type value"); 207#endif 208 } 209 210 // assignment: 211 address_v4& operator=(const address_v4& a) noexcept = default; 212 213 // members: 214 constexpr bool is_unspecified() const noexcept { return to_uint() == 0; } 215 216 constexpr bool 217 is_loopback() const noexcept 218 { return (to_uint() & 0xFF000000) == 0x7F000000; } 219 220 constexpr bool 221 is_multicast() const noexcept 222 { return (to_uint() & 0xF0000000) == 0xE0000000; } 223 224 constexpr bytes_type 225 to_bytes() const noexcept 226 { 227 return bytes_type{ 228 (_M_addr >> 24) & 0xFF, 229 (_M_addr >> 16) & 0xFF, 230 (_M_addr >> 8) & 0xFF, 231 _M_addr & 0xFF 232 }; 233 } 234 235 constexpr uint_type 236 to_uint() const noexcept { return _S_ntoh_32(_M_addr); } 237 238 template<typename _Allocator = allocator<char>> 239 __string_with<_Allocator> 240 to_string(const _Allocator& __a = _Allocator()) const 241 { 242#ifdef _GLIBCXX_HAVE_ARPA_INET_H 243 __string_with<_Allocator> __str(__a); 244 __str.resize(INET_ADDRSTRLEN); 245 if (inet_ntop(AF_INET, &_M_addr, &__str.front(), __str.size())) 246 __str.erase(__str.find('\0')); 247 else 248 __str.resize(0); 249 return __str; 250#else 251 std::__throw_system_error((int)__unsupported_err()); 252#endif 253 } 254 255 // static members: 256 static constexpr address_v4 any() noexcept { return address_v4{}; } 257 258 static constexpr 259 address_v4 loopback() noexcept { return address_v4{0x7F000001}; } 260 261 static constexpr 262 address_v4 broadcast() noexcept { return address_v4{0xFFFFFFFF}; } 263 264 private: 265 template<typename _InternetProtocol> 266 friend class basic_endpoint; 267 268 friend address_v4 make_address_v4(const char*, error_code&) noexcept; 269 270#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 271 static constexpr uint16_t _S_hton_16(uint16_t __h) { return __h; } 272 static constexpr uint16_t _S_ntoh_16(uint16_t __n) { return __n; } 273 static constexpr uint32_t _S_hton_32(uint32_t __h) { return __h; } 274 static constexpr uint32_t _S_ntoh_32(uint32_t __n) { return __n; } 275#else 276 static constexpr uint16_t 277 _S_hton_16(uint16_t __h) { return __builtin_bswap16(__h); } 278 279 static constexpr uint16_t 280 _S_ntoh_16(uint16_t __n) { return __builtin_bswap16(__n); } 281 282 static constexpr uint32_t 283 _S_hton_32(uint32_t __h) { return __builtin_bswap32(__h); } 284 285 static constexpr uint32_t 286 _S_ntoh_32(uint32_t __n) { return __builtin_bswap32(__n); } 287#endif 288 289#ifdef _GLIBCXX_HAVE_ARPA_INET_H 290 in_addr_t _M_addr; // network byte order 291#else 292 uint32_t _M_addr; 293#endif 294 }; 295 296 /// An IPv6 address. 297 class address_v6 298 { 299 public: 300 // types: 301 struct bytes_type : array<unsigned char, 16> 302 { 303 template<typename... _Tp> 304 explicit constexpr 305 bytes_type(_Tp... __t) 306 : array<unsigned char, 16>{{static_cast<unsigned char>(__t)...}} 307 { } 308 }; 309 310 // constructors: 311 constexpr address_v6() noexcept : _M_bytes(), _M_scope_id() { } 312 313 constexpr address_v6(const address_v6& __a) noexcept = default; 314 315 constexpr 316 address_v6(const bytes_type& __bytes, scope_id_type __scope = 0) 317 : _M_bytes(__bytes), _M_scope_id(__scope) 318 { } 319 320 // assignment: 321 address_v6& operator=(const address_v6& __a) noexcept = default; 322 323 // members: 324 void scope_id(scope_id_type __id) noexcept { _M_scope_id = __id; } 325 326 constexpr scope_id_type scope_id() const noexcept { return _M_scope_id; } 327 328 constexpr bool 329 is_unspecified() const noexcept 330 { 331 for (int __i = 0; __i < 16; ++__i) 332 if (_M_bytes[__i] != 0x00) 333 return false; 334 return _M_scope_id == 0; 335 } 336 337 constexpr bool 338 is_loopback() const noexcept 339 { 340 for (int __i = 0; __i < 15; ++__i) 341 if (_M_bytes[__i] != 0x00) 342 return false; 343 return _M_bytes[15] == 0x01 && _M_scope_id == 0; 344 } 345 346 constexpr bool 347 is_multicast() const noexcept { return _M_bytes[0] == 0xFF; } 348 349 constexpr bool 350 is_link_local() const noexcept 351 { return _M_bytes[0] == 0xFE && (_M_bytes[1] & 0xC0) == 0x80; } 352 353 constexpr bool 354 is_site_local() const noexcept 355 { return _M_bytes[0] == 0xFE && (_M_bytes[1] & 0xC0) == 0xC0; } 356 357 constexpr bool 358 is_v4_mapped() const noexcept 359 { 360 const bytes_type& __b = _M_bytes; 361 return __b[0] == 0 && __b[1] == 0 && __b[ 2] == 0 && __b[ 3] == 0 362 && __b[4] == 0 && __b[5] == 0 && __b[ 6] == 0 && __b[ 7] == 0 363 && __b[8] == 0 && __b[9] == 0 && __b[10] == 0xFF && __b[11] == 0xFF; 364 } 365 366 constexpr bool 367 is_multicast_node_local() const noexcept 368 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x01; } 369 370 constexpr bool 371 is_multicast_link_local() const noexcept 372 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x02; } 373 374 constexpr bool 375 is_multicast_site_local() const noexcept 376 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x05; } 377 378 constexpr bool 379 is_multicast_org_local() const noexcept 380 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x08; } 381 382 constexpr bool 383 is_multicast_global() const noexcept 384 { return is_multicast() && (_M_bytes[1] & 0x0F) == 0x0b; } 385 386 constexpr bytes_type to_bytes() const noexcept { return _M_bytes; } 387 388 template<typename _Allocator = allocator<char>> 389 __string_with<_Allocator> 390 to_string(const _Allocator& __a = _Allocator()) const 391 { 392#ifdef _GLIBCXX_HAVE_ARPA_INET_H 393 __string_with<_Allocator> __str(__a); 394 __str.resize(INET6_ADDRSTRLEN + (_M_scope_id ? 11 : 0)); 395 char* const __p = &__str.front(); 396 if (inet_ntop(AF_INET6, &_M_bytes, __p, __str.size())) 397 { 398 auto __end = __str.find('\0'); 399 if (unsigned long __scope = _M_scope_id) 400 { 401 __end += 402#if _GLIBCXX_USE_C99_STDIO 403 __builtin_snprintf(__p + __end, __str.size() - __end, 404 "%%%lu", __scope); 405#else 406 __builtin_sprintf(__p + __end, "%%%lu", __scope); 407#endif 408 } 409 __str.erase(__end); 410 } 411 else 412 __str.resize(0); 413 return __str; 414#else 415 std::__throw_system_error((int)__unsupported_err()); 416#endif 417 } 418 419 // static members: 420 421 static constexpr address_v6 422 any() noexcept 423 { 424 return {}; 425 } 426 427 static constexpr address_v6 428 loopback() noexcept 429 { 430 return {bytes_type{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}}; 431 } 432 433 private: 434 template<typename _InternetProtocol> 435 friend class basic_endpoint; 436 437 friend constexpr bool 438 operator==(const address_v6&, const address_v6&) noexcept; 439 440 friend constexpr bool 441 operator< (const address_v6&, const address_v6&) noexcept; 442 443 bytes_type _M_bytes; 444 scope_id_type _M_scope_id; 445 }; 446 447 /// Exception type thrown on misuse of IPv4 addresses as IPv6 or vice versa. 448 class bad_address_cast : public bad_cast 449 { 450 public: 451 bad_address_cast() { } 452 453 const char* what() const noexcept { return "bad address cast"; } 454 }; 455 456 /// An IPv4 or IPv6 address. 457 class address 458 { 459 public: 460 // constructors: 461 constexpr address() noexcept : _M_v4(), _M_is_v4(true) { } 462 463#if __cpp_constexpr_dynamic_alloc 464 constexpr 465#endif 466 address(const address& __a) noexcept : _M_uninit(), _M_is_v4(__a._M_is_v4) 467 { 468 if (_M_is_v4) 469 std::_Construct(std::addressof(_M_v4), __a.to_v4()); 470 else 471 std::_Construct(std::addressof(_M_v6), __a.to_v6()); 472 } 473 474 constexpr 475 address(const address_v4& __a) noexcept : _M_v4(__a), _M_is_v4(true) { } 476 477 constexpr 478 address(const address_v6& __a) noexcept : _M_v6(__a), _M_is_v4(false) { } 479 480 // assignment: 481 address& 482 operator=(const address& __a) noexcept 483 { 484 if (__a._M_is_v4) 485 *this = __a.to_v4(); 486 else 487 *this = __a.to_v6(); 488 return *this; 489 } 490 491 address& 492 operator=(const address_v4& __a) noexcept 493 { 494 std::_Construct(std::addressof(_M_v4), __a); 495 _M_is_v4 = true; 496 return *this; 497 } 498 499 address& 500 operator=(const address_v6& __a) noexcept 501 { 502 std::_Construct(std::addressof(_M_v6), __a); 503 _M_is_v4 = false; 504 return *this; 505 } 506 507 // members: 508 509 constexpr bool is_v4() const noexcept { return _M_is_v4; } 510 constexpr bool is_v6() const noexcept { return !_M_is_v4; } 511 512 constexpr address_v4 513 to_v4() const 514 { 515 if (!is_v4()) 516 _GLIBCXX_THROW_OR_ABORT(bad_address_cast()); 517 return _M_v4; 518 } 519 520 constexpr address_v6 521 to_v6() const 522 { 523 if (!is_v6()) 524 _GLIBCXX_THROW_OR_ABORT(bad_address_cast()); 525 return _M_v6; 526 } 527 528 constexpr bool 529 is_unspecified() const noexcept 530 { return _M_is_v4 ? _M_v4.is_unspecified() : _M_v6.is_unspecified(); } 531 532 constexpr bool 533 is_loopback() const noexcept 534 { return _M_is_v4 ? _M_v4.is_loopback() : _M_v6.is_loopback(); } 535 536 constexpr bool 537 is_multicast() const noexcept 538 { return _M_is_v4 ? _M_v4.is_multicast() : _M_v6.is_multicast(); } 539 540 template<typename _Allocator = allocator<char>> 541 __string_with<_Allocator> 542 to_string(const _Allocator& __a = _Allocator()) const 543 { 544 if (_M_is_v4) 545 return to_v4().to_string(__a); 546 return to_v6().to_string(__a); 547 } 548 549 private: 550 template<typename _InternetProtocol> 551 friend class basic_endpoint; 552 553 friend constexpr bool 554 operator==(const address&, const address&) noexcept; 555 556 friend constexpr bool 557 operator<(const address&, const address&) noexcept; 558 559 union { 560 address_v4 _M_v4; 561 address_v6 _M_v6; 562 bool _M_uninit; 563 }; 564 bool _M_is_v4; 565 }; 566 567 /** ip::address_v4 comparisons 568 * @{ 569 */ 570 571 constexpr bool 572 operator==(const address_v4& __a, const address_v4& __b) noexcept 573 { return __a.to_uint() == __b.to_uint(); } 574 575 constexpr bool 576 operator!=(const address_v4& __a, const address_v4& __b) noexcept 577 { return !(__a == __b); } 578 579 constexpr bool 580 operator< (const address_v4& __a, const address_v4& __b) noexcept 581 { return __a.to_uint() < __b.to_uint(); } 582 583 constexpr bool 584 operator> (const address_v4& __a, const address_v4& __b) noexcept 585 { return __b < __a; } 586 587 constexpr bool 588 operator<=(const address_v4& __a, const address_v4& __b) noexcept 589 { return !(__b < __a); } 590 591 constexpr bool 592 operator>=(const address_v4& __a, const address_v4& __b) noexcept 593 { return !(__a < __b); } 594 595 /// @} 596 597 /** ip::address_v6 comparisons 598 * @{ 599 */ 600 601 constexpr bool 602 operator==(const address_v6& __a, const address_v6& __b) noexcept 603 { 604 const auto& __aa = __a._M_bytes; 605 const auto& __bb = __b._M_bytes; 606 int __i = 0; 607 for (; __i < 16 && __aa[__i] == __bb[__i]; ++__i) 608 ; 609 return __i == 16 ? __a.scope_id() == __b.scope_id() : false; 610 } 611 612 constexpr bool 613 operator!=(const address_v6& __a, const address_v6& __b) noexcept 614 { return !(__a == __b); } 615 616 constexpr bool 617 operator< (const address_v6& __a, const address_v6& __b) noexcept 618 { 619 const auto& __aa = __a._M_bytes; 620 const auto& __bb = __b._M_bytes; 621 int __i = 0; 622 for (; __i < 16 && __aa[__i] == __bb[__i]; ++__i) 623 ; 624 return __i == 16 ? __a.scope_id() < __b.scope_id() : __aa[__i] < __bb[__i]; 625 } 626 627 constexpr bool 628 operator> (const address_v6& __a, const address_v6& __b) noexcept 629 { return __b < __a; } 630 631 constexpr bool 632 operator<=(const address_v6& __a, const address_v6& __b) noexcept 633 { return !(__b < __a); } 634 635 constexpr bool 636 operator>=(const address_v6& __a, const address_v6& __b) noexcept 637 { return !(__a < __b); } 638 639 /// @} 640 641 /** ip::address comparisons 642 * @{ 643 */ 644 645 constexpr bool 646 operator==(const address& __a, const address& __b) noexcept 647 { 648 if (__a.is_v4()) 649 return __b.is_v4() ? __a._M_v4 == __b._M_v4 : false; 650 return __b.is_v4() ? false : __a._M_v6 == __b._M_v6; 651 } 652 653 constexpr bool 654 operator!=(const address& __a, const address& __b) noexcept 655 { return !(__a == __b); } 656 657 constexpr bool 658 operator< (const address& __a, const address& __b) noexcept 659 { 660 if (__a.is_v4()) 661 return __b.is_v4() ? __a._M_v4 < __b._M_v4 : true; 662 return __b.is_v4() ? false : __a._M_v6 < __b._M_v6; 663 } 664 665 constexpr bool 666 operator> (const address& __a, const address& __b) noexcept 667 { return __b < __a; } 668 669 constexpr bool 670 operator<=(const address& __a, const address& __b) noexcept 671 { return !(__b < __a); } 672 673 constexpr bool 674 operator>=(const address& __a, const address& __b) noexcept 675 { return !(__a < __b); } 676 677 /// @} 678 679 /** ip::address_v4 creation 680 * @{ 681 */ 682 683 constexpr address_v4 684 make_address_v4(const address_v4::bytes_type& __b) 685 { return address_v4{__b}; } 686 687 constexpr address_v4 688 make_address_v4(address_v4::uint_type __val) 689 { return address_v4{__val}; } 690 691 constexpr address_v4 692 make_address_v4(v4_mapped_t, const address_v6& __a) 693 { 694 if (!__a.is_v4_mapped()) 695 _GLIBCXX_THROW_OR_ABORT(bad_address_cast()); 696 697 const auto __v6b = __a.to_bytes(); 698 return address_v4::bytes_type(__v6b[12], __v6b[13], __v6b[14], __v6b[15]); 699 } 700 701 inline address_v4 702 make_address_v4(const char* __str, error_code& __ec) noexcept 703 { 704#ifdef _GLIBCXX_HAVE_ARPA_INET_H 705 address_v4 __a; 706 const int __res = ::inet_pton(AF_INET, __str, &__a._M_addr); 707 if (__res == 1) 708 { 709 __ec.clear(); 710 return __a; 711 } 712 if (__res == 0) 713 __ec = std::make_error_code(std::errc::invalid_argument); 714 else 715 __ec.assign(errno, generic_category()); 716#else 717 __ec = std::make_error_code(__unsupported_err()); 718#endif 719 return {}; 720 } 721 722 inline address_v4 723 make_address_v4(const char* __str) 724 { return make_address_v4(__str, __throw_on_error{"make_address_v4"}); } 725 726 inline address_v4 727 make_address_v4(const string& __str, error_code& __ec) noexcept 728 { return make_address_v4(__str.c_str(), __ec); } 729 730 inline address_v4 731 make_address_v4(const string& __str) 732 { return make_address_v4(__str.c_str()); } 733 734 inline address_v4 735 make_address_v4(string_view __str, error_code& __ec) noexcept 736 { 737 char __buf[16]; // INET_ADDRSTRLEN isn't defined on Windows 738 auto __len = __str.copy(__buf, sizeof(__buf)); 739 if (__len == sizeof(__buf)) 740 { 741 __ec = std::make_error_code(std::errc::invalid_argument); 742 return {}; 743 } 744 __ec.clear(); 745 __buf[__len] = '\0'; 746 return make_address_v4(__buf, __ec); 747 } 748 749 inline address_v4 750 make_address_v4(string_view __str) 751 { return make_address_v4(__str, __throw_on_error{"make_address_v4"}); } 752 753 /// @} 754 755 /** ip::address_v6 creation 756 * @{ 757 */ 758 759 constexpr address_v6 760 make_address_v6(const address_v6::bytes_type& __b, scope_id_type __scope = 0) 761 { return address_v6{__b, __scope}; } 762 763 constexpr address_v6 764 make_address_v6(v4_mapped_t, const address_v4& __a) noexcept 765 { 766 const address_v4::bytes_type __v4b = __a.to_bytes(); 767 address_v6::bytes_type __v6b(0, 0, 0, 0, 0, 0, 0, 0, 768 0, 0, 0xFF, 0xFF, 769 __v4b[0], __v4b[1], __v4b[2], __v4b[3]); 770 return address_v6(__v6b); 771 } 772 773 inline address_v6 774 __make_address_v6(const char* __addr, const char* __scope, error_code& __ec) 775 { 776#ifdef _GLIBCXX_HAVE_ARPA_INET_H 777 address_v6::bytes_type __b; 778 const int __res = ::inet_pton(AF_INET6, __addr, __b.data()); 779 if (__res == 1) 780 { 781 __ec.clear(); 782 if (!__scope) 783 { 784 return { __b }; 785 } 786 787 char* __eptr; 788 unsigned long __val = std::strtoul(__scope, &__eptr, 10); 789 if (__eptr != __scope && !*__eptr 790 && __val <= numeric_limits<scope_id_type>::max()) 791 { 792 return { __b, static_cast<scope_id_type>(__val) }; 793 } 794 __ec = std::make_error_code(std::errc::invalid_argument); 795 } 796 else if (__res == 0) 797 __ec = std::make_error_code(std::errc::invalid_argument); 798 else 799 __ec.assign(errno, generic_category()); 800#else 801 __ec = std::make_error_code(__unsupported_err()); 802#endif 803 return {}; 804 } 805 806 inline address_v6 807 make_address_v6(const char* __str, error_code& __ec) noexcept 808 { 809 auto __p = __builtin_strchr(__str, '%'); 810 if (__p == nullptr) 811 return __make_address_v6(__str, nullptr, __ec); 812 char __buf[64]; 813 char* __out = __buf; 814 bool __skip_leading_zero = true; 815 while (__str < __p && __out < std::end(__buf)) 816 { 817 if (!__skip_leading_zero || *__str != '0') 818 { 819 if (*__str == ':' || *__str == '.') 820 __skip_leading_zero = true; 821 else 822 __skip_leading_zero = false; 823 *__out = *__str; 824 } 825 __str++; 826 } 827 if (__out == std::end(__buf)) 828 { 829 __ec = std::make_error_code(std::errc::invalid_argument); 830 return {}; 831 } 832 else 833 { 834 *__out = '\0'; 835 return __make_address_v6(__buf, __p + 1, __ec); 836 } 837 } 838 839 inline address_v6 840 make_address_v6(const char* __str) 841 { return make_address_v6(__str, __throw_on_error{"make_address_v6"}); } 842 843 inline address_v6 844 make_address_v6(const string& __str, error_code& __ec) noexcept 845 { 846 auto __pos = __str.find('%'); 847 if (__pos == string::npos) 848 return __make_address_v6(__str.c_str(), nullptr, __ec); 849 char __buf[64]; 850 char* __out = __buf; 851 bool __skip_leading_zero = true; 852 size_t __n = 0; 853 while (__n < __pos && __out < std::end(__buf)) 854 { 855 if (!__skip_leading_zero || __str[__n] != '0') 856 { 857 if (__str[__n] == ':' || __str[__n] == '.') 858 __skip_leading_zero = true; 859 else 860 __skip_leading_zero = false; 861 *__out = __str[__n]; 862 } 863 __n++; 864 } 865 if (__out == std::end(__buf)) 866 { 867 __ec = std::make_error_code(std::errc::invalid_argument); 868 return {}; 869 } 870 else 871 { 872 *__out = '\0'; 873 return __make_address_v6(__buf, __str.c_str() + __pos + 1, __ec); 874 } 875 } 876 877 inline address_v6 878 make_address_v6(const string& __str) 879 { return make_address_v6(__str, __throw_on_error{"make_address_v6"}); } 880 881 inline address_v6 882 make_address_v6(string_view __str, error_code& __ec) noexcept 883 { 884 char __buf[64]; 885 char* __out = __buf; 886 char* __scope = nullptr; 887 bool __skip_leading_zero = true; 888 size_t __n = 0; 889 while (__n < __str.length() && __out < std::end(__buf)) 890 { 891 if (__str[__n] == '%') 892 { 893 if (__scope) 894 __out = std::end(__buf); 895 else 896 { 897 *__out = '\0'; 898 __scope = ++__out; 899 __skip_leading_zero = true; 900 } 901 } 902 else if (!__skip_leading_zero || __str[__n] != '0') 903 { 904 if (__str[__n] == ':' || __str[__n] == '.') 905 __skip_leading_zero = true; 906 else 907 __skip_leading_zero = false; 908 *__out = __str[__n]; 909 __out++; 910 } 911 __n++; 912 } 913 if (__out == std::end(__buf)) 914 { 915 __ec = std::make_error_code(std::errc::invalid_argument); 916 return {}; 917 } 918 else 919 { 920 *__out = '\0'; 921 return __make_address_v6(__buf, __scope, __ec); 922 } 923 } 924 925 inline address_v6 926 make_address_v6(string_view __str) 927 { return make_address_v6(__str, __throw_on_error{"make_address_v6"}); } 928 929 /// @} 930 931 /** ip::address creation 932 * @{ 933 */ 934 935 inline address 936 make_address(const char* __str, error_code& __ec) noexcept 937 { 938 address __a; 939 address_v6 __v6a = make_address_v6(__str, __ec); 940 if (!__ec) 941 __a = __v6a; 942 else 943 { 944 address_v4 __v4a = make_address_v4(__str, __ec); 945 if (!__ec) 946 __a = __v4a; 947 } 948 return __a; 949 } 950 951 inline address 952 make_address(const char* __str) 953 { return make_address(__str, __throw_on_error{"make_address"}); } 954 955 inline address 956 make_address(const string& __str, error_code& __ec) noexcept; // TODO 957 958 inline address 959 make_address(const string& __str) 960 { return make_address(__str, __throw_on_error{"make_address"}); } 961 962 inline address 963 make_address(string_view __str, error_code& __ec) noexcept 964 { 965 if (__str.rfind('\0') != string_view::npos) 966 return make_address(__str.data(), __ec); 967 return make_address(__str.to_string(), __ec); // TODO don't allocate 968 } 969 970 inline address 971 make_address(string_view __str) 972 { return make_address(__str, __throw_on_error{"make_address"}); } 973 974 /// @} 975 976 /// ip::address I/O 977 template<typename _CharT, typename _Traits> 978 inline basic_ostream<_CharT, _Traits>& 979 operator<<(basic_ostream<_CharT, _Traits>& __os, const address& __a) 980 { return __os << __a.to_string(); } 981 982 /// ip::address_v4 I/O 983 template<typename _CharT, typename _Traits> 984 inline basic_ostream<_CharT, _Traits>& 985 operator<<(basic_ostream<_CharT, _Traits>& __os, const address_v4& __a) 986 { return __os << __a.to_string(); } 987 988 /// ip::address_v6 I/O 989 template<typename _CharT, typename _Traits> 990 inline basic_ostream<_CharT, _Traits>& 991 operator<<(basic_ostream<_CharT, _Traits>& __os, const address_v6& __a) 992 { return __os << __a.to_string(); } 993 994 template<typename> class basic_address_iterator; // not defined 995 996 template<> class basic_address_iterator<address_v4> 997 { 998 public: 999 // types: 1000 using value_type = address_v4; 1001 using difference_type = ptrdiff_t; 1002 using pointer = const address_v4*; 1003 using reference = const address_v4&; 1004 using iterator_category = input_iterator_tag; 1005 1006 // constructors: 1007 basic_address_iterator(const address_v4& __a) noexcept 1008 : _M_address(__a) { } 1009 1010 // members: 1011 reference operator*() const noexcept { return _M_address; } 1012 pointer operator->() const noexcept { return &_M_address; } 1013 1014 basic_address_iterator& 1015 operator++() noexcept 1016 { 1017 _M_address = value_type(_M_address.to_uint() + 1); 1018 return *this; 1019 } 1020 1021 basic_address_iterator operator++(int) noexcept 1022 { 1023 auto __tmp = *this; 1024 ++*this; 1025 return __tmp; 1026 } 1027 1028 basic_address_iterator& operator--() noexcept 1029 { 1030 _M_address = value_type(_M_address.to_uint() - 1); 1031 return *this; 1032 } 1033 1034 basic_address_iterator 1035 operator--(int) noexcept 1036 { 1037 auto __tmp = *this; 1038 --*this; 1039 return __tmp; 1040 } 1041 1042 bool 1043 operator==(const basic_address_iterator& __rhs) const noexcept 1044 { return _M_address == __rhs._M_address; } 1045 1046 bool 1047 operator!=(const basic_address_iterator& __rhs) const noexcept 1048 { return _M_address != __rhs._M_address; } 1049 1050 private: 1051 address_v4 _M_address; 1052 }; 1053 1054 using address_v4_iterator = basic_address_iterator<address_v4>; 1055 1056 template<> class basic_address_iterator<address_v6> 1057 { 1058 public: 1059 // types: 1060 using value_type = address_v6; 1061 using difference_type = ptrdiff_t; 1062 using pointer = const address_v6*; 1063 using reference = const address_v6&; 1064 using iterator_category = input_iterator_tag; 1065 1066 // constructors: 1067 basic_address_iterator(const address_v6& __a) noexcept 1068 : _M_address(__a) { } 1069 1070 // members: 1071 reference operator*() const noexcept { return _M_address; } 1072 pointer operator->() const noexcept { return &_M_address; } 1073 1074 basic_address_iterator& 1075 operator++() noexcept; // TODO 1076 1077 basic_address_iterator 1078 operator++(int) noexcept 1079 { 1080 auto __tmp = *this; 1081 ++*this; 1082 return __tmp; 1083 } 1084 1085 basic_address_iterator& 1086 operator--() noexcept; // TODO 1087 1088 basic_address_iterator 1089 operator--(int) noexcept 1090 { 1091 auto __tmp = *this; 1092 --*this; 1093 return __tmp; 1094 } 1095 1096 bool 1097 operator==(const basic_address_iterator& __rhs) const noexcept 1098 { return _M_address == __rhs._M_address; } 1099 1100 bool 1101 operator!=(const basic_address_iterator& __rhs) const noexcept 1102 { return _M_address != __rhs._M_address; } 1103 1104 private: 1105 address_v6 _M_address; 1106 }; 1107 1108 using address_v6_iterator = basic_address_iterator<address_v6>; 1109 1110 template<typename> class basic_address_range; // not defined 1111 1112 /** An IPv6 address range. 1113 * @{ 1114 */ 1115 1116 template<> class basic_address_range<address_v4> 1117 { 1118 public: 1119 // types: 1120 1121 using iterator = basic_address_iterator<address_v4>; 1122 1123 // constructors: 1124 1125 basic_address_range() noexcept : _M_begin({}), _M_end({}) { } 1126 1127 basic_address_range(const address_v4& __first, 1128 const address_v4& __last) noexcept 1129 : _M_begin(__first), _M_end(__last) { } 1130 1131 // members: 1132 1133 iterator begin() const noexcept { return _M_begin; } 1134 iterator end() const noexcept { return _M_end; } 1135 _GLIBCXX_NODISCARD bool empty() const noexcept { return _M_begin == _M_end; } 1136 1137 size_t 1138 size() const noexcept { return _M_end->to_uint() - _M_begin->to_uint(); } 1139 1140 iterator 1141 find(const address_v4& __addr) const noexcept 1142 { 1143 if (*_M_begin <= __addr && __addr < *_M_end) 1144 return iterator{__addr}; 1145 return end(); 1146 } 1147 1148 private: 1149 iterator _M_begin; 1150 iterator _M_end; 1151 }; 1152 1153 using address_v4_range = basic_address_range<address_v4>; 1154 1155 /// @} 1156 1157 /** An IPv6 address range. 1158 * @{ 1159 */ 1160 1161 template<> class basic_address_range<address_v6> 1162 { 1163 public: 1164 // types: 1165 1166 using iterator = basic_address_iterator<address_v6>; 1167 1168 // constructors: 1169 1170 basic_address_range() noexcept : _M_begin({}), _M_end({}) { } 1171 basic_address_range(const address_v6& __first, 1172 const address_v6& __last) noexcept 1173 : _M_begin(__first), _M_end(__last) { } 1174 1175 // members: 1176 1177 iterator begin() const noexcept { return _M_begin; } 1178 iterator end() const noexcept { return _M_end; } 1179 _GLIBCXX_NODISCARD bool empty() const noexcept { return _M_begin == _M_end; } 1180 1181 iterator 1182 find(const address_v6& __addr) const noexcept 1183 { 1184 if (*_M_begin <= __addr && __addr < *_M_end) 1185 return iterator{__addr}; 1186 return end(); 1187 } 1188 1189 private: 1190 iterator _M_begin; 1191 iterator _M_end; 1192 }; 1193 1194 using address_v6_range = basic_address_range<address_v6>; 1195 1196 /// @} 1197 1198 bool 1199 operator==(const network_v4& __a, const network_v4& __b) noexcept; 1200 1201 bool 1202 operator==(const network_v6& __a, const network_v6& __b) noexcept; 1203 1204 1205 /// An IPv4 network address. 1206 class network_v4 1207 { 1208 public: 1209 // constructors: 1210 constexpr network_v4() noexcept : _M_addr(), _M_prefix_len(0) { } 1211 1212 constexpr 1213 network_v4(const address_v4& __addr, int __prefix_len) 1214 : _M_addr(__addr), _M_prefix_len(__prefix_len) 1215 { 1216 if (_M_prefix_len < 0 || _M_prefix_len > 32) 1217 __throw_out_of_range("network_v4: invalid prefix length"); 1218 } 1219 1220 constexpr 1221 network_v4(const address_v4& __addr, const address_v4& __mask) 1222 : _M_addr(__addr), _M_prefix_len(__builtin_popcount(__mask.to_uint())) 1223 { 1224 if (_M_prefix_len != 0) 1225 { 1226 address_v4::uint_type __mask_uint = __mask.to_uint(); 1227 if (__builtin_ctz(__mask_uint) != (32 - _M_prefix_len)) 1228 __throw_invalid_argument("network_v4: invalid mask"); 1229 if ((__mask_uint & 0x80000000) == 0) 1230 __throw_invalid_argument("network_v4: invalid mask"); 1231 } 1232 } 1233 1234 // members: 1235 1236 constexpr address_v4 address() const noexcept { return _M_addr; } 1237 constexpr int prefix_length() const noexcept { return _M_prefix_len; } 1238 1239 constexpr address_v4 1240 netmask() const noexcept 1241 { 1242 address_v4::uint_type __val = address_v4::broadcast().to_uint(); 1243 __val >>= (32 - _M_prefix_len); 1244 __val <<= (32 - _M_prefix_len); 1245 return address_v4{__val}; 1246 } 1247 1248 constexpr address_v4 1249 network() const noexcept 1250 { return address_v4{_M_addr.to_uint() & netmask().to_uint()}; } 1251 1252 constexpr address_v4 1253 broadcast() const noexcept 1254 { return address_v4{_M_addr.to_uint() | ~netmask().to_uint()}; } 1255 1256 address_v4_range 1257 hosts() const noexcept 1258 { 1259 if (is_host()) 1260 return { address(), *++address_v4_iterator(address()) }; 1261 return { network(), broadcast() }; 1262 } 1263 1264 constexpr network_v4 1265 canonical() const noexcept 1266 { return network_v4(network(), prefix_length()); } 1267 1268 constexpr bool is_host() const noexcept { return _M_prefix_len == 32; } 1269 1270 constexpr bool 1271 is_subnet_of(const network_v4& __other) const noexcept 1272 { 1273 if (__other.prefix_length() < prefix_length()) 1274 { 1275 network_v4 __net(address(), __other.prefix_length()); 1276 return __net.canonical() == __other.canonical(); 1277 } 1278 return false; 1279 } 1280 1281 template<typename _Allocator = allocator<char>> 1282 __string_with<_Allocator> 1283 to_string(const _Allocator& __a = _Allocator()) const 1284 { 1285 return address().to_string(__a) + '/' 1286 + std::to_string(prefix_length()); 1287 } 1288 1289 private: 1290 address_v4 _M_addr; 1291 int _M_prefix_len; 1292 }; 1293 1294 /// An IPv6 network address. 1295 class network_v6 1296 { 1297 public: 1298 // constructors: 1299 constexpr network_v6() noexcept : _M_addr(), _M_prefix_len(0) { } 1300 1301 constexpr 1302 network_v6(const address_v6& __addr, int __prefix_len) 1303 : _M_addr(__addr), _M_prefix_len(__prefix_len) 1304 { 1305 if (_M_prefix_len < 0 || _M_prefix_len > 128) 1306 __throw_out_of_range("network_v6: invalid prefix length"); 1307 } 1308 1309 // members: 1310 constexpr address_v6 address() const noexcept { return _M_addr; } 1311 constexpr int prefix_length() const noexcept { return _M_prefix_len; } 1312 1313 _GLIBCXX17_CONSTEXPR address_v6 1314 network() const noexcept 1315 { 1316 address_v6::bytes_type __bytes = _M_addr.to_bytes(); 1317 int __nbytes = (_M_prefix_len + 7) / 8; 1318 for (int __n = __nbytes; __n < 16; ++__n) 1319 __bytes[__n] = 0; 1320 if (int __zbits = (__nbytes * 8) - _M_prefix_len) 1321 __bytes[__nbytes - 1] &= 0xFF << __zbits; 1322 return address_v6(__bytes, _M_addr.scope_id()); 1323 } 1324 1325 address_v6_range 1326 hosts() const noexcept 1327 { 1328 if (is_host()) 1329 return { address(), *++address_v6_iterator(address()) }; 1330 1331 address_v6::bytes_type __bytes = _M_addr.to_bytes(); 1332 int __nbytes = (_M_prefix_len + 7) / 8; 1333 for (int __n = __nbytes; __n < 16; ++__n) 1334 __bytes[__n] = 0xFF; 1335 if (int __bits = (__nbytes * 8) - _M_prefix_len) 1336 __bytes[__nbytes - 1] |= (1 << __bits) - 1; 1337 address_v6 __last(__bytes, _M_addr.scope_id()); 1338 return { network(), *++address_v6_iterator(__last) }; 1339 } 1340 1341 _GLIBCXX17_CONSTEXPR network_v6 1342 canonical() const noexcept 1343 { return network_v6{network(), prefix_length()}; } 1344 1345 constexpr bool is_host() const noexcept { return _M_prefix_len == 128; } 1346 1347 constexpr bool 1348 is_subnet_of(const network_v6& __other) const noexcept 1349 { 1350 if (__other.prefix_length() < prefix_length()) 1351 { 1352 network_v6 __net(address(), __other.prefix_length()); 1353 return __net.canonical() == __other.canonical(); 1354 } 1355 return false; 1356 } 1357 1358 template<typename _Allocator = allocator<char>> 1359 __string_with<_Allocator> 1360 to_string(const _Allocator& __a = _Allocator()) const 1361 { 1362 return address().to_string(__a) + '/' 1363 + std::to_string(prefix_length()).c_str(); 1364 } 1365 1366 private: 1367 address_v6 _M_addr; 1368 int _M_prefix_len; 1369 }; 1370 1371 1372 /** ip::network_v4 comparisons 1373 * @{ 1374 */ 1375 1376 inline bool 1377 operator==(const network_v4& __a, const network_v4& __b) noexcept 1378 { 1379 return __a.address() == __b.address() 1380 && __a.prefix_length() == __b.prefix_length(); 1381 } 1382 1383 inline bool 1384 operator!=(const network_v4& __a, const network_v4& __b) noexcept 1385 { return !(__a == __b); } 1386 1387 /// @} 1388 1389 /** ip::network_v6 comparisons 1390 * @{ 1391 */ 1392 1393 inline bool 1394 operator==(const network_v6& __a, const network_v6& __b) noexcept 1395 { 1396 return __a.address() == __b.address() 1397 && __a.prefix_length() == __b.prefix_length(); 1398 } 1399 1400 inline bool 1401 operator!=(const network_v6& __a, const network_v6& __b) noexcept 1402 { return !(__a == __b); } 1403 1404 /// @} 1405 1406 /** ip::network_v4 creation 1407 * @{ 1408 */ 1409 1410 inline network_v4 1411 make_network_v4(const address_v4& __a, int __prefix_len) 1412 { return network_v4{__a, __prefix_len}; } 1413 1414 inline network_v4 1415 make_network_v4(const address_v4& __a, const address_v4& __mask) 1416 { return network_v4{ __a, __mask }; } 1417 1418 network_v4 make_network_v4(const char*, error_code&) noexcept; // TODO 1419 1420 inline network_v4 1421 make_network_v4(const char* __str) 1422 { return make_network_v4(__str, __throw_on_error{"make_network_v4"}); } 1423 1424 network_v4 make_network_v4(const string&, error_code&) noexcept; // TODO 1425 1426 inline network_v4 1427 make_network_v4(const string& __str) 1428 { return make_network_v4(__str, __throw_on_error{"make_network_v4"}); } 1429 1430 network_v4 make_network_v4(string_view, error_code&) noexcept; // TODO 1431 1432 inline network_v4 1433 make_network_v4(string_view __str) 1434 { return make_network_v4(__str, __throw_on_error{"make_network_v4"}); } 1435 1436 /// @} 1437 1438 /** ip::network_v6 creation 1439 * @{ 1440 */ 1441 1442 inline network_v6 1443 make_network_v6(const address_v6& __a, int __prefix_len) 1444 { return network_v6{__a, __prefix_len}; } 1445 1446 network_v6 make_network_v6(const char*, error_code&) noexcept; // TODO 1447 1448 inline network_v6 1449 make_network_v6(const char* __str) 1450 { return make_network_v6(__str, __throw_on_error{"make_network_v6"}); } 1451 1452 network_v6 make_network_v6(const string&, error_code&) noexcept; // TODO 1453 1454 inline network_v6 1455 make_network_v6(const string& __str) 1456 { return make_network_v6(__str, __throw_on_error{"make_network_v6"}); } 1457 1458 network_v6 make_network_v6(string_view, error_code&) noexcept; // TODO 1459 1460 inline network_v6 1461 make_network_v6(string_view __str) 1462 { return make_network_v6(__str, __throw_on_error{"make_network_v6"}); } 1463 1464 /// @} 1465 1466 /// ip::network_v4 I/O 1467 template<typename _CharT, typename _Traits> 1468 inline basic_ostream<_CharT, _Traits>& 1469 operator<<(basic_ostream<_CharT, _Traits>& __os, const network_v4& __net) 1470 { return __os << __net.to_string(); } 1471 1472 /// ip::network_v6 I/O 1473 template<typename _CharT, typename _Traits> 1474 inline basic_ostream<_CharT, _Traits>& 1475 operator<<(basic_ostream<_CharT, _Traits>& __os, const network_v6& __net) 1476 { return __os << __net.to_string(); } 1477 1478#if defined IPPROTO_TCP || defined IPPROTO_UDP 1479 /// An IP endpoint. 1480 template<typename _InternetProtocol> 1481 class basic_endpoint 1482 { 1483 public: 1484 // types: 1485 using protocol_type = _InternetProtocol; 1486 1487 // constructors: 1488 1489 constexpr 1490 basic_endpoint() noexcept : _M_data() 1491 { _M_data._M_v4.sin_family = protocol_type::v4().family(); } 1492 1493 constexpr 1494 basic_endpoint(const protocol_type& __proto, 1495 port_type __port_num) noexcept 1496 : _M_data() 1497 { 1498 __glibcxx_assert(__proto == protocol_type::v4() 1499 || __proto == protocol_type::v6()); 1500 1501 _M_data._M_v4.sin_family = __proto.family(); 1502 _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); 1503 } 1504 1505 constexpr 1506 basic_endpoint(const ip::address& __addr, 1507 port_type __port_num) noexcept 1508 : _M_data() 1509 { 1510 if (__addr.is_v4()) 1511 { 1512 _M_data._M_v4.sin_family = protocol_type::v4().family(); 1513 _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); 1514 _M_data._M_v4.sin_addr.s_addr = __addr._M_v4._M_addr; 1515 } 1516 else 1517 { 1518 _M_data._M_v6 = {}; 1519 _M_data._M_v6.sin6_family = protocol_type::v6().family(); 1520 _M_data._M_v6.sin6_port = address_v4::_S_hton_16(__port_num); 1521 __builtin_memcpy(_M_data._M_v6.sin6_addr.s6_addr, 1522 __addr._M_v6._M_bytes.data(), 16); 1523 _M_data._M_v6.sin6_scope_id = __addr._M_v6._M_scope_id; 1524 } 1525 } 1526 1527 // members: 1528 constexpr protocol_type protocol() const noexcept 1529 { 1530 return _M_is_v6() ? protocol_type::v6() : protocol_type::v4(); 1531 } 1532 1533 constexpr ip::address 1534 address() const noexcept 1535 { 1536 ip::address __addr; 1537 if (_M_is_v6()) 1538 { 1539 __builtin_memcpy(&__addr._M_v6._M_bytes, 1540 _M_data._M_v6.sin6_addr.s6_addr, 16); 1541 __addr._M_is_v4 = false; 1542 } 1543 else 1544 { 1545 __builtin_memcpy(&__addr._M_v4._M_addr, 1546 &_M_data._M_v4.sin_addr.s_addr, 4); 1547 } 1548 return __addr; 1549 } 1550 1551 void 1552 address(const ip::address& __addr) noexcept 1553 { 1554 if (__addr.is_v6()) 1555 { 1556 _M_data._M_v6 = {}; 1557 _M_data._M_v6.sin6_family = protocol_type::v6().family(); 1558 __builtin_memcpy(_M_data._M_v6.sin6_addr.s6_addr, 1559 __addr._M_v6._M_bytes.data(), 16); 1560 _M_data._M_v6.sin6_scope_id = __addr._M_v6._M_scope_id; 1561 } 1562 else 1563 { 1564 _M_data._M_v4.sin_family = protocol_type::v4().family(); 1565 _M_data._M_v4.sin_addr.s_addr = __addr._M_v4._M_addr; 1566 } 1567 } 1568 1569 constexpr port_type 1570 port() const noexcept 1571 { return address_v4::_S_ntoh_16(_M_data._M_v4.sin_port); } 1572 1573 void 1574 port(port_type __port_num) noexcept 1575 { _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); } 1576 1577 void* data() noexcept { return &_M_data; } 1578 1579 const void* data() const noexcept { return &_M_data; } 1580 1581 constexpr size_t size() const noexcept 1582 { return _M_is_v6() ? sizeof(sockaddr_in6) : sizeof(sockaddr_in); } 1583 1584 void 1585 resize(size_t __s) 1586 { 1587 if (__s != size()) 1588 __throw_length_error("net::ip::basic_endpoint::resize"); 1589 } 1590 1591 constexpr size_t capacity() const noexcept { return sizeof(_M_data); } 1592 1593 private: 1594 union 1595 { 1596 sockaddr_in _M_v4; 1597 sockaddr_in6 _M_v6; 1598 } _M_data; 1599 1600 constexpr bool _M_is_v6() const noexcept 1601 { return _M_data._M_v4.sin_family == AF_INET6; } 1602 }; 1603 1604 /** basic_endpoint comparisons 1605 * @{ 1606 */ 1607 1608 template<typename _InternetProtocol> 1609 inline bool 1610 operator==(const basic_endpoint<_InternetProtocol>& __a, 1611 const basic_endpoint<_InternetProtocol>& __b) 1612 { return __a.address() == __b.address() && __a.port() == __b.port(); } 1613 1614 template<typename _InternetProtocol> 1615 inline bool 1616 operator!=(const basic_endpoint<_InternetProtocol>& __a, 1617 const basic_endpoint<_InternetProtocol>& __b) 1618 { return !(__a == __b); } 1619 1620 template<typename _InternetProtocol> 1621 inline bool 1622 operator< (const basic_endpoint<_InternetProtocol>& __a, 1623 const basic_endpoint<_InternetProtocol>& __b) 1624 { 1625 return __a.address() < __b.address() 1626 || (!(__b.address() < __a.address()) && __a.port() < __b.port()); 1627 } 1628 1629 template<typename _InternetProtocol> 1630 inline bool 1631 operator> (const basic_endpoint<_InternetProtocol>& __a, 1632 const basic_endpoint<_InternetProtocol>& __b) 1633 { return __b < __a; } 1634 1635 template<typename _InternetProtocol> 1636 inline bool 1637 operator<=(const basic_endpoint<_InternetProtocol>& __a, 1638 const basic_endpoint<_InternetProtocol>& __b) 1639 { return !(__b < __a); } 1640 1641 template<typename _InternetProtocol> 1642 inline bool 1643 operator>=(const basic_endpoint<_InternetProtocol>& __a, 1644 const basic_endpoint<_InternetProtocol>& __b) 1645 { return !(__a < __b); } 1646 1647 /// @} 1648 1649 /// basic_endpoint I/O 1650 template<typename _CharT, typename _Traits, typename _InternetProtocol> 1651 inline basic_ostream<_CharT, _Traits>& 1652 operator<<(basic_ostream<_CharT, _Traits>& __os, 1653 const basic_endpoint<_InternetProtocol>& __ep) 1654 { 1655 basic_ostringstream<_CharT, _Traits> __ss; 1656 if (__ep.protocol() 1657 == basic_endpoint<_InternetProtocol>::protocol_type::v6()) 1658 __ss << '[' << __ep.address() << ']'; 1659 else 1660 __ss << __ep.address(); 1661 __ss << ':' << __ep.port(); 1662 __os << __ss.str(); 1663 return __os; 1664 } 1665 1666 /** Type representing a single result of name/address resolution. 1667 * @{ 1668 */ 1669 1670 template<typename _InternetProtocol> 1671 class basic_resolver_entry 1672 { 1673 public: 1674 // types: 1675 using protocol_type = _InternetProtocol; 1676 using endpoint_type = typename _InternetProtocol::endpoint; 1677 1678 // constructors: 1679 basic_resolver_entry() { } 1680 1681 basic_resolver_entry(const endpoint_type& __ep, 1682 string_view __h, string_view __s) 1683 : _M_ep(__ep), _M_host(__h), _M_svc(__s) { } 1684 1685 // members: 1686 endpoint_type endpoint() const { return _M_ep; } 1687 operator endpoint_type() const { return _M_ep; } 1688 1689 template<typename _Allocator = allocator<char>> 1690 __string_with<_Allocator> 1691 host_name(const _Allocator& __a = _Allocator()) const 1692 { return { _M_host, __a }; } 1693 1694 template<typename _Allocator = allocator<char>> 1695 __string_with<_Allocator> 1696 service_name(const _Allocator& __a = _Allocator()) const 1697 { return { _M_svc, __a }; } 1698 1699 private: 1700 basic_endpoint<_InternetProtocol> _M_ep; 1701 string _M_host; 1702 string _M_svc; 1703 }; 1704 1705 template<typename _InternetProtocol> 1706 inline bool 1707 operator==(const basic_resolver_entry<_InternetProtocol>& __a, 1708 const basic_resolver_entry<_InternetProtocol>& __b) 1709 { 1710 return __a.endpoint() == __b.endpoint() 1711 && __a.host_name() == __b.host_name() 1712 && __a.service_name() == __b.service_name(); 1713 } 1714 1715 template<typename _InternetProtocol> 1716 inline bool 1717 operator!=(const basic_resolver_entry<_InternetProtocol>& __a, 1718 const basic_resolver_entry<_InternetProtocol>& __b) 1719 { return !(__a == __b); } 1720 1721 /// @} 1722 1723 /** Base class defining flags for name/address resolution. 1724 * @{ 1725 */ 1726 1727 class resolver_base 1728 { 1729 public: 1730 enum flags : int { }; 1731 static constexpr flags passive = (flags)AI_PASSIVE; 1732 static constexpr flags canonical_name = (flags)AI_CANONNAME; 1733 static constexpr flags numeric_host = (flags)AI_NUMERICHOST; 1734#ifdef AI_NUMERICSERV 1735 static constexpr flags numeric_service = (flags)AI_NUMERICSERV; 1736#endif 1737#ifdef AI_V4MAPPED 1738 static constexpr flags v4_mapped = (flags)AI_V4MAPPED; 1739#endif 1740#ifdef AI_ALL 1741 static constexpr flags all_matching = (flags)AI_ALL; 1742#endif 1743#ifdef AI_ADDRCONFIG 1744 static constexpr flags address_configured = (flags)AI_ADDRCONFIG; 1745#endif 1746 1747 friend constexpr flags 1748 operator&(flags __f1, flags __f2) noexcept 1749 { return flags( int(__f1) & int(__f2) ); } 1750 1751 friend constexpr flags 1752 operator|(flags __f1, flags __f2) noexcept 1753 { return flags( int(__f1) | int(__f2) ); } 1754 1755 friend constexpr flags 1756 operator^(flags __f1, flags __f2) noexcept 1757 { return flags( int(__f1) ^ int(__f2) ); } 1758 1759 friend constexpr flags 1760 operator~(flags __f) noexcept 1761 { return flags( ~int(__f) ); } 1762 1763 friend constexpr flags& 1764 operator&=(flags& __f1, flags __f2) noexcept 1765 { return __f1 = (__f1 & __f2); } 1766 1767 friend constexpr flags& 1768 operator|=(flags& __f1, flags __f2) noexcept 1769 { return __f1 = (__f1 | __f2); } 1770 1771 friend constexpr flags& 1772 operator^=(flags& __f1, flags __f2) noexcept 1773 { return __f1 = (__f1 ^ __f2); } 1774 1775 protected: 1776 resolver_base() = default; 1777 ~resolver_base() = default; 1778 }; 1779 1780 // TODO define resolver_base::flags static constants in .so for C++14 mode 1781 1782 /// @} 1783 1784 /** Container for results of name/address resolution. 1785 * @{ 1786 */ 1787 1788 template<typename _InternetProtocol> 1789 class basic_resolver_results 1790 { 1791 public: 1792 // types: 1793 using protocol_type = _InternetProtocol; 1794 using endpoint_type = typename protocol_type::endpoint; 1795 using value_type = basic_resolver_entry<protocol_type>; 1796 using const_reference = const value_type&; 1797 using reference = value_type&; 1798 using const_iterator = typename forward_list<value_type>::const_iterator; 1799 using iterator = const_iterator; 1800 using difference_type = ptrdiff_t; 1801 using size_type = size_t; 1802 1803 // construct / copy / destroy: 1804 1805 basic_resolver_results() = default; 1806 1807 basic_resolver_results(const basic_resolver_results&) = default; 1808 1809 basic_resolver_results(basic_resolver_results&&) noexcept = default; 1810 1811 basic_resolver_results& 1812 operator=(const basic_resolver_results&) = default; 1813 1814 basic_resolver_results& 1815 operator=(basic_resolver_results&&) = default; 1816 1817 ~basic_resolver_results() = default; 1818 1819 // size: 1820 size_type size() const noexcept { return _M_size; } 1821 size_type max_size() const noexcept { return _M_results.max_size(); } 1822 1823 _GLIBCXX_NODISCARD bool 1824 empty() const noexcept { return _M_results.empty(); } 1825 1826 // element access: 1827 const_iterator begin() const { return _M_results.begin(); } 1828 const_iterator end() const { return _M_results.end(); } 1829 const_iterator cbegin() const { return _M_results.begin(); } 1830 const_iterator cend() const { return _M_results.end(); } 1831 1832 // swap: 1833 void 1834 swap(basic_resolver_results& __that) noexcept 1835 { _M_results.swap(__that._M_results); } 1836 1837 private: 1838 friend class basic_resolver<protocol_type>; 1839 1840 basic_resolver_results(string_view, string_view, resolver_base::flags, 1841 error_code&, protocol_type* = nullptr); 1842 1843 basic_resolver_results(const endpoint_type&, error_code&); 1844 1845 forward_list<value_type> _M_results; 1846 size_t _M_size = 0; 1847 }; 1848 1849 template<typename _InternetProtocol> 1850 inline bool 1851 operator==(const basic_resolver_results<_InternetProtocol>& __a, 1852 const basic_resolver_results<_InternetProtocol>& __b) 1853 { 1854 return __a.size() == __b.size() 1855 && std::equal(__a.begin(), __a.end(), __b.begin()); 1856 } 1857 1858 template<typename _InternetProtocol> 1859 inline bool 1860 operator!=(const basic_resolver_results<_InternetProtocol>& __a, 1861 const basic_resolver_results<_InternetProtocol>& __b) 1862 { return !(__a == __b); } 1863 1864 /// @} 1865 1866 /// Perform name/address resolution. 1867 template<typename _InternetProtocol> 1868 class basic_resolver : public resolver_base 1869 { 1870 public: 1871 // types: 1872 1873 using executor_type = io_context::executor_type; 1874 using protocol_type = _InternetProtocol; 1875 using endpoint_type = typename _InternetProtocol::endpoint; 1876 using results_type = basic_resolver_results<_InternetProtocol>; 1877 1878 // construct / copy / destroy: 1879 1880 explicit basic_resolver(io_context& __ctx) : _M_ctx(&__ctx) { } 1881 1882 basic_resolver(const basic_resolver&) = delete; 1883 1884 basic_resolver(basic_resolver&& __rhs) noexcept 1885 : _M_ctx(__rhs._M_ctx) 1886 { } // TODO move state/tasks etc. 1887 1888 ~basic_resolver() { cancel(); } 1889 1890 basic_resolver& operator=(const basic_resolver&) = delete; 1891 1892 basic_resolver& operator=(basic_resolver&& __rhs) 1893 { 1894 cancel(); 1895 _M_ctx = __rhs._M_ctx; 1896 // TODO move state/tasks etc. 1897 return *this; 1898 } 1899 1900 // basic_resolver operations: 1901 1902 executor_type get_executor() noexcept { return _M_ctx->get_executor(); } 1903 1904 void cancel() { } // TODO 1905 1906 results_type 1907 resolve(string_view __host_name, string_view __service_name) 1908 { 1909 return resolve(__host_name, __service_name, resolver_base::flags(), 1910 __throw_on_error{"basic_resolver::resolve"}); 1911 } 1912 1913 results_type 1914 resolve(string_view __host_name, string_view __service_name, 1915 error_code& __ec) 1916 { 1917 return resolve(__host_name, __service_name, resolver_base::flags(), 1918 __ec); 1919 } 1920 1921 results_type 1922 resolve(string_view __host_name, string_view __service_name, flags __f) 1923 { 1924 return resolve(__host_name, __service_name, __f, 1925 __throw_on_error{"basic_resolver::resolve"}); 1926 } 1927 1928 results_type 1929 resolve(string_view __host_name, string_view __service_name, flags __f, 1930 error_code& __ec) 1931 { return {__host_name, __service_name, __f, __ec}; } 1932 1933 template<typename _CompletionToken> 1934 __deduced_t<_CompletionToken, void(error_code, results_type)> 1935 async_resolve(string_view __host_name, string_view __service_name, 1936 _CompletionToken&& __token) 1937 { 1938 return async_resolve(__host_name, __service_name, 1939 resolver_base::flags(), 1940 forward<_CompletionToken>(__token)); 1941 } 1942 1943 template<typename _CompletionToken> 1944 __deduced_t<_CompletionToken, void(error_code, results_type)> 1945 async_resolve(string_view __host_name, string_view __service_name, 1946 flags __f, _CompletionToken&& __token); // TODO 1947 1948 results_type 1949 resolve(const protocol_type& __protocol, 1950 string_view __host_name, string_view __service_name) 1951 { 1952 return resolve(__protocol, __host_name, __service_name, 1953 resolver_base::flags(), 1954 __throw_on_error{"basic_resolver::resolve"}); 1955 } 1956 1957 results_type 1958 resolve(const protocol_type& __protocol, 1959 string_view __host_name, string_view __service_name, 1960 error_code& __ec) 1961 { 1962 return resolve(__protocol, __host_name, __service_name, 1963 resolver_base::flags(), __ec); 1964 } 1965 1966 results_type 1967 resolve(const protocol_type& __protocol, 1968 string_view __host_name, string_view __service_name, flags __f) 1969 { 1970 return resolve(__protocol, __host_name, __service_name, __f, 1971 __throw_on_error{"basic_resolver::resolve"}); 1972 } 1973 1974 results_type 1975 resolve(const protocol_type& __protocol, 1976 string_view __host_name, string_view __service_name, 1977 flags __f, error_code& __ec) 1978 { return {__host_name, __service_name, __f, __ec, &__protocol}; } 1979 1980 template<typename _CompletionToken> 1981 __deduced_t<_CompletionToken, void(error_code, results_type)> 1982 async_resolve(const protocol_type& __protocol, 1983 string_view __host_name, string_view __service_name, 1984 _CompletionToken&& __token) 1985 { 1986 return async_resolve(__protocol, __host_name, __service_name, 1987 resolver_base::flags(), 1988 forward<_CompletionToken>(__token)); 1989 } 1990 1991 template<typename _CompletionToken> 1992 __deduced_t<_CompletionToken, void(error_code, results_type)> 1993 async_resolve(const protocol_type& __protocol, 1994 string_view __host_name, string_view __service_name, 1995 flags __f, _CompletionToken&& __token); // TODO 1996 1997 results_type 1998 resolve(const endpoint_type& __ep) 1999 { return resolve(__ep, __throw_on_error{"basic_resolver::resolve"}); } 2000 2001 results_type 2002 resolve(const endpoint_type& __ep, error_code& __ec) 2003 { return { __ep, __ec }; } 2004 2005 template<typename _CompletionToken> // TODO 2006 __deduced_t<_CompletionToken, void(error_code, results_type)> 2007 async_resolve(const endpoint_type& __ep, _CompletionToken&& __token); 2008 2009 private: 2010 io_context* _M_ctx; 2011 }; 2012 2013 /// Private constructor to synchronously resolve host and service names. 2014 template<typename _InternetProtocol> 2015 basic_resolver_results<_InternetProtocol>:: 2016 basic_resolver_results(string_view __host_name, string_view __service_name, 2017 resolver_base::flags __f, error_code& __ec, 2018 protocol_type* __protocol) 2019 { 2020#ifdef _GLIBCXX_HAVE_NETDB_H 2021 string __host; 2022 const char* __h = __host_name.data() 2023 ? (__host = __host_name.to_string()).c_str() 2024 : nullptr; 2025 string __svc; 2026 const char* __s = __service_name.data() 2027 ? (__svc = __service_name.to_string()).c_str() 2028 : nullptr; 2029 2030 ::addrinfo __hints{ }; 2031 __hints.ai_flags = static_cast<int>(__f); 2032 if (__protocol) 2033 { 2034 __hints.ai_family = __protocol->family(); 2035 __hints.ai_socktype = __protocol->type(); 2036 __hints.ai_protocol = __protocol->protocol(); 2037 } 2038 else 2039 { 2040 auto __p = endpoint_type{}.protocol(); 2041 __hints.ai_family = AF_UNSPEC; 2042 __hints.ai_socktype = __p.type(); 2043 __hints.ai_protocol = __p.protocol(); 2044 } 2045 2046 struct __scoped_addrinfo 2047 { 2048 ~__scoped_addrinfo() { if (_M_p) ::freeaddrinfo(_M_p); } 2049 ::addrinfo* _M_p = nullptr; 2050 } __sai; 2051 2052 if (int __err = ::getaddrinfo(__h, __s, &__hints, &__sai._M_p)) 2053 { 2054 __ec = ip::__make_resolver_error_code(__err, errno); 2055 return; 2056 } 2057 __ec.clear(); 2058 2059 endpoint_type __ep; 2060 auto __tail = _M_results.before_begin(); 2061 for (auto __ai = __sai._M_p; __ai != nullptr; __ai = __ai->ai_next) 2062 { 2063 if (__ai->ai_family == AF_INET || __ai->ai_family == AF_INET6) 2064 { 2065 if (__ai->ai_addrlen <= __ep.capacity()) 2066 __builtin_memcpy(__ep.data(), __ai->ai_addr, __ai->ai_addrlen); 2067 __ep.resize(__ai->ai_addrlen); 2068 __tail = _M_results.emplace_after(__tail, __ep, __host, __svc); 2069 _M_size++; 2070 } 2071 } 2072#else 2073 __ec = std::make_error_code(errc::operation_not_supported); 2074#endif 2075 } 2076 2077 /// Private constructor to synchronously resolve an endpoint. 2078 template<typename _InternetProtocol> 2079 basic_resolver_results<_InternetProtocol>:: 2080 basic_resolver_results(const endpoint_type& __ep, error_code& __ec) 2081 { 2082#ifdef _GLIBCXX_HAVE_NETDB_H 2083 char __host_name[1025]; // glibc NI_MAXHOST 2084 char __service_name[32]; // glibc NI_MAXSERV 2085 int __flags = 0; 2086 if (__ep.protocol().type() == SOCK_DGRAM) 2087 __flags |= NI_DGRAM; 2088 auto __sa = static_cast<const sockaddr*>(__ep.data()); 2089 int __err = ::getnameinfo(__sa, __ep.size(), 2090 __host_name, sizeof(__host_name), 2091 __service_name, sizeof(__service_name), 2092 __flags); 2093 if (__err) 2094 { 2095 __flags |= NI_NUMERICSERV; 2096 __err = ::getnameinfo(__sa, __ep.size(), 2097 __host_name, sizeof(__host_name), 2098 __service_name, sizeof(__service_name), 2099 __flags); 2100 } 2101 if (__err) 2102 __ec = ip::__make_resolver_error_code(__err, errno); 2103 else 2104 { 2105 __ec.clear(); 2106 _M_results.emplace_front(__ep, __host_name, __service_name); 2107 _M_size = 1; 2108 } 2109#else 2110 __ec = std::make_error_code(errc::operation_not_supported); 2111#endif 2112 } 2113#endif // IPPROTO_TCP || IPPROTO_UDP 2114 2115 /** The name of the local host. 2116 * @{ 2117 */ 2118 2119 template<typename _Allocator> 2120 __string_with<_Allocator> 2121 host_name(const _Allocator& __a, error_code& __ec) 2122 { 2123#ifdef HOST_NAME_MAX 2124 constexpr size_t __maxlen = HOST_NAME_MAX; 2125#else 2126 constexpr size_t __maxlen = 256; 2127#endif 2128 char __buf[__maxlen + 1]; 2129 if (::gethostname(__buf, __maxlen) == -1) 2130 __ec.assign(errno, generic_category()); 2131 __buf[__maxlen] = '\0'; 2132 return { __buf, __a }; 2133 } 2134 2135 template<typename _Allocator> 2136 inline __string_with<_Allocator> 2137 host_name(const _Allocator& __a) 2138 { return host_name(__a, __throw_on_error{"host_name"}); } 2139 2140 inline string 2141 host_name(error_code& __ec) 2142 { return host_name(std::allocator<char>{}, __ec); } 2143 2144 inline string 2145 host_name() 2146 { return host_name(std::allocator<char>{}, __throw_on_error{"host_name"}); } 2147 2148 /// @} 2149 2150#ifdef IPPROTO_TCP 2151 /// The TCP byte-stream protocol. 2152 class tcp 2153 { 2154 public: 2155 // types: 2156 using endpoint = basic_endpoint<tcp>; ///< A TCP endpoint. 2157 using resolver = basic_resolver<tcp>; ///< A TCP resolver. 2158 using socket = basic_stream_socket<tcp>; ///< A TCP socket. 2159 using acceptor = basic_socket_acceptor<tcp>; ///< A TCP acceptor. 2160 using iostream = basic_socket_iostream<tcp>; /// A TCP iostream. 2161 2162#ifdef TCP_NODELAY 2163 /// Disable coalescing of small segments (i.e. the Nagle algorithm). 2164 struct no_delay : __sockopt_crtp<no_delay, bool> 2165 { 2166 using __sockopt_crtp::__sockopt_crtp; 2167 using __sockopt_crtp::operator=; 2168 2169 static const int _S_level = IPPROTO_TCP; 2170 static const int _S_name = TCP_NODELAY; 2171 }; 2172#endif 2173 2174 // static members: 2175 2176 /// A protocol object representing IPv4 TCP. 2177 static constexpr tcp v4() noexcept { return tcp(AF_INET); } 2178 /// A protocol object representing IPv6 TCP. 2179 static constexpr tcp v6() noexcept { return tcp(AF_INET6); } 2180 2181 tcp() = delete; 2182 2183 constexpr int family() const noexcept { return _M_family; } 2184 constexpr int type() const noexcept { return SOCK_STREAM; } 2185 constexpr int protocol() const noexcept { return IPPROTO_TCP; } 2186 2187 private: 2188 constexpr explicit tcp(int __family) : _M_family(__family) { } 2189 2190 int _M_family; 2191 }; 2192 2193 /** tcp comparisons 2194 * @{ 2195 */ 2196 2197 constexpr bool 2198 operator==(const tcp& __a, const tcp& __b) noexcept 2199 { return __a.family() == __b.family(); } 2200 2201 constexpr bool 2202 operator!=(const tcp& __a, const tcp& __b) noexcept 2203 { return !(__a == __b); } 2204 2205 /// @} 2206#endif // IPPROTO_TCP 2207 2208#ifdef IPPROTO_UDP 2209 /// The UDP datagram protocol. 2210 class udp 2211 { 2212 public: 2213 // types: 2214 using endpoint = basic_endpoint<udp>; 2215 using resolver = basic_resolver<udp>; 2216 using socket = basic_datagram_socket<udp>; 2217 2218 // static members: 2219 static constexpr udp v4() noexcept { return udp(AF_INET); } 2220 static constexpr udp v6() noexcept { return udp(AF_INET6); } 2221 2222 udp() = delete; 2223 2224 constexpr int family() const noexcept { return _M_family; } 2225 constexpr int type() const noexcept { return SOCK_DGRAM; } 2226 constexpr int protocol() const noexcept { return IPPROTO_UDP; } 2227 2228 private: 2229 constexpr explicit udp(int __family) : _M_family(__family) { } 2230 2231 int _M_family; 2232 }; 2233 2234 /** udp comparisons 2235 * @{ 2236 */ 2237 2238 constexpr bool 2239 operator==(const udp& __a, const udp& __b) noexcept 2240 { return __a.family() == __b.family(); } 2241 2242 constexpr bool 2243 operator!=(const udp& __a, const udp& __b) noexcept 2244 { return !(__a == __b); } 2245 2246 /// @} 2247#endif // IPPROTO_UDP 2248 2249#if defined IPPROTO_IP && defined IPPROTO_IPV6 2250 2251 /// Restrict a socket created for an IPv6 protocol to IPv6 only. 2252 class v6_only : public __sockopt_crtp<v6_only, bool> 2253 { 2254 public: 2255 using __sockopt_crtp::__sockopt_crtp; 2256 using __sockopt_crtp::operator=; 2257 2258 private: 2259 friend __sockopt_crtp<v6_only, bool>; 2260 static const int _S_level = IPPROTO_IPV6; 2261 static const int _S_name = IPV6_V6ONLY; 2262 }; 2263 2264 namespace unicast 2265 { 2266 /// Set the default number of hops (TTL) for outbound datagrams. 2267 class hops : public __sockopt_crtp<hops> 2268 { 2269 public: 2270 using __sockopt_crtp::__sockopt_crtp; 2271 using __sockopt_crtp::operator=; 2272 2273 template<typename _Protocol> 2274 int 2275 level(const _Protocol& __p) const noexcept 2276 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2277 2278 template<typename _Protocol> 2279 int 2280 name(const _Protocol& __p) const noexcept 2281 { return __p.family() == AF_INET6 ? IPV6_UNICAST_HOPS : IP_TTL; } 2282 }; 2283 } // namespace unicast 2284 2285 namespace multicast 2286 { 2287 class __mcastopt 2288 { 2289 public: 2290 explicit 2291 __mcastopt(const address& __grp) noexcept 2292 : __mcastopt(__grp.is_v4() ? __mcastopt(__grp.to_v4()) : __mcastopt(__grp.to_v6())) 2293 { } 2294 2295 explicit 2296 __mcastopt(const address_v4& __grp, 2297 const address_v4& __iface = address_v4::any()) noexcept 2298 { 2299#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 2300 _M_v4.imr_multiaddr.s_addr = __grp.to_uint(); 2301 _M_v4.imr_interface.s_addr = __iface.to_uint(); 2302#else 2303 _M_v4.imr_multiaddr.s_addr = __builtin_bswap32(__grp.to_uint()); 2304 _M_v4.imr_interface.s_addr = __builtin_bswap32(__iface.to_uint()); 2305#endif 2306 } 2307 2308 explicit 2309 __mcastopt(const address_v6& __grp, unsigned int __iface = 0) noexcept 2310 { 2311 const auto __addr = __grp.to_bytes(); 2312 __builtin_memcpy(_M_v6.ipv6mr_multiaddr.s6_addr, __addr.data(), 16); 2313 _M_v6.ipv6mr_interface = __iface; 2314 } 2315 2316 template<typename _Protocol> 2317 int 2318 level(const _Protocol& __p) const noexcept 2319 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2320 2321 template<typename _Protocol> 2322 const void* 2323 data(const _Protocol& __p) const noexcept 2324 { return __p.family() == AF_INET6 ? &_M_v6 : &_M_v4; } 2325 2326 template<typename _Protocol> 2327 size_t 2328 size(const _Protocol& __p) const noexcept 2329 { return __p.family() == AF_INET6 ? sizeof(_M_v6) : sizeof(_M_v4); } 2330 2331 private: 2332 ipv6_mreq _M_v6 = {}; 2333 ip_mreq _M_v4 = {}; 2334 }; 2335 2336 /// Request that a socket joins a multicast group. 2337 class join_group : private __mcastopt 2338 { 2339 public: 2340 using __mcastopt::__mcastopt; 2341 using __mcastopt::level; 2342 using __mcastopt::data; 2343 using __mcastopt::size; 2344 2345 template<typename _Protocol> 2346 int 2347 name(const _Protocol& __p) const noexcept 2348 { 2349 if (__p.family() == AF_INET6) 2350 return IPV6_JOIN_GROUP; 2351 return IP_ADD_MEMBERSHIP; 2352 } 2353 }; 2354 2355 /// Request that a socket leaves a multicast group. 2356 class leave_group : private __mcastopt 2357 { 2358 public: 2359 using __mcastopt::__mcastopt; 2360 using __mcastopt::level; 2361 using __mcastopt::data; 2362 using __mcastopt::size; 2363 2364 template<typename _Protocol> 2365 int 2366 name(const _Protocol& __p) const noexcept 2367 { 2368 if (__p.family() == AF_INET6) 2369 return IPV6_LEAVE_GROUP; 2370 return IP_DROP_MEMBERSHIP; 2371 } 2372 }; 2373 2374 /// Specify the network interface for outgoing multicast datagrams. 2375 class outbound_interface 2376 { 2377 public: 2378 explicit 2379 outbound_interface(const address_v4& __v4) noexcept 2380 { 2381#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 2382 _M_v4.s_addr = __v4.to_uint(); 2383#else 2384 _M_v4.s_addr = __builtin_bswap32(__v4.to_uint()); 2385#endif 2386 } 2387 2388 explicit 2389 outbound_interface(unsigned int __v6) noexcept 2390 : _M_v4(), _M_v6(__v6) 2391 { } 2392 2393 template<typename _Protocol> 2394 int 2395 level(const _Protocol& __p) const noexcept 2396 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2397 2398 template<typename _Protocol> 2399 int 2400 name(const _Protocol& __p) const noexcept 2401 { 2402 return __p.family() == AF_INET6 2403 ? IPV6_MULTICAST_IF : IP_MULTICAST_IF; 2404 } 2405 2406 template<typename _Protocol> 2407 const void* 2408 data(const _Protocol& __p) const noexcept 2409 { return __p.family() == AF_INET6 ? &_M_v6 : &_M_v4; } 2410 2411 template<typename _Protocol> 2412 size_t 2413 size(const _Protocol& __p) const noexcept 2414 { return __p.family() == AF_INET6 ? sizeof(_M_v6) : sizeof(_M_v4); } 2415 2416 private: 2417 in_addr _M_v4; 2418 unsigned _M_v6 = 0; 2419 }; 2420 2421 /// Set the default number of hops (TTL) for outbound datagrams. 2422 class hops : public __sockopt_crtp<hops> 2423 { 2424 public: 2425 using __sockopt_crtp::__sockopt_crtp; 2426 using __sockopt_crtp::operator=; 2427 2428 template<typename _Protocol> 2429 int 2430 level(const _Protocol& __p) const noexcept 2431 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2432 2433 template<typename _Protocol> 2434 int 2435 name(const _Protocol& __p) const noexcept 2436 { 2437 return __p.family() == AF_INET6 2438 ? IPV6_MULTICAST_HOPS : IP_MULTICAST_TTL; 2439 } 2440 }; 2441 2442 /// Set whether datagrams are delivered back to the local application. 2443 class enable_loopback : public __sockopt_crtp<enable_loopback, bool> 2444 { 2445 public: 2446 using __sockopt_crtp::__sockopt_crtp; 2447 using __sockopt_crtp::operator=; 2448 2449 template<typename _Protocol> 2450 int 2451 level(const _Protocol& __p) const noexcept 2452 { return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; } 2453 2454 template<typename _Protocol> 2455 int 2456 name(const _Protocol& __p) const noexcept 2457 { 2458 return __p.family() == AF_INET6 2459 ? IPV6_MULTICAST_LOOP : IP_MULTICAST_LOOP; 2460 } 2461 }; 2462 2463 } // namespace multicast 2464 2465#endif // IPPROTO_IP && IPPROTO_IPV6 2466 2467 /// @} 2468 2469} // namespace ip 2470} // namespace v1 2471} // namespace net 2472} // namespace experimental 2473 2474 template<> 2475 struct is_error_condition_enum<experimental::net::v1::ip::resolver_errc> 2476 : public true_type {}; 2477 2478 // hash support 2479 template<typename _Tp> struct hash; 2480 template<> 2481 struct hash<experimental::net::v1::ip::address> 2482 : __hash_base<size_t, experimental::net::v1::ip::address> 2483 { 2484 size_t 2485 operator()(const experimental::net::v1::ip::address& __a) const 2486 { 2487 if (__a.is_v4()) 2488 return _Hash_impl::hash(__a.to_v4()); 2489 else 2490 return _Hash_impl::hash(__a.to_v6()); 2491 } 2492 }; 2493 2494 template<> 2495 struct hash<experimental::net::v1::ip::address_v4> 2496 : __hash_base<size_t, experimental::net::v1::ip::address_v4> 2497 { 2498 size_t 2499 operator()(const experimental::net::v1::ip::address_v4& __a) const 2500 { return _Hash_impl::hash(__a.to_bytes()); } 2501 }; 2502 2503 template<> struct hash<experimental::net::v1::ip::address_v6> 2504 : __hash_base<size_t, experimental::net::v1::ip::address_v6> 2505 { 2506 size_t 2507 operator()(const experimental::net::v1::ip::address_v6& __a) const 2508 { return _Hash_impl::hash(__a.to_bytes()); } 2509 }; 2510 2511_GLIBCXX_END_NAMESPACE_VERSION 2512} // namespace std 2513 2514#endif // C++14 2515 2516#endif // _GLIBCXX_EXPERIMENTAL_INTERNET 2517