1 // Internal policy header for unordered_set and unordered_map -*- C++ -*- 2 3 // Copyright (C) 2010-2022 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /** @file bits/hashtable_policy.h 26 * This is an internal header file, included by other library headers. 27 * Do not attempt to use it directly. 28 * @headername{unordered_map,unordered_set} 29 */ 30 31 #ifndef _HASHTABLE_POLICY_H 32 #define _HASHTABLE_POLICY_H 1 33 34 #include <tuple> // for std::tuple, std::forward_as_tuple 35 #include <bits/stl_algobase.h> // for std::min, std::is_permutation. 36 #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer 37 #include <ext/alloc_traits.h> // for std::__alloc_rebind 38 #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits 39 40 namespace std _GLIBCXX_VISIBILITY(default) 41 { 42 _GLIBCXX_BEGIN_NAMESPACE_VERSION 43 /// @cond undocumented 44 45 template<typename _Key, typename _Value, typename _Alloc, 46 typename _ExtractKey, typename _Equal, 47 typename _Hash, typename _RangeHash, typename _Unused, 48 typename _RehashPolicy, typename _Traits> 49 class _Hashtable; 50 51 namespace __detail 52 { 53 /** 54 * @defgroup hashtable-detail Base and Implementation Classes 55 * @ingroup unordered_associative_containers 56 * @{ 57 */ 58 template<typename _Key, typename _Value, typename _ExtractKey, 59 typename _Equal, typename _Hash, typename _RangeHash, 60 typename _Unused, typename _Traits> 61 struct _Hashtable_base; 62 63 // Helper function: return distance(first, last) for forward 64 // iterators, or 0/1 for input iterators. 65 template<typename _Iterator> 66 inline typename std::iterator_traits<_Iterator>::difference_type 67 __distance_fw(_Iterator __first, _Iterator __last, 68 std::input_iterator_tag) 69 { return __first != __last ? 1 : 0; } 70 71 template<typename _Iterator> 72 inline typename std::iterator_traits<_Iterator>::difference_type 73 __distance_fw(_Iterator __first, _Iterator __last, 74 std::forward_iterator_tag) 75 { return std::distance(__first, __last); } 76 77 template<typename _Iterator> 78 inline typename std::iterator_traits<_Iterator>::difference_type 79 __distance_fw(_Iterator __first, _Iterator __last) 80 { return __distance_fw(__first, __last, 81 std::__iterator_category(__first)); } 82 83 struct _Identity 84 { 85 template<typename _Tp> 86 _Tp&& 87 operator()(_Tp&& __x) const noexcept 88 { return std::forward<_Tp>(__x); } 89 }; 90 91 struct _Select1st 92 { 93 template<typename _Pair> 94 struct __1st_type; 95 96 template<typename _Tp, typename _Up> 97 struct __1st_type<pair<_Tp, _Up>> 98 { using type = _Tp; }; 99 100 template<typename _Tp, typename _Up> 101 struct __1st_type<const pair<_Tp, _Up>> 102 { using type = const _Tp; }; 103 104 template<typename _Pair> 105 struct __1st_type<_Pair&> 106 { using type = typename __1st_type<_Pair>::type&; }; 107 108 template<typename _Tp> 109 typename __1st_type<_Tp>::type&& 110 operator()(_Tp&& __x) const noexcept 111 { return std::forward<_Tp>(__x).first; } 112 }; 113 114 template<typename _ExKey> 115 struct _NodeBuilder; 116 117 template<> 118 struct _NodeBuilder<_Select1st> 119 { 120 template<typename _Kt, typename _Arg, typename _NodeGenerator> 121 static auto 122 _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen) 123 -> typename _NodeGenerator::__node_type* 124 { 125 return __node_gen(std::forward<_Kt>(__k), 126 std::forward<_Arg>(__arg).second); 127 } 128 }; 129 130 template<> 131 struct _NodeBuilder<_Identity> 132 { 133 template<typename _Kt, typename _Arg, typename _NodeGenerator> 134 static auto 135 _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen) 136 -> typename _NodeGenerator::__node_type* 137 { return __node_gen(std::forward<_Kt>(__k)); } 138 }; 139 140 template<typename _NodeAlloc> 141 struct _Hashtable_alloc; 142 143 // Functor recycling a pool of nodes and using allocation once the pool is 144 // empty. 145 template<typename _NodeAlloc> 146 struct _ReuseOrAllocNode 147 { 148 private: 149 using __node_alloc_type = _NodeAlloc; 150 using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; 151 using __node_alloc_traits = 152 typename __hashtable_alloc::__node_alloc_traits; 153 154 public: 155 using __node_type = typename __hashtable_alloc::__node_type; 156 157 _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) 158 : _M_nodes(__nodes), _M_h(__h) { } 159 _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; 160 161 ~_ReuseOrAllocNode() 162 { _M_h._M_deallocate_nodes(_M_nodes); } 163 164 template<typename... _Args> 165 __node_type* 166 operator()(_Args&&... __args) const 167 { 168 if (_M_nodes) 169 { 170 __node_type* __node = _M_nodes; 171 _M_nodes = _M_nodes->_M_next(); 172 __node->_M_nxt = nullptr; 173 auto& __a = _M_h._M_node_allocator(); 174 __node_alloc_traits::destroy(__a, __node->_M_valptr()); 175 __try 176 { 177 __node_alloc_traits::construct(__a, __node->_M_valptr(), 178 std::forward<_Args>(__args)...); 179 } 180 __catch(...) 181 { 182 _M_h._M_deallocate_node_ptr(__node); 183 __throw_exception_again; 184 } 185 return __node; 186 } 187 return _M_h._M_allocate_node(std::forward<_Args>(__args)...); 188 } 189 190 private: 191 mutable __node_type* _M_nodes; 192 __hashtable_alloc& _M_h; 193 }; 194 195 // Functor similar to the previous one but without any pool of nodes to 196 // recycle. 197 template<typename _NodeAlloc> 198 struct _AllocNode 199 { 200 private: 201 using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; 202 203 public: 204 using __node_type = typename __hashtable_alloc::__node_type; 205 206 _AllocNode(__hashtable_alloc& __h) 207 : _M_h(__h) { } 208 209 template<typename... _Args> 210 __node_type* 211 operator()(_Args&&... __args) const 212 { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); } 213 214 private: 215 __hashtable_alloc& _M_h; 216 }; 217 218 // Auxiliary types used for all instantiations of _Hashtable nodes 219 // and iterators. 220 221 /** 222 * struct _Hashtable_traits 223 * 224 * Important traits for hash tables. 225 * 226 * @tparam _Cache_hash_code Boolean value. True if the value of 227 * the hash function is stored along with the value. This is a 228 * time-space tradeoff. Storing it may improve lookup speed by 229 * reducing the number of times we need to call the _Hash or _Equal 230 * functors. 231 * 232 * @tparam _Constant_iterators Boolean value. True if iterator and 233 * const_iterator are both constant iterator types. This is true 234 * for unordered_set and unordered_multiset, false for 235 * unordered_map and unordered_multimap. 236 * 237 * @tparam _Unique_keys Boolean value. True if the return value 238 * of _Hashtable::count(k) is always at most one, false if it may 239 * be an arbitrary number. This is true for unordered_set and 240 * unordered_map, false for unordered_multiset and 241 * unordered_multimap. 242 */ 243 template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> 244 struct _Hashtable_traits 245 { 246 using __hash_cached = __bool_constant<_Cache_hash_code>; 247 using __constant_iterators = __bool_constant<_Constant_iterators>; 248 using __unique_keys = __bool_constant<_Unique_keys>; 249 }; 250 251 /** 252 * struct _Hashtable_hash_traits 253 * 254 * Important traits for hash tables depending on associated hasher. 255 * 256 */ 257 template<typename _Hash> 258 struct _Hashtable_hash_traits 259 { 260 static constexpr std::size_t 261 __small_size_threshold() noexcept 262 { return std::__is_fast_hash<_Hash>::value ? 0 : 20; } 263 }; 264 265 /** 266 * struct _Hash_node_base 267 * 268 * Nodes, used to wrap elements stored in the hash table. A policy 269 * template parameter of class template _Hashtable controls whether 270 * nodes also store a hash code. In some cases (e.g. strings) this 271 * may be a performance win. 272 */ 273 struct _Hash_node_base 274 { 275 _Hash_node_base* _M_nxt; 276 277 _Hash_node_base() noexcept : _M_nxt() { } 278 279 _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } 280 }; 281 282 /** 283 * struct _Hash_node_value_base 284 * 285 * Node type with the value to store. 286 */ 287 template<typename _Value> 288 struct _Hash_node_value_base 289 { 290 typedef _Value value_type; 291 292 __gnu_cxx::__aligned_buffer<_Value> _M_storage; 293 294 [[__gnu__::__always_inline__]] 295 _Value* 296 _M_valptr() noexcept 297 { return _M_storage._M_ptr(); } 298 299 [[__gnu__::__always_inline__]] 300 const _Value* 301 _M_valptr() const noexcept 302 { return _M_storage._M_ptr(); } 303 304 [[__gnu__::__always_inline__]] 305 _Value& 306 _M_v() noexcept 307 { return *_M_valptr(); } 308 309 [[__gnu__::__always_inline__]] 310 const _Value& 311 _M_v() const noexcept 312 { return *_M_valptr(); } 313 }; 314 315 /** 316 * Primary template struct _Hash_node_code_cache. 317 */ 318 template<bool _Cache_hash_code> 319 struct _Hash_node_code_cache 320 { }; 321 322 /** 323 * Specialization for node with cache, struct _Hash_node_code_cache. 324 */ 325 template<> 326 struct _Hash_node_code_cache<true> 327 { std::size_t _M_hash_code; }; 328 329 template<typename _Value, bool _Cache_hash_code> 330 struct _Hash_node_value 331 : _Hash_node_value_base<_Value> 332 , _Hash_node_code_cache<_Cache_hash_code> 333 { }; 334 335 /** 336 * Primary template struct _Hash_node. 337 */ 338 template<typename _Value, bool _Cache_hash_code> 339 struct _Hash_node 340 : _Hash_node_base 341 , _Hash_node_value<_Value, _Cache_hash_code> 342 { 343 _Hash_node* 344 _M_next() const noexcept 345 { return static_cast<_Hash_node*>(this->_M_nxt); } 346 }; 347 348 /// Base class for node iterators. 349 template<typename _Value, bool _Cache_hash_code> 350 struct _Node_iterator_base 351 { 352 using __node_type = _Hash_node<_Value, _Cache_hash_code>; 353 354 __node_type* _M_cur; 355 356 _Node_iterator_base() : _M_cur(nullptr) { } 357 _Node_iterator_base(__node_type* __p) noexcept 358 : _M_cur(__p) { } 359 360 void 361 _M_incr() noexcept 362 { _M_cur = _M_cur->_M_next(); } 363 364 friend bool 365 operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) 366 noexcept 367 { return __x._M_cur == __y._M_cur; } 368 369 #if __cpp_impl_three_way_comparison < 201907L 370 friend bool 371 operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) 372 noexcept 373 { return __x._M_cur != __y._M_cur; } 374 #endif 375 }; 376 377 /// Node iterators, used to iterate through all the hashtable. 378 template<typename _Value, bool __constant_iterators, bool __cache> 379 struct _Node_iterator 380 : public _Node_iterator_base<_Value, __cache> 381 { 382 private: 383 using __base_type = _Node_iterator_base<_Value, __cache>; 384 using __node_type = typename __base_type::__node_type; 385 386 public: 387 using value_type = _Value; 388 using difference_type = std::ptrdiff_t; 389 using iterator_category = std::forward_iterator_tag; 390 391 using pointer = __conditional_t<__constant_iterators, 392 const value_type*, value_type*>; 393 394 using reference = __conditional_t<__constant_iterators, 395 const value_type&, value_type&>; 396 397 _Node_iterator() = default; 398 399 explicit 400 _Node_iterator(__node_type* __p) noexcept 401 : __base_type(__p) { } 402 403 reference 404 operator*() const noexcept 405 { return this->_M_cur->_M_v(); } 406 407 pointer 408 operator->() const noexcept 409 { return this->_M_cur->_M_valptr(); } 410 411 _Node_iterator& 412 operator++() noexcept 413 { 414 this->_M_incr(); 415 return *this; 416 } 417 418 _Node_iterator 419 operator++(int) noexcept 420 { 421 _Node_iterator __tmp(*this); 422 this->_M_incr(); 423 return __tmp; 424 } 425 }; 426 427 /// Node const_iterators, used to iterate through all the hashtable. 428 template<typename _Value, bool __constant_iterators, bool __cache> 429 struct _Node_const_iterator 430 : public _Node_iterator_base<_Value, __cache> 431 { 432 private: 433 using __base_type = _Node_iterator_base<_Value, __cache>; 434 using __node_type = typename __base_type::__node_type; 435 436 public: 437 typedef _Value value_type; 438 typedef std::ptrdiff_t difference_type; 439 typedef std::forward_iterator_tag iterator_category; 440 441 typedef const value_type* pointer; 442 typedef const value_type& reference; 443 444 _Node_const_iterator() = default; 445 446 explicit 447 _Node_const_iterator(__node_type* __p) noexcept 448 : __base_type(__p) { } 449 450 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, 451 __cache>& __x) noexcept 452 : __base_type(__x._M_cur) { } 453 454 reference 455 operator*() const noexcept 456 { return this->_M_cur->_M_v(); } 457 458 pointer 459 operator->() const noexcept 460 { return this->_M_cur->_M_valptr(); } 461 462 _Node_const_iterator& 463 operator++() noexcept 464 { 465 this->_M_incr(); 466 return *this; 467 } 468 469 _Node_const_iterator 470 operator++(int) noexcept 471 { 472 _Node_const_iterator __tmp(*this); 473 this->_M_incr(); 474 return __tmp; 475 } 476 }; 477 478 // Many of class template _Hashtable's template parameters are policy 479 // classes. These are defaults for the policies. 480 481 /// Default range hashing function: use division to fold a large number 482 /// into the range [0, N). 483 struct _Mod_range_hashing 484 { 485 typedef std::size_t first_argument_type; 486 typedef std::size_t second_argument_type; 487 typedef std::size_t result_type; 488 489 result_type 490 operator()(first_argument_type __num, 491 second_argument_type __den) const noexcept 492 { return __num % __den; } 493 }; 494 495 /// Default ranged hash function H. In principle it should be a 496 /// function object composed from objects of type H1 and H2 such that 497 /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of 498 /// h1 and h2. So instead we'll just use a tag to tell class template 499 /// hashtable to do that composition. 500 struct _Default_ranged_hash { }; 501 502 /// Default value for rehash policy. Bucket size is (usually) the 503 /// smallest prime that keeps the load factor small enough. 504 struct _Prime_rehash_policy 505 { 506 using __has_load_factor = true_type; 507 508 _Prime_rehash_policy(float __z = 1.0) noexcept 509 : _M_max_load_factor(__z), _M_next_resize(0) { } 510 511 float 512 max_load_factor() const noexcept 513 { return _M_max_load_factor; } 514 515 // Return a bucket size no smaller than n. 516 std::size_t 517 _M_next_bkt(std::size_t __n) const; 518 519 // Return a bucket count appropriate for n elements 520 std::size_t 521 _M_bkt_for_elements(std::size_t __n) const 522 { return __builtin_ceil(__n / (double)_M_max_load_factor); } 523 524 // __n_bkt is current bucket count, __n_elt is current element count, 525 // and __n_ins is number of elements to be inserted. Do we need to 526 // increase bucket count? If so, return make_pair(true, n), where n 527 // is the new bucket count. If not, return make_pair(false, 0). 528 std::pair<bool, std::size_t> 529 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, 530 std::size_t __n_ins) const; 531 532 typedef std::size_t _State; 533 534 _State 535 _M_state() const 536 { return _M_next_resize; } 537 538 void 539 _M_reset() noexcept 540 { _M_next_resize = 0; } 541 542 void 543 _M_reset(_State __state) 544 { _M_next_resize = __state; } 545 546 static const std::size_t _S_growth_factor = 2; 547 548 float _M_max_load_factor; 549 mutable std::size_t _M_next_resize; 550 }; 551 552 /// Range hashing function assuming that second arg is a power of 2. 553 struct _Mask_range_hashing 554 { 555 typedef std::size_t first_argument_type; 556 typedef std::size_t second_argument_type; 557 typedef std::size_t result_type; 558 559 result_type 560 operator()(first_argument_type __num, 561 second_argument_type __den) const noexcept 562 { return __num & (__den - 1); } 563 }; 564 565 /// Compute closest power of 2 not less than __n 566 inline std::size_t 567 __clp2(std::size_t __n) noexcept 568 { 569 using __gnu_cxx::__int_traits; 570 // Equivalent to return __n ? std::bit_ceil(__n) : 0; 571 if (__n < 2) 572 return __n; 573 const unsigned __lz = sizeof(size_t) > sizeof(long) 574 ? __builtin_clzll(__n - 1ull) 575 : __builtin_clzl(__n - 1ul); 576 // Doing two shifts avoids undefined behaviour when __lz == 0. 577 return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; 578 } 579 580 /// Rehash policy providing power of 2 bucket numbers. Avoids modulo 581 /// operations. 582 struct _Power2_rehash_policy 583 { 584 using __has_load_factor = true_type; 585 586 _Power2_rehash_policy(float __z = 1.0) noexcept 587 : _M_max_load_factor(__z), _M_next_resize(0) { } 588 589 float 590 max_load_factor() const noexcept 591 { return _M_max_load_factor; } 592 593 // Return a bucket size no smaller than n (as long as n is not above the 594 // highest power of 2). 595 std::size_t 596 _M_next_bkt(std::size_t __n) noexcept 597 { 598 if (__n == 0) 599 // Special case on container 1st initialization with 0 bucket count 600 // hint. We keep _M_next_resize to 0 to make sure that next time we 601 // want to add an element allocation will take place. 602 return 1; 603 604 const auto __max_width = std::min<size_t>(sizeof(size_t), 8); 605 const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); 606 std::size_t __res = __clp2(__n); 607 608 if (__res == 0) 609 __res = __max_bkt; 610 else if (__res == 1) 611 // If __res is 1 we force it to 2 to make sure there will be an 612 // allocation so that nothing need to be stored in the initial 613 // single bucket 614 __res = 2; 615 616 if (__res == __max_bkt) 617 // Set next resize to the max value so that we never try to rehash again 618 // as we already reach the biggest possible bucket number. 619 // Note that it might result in max_load_factor not being respected. 620 _M_next_resize = size_t(-1); 621 else 622 _M_next_resize 623 = __builtin_floor(__res * (double)_M_max_load_factor); 624 625 return __res; 626 } 627 628 // Return a bucket count appropriate for n elements 629 std::size_t 630 _M_bkt_for_elements(std::size_t __n) const noexcept 631 { return __builtin_ceil(__n / (double)_M_max_load_factor); } 632 633 // __n_bkt is current bucket count, __n_elt is current element count, 634 // and __n_ins is number of elements to be inserted. Do we need to 635 // increase bucket count? If so, return make_pair(true, n), where n 636 // is the new bucket count. If not, return make_pair(false, 0). 637 std::pair<bool, std::size_t> 638 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, 639 std::size_t __n_ins) noexcept 640 { 641 if (__n_elt + __n_ins > _M_next_resize) 642 { 643 // If _M_next_resize is 0 it means that we have nothing allocated so 644 // far and that we start inserting elements. In this case we start 645 // with an initial bucket size of 11. 646 double __min_bkts 647 = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11) 648 / (double)_M_max_load_factor; 649 if (__min_bkts >= __n_bkt) 650 return { true, 651 _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, 652 __n_bkt * _S_growth_factor)) }; 653 654 _M_next_resize 655 = __builtin_floor(__n_bkt * (double)_M_max_load_factor); 656 return { false, 0 }; 657 } 658 else 659 return { false, 0 }; 660 } 661 662 typedef std::size_t _State; 663 664 _State 665 _M_state() const noexcept 666 { return _M_next_resize; } 667 668 void 669 _M_reset() noexcept 670 { _M_next_resize = 0; } 671 672 void 673 _M_reset(_State __state) noexcept 674 { _M_next_resize = __state; } 675 676 static const std::size_t _S_growth_factor = 2; 677 678 float _M_max_load_factor; 679 std::size_t _M_next_resize; 680 }; 681 682 // Base classes for std::_Hashtable. We define these base classes 683 // because in some cases we want to do different things depending on 684 // the value of a policy class. In some cases the policy class 685 // affects which member functions and nested typedefs are defined; 686 // we handle that by specializing base class templates. Several of 687 // the base class templates need to access other members of class 688 // template _Hashtable, so we use a variant of the "Curiously 689 // Recurring Template Pattern" (CRTP) technique. 690 691 /** 692 * Primary class template _Map_base. 693 * 694 * If the hashtable has a value type of the form pair<const T1, T2> and 695 * a key extraction policy (_ExtractKey) that returns the first part 696 * of the pair, the hashtable gets a mapped_type typedef. If it 697 * satisfies those criteria and also has unique keys, then it also 698 * gets an operator[]. 699 */ 700 template<typename _Key, typename _Value, typename _Alloc, 701 typename _ExtractKey, typename _Equal, 702 typename _Hash, typename _RangeHash, typename _Unused, 703 typename _RehashPolicy, typename _Traits, 704 bool _Unique_keys = _Traits::__unique_keys::value> 705 struct _Map_base { }; 706 707 /// Partial specialization, __unique_keys set to false, std::pair value type. 708 template<typename _Key, typename _Val, typename _Alloc, typename _Equal, 709 typename _Hash, typename _RangeHash, typename _Unused, 710 typename _RehashPolicy, typename _Traits> 711 struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, 712 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> 713 { 714 using mapped_type = _Val; 715 }; 716 717 /// Partial specialization, __unique_keys set to true. 718 template<typename _Key, typename _Val, typename _Alloc, typename _Equal, 719 typename _Hash, typename _RangeHash, typename _Unused, 720 typename _RehashPolicy, typename _Traits> 721 struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, 722 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> 723 { 724 private: 725 using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>, 726 _Select1st, _Equal, _Hash, 727 _RangeHash, _Unused, 728 _Traits>; 729 730 using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc, 731 _Select1st, _Equal, _Hash, _RangeHash, 732 _Unused, _RehashPolicy, _Traits>; 733 734 using __hash_code = typename __hashtable_base::__hash_code; 735 736 public: 737 using key_type = typename __hashtable_base::key_type; 738 using mapped_type = _Val; 739 740 mapped_type& 741 operator[](const key_type& __k); 742 743 mapped_type& 744 operator[](key_type&& __k); 745 746 // _GLIBCXX_RESOLVE_LIB_DEFECTS 747 // DR 761. unordered_map needs an at() member function. 748 mapped_type& 749 at(const key_type& __k) 750 { 751 auto __ite = static_cast<__hashtable*>(this)->find(__k); 752 if (!__ite._M_cur) 753 __throw_out_of_range(__N("unordered_map::at")); 754 return __ite->second; 755 } 756 757 const mapped_type& 758 at(const key_type& __k) const 759 { 760 auto __ite = static_cast<const __hashtable*>(this)->find(__k); 761 if (!__ite._M_cur) 762 __throw_out_of_range(__N("unordered_map::at")); 763 return __ite->second; 764 } 765 }; 766 767 template<typename _Key, typename _Val, typename _Alloc, typename _Equal, 768 typename _Hash, typename _RangeHash, typename _Unused, 769 typename _RehashPolicy, typename _Traits> 770 auto 771 _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, 772 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: 773 operator[](const key_type& __k) 774 -> mapped_type& 775 { 776 __hashtable* __h = static_cast<__hashtable*>(this); 777 __hash_code __code = __h->_M_hash_code(__k); 778 std::size_t __bkt = __h->_M_bucket_index(__code); 779 if (auto __node = __h->_M_find_node(__bkt, __k, __code)) 780 return __node->_M_v().second; 781 782 typename __hashtable::_Scoped_node __node { 783 __h, 784 std::piecewise_construct, 785 std::tuple<const key_type&>(__k), 786 std::tuple<>() 787 }; 788 auto __pos 789 = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); 790 __node._M_node = nullptr; 791 return __pos->second; 792 } 793 794 template<typename _Key, typename _Val, typename _Alloc, typename _Equal, 795 typename _Hash, typename _RangeHash, typename _Unused, 796 typename _RehashPolicy, typename _Traits> 797 auto 798 _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, 799 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: 800 operator[](key_type&& __k) 801 -> mapped_type& 802 { 803 __hashtable* __h = static_cast<__hashtable*>(this); 804 __hash_code __code = __h->_M_hash_code(__k); 805 std::size_t __bkt = __h->_M_bucket_index(__code); 806 if (auto __node = __h->_M_find_node(__bkt, __k, __code)) 807 return __node->_M_v().second; 808 809 typename __hashtable::_Scoped_node __node { 810 __h, 811 std::piecewise_construct, 812 std::forward_as_tuple(std::move(__k)), 813 std::tuple<>() 814 }; 815 auto __pos 816 = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); 817 __node._M_node = nullptr; 818 return __pos->second; 819 } 820 821 // Partial specialization for unordered_map<const T, U>, see PR 104174. 822 template<typename _Key, typename _Val, typename _Alloc, typename _Equal, 823 typename _Hash, typename _RangeHash, typename _Unused, 824 typename _RehashPolicy, typename _Traits, bool __uniq> 825 struct _Map_base<const _Key, pair<const _Key, _Val>, 826 _Alloc, _Select1st, _Equal, _Hash, 827 _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> 828 : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash, 829 _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> 830 { }; 831 832 /** 833 * Primary class template _Insert_base. 834 * 835 * Defines @c insert member functions appropriate to all _Hashtables. 836 */ 837 template<typename _Key, typename _Value, typename _Alloc, 838 typename _ExtractKey, typename _Equal, 839 typename _Hash, typename _RangeHash, typename _Unused, 840 typename _RehashPolicy, typename _Traits> 841 struct _Insert_base 842 { 843 protected: 844 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, 845 _Equal, _Hash, _RangeHash, 846 _Unused, _Traits>; 847 848 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 849 _Hash, _RangeHash, 850 _Unused, _RehashPolicy, _Traits>; 851 852 using __hash_cached = typename _Traits::__hash_cached; 853 using __constant_iterators = typename _Traits::__constant_iterators; 854 855 using __hashtable_alloc = _Hashtable_alloc< 856 __alloc_rebind<_Alloc, _Hash_node<_Value, 857 __hash_cached::value>>>; 858 859 using value_type = typename __hashtable_base::value_type; 860 using size_type = typename __hashtable_base::size_type; 861 862 using __unique_keys = typename _Traits::__unique_keys; 863 using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; 864 using __node_gen_type = _AllocNode<__node_alloc_type>; 865 866 __hashtable& 867 _M_conjure_hashtable() 868 { return *(static_cast<__hashtable*>(this)); } 869 870 template<typename _InputIterator, typename _NodeGetter> 871 void 872 _M_insert_range(_InputIterator __first, _InputIterator __last, 873 const _NodeGetter&, true_type __uks); 874 875 template<typename _InputIterator, typename _NodeGetter> 876 void 877 _M_insert_range(_InputIterator __first, _InputIterator __last, 878 const _NodeGetter&, false_type __uks); 879 880 public: 881 using iterator = _Node_iterator<_Value, __constant_iterators::value, 882 __hash_cached::value>; 883 884 using const_iterator = _Node_const_iterator<_Value, 885 __constant_iterators::value, 886 __hash_cached::value>; 887 888 using __ireturn_type = __conditional_t<__unique_keys::value, 889 std::pair<iterator, bool>, 890 iterator>; 891 892 __ireturn_type 893 insert(const value_type& __v) 894 { 895 __hashtable& __h = _M_conjure_hashtable(); 896 __node_gen_type __node_gen(__h); 897 return __h._M_insert(__v, __node_gen, __unique_keys{}); 898 } 899 900 iterator 901 insert(const_iterator __hint, const value_type& __v) 902 { 903 __hashtable& __h = _M_conjure_hashtable(); 904 __node_gen_type __node_gen(__h); 905 return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); 906 } 907 908 template<typename _KType, typename... _Args> 909 std::pair<iterator, bool> 910 try_emplace(const_iterator, _KType&& __k, _Args&&... __args) 911 { 912 __hashtable& __h = _M_conjure_hashtable(); 913 auto __code = __h._M_hash_code(__k); 914 std::size_t __bkt = __h._M_bucket_index(__code); 915 if (auto __node = __h._M_find_node(__bkt, __k, __code)) 916 return { iterator(__node), false }; 917 918 typename __hashtable::_Scoped_node __node { 919 &__h, 920 std::piecewise_construct, 921 std::forward_as_tuple(std::forward<_KType>(__k)), 922 std::forward_as_tuple(std::forward<_Args>(__args)...) 923 }; 924 auto __it 925 = __h._M_insert_unique_node(__bkt, __code, __node._M_node); 926 __node._M_node = nullptr; 927 return { __it, true }; 928 } 929 930 void 931 insert(initializer_list<value_type> __l) 932 { this->insert(__l.begin(), __l.end()); } 933 934 template<typename _InputIterator> 935 void 936 insert(_InputIterator __first, _InputIterator __last) 937 { 938 __hashtable& __h = _M_conjure_hashtable(); 939 __node_gen_type __node_gen(__h); 940 return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); 941 } 942 }; 943 944 template<typename _Key, typename _Value, typename _Alloc, 945 typename _ExtractKey, typename _Equal, 946 typename _Hash, typename _RangeHash, typename _Unused, 947 typename _RehashPolicy, typename _Traits> 948 template<typename _InputIterator, typename _NodeGetter> 949 void 950 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 951 _Hash, _RangeHash, _Unused, 952 _RehashPolicy, _Traits>:: 953 _M_insert_range(_InputIterator __first, _InputIterator __last, 954 const _NodeGetter& __node_gen, true_type __uks) 955 { 956 __hashtable& __h = _M_conjure_hashtable(); 957 for (; __first != __last; ++__first) 958 __h._M_insert(*__first, __node_gen, __uks); 959 } 960 961 template<typename _Key, typename _Value, typename _Alloc, 962 typename _ExtractKey, typename _Equal, 963 typename _Hash, typename _RangeHash, typename _Unused, 964 typename _RehashPolicy, typename _Traits> 965 template<typename _InputIterator, typename _NodeGetter> 966 void 967 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 968 _Hash, _RangeHash, _Unused, 969 _RehashPolicy, _Traits>:: 970 _M_insert_range(_InputIterator __first, _InputIterator __last, 971 const _NodeGetter& __node_gen, false_type __uks) 972 { 973 using __rehash_type = typename __hashtable::__rehash_type; 974 using __rehash_state = typename __hashtable::__rehash_state; 975 using pair_type = std::pair<bool, std::size_t>; 976 977 size_type __n_elt = __detail::__distance_fw(__first, __last); 978 if (__n_elt == 0) 979 return; 980 981 __hashtable& __h = _M_conjure_hashtable(); 982 __rehash_type& __rehash = __h._M_rehash_policy; 983 const __rehash_state& __saved_state = __rehash._M_state(); 984 pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, 985 __h._M_element_count, 986 __n_elt); 987 988 if (__do_rehash.first) 989 __h._M_rehash(__do_rehash.second, __saved_state); 990 991 for (; __first != __last; ++__first) 992 __h._M_insert(*__first, __node_gen, __uks); 993 } 994 995 /** 996 * Primary class template _Insert. 997 * 998 * Defines @c insert member functions that depend on _Hashtable policies, 999 * via partial specializations. 1000 */ 1001 template<typename _Key, typename _Value, typename _Alloc, 1002 typename _ExtractKey, typename _Equal, 1003 typename _Hash, typename _RangeHash, typename _Unused, 1004 typename _RehashPolicy, typename _Traits, 1005 bool _Constant_iterators = _Traits::__constant_iterators::value> 1006 struct _Insert; 1007 1008 /// Specialization. 1009 template<typename _Key, typename _Value, typename _Alloc, 1010 typename _ExtractKey, typename _Equal, 1011 typename _Hash, typename _RangeHash, typename _Unused, 1012 typename _RehashPolicy, typename _Traits> 1013 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1014 _Hash, _RangeHash, _Unused, 1015 _RehashPolicy, _Traits, true> 1016 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1017 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> 1018 { 1019 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 1020 _Equal, _Hash, _RangeHash, _Unused, 1021 _RehashPolicy, _Traits>; 1022 1023 using value_type = typename __base_type::value_type; 1024 using iterator = typename __base_type::iterator; 1025 using const_iterator = typename __base_type::const_iterator; 1026 using __ireturn_type = typename __base_type::__ireturn_type; 1027 1028 using __unique_keys = typename __base_type::__unique_keys; 1029 using __hashtable = typename __base_type::__hashtable; 1030 using __node_gen_type = typename __base_type::__node_gen_type; 1031 1032 using __base_type::insert; 1033 1034 __ireturn_type 1035 insert(value_type&& __v) 1036 { 1037 __hashtable& __h = this->_M_conjure_hashtable(); 1038 __node_gen_type __node_gen(__h); 1039 return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); 1040 } 1041 1042 iterator 1043 insert(const_iterator __hint, value_type&& __v) 1044 { 1045 __hashtable& __h = this->_M_conjure_hashtable(); 1046 __node_gen_type __node_gen(__h); 1047 return __h._M_insert(__hint, std::move(__v), __node_gen, 1048 __unique_keys{}); 1049 } 1050 }; 1051 1052 /// Specialization. 1053 template<typename _Key, typename _Value, typename _Alloc, 1054 typename _ExtractKey, typename _Equal, 1055 typename _Hash, typename _RangeHash, typename _Unused, 1056 typename _RehashPolicy, typename _Traits> 1057 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1058 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> 1059 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1060 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> 1061 { 1062 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 1063 _Equal, _Hash, _RangeHash, _Unused, 1064 _RehashPolicy, _Traits>; 1065 using value_type = typename __base_type::value_type; 1066 using iterator = typename __base_type::iterator; 1067 using const_iterator = typename __base_type::const_iterator; 1068 1069 using __unique_keys = typename __base_type::__unique_keys; 1070 using __hashtable = typename __base_type::__hashtable; 1071 using __ireturn_type = typename __base_type::__ireturn_type; 1072 1073 using __base_type::insert; 1074 1075 template<typename _Pair> 1076 using __is_cons = std::is_constructible<value_type, _Pair&&>; 1077 1078 template<typename _Pair> 1079 using _IFcons = std::enable_if<__is_cons<_Pair>::value>; 1080 1081 template<typename _Pair> 1082 using _IFconsp = typename _IFcons<_Pair>::type; 1083 1084 template<typename _Pair, typename = _IFconsp<_Pair>> 1085 __ireturn_type 1086 insert(_Pair&& __v) 1087 { 1088 __hashtable& __h = this->_M_conjure_hashtable(); 1089 return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); 1090 } 1091 1092 template<typename _Pair, typename = _IFconsp<_Pair>> 1093 iterator 1094 insert(const_iterator __hint, _Pair&& __v) 1095 { 1096 __hashtable& __h = this->_M_conjure_hashtable(); 1097 return __h._M_emplace(__hint, __unique_keys{}, 1098 std::forward<_Pair>(__v)); 1099 } 1100 }; 1101 1102 template<typename _Policy> 1103 using __has_load_factor = typename _Policy::__has_load_factor; 1104 1105 /** 1106 * Primary class template _Rehash_base. 1107 * 1108 * Give hashtable the max_load_factor functions and reserve iff the 1109 * rehash policy supports it. 1110 */ 1111 template<typename _Key, typename _Value, typename _Alloc, 1112 typename _ExtractKey, typename _Equal, 1113 typename _Hash, typename _RangeHash, typename _Unused, 1114 typename _RehashPolicy, typename _Traits, 1115 typename = 1116 __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> 1117 struct _Rehash_base; 1118 1119 /// Specialization when rehash policy doesn't provide load factor management. 1120 template<typename _Key, typename _Value, typename _Alloc, 1121 typename _ExtractKey, typename _Equal, 1122 typename _Hash, typename _RangeHash, typename _Unused, 1123 typename _RehashPolicy, typename _Traits> 1124 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1125 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, 1126 false_type /* Has load factor */> 1127 { 1128 }; 1129 1130 /// Specialization when rehash policy provide load factor management. 1131 template<typename _Key, typename _Value, typename _Alloc, 1132 typename _ExtractKey, typename _Equal, 1133 typename _Hash, typename _RangeHash, typename _Unused, 1134 typename _RehashPolicy, typename _Traits> 1135 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1136 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, 1137 true_type /* Has load factor */> 1138 { 1139 private: 1140 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, 1141 _Equal, _Hash, _RangeHash, _Unused, 1142 _RehashPolicy, _Traits>; 1143 1144 public: 1145 float 1146 max_load_factor() const noexcept 1147 { 1148 const __hashtable* __this = static_cast<const __hashtable*>(this); 1149 return __this->__rehash_policy().max_load_factor(); 1150 } 1151 1152 void 1153 max_load_factor(float __z) 1154 { 1155 __hashtable* __this = static_cast<__hashtable*>(this); 1156 __this->__rehash_policy(_RehashPolicy(__z)); 1157 } 1158 1159 void 1160 reserve(std::size_t __n) 1161 { 1162 __hashtable* __this = static_cast<__hashtable*>(this); 1163 __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); 1164 } 1165 }; 1166 1167 /** 1168 * Primary class template _Hashtable_ebo_helper. 1169 * 1170 * Helper class using EBO when it is not forbidden (the type is not 1171 * final) and when it is worth it (the type is empty.) 1172 */ 1173 template<int _Nm, typename _Tp, 1174 bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> 1175 struct _Hashtable_ebo_helper; 1176 1177 /// Specialization using EBO. 1178 template<int _Nm, typename _Tp> 1179 struct _Hashtable_ebo_helper<_Nm, _Tp, true> 1180 : private _Tp 1181 { 1182 _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } 1183 1184 template<typename _OtherTp> 1185 _Hashtable_ebo_helper(_OtherTp&& __tp) 1186 : _Tp(std::forward<_OtherTp>(__tp)) 1187 { } 1188 1189 const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } 1190 _Tp& _M_get() { return static_cast<_Tp&>(*this); } 1191 }; 1192 1193 /// Specialization not using EBO. 1194 template<int _Nm, typename _Tp> 1195 struct _Hashtable_ebo_helper<_Nm, _Tp, false> 1196 { 1197 _Hashtable_ebo_helper() = default; 1198 1199 template<typename _OtherTp> 1200 _Hashtable_ebo_helper(_OtherTp&& __tp) 1201 : _M_tp(std::forward<_OtherTp>(__tp)) 1202 { } 1203 1204 const _Tp& _M_cget() const { return _M_tp; } 1205 _Tp& _M_get() { return _M_tp; } 1206 1207 private: 1208 _Tp _M_tp{}; 1209 }; 1210 1211 /** 1212 * Primary class template _Local_iterator_base. 1213 * 1214 * Base class for local iterators, used to iterate within a bucket 1215 * but not between buckets. 1216 */ 1217 template<typename _Key, typename _Value, typename _ExtractKey, 1218 typename _Hash, typename _RangeHash, typename _Unused, 1219 bool __cache_hash_code> 1220 struct _Local_iterator_base; 1221 1222 /** 1223 * Primary class template _Hash_code_base. 1224 * 1225 * Encapsulates two policy issues that aren't quite orthogonal. 1226 * (1) the difference between using a ranged hash function and using 1227 * the combination of a hash function and a range-hashing function. 1228 * In the former case we don't have such things as hash codes, so 1229 * we have a dummy type as placeholder. 1230 * (2) Whether or not we cache hash codes. Caching hash codes is 1231 * meaningless if we have a ranged hash function. 1232 * 1233 * We also put the key extraction objects here, for convenience. 1234 * Each specialization derives from one or more of the template 1235 * parameters to benefit from Ebo. This is important as this type 1236 * is inherited in some cases by the _Local_iterator_base type used 1237 * to implement local_iterator and const_local_iterator. As with 1238 * any iterator type we prefer to make it as small as possible. 1239 */ 1240 template<typename _Key, typename _Value, typename _ExtractKey, 1241 typename _Hash, typename _RangeHash, typename _Unused, 1242 bool __cache_hash_code> 1243 struct _Hash_code_base 1244 : private _Hashtable_ebo_helper<1, _Hash> 1245 { 1246 private: 1247 using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; 1248 1249 // Gives the local iterator implementation access to _M_bucket_index(). 1250 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1251 _Hash, _RangeHash, _Unused, false>; 1252 1253 public: 1254 typedef _Hash hasher; 1255 1256 hasher 1257 hash_function() const 1258 { return _M_hash(); } 1259 1260 protected: 1261 typedef std::size_t __hash_code; 1262 1263 // We need the default constructor for the local iterators and _Hashtable 1264 // default constructor. 1265 _Hash_code_base() = default; 1266 1267 _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } 1268 1269 __hash_code 1270 _M_hash_code(const _Key& __k) const 1271 { 1272 static_assert(__is_invocable<const _Hash&, const _Key&>{}, 1273 "hash function must be invocable with an argument of key type"); 1274 return _M_hash()(__k); 1275 } 1276 1277 template<typename _Kt> 1278 __hash_code 1279 _M_hash_code_tr(const _Kt& __k) const 1280 { 1281 static_assert(__is_invocable<const _Hash&, const _Kt&>{}, 1282 "hash function must be invocable with an argument of key type"); 1283 return _M_hash()(__k); 1284 } 1285 1286 __hash_code 1287 _M_hash_code(const _Hash_node_value<_Value, false>& __n) const 1288 { return _M_hash_code(_ExtractKey{}(__n._M_v())); } 1289 1290 __hash_code 1291 _M_hash_code(const _Hash_node_value<_Value, true>& __n) const 1292 { return __n._M_hash_code; } 1293 1294 std::size_t 1295 _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const 1296 { return _RangeHash{}(__c, __bkt_count); } 1297 1298 std::size_t 1299 _M_bucket_index(const _Hash_node_value<_Value, false>& __n, 1300 std::size_t __bkt_count) const 1301 noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) 1302 && noexcept(declval<const _RangeHash&>()((__hash_code)0, 1303 (std::size_t)0)) ) 1304 { 1305 return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), 1306 __bkt_count); 1307 } 1308 1309 std::size_t 1310 _M_bucket_index(const _Hash_node_value<_Value, true>& __n, 1311 std::size_t __bkt_count) const 1312 noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, 1313 (std::size_t)0)) ) 1314 { return _RangeHash{}(__n._M_hash_code, __bkt_count); } 1315 1316 void 1317 _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const 1318 { } 1319 1320 void 1321 _M_copy_code(_Hash_node_code_cache<false>&, 1322 const _Hash_node_code_cache<false>&) const 1323 { } 1324 1325 void 1326 _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const 1327 { __n._M_hash_code = __c; } 1328 1329 void 1330 _M_copy_code(_Hash_node_code_cache<true>& __to, 1331 const _Hash_node_code_cache<true>& __from) const 1332 { __to._M_hash_code = __from._M_hash_code; } 1333 1334 void 1335 _M_swap(_Hash_code_base& __x) 1336 { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } 1337 1338 const _Hash& 1339 _M_hash() const { return __ebo_hash::_M_cget(); } 1340 }; 1341 1342 /// Partial specialization used when nodes contain a cached hash code. 1343 template<typename _Key, typename _Value, typename _ExtractKey, 1344 typename _Hash, typename _RangeHash, typename _Unused> 1345 struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1346 _Hash, _RangeHash, _Unused, true> 1347 : public _Node_iterator_base<_Value, true> 1348 { 1349 protected: 1350 using __base_node_iter = _Node_iterator_base<_Value, true>; 1351 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1352 _Hash, _RangeHash, _Unused, true>; 1353 1354 _Local_iterator_base() = default; 1355 _Local_iterator_base(const __hash_code_base&, 1356 _Hash_node<_Value, true>* __p, 1357 std::size_t __bkt, std::size_t __bkt_count) 1358 : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) 1359 { } 1360 1361 void 1362 _M_incr() 1363 { 1364 __base_node_iter::_M_incr(); 1365 if (this->_M_cur) 1366 { 1367 std::size_t __bkt 1368 = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); 1369 if (__bkt != _M_bucket) 1370 this->_M_cur = nullptr; 1371 } 1372 } 1373 1374 std::size_t _M_bucket; 1375 std::size_t _M_bucket_count; 1376 1377 public: 1378 std::size_t 1379 _M_get_bucket() const { return _M_bucket; } // for debug mode 1380 }; 1381 1382 // Uninitialized storage for a _Hash_code_base. 1383 // This type is DefaultConstructible and Assignable even if the 1384 // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> 1385 // can be DefaultConstructible and Assignable. 1386 template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> 1387 struct _Hash_code_storage 1388 { 1389 __gnu_cxx::__aligned_buffer<_Tp> _M_storage; 1390 1391 _Tp* 1392 _M_h() { return _M_storage._M_ptr(); } 1393 1394 const _Tp* 1395 _M_h() const { return _M_storage._M_ptr(); } 1396 }; 1397 1398 // Empty partial specialization for empty _Hash_code_base types. 1399 template<typename _Tp> 1400 struct _Hash_code_storage<_Tp, true> 1401 { 1402 static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); 1403 1404 // As _Tp is an empty type there will be no bytes written/read through 1405 // the cast pointer, so no strict-aliasing violation. 1406 _Tp* 1407 _M_h() { return reinterpret_cast<_Tp*>(this); } 1408 1409 const _Tp* 1410 _M_h() const { return reinterpret_cast<const _Tp*>(this); } 1411 }; 1412 1413 template<typename _Key, typename _Value, typename _ExtractKey, 1414 typename _Hash, typename _RangeHash, typename _Unused> 1415 using __hash_code_for_local_iter 1416 = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, 1417 _Hash, _RangeHash, _Unused, false>>; 1418 1419 // Partial specialization used when hash codes are not cached 1420 template<typename _Key, typename _Value, typename _ExtractKey, 1421 typename _Hash, typename _RangeHash, typename _Unused> 1422 struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1423 _Hash, _RangeHash, _Unused, false> 1424 : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, 1425 _Unused> 1426 , _Node_iterator_base<_Value, false> 1427 { 1428 protected: 1429 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1430 _Hash, _RangeHash, _Unused, false>; 1431 using __node_iter_base = _Node_iterator_base<_Value, false>; 1432 1433 _Local_iterator_base() : _M_bucket_count(-1) { } 1434 1435 _Local_iterator_base(const __hash_code_base& __base, 1436 _Hash_node<_Value, false>* __p, 1437 std::size_t __bkt, std::size_t __bkt_count) 1438 : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) 1439 { _M_init(__base); } 1440 1441 ~_Local_iterator_base() 1442 { 1443 if (_M_bucket_count != size_t(-1)) 1444 _M_destroy(); 1445 } 1446 1447 _Local_iterator_base(const _Local_iterator_base& __iter) 1448 : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) 1449 , _M_bucket_count(__iter._M_bucket_count) 1450 { 1451 if (_M_bucket_count != size_t(-1)) 1452 _M_init(*__iter._M_h()); 1453 } 1454 1455 _Local_iterator_base& 1456 operator=(const _Local_iterator_base& __iter) 1457 { 1458 if (_M_bucket_count != -1) 1459 _M_destroy(); 1460 this->_M_cur = __iter._M_cur; 1461 _M_bucket = __iter._M_bucket; 1462 _M_bucket_count = __iter._M_bucket_count; 1463 if (_M_bucket_count != -1) 1464 _M_init(*__iter._M_h()); 1465 return *this; 1466 } 1467 1468 void 1469 _M_incr() 1470 { 1471 __node_iter_base::_M_incr(); 1472 if (this->_M_cur) 1473 { 1474 std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, 1475 _M_bucket_count); 1476 if (__bkt != _M_bucket) 1477 this->_M_cur = nullptr; 1478 } 1479 } 1480 1481 std::size_t _M_bucket; 1482 std::size_t _M_bucket_count; 1483 1484 void 1485 _M_init(const __hash_code_base& __base) 1486 { ::new(this->_M_h()) __hash_code_base(__base); } 1487 1488 void 1489 _M_destroy() { this->_M_h()->~__hash_code_base(); } 1490 1491 public: 1492 std::size_t 1493 _M_get_bucket() const { return _M_bucket; } // for debug mode 1494 }; 1495 1496 /// local iterators 1497 template<typename _Key, typename _Value, typename _ExtractKey, 1498 typename _Hash, typename _RangeHash, typename _Unused, 1499 bool __constant_iterators, bool __cache> 1500 struct _Local_iterator 1501 : public _Local_iterator_base<_Key, _Value, _ExtractKey, 1502 _Hash, _RangeHash, _Unused, __cache> 1503 { 1504 private: 1505 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, 1506 _Hash, _RangeHash, _Unused, __cache>; 1507 using __hash_code_base = typename __base_type::__hash_code_base; 1508 1509 public: 1510 using value_type = _Value; 1511 using pointer = __conditional_t<__constant_iterators, 1512 const value_type*, value_type*>; 1513 using reference = __conditional_t<__constant_iterators, 1514 const value_type&, value_type&>; 1515 using difference_type = ptrdiff_t; 1516 using iterator_category = forward_iterator_tag; 1517 1518 _Local_iterator() = default; 1519 1520 _Local_iterator(const __hash_code_base& __base, 1521 _Hash_node<_Value, __cache>* __n, 1522 std::size_t __bkt, std::size_t __bkt_count) 1523 : __base_type(__base, __n, __bkt, __bkt_count) 1524 { } 1525 1526 reference 1527 operator*() const 1528 { return this->_M_cur->_M_v(); } 1529 1530 pointer 1531 operator->() const 1532 { return this->_M_cur->_M_valptr(); } 1533 1534 _Local_iterator& 1535 operator++() 1536 { 1537 this->_M_incr(); 1538 return *this; 1539 } 1540 1541 _Local_iterator 1542 operator++(int) 1543 { 1544 _Local_iterator __tmp(*this); 1545 this->_M_incr(); 1546 return __tmp; 1547 } 1548 }; 1549 1550 /// local const_iterators 1551 template<typename _Key, typename _Value, typename _ExtractKey, 1552 typename _Hash, typename _RangeHash, typename _Unused, 1553 bool __constant_iterators, bool __cache> 1554 struct _Local_const_iterator 1555 : public _Local_iterator_base<_Key, _Value, _ExtractKey, 1556 _Hash, _RangeHash, _Unused, __cache> 1557 { 1558 private: 1559 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, 1560 _Hash, _RangeHash, _Unused, __cache>; 1561 using __hash_code_base = typename __base_type::__hash_code_base; 1562 1563 public: 1564 typedef _Value value_type; 1565 typedef const value_type* pointer; 1566 typedef const value_type& reference; 1567 typedef std::ptrdiff_t difference_type; 1568 typedef std::forward_iterator_tag iterator_category; 1569 1570 _Local_const_iterator() = default; 1571 1572 _Local_const_iterator(const __hash_code_base& __base, 1573 _Hash_node<_Value, __cache>* __n, 1574 std::size_t __bkt, std::size_t __bkt_count) 1575 : __base_type(__base, __n, __bkt, __bkt_count) 1576 { } 1577 1578 _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, 1579 _Hash, _RangeHash, _Unused, 1580 __constant_iterators, 1581 __cache>& __x) 1582 : __base_type(__x) 1583 { } 1584 1585 reference 1586 operator*() const 1587 { return this->_M_cur->_M_v(); } 1588 1589 pointer 1590 operator->() const 1591 { return this->_M_cur->_M_valptr(); } 1592 1593 _Local_const_iterator& 1594 operator++() 1595 { 1596 this->_M_incr(); 1597 return *this; 1598 } 1599 1600 _Local_const_iterator 1601 operator++(int) 1602 { 1603 _Local_const_iterator __tmp(*this); 1604 this->_M_incr(); 1605 return __tmp; 1606 } 1607 }; 1608 1609 /** 1610 * Primary class template _Hashtable_base. 1611 * 1612 * Helper class adding management of _Equal functor to 1613 * _Hash_code_base type. 1614 * 1615 * Base class templates are: 1616 * - __detail::_Hash_code_base 1617 * - __detail::_Hashtable_ebo_helper 1618 */ 1619 template<typename _Key, typename _Value, typename _ExtractKey, 1620 typename _Equal, typename _Hash, typename _RangeHash, 1621 typename _Unused, typename _Traits> 1622 struct _Hashtable_base 1623 : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, 1624 _Unused, _Traits::__hash_cached::value>, 1625 private _Hashtable_ebo_helper<0, _Equal> 1626 { 1627 public: 1628 typedef _Key key_type; 1629 typedef _Value value_type; 1630 typedef _Equal key_equal; 1631 typedef std::size_t size_type; 1632 typedef std::ptrdiff_t difference_type; 1633 1634 using __traits_type = _Traits; 1635 using __hash_cached = typename __traits_type::__hash_cached; 1636 1637 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1638 _Hash, _RangeHash, _Unused, 1639 __hash_cached::value>; 1640 1641 using __hash_code = typename __hash_code_base::__hash_code; 1642 1643 private: 1644 using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; 1645 1646 static bool 1647 _S_equals(__hash_code, const _Hash_node_code_cache<false>&) 1648 { return true; } 1649 1650 static bool 1651 _S_node_equals(const _Hash_node_code_cache<false>&, 1652 const _Hash_node_code_cache<false>&) 1653 { return true; } 1654 1655 static bool 1656 _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) 1657 { return __c == __n._M_hash_code; } 1658 1659 static bool 1660 _S_node_equals(const _Hash_node_code_cache<true>& __lhn, 1661 const _Hash_node_code_cache<true>& __rhn) 1662 { return __lhn._M_hash_code == __rhn._M_hash_code; } 1663 1664 protected: 1665 _Hashtable_base() = default; 1666 1667 _Hashtable_base(const _Hash& __hash, const _Equal& __eq) 1668 : __hash_code_base(__hash), _EqualEBO(__eq) 1669 { } 1670 1671 bool 1672 _M_key_equals(const _Key& __k, 1673 const _Hash_node_value<_Value, 1674 __hash_cached::value>& __n) const 1675 { 1676 static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, 1677 "key equality predicate must be invocable with two arguments of " 1678 "key type"); 1679 return _M_eq()(__k, _ExtractKey{}(__n._M_v())); 1680 } 1681 1682 template<typename _Kt> 1683 bool 1684 _M_key_equals_tr(const _Kt& __k, 1685 const _Hash_node_value<_Value, 1686 __hash_cached::value>& __n) const 1687 { 1688 static_assert( 1689 __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, 1690 "key equality predicate must be invocable with two arguments of " 1691 "key type"); 1692 return _M_eq()(__k, _ExtractKey{}(__n._M_v())); 1693 } 1694 1695 bool 1696 _M_equals(const _Key& __k, __hash_code __c, 1697 const _Hash_node_value<_Value, __hash_cached::value>& __n) const 1698 { return _S_equals(__c, __n) && _M_key_equals(__k, __n); } 1699 1700 template<typename _Kt> 1701 bool 1702 _M_equals_tr(const _Kt& __k, __hash_code __c, 1703 const _Hash_node_value<_Value, 1704 __hash_cached::value>& __n) const 1705 { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); } 1706 1707 bool 1708 _M_node_equals( 1709 const _Hash_node_value<_Value, __hash_cached::value>& __lhn, 1710 const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const 1711 { 1712 return _S_node_equals(__lhn, __rhn) 1713 && _M_key_equals(_ExtractKey{}(__lhn._M_v()), __rhn); 1714 } 1715 1716 void 1717 _M_swap(_Hashtable_base& __x) 1718 { 1719 __hash_code_base::_M_swap(__x); 1720 std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); 1721 } 1722 1723 const _Equal& 1724 _M_eq() const { return _EqualEBO::_M_cget(); } 1725 }; 1726 1727 /** 1728 * Primary class template _Equality. 1729 * 1730 * This is for implementing equality comparison for unordered 1731 * containers, per N3068, by John Lakos and Pablo Halpern. 1732 * Algorithmically, we follow closely the reference implementations 1733 * therein. 1734 */ 1735 template<typename _Key, typename _Value, typename _Alloc, 1736 typename _ExtractKey, typename _Equal, 1737 typename _Hash, typename _RangeHash, typename _Unused, 1738 typename _RehashPolicy, typename _Traits, 1739 bool _Unique_keys = _Traits::__unique_keys::value> 1740 struct _Equality; 1741 1742 /// unordered_map and unordered_set specializations. 1743 template<typename _Key, typename _Value, typename _Alloc, 1744 typename _ExtractKey, typename _Equal, 1745 typename _Hash, typename _RangeHash, typename _Unused, 1746 typename _RehashPolicy, typename _Traits> 1747 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1748 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> 1749 { 1750 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1751 _Hash, _RangeHash, _Unused, 1752 _RehashPolicy, _Traits>; 1753 1754 bool 1755 _M_equal(const __hashtable&) const; 1756 }; 1757 1758 template<typename _Key, typename _Value, typename _Alloc, 1759 typename _ExtractKey, typename _Equal, 1760 typename _Hash, typename _RangeHash, typename _Unused, 1761 typename _RehashPolicy, typename _Traits> 1762 bool 1763 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1764 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: 1765 _M_equal(const __hashtable& __other) const 1766 { 1767 using __node_type = typename __hashtable::__node_type; 1768 const __hashtable* __this = static_cast<const __hashtable*>(this); 1769 if (__this->size() != __other.size()) 1770 return false; 1771 1772 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) 1773 { 1774 std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); 1775 auto __prev_n = __other._M_buckets[__ybkt]; 1776 if (!__prev_n) 1777 return false; 1778 1779 for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);; 1780 __n = __n->_M_next()) 1781 { 1782 if (__n->_M_v() == *__itx) 1783 break; 1784 1785 if (!__n->_M_nxt 1786 || __other._M_bucket_index(*__n->_M_next()) != __ybkt) 1787 return false; 1788 } 1789 } 1790 1791 return true; 1792 } 1793 1794 /// unordered_multiset and unordered_multimap specializations. 1795 template<typename _Key, typename _Value, typename _Alloc, 1796 typename _ExtractKey, typename _Equal, 1797 typename _Hash, typename _RangeHash, typename _Unused, 1798 typename _RehashPolicy, typename _Traits> 1799 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1800 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> 1801 { 1802 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1803 _Hash, _RangeHash, _Unused, 1804 _RehashPolicy, _Traits>; 1805 1806 bool 1807 _M_equal(const __hashtable&) const; 1808 }; 1809 1810 template<typename _Key, typename _Value, typename _Alloc, 1811 typename _ExtractKey, typename _Equal, 1812 typename _Hash, typename _RangeHash, typename _Unused, 1813 typename _RehashPolicy, typename _Traits> 1814 bool 1815 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1816 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: 1817 _M_equal(const __hashtable& __other) const 1818 { 1819 using __node_type = typename __hashtable::__node_type; 1820 const __hashtable* __this = static_cast<const __hashtable*>(this); 1821 if (__this->size() != __other.size()) 1822 return false; 1823 1824 for (auto __itx = __this->begin(); __itx != __this->end();) 1825 { 1826 std::size_t __x_count = 1; 1827 auto __itx_end = __itx; 1828 for (++__itx_end; __itx_end != __this->end() 1829 && __this->key_eq()(_ExtractKey{}(*__itx), 1830 _ExtractKey{}(*__itx_end)); 1831 ++__itx_end) 1832 ++__x_count; 1833 1834 std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); 1835 auto __y_prev_n = __other._M_buckets[__ybkt]; 1836 if (!__y_prev_n) 1837 return false; 1838 1839 __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt); 1840 for (;;) 1841 { 1842 if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), 1843 _ExtractKey{}(*__itx))) 1844 break; 1845 1846 auto __y_ref_n = __y_n; 1847 for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) 1848 if (!__other._M_node_equals(*__y_ref_n, *__y_n)) 1849 break; 1850 1851 if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) 1852 return false; 1853 } 1854 1855 typename __hashtable::const_iterator __ity(__y_n); 1856 for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end) 1857 if (--__x_count == 0) 1858 break; 1859 1860 if (__x_count != 0) 1861 return false; 1862 1863 if (!std::is_permutation(__itx, __itx_end, __ity)) 1864 return false; 1865 1866 __itx = __itx_end; 1867 } 1868 return true; 1869 } 1870 1871 /** 1872 * This type deals with all allocation and keeps an allocator instance 1873 * through inheritance to benefit from EBO when possible. 1874 */ 1875 template<typename _NodeAlloc> 1876 struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> 1877 { 1878 private: 1879 using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; 1880 1881 template<typename> 1882 struct __get_value_type; 1883 template<typename _Val, bool _Cache_hash_code> 1884 struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>> 1885 { using type = _Val; }; 1886 1887 public: 1888 using __node_type = typename _NodeAlloc::value_type; 1889 using __node_alloc_type = _NodeAlloc; 1890 // Use __gnu_cxx to benefit from _S_always_equal and al. 1891 using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; 1892 1893 using __value_alloc_traits = typename __node_alloc_traits::template 1894 rebind_traits<typename __get_value_type<__node_type>::type>; 1895 1896 using __node_ptr = __node_type*; 1897 using __node_base = _Hash_node_base; 1898 using __node_base_ptr = __node_base*; 1899 using __buckets_alloc_type = 1900 __alloc_rebind<__node_alloc_type, __node_base_ptr>; 1901 using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; 1902 using __buckets_ptr = __node_base_ptr*; 1903 1904 _Hashtable_alloc() = default; 1905 _Hashtable_alloc(const _Hashtable_alloc&) = default; 1906 _Hashtable_alloc(_Hashtable_alloc&&) = default; 1907 1908 template<typename _Alloc> 1909 _Hashtable_alloc(_Alloc&& __a) 1910 : __ebo_node_alloc(std::forward<_Alloc>(__a)) 1911 { } 1912 1913 __node_alloc_type& 1914 _M_node_allocator() 1915 { return __ebo_node_alloc::_M_get(); } 1916 1917 const __node_alloc_type& 1918 _M_node_allocator() const 1919 { return __ebo_node_alloc::_M_cget(); } 1920 1921 // Allocate a node and construct an element within it. 1922 template<typename... _Args> 1923 __node_ptr 1924 _M_allocate_node(_Args&&... __args); 1925 1926 // Destroy the element within a node and deallocate the node. 1927 void 1928 _M_deallocate_node(__node_ptr __n); 1929 1930 // Deallocate a node. 1931 void 1932 _M_deallocate_node_ptr(__node_ptr __n); 1933 1934 // Deallocate the linked list of nodes pointed to by __n. 1935 // The elements within the nodes are destroyed. 1936 void 1937 _M_deallocate_nodes(__node_ptr __n); 1938 1939 __buckets_ptr 1940 _M_allocate_buckets(std::size_t __bkt_count); 1941 1942 void 1943 _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); 1944 }; 1945 1946 // Definitions of class template _Hashtable_alloc's out-of-line member 1947 // functions. 1948 template<typename _NodeAlloc> 1949 template<typename... _Args> 1950 auto 1951 _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) 1952 -> __node_ptr 1953 { 1954 auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); 1955 __node_ptr __n = std::__to_address(__nptr); 1956 __try 1957 { 1958 ::new ((void*)__n) __node_type; 1959 __node_alloc_traits::construct(_M_node_allocator(), 1960 __n->_M_valptr(), 1961 std::forward<_Args>(__args)...); 1962 return __n; 1963 } 1964 __catch(...) 1965 { 1966 __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); 1967 __throw_exception_again; 1968 } 1969 } 1970 1971 template<typename _NodeAlloc> 1972 void 1973 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) 1974 { 1975 __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); 1976 _M_deallocate_node_ptr(__n); 1977 } 1978 1979 template<typename _NodeAlloc> 1980 void 1981 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) 1982 { 1983 typedef typename __node_alloc_traits::pointer _Ptr; 1984 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); 1985 __n->~__node_type(); 1986 __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); 1987 } 1988 1989 template<typename _NodeAlloc> 1990 void 1991 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) 1992 { 1993 while (__n) 1994 { 1995 __node_ptr __tmp = __n; 1996 __n = __n->_M_next(); 1997 _M_deallocate_node(__tmp); 1998 } 1999 } 2000 2001 template<typename _NodeAlloc> 2002 auto 2003 _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) 2004 -> __buckets_ptr 2005 { 2006 __buckets_alloc_type __alloc(_M_node_allocator()); 2007 2008 auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); 2009 __buckets_ptr __p = std::__to_address(__ptr); 2010 __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); 2011 return __p; 2012 } 2013 2014 template<typename _NodeAlloc> 2015 void 2016 _Hashtable_alloc<_NodeAlloc>:: 2017 _M_deallocate_buckets(__buckets_ptr __bkts, 2018 std::size_t __bkt_count) 2019 { 2020 typedef typename __buckets_alloc_traits::pointer _Ptr; 2021 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); 2022 __buckets_alloc_type __alloc(_M_node_allocator()); 2023 __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); 2024 } 2025 2026 ///@} hashtable-detail 2027 } // namespace __detail 2028 /// @endcond 2029 _GLIBCXX_END_NAMESPACE_VERSION 2030 } // namespace std 2031 2032 #endif // _HASHTABLE_POLICY_H 2033