1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2
3 // Copyright (C) 2010-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable_policy.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly.
28 * @headername{unordered_map,unordered_set}
29 */
30
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33
34 #include <tuple> // for std::tuple, std::forward_as_tuple
35 #include <bits/stl_algobase.h> // for std::min, std::is_permutation.
36 #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer
37 #include <ext/alloc_traits.h> // for std::__alloc_rebind
38 #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits
39
_GLIBCXX_VISIBILITY(default)40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 /// @cond undocumented
44
45 template<typename _Key, typename _Value, typename _Alloc,
46 typename _ExtractKey, typename _Equal,
47 typename _Hash, typename _RangeHash, typename _Unused,
48 typename _RehashPolicy, typename _Traits>
49 class _Hashtable;
50
51 namespace __detail
52 {
53 /**
54 * @defgroup hashtable-detail Base and Implementation Classes
55 * @ingroup unordered_associative_containers
56 * @{
57 */
58 template<typename _Key, typename _Value, typename _ExtractKey,
59 typename _Equal, typename _Hash, typename _RangeHash,
60 typename _Unused, typename _Traits>
61 struct _Hashtable_base;
62
63 // Helper function: return distance(first, last) for forward
64 // iterators, or 0/1 for input iterators.
65 template<typename _Iterator>
66 inline typename std::iterator_traits<_Iterator>::difference_type
67 __distance_fw(_Iterator __first, _Iterator __last,
68 std::input_iterator_tag)
69 { return __first != __last ? 1 : 0; }
70
71 template<typename _Iterator>
72 inline typename std::iterator_traits<_Iterator>::difference_type
73 __distance_fw(_Iterator __first, _Iterator __last,
74 std::forward_iterator_tag)
75 { return std::distance(__first, __last); }
76
77 template<typename _Iterator>
78 inline typename std::iterator_traits<_Iterator>::difference_type
79 __distance_fw(_Iterator __first, _Iterator __last)
80 { return __distance_fw(__first, __last,
81 std::__iterator_category(__first)); }
82
83 struct _Identity
84 {
85 template<typename _Tp>
86 _Tp&&
87 operator()(_Tp&& __x) const noexcept
88 { return std::forward<_Tp>(__x); }
89 };
90
91 struct _Select1st
92 {
93 template<typename _Pair>
94 struct __1st_type;
95
96 template<typename _Tp, typename _Up>
97 struct __1st_type<pair<_Tp, _Up>>
98 { using type = _Tp; };
99
100 template<typename _Tp, typename _Up>
101 struct __1st_type<const pair<_Tp, _Up>>
102 { using type = const _Tp; };
103
104 template<typename _Pair>
105 struct __1st_type<_Pair&>
106 { using type = typename __1st_type<_Pair>::type&; };
107
108 template<typename _Tp>
109 typename __1st_type<_Tp>::type&&
110 operator()(_Tp&& __x) const noexcept
111 { return std::forward<_Tp>(__x).first; }
112 };
113
114 template<typename _ExKey>
115 struct _NodeBuilder;
116
117 template<>
118 struct _NodeBuilder<_Select1st>
119 {
120 template<typename _Kt, typename _Arg, typename _NodeGenerator>
121 static auto
122 _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen)
123 -> typename _NodeGenerator::__node_type*
124 {
125 return __node_gen(std::forward<_Kt>(__k),
126 std::forward<_Arg>(__arg).second);
127 }
128 };
129
130 template<>
131 struct _NodeBuilder<_Identity>
132 {
133 template<typename _Kt, typename _Arg, typename _NodeGenerator>
134 static auto
135 _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen)
136 -> typename _NodeGenerator::__node_type*
137 { return __node_gen(std::forward<_Kt>(__k)); }
138 };
139
140 template<typename _NodeAlloc>
141 struct _Hashtable_alloc;
142
143 // Functor recycling a pool of nodes and using allocation once the pool is
144 // empty.
145 template<typename _NodeAlloc>
146 struct _ReuseOrAllocNode
147 {
148 private:
149 using __node_alloc_type = _NodeAlloc;
150 using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
151 using __node_alloc_traits =
152 typename __hashtable_alloc::__node_alloc_traits;
153
154 public:
155 using __node_type = typename __hashtable_alloc::__node_type;
156
157 _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
158 : _M_nodes(__nodes), _M_h(__h) { }
159 _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
160
161 ~_ReuseOrAllocNode()
162 { _M_h._M_deallocate_nodes(_M_nodes); }
163
164 template<typename... _Args>
165 __node_type*
166 operator()(_Args&&... __args) const
167 {
168 if (_M_nodes)
169 {
170 __node_type* __node = _M_nodes;
171 _M_nodes = _M_nodes->_M_next();
172 __node->_M_nxt = nullptr;
173 auto& __a = _M_h._M_node_allocator();
174 __node_alloc_traits::destroy(__a, __node->_M_valptr());
175 __try
176 {
177 __node_alloc_traits::construct(__a, __node->_M_valptr(),
178 std::forward<_Args>(__args)...);
179 }
180 __catch(...)
181 {
182 _M_h._M_deallocate_node_ptr(__node);
183 __throw_exception_again;
184 }
185 return __node;
186 }
187 return _M_h._M_allocate_node(std::forward<_Args>(__args)...);
188 }
189
190 private:
191 mutable __node_type* _M_nodes;
192 __hashtable_alloc& _M_h;
193 };
194
195 // Functor similar to the previous one but without any pool of nodes to
196 // recycle.
197 template<typename _NodeAlloc>
198 struct _AllocNode
199 {
200 private:
201 using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
202
203 public:
204 using __node_type = typename __hashtable_alloc::__node_type;
205
206 _AllocNode(__hashtable_alloc& __h)
207 : _M_h(__h) { }
208
209 template<typename... _Args>
210 __node_type*
211 operator()(_Args&&... __args) const
212 { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); }
213
214 private:
215 __hashtable_alloc& _M_h;
216 };
217
218 // Auxiliary types used for all instantiations of _Hashtable nodes
219 // and iterators.
220
221 /**
222 * struct _Hashtable_traits
223 *
224 * Important traits for hash tables.
225 *
226 * @tparam _Cache_hash_code Boolean value. True if the value of
227 * the hash function is stored along with the value. This is a
228 * time-space tradeoff. Storing it may improve lookup speed by
229 * reducing the number of times we need to call the _Hash or _Equal
230 * functors.
231 *
232 * @tparam _Constant_iterators Boolean value. True if iterator and
233 * const_iterator are both constant iterator types. This is true
234 * for unordered_set and unordered_multiset, false for
235 * unordered_map and unordered_multimap.
236 *
237 * @tparam _Unique_keys Boolean value. True if the return value
238 * of _Hashtable::count(k) is always at most one, false if it may
239 * be an arbitrary number. This is true for unordered_set and
240 * unordered_map, false for unordered_multiset and
241 * unordered_multimap.
242 */
243 template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
244 struct _Hashtable_traits
245 {
246 using __hash_cached = __bool_constant<_Cache_hash_code>;
247 using __constant_iterators = __bool_constant<_Constant_iterators>;
248 using __unique_keys = __bool_constant<_Unique_keys>;
249 };
250
251 /**
252 * struct _Hashtable_hash_traits
253 *
254 * Important traits for hash tables depending on associated hasher.
255 *
256 */
257 template<typename _Hash>
258 struct _Hashtable_hash_traits
259 {
260 static constexpr std::size_t
261 __small_size_threshold() noexcept
262 { return std::__is_fast_hash<_Hash>::value ? 0 : 20; }
263 };
264
265 /**
266 * struct _Hash_node_base
267 *
268 * Nodes, used to wrap elements stored in the hash table. A policy
269 * template parameter of class template _Hashtable controls whether
270 * nodes also store a hash code. In some cases (e.g. strings) this
271 * may be a performance win.
272 */
273 struct _Hash_node_base
274 {
275 _Hash_node_base* _M_nxt;
276
277 _Hash_node_base() noexcept : _M_nxt() { }
278
279 _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
280 };
281
282 /**
283 * struct _Hash_node_value_base
284 *
285 * Node type with the value to store.
286 */
287 template<typename _Value>
288 struct _Hash_node_value_base
289 {
290 typedef _Value value_type;
291
292 __gnu_cxx::__aligned_buffer<_Value> _M_storage;
293
294 [[__gnu__::__always_inline__]]
295 _Value*
296 _M_valptr() noexcept
297 { return _M_storage._M_ptr(); }
298
299 [[__gnu__::__always_inline__]]
300 const _Value*
301 _M_valptr() const noexcept
302 { return _M_storage._M_ptr(); }
303
304 [[__gnu__::__always_inline__]]
305 _Value&
306 _M_v() noexcept
307 { return *_M_valptr(); }
308
309 [[__gnu__::__always_inline__]]
310 const _Value&
311 _M_v() const noexcept
312 { return *_M_valptr(); }
313 };
314
315 /**
316 * Primary template struct _Hash_node_code_cache.
317 */
318 template<bool _Cache_hash_code>
319 struct _Hash_node_code_cache
320 { };
321
322 /**
323 * Specialization for node with cache, struct _Hash_node_code_cache.
324 */
325 template<>
326 struct _Hash_node_code_cache<true>
327 { std::size_t _M_hash_code; };
328
329 template<typename _Value, bool _Cache_hash_code>
330 struct _Hash_node_value
331 : _Hash_node_value_base<_Value>
332 , _Hash_node_code_cache<_Cache_hash_code>
333 { };
334
335 /**
336 * Primary template struct _Hash_node.
337 */
338 template<typename _Value, bool _Cache_hash_code>
339 struct _Hash_node
340 : _Hash_node_base
341 , _Hash_node_value<_Value, _Cache_hash_code>
342 {
343 _Hash_node*
344 _M_next() const noexcept
345 { return static_cast<_Hash_node*>(this->_M_nxt); }
346 };
347
348 /// Base class for node iterators.
349 template<typename _Value, bool _Cache_hash_code>
350 struct _Node_iterator_base
351 {
352 using __node_type = _Hash_node<_Value, _Cache_hash_code>;
353
354 __node_type* _M_cur;
355
356 _Node_iterator_base() : _M_cur(nullptr) { }
357 _Node_iterator_base(__node_type* __p) noexcept
358 : _M_cur(__p) { }
359
360 void
361 _M_incr() noexcept
362 { _M_cur = _M_cur->_M_next(); }
363
364 friend bool
365 operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
366 noexcept
367 { return __x._M_cur == __y._M_cur; }
368
369 #if __cpp_impl_three_way_comparison < 201907L
370 friend bool
371 operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
372 noexcept
373 { return __x._M_cur != __y._M_cur; }
374 #endif
375 };
376
377 /// Node iterators, used to iterate through all the hashtable.
378 template<typename _Value, bool __constant_iterators, bool __cache>
379 struct _Node_iterator
380 : public _Node_iterator_base<_Value, __cache>
381 {
382 private:
383 using __base_type = _Node_iterator_base<_Value, __cache>;
384 using __node_type = typename __base_type::__node_type;
385
386 public:
387 using value_type = _Value;
388 using difference_type = std::ptrdiff_t;
389 using iterator_category = std::forward_iterator_tag;
390
391 using pointer = __conditional_t<__constant_iterators,
392 const value_type*, value_type*>;
393
394 using reference = __conditional_t<__constant_iterators,
395 const value_type&, value_type&>;
396
397 _Node_iterator() = default;
398
399 explicit
400 _Node_iterator(__node_type* __p) noexcept
401 : __base_type(__p) { }
402
403 reference
404 operator*() const noexcept
405 { return this->_M_cur->_M_v(); }
406
407 pointer
408 operator->() const noexcept
409 { return this->_M_cur->_M_valptr(); }
410
411 _Node_iterator&
412 operator++() noexcept
413 {
414 this->_M_incr();
415 return *this;
416 }
417
418 _Node_iterator
419 operator++(int) noexcept
420 {
421 _Node_iterator __tmp(*this);
422 this->_M_incr();
423 return __tmp;
424 }
425 };
426
427 /// Node const_iterators, used to iterate through all the hashtable.
428 template<typename _Value, bool __constant_iterators, bool __cache>
429 struct _Node_const_iterator
430 : public _Node_iterator_base<_Value, __cache>
431 {
432 private:
433 using __base_type = _Node_iterator_base<_Value, __cache>;
434 using __node_type = typename __base_type::__node_type;
435
436 public:
437 typedef _Value value_type;
438 typedef std::ptrdiff_t difference_type;
439 typedef std::forward_iterator_tag iterator_category;
440
441 typedef const value_type* pointer;
442 typedef const value_type& reference;
443
444 _Node_const_iterator() = default;
445
446 explicit
447 _Node_const_iterator(__node_type* __p) noexcept
448 : __base_type(__p) { }
449
450 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
451 __cache>& __x) noexcept
452 : __base_type(__x._M_cur) { }
453
454 reference
455 operator*() const noexcept
456 { return this->_M_cur->_M_v(); }
457
458 pointer
459 operator->() const noexcept
460 { return this->_M_cur->_M_valptr(); }
461
462 _Node_const_iterator&
463 operator++() noexcept
464 {
465 this->_M_incr();
466 return *this;
467 }
468
469 _Node_const_iterator
470 operator++(int) noexcept
471 {
472 _Node_const_iterator __tmp(*this);
473 this->_M_incr();
474 return __tmp;
475 }
476 };
477
478 // Many of class template _Hashtable's template parameters are policy
479 // classes. These are defaults for the policies.
480
481 /// Default range hashing function: use division to fold a large number
482 /// into the range [0, N).
483 struct _Mod_range_hashing
484 {
485 typedef std::size_t first_argument_type;
486 typedef std::size_t second_argument_type;
487 typedef std::size_t result_type;
488
489 result_type
490 operator()(first_argument_type __num,
491 second_argument_type __den) const noexcept
492 { return __num % __den; }
493 };
494
495 /// Default ranged hash function H. In principle it should be a
496 /// function object composed from objects of type H1 and H2 such that
497 /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
498 /// h1 and h2. So instead we'll just use a tag to tell class template
499 /// hashtable to do that composition.
500 struct _Default_ranged_hash { };
501
502 /// Default value for rehash policy. Bucket size is (usually) the
503 /// smallest prime that keeps the load factor small enough.
504 struct _Prime_rehash_policy
505 {
506 using __has_load_factor = true_type;
507
508 _Prime_rehash_policy(float __z = 1.0) noexcept
509 : _M_max_load_factor(__z), _M_next_resize(0) { }
510
511 float
512 max_load_factor() const noexcept
513 { return _M_max_load_factor; }
514
515 // Return a bucket size no smaller than n.
516 std::size_t
517 _M_next_bkt(std::size_t __n) const;
518
519 // Return a bucket count appropriate for n elements
520 std::size_t
521 _M_bkt_for_elements(std::size_t __n) const
522 { return __builtin_ceil(__n / (double)_M_max_load_factor); }
523
524 // __n_bkt is current bucket count, __n_elt is current element count,
525 // and __n_ins is number of elements to be inserted. Do we need to
526 // increase bucket count? If so, return make_pair(true, n), where n
527 // is the new bucket count. If not, return make_pair(false, 0).
528 std::pair<bool, std::size_t>
529 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
530 std::size_t __n_ins) const;
531
532 typedef std::size_t _State;
533
534 _State
535 _M_state() const
536 { return _M_next_resize; }
537
538 void
539 _M_reset() noexcept
540 { _M_next_resize = 0; }
541
542 void
543 _M_reset(_State __state)
544 { _M_next_resize = __state; }
545
546 static const std::size_t _S_growth_factor = 2;
547
548 float _M_max_load_factor;
549 mutable std::size_t _M_next_resize;
550 };
551
552 /// Range hashing function assuming that second arg is a power of 2.
553 struct _Mask_range_hashing
554 {
555 typedef std::size_t first_argument_type;
556 typedef std::size_t second_argument_type;
557 typedef std::size_t result_type;
558
559 result_type
560 operator()(first_argument_type __num,
561 second_argument_type __den) const noexcept
562 { return __num & (__den - 1); }
563 };
564
565 /// Compute closest power of 2 not less than __n
566 inline std::size_t
567 __clp2(std::size_t __n) noexcept
568 {
569 using __gnu_cxx::__int_traits;
570 // Equivalent to return __n ? std::bit_ceil(__n) : 0;
571 if (__n < 2)
572 return __n;
573 const unsigned __lz = sizeof(size_t) > sizeof(long)
574 ? __builtin_clzll(__n - 1ull)
575 : __builtin_clzl(__n - 1ul);
576 // Doing two shifts avoids undefined behaviour when __lz == 0.
577 return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1;
578 }
579
580 /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
581 /// operations.
582 struct _Power2_rehash_policy
583 {
584 using __has_load_factor = true_type;
585
586 _Power2_rehash_policy(float __z = 1.0) noexcept
587 : _M_max_load_factor(__z), _M_next_resize(0) { }
588
589 float
590 max_load_factor() const noexcept
591 { return _M_max_load_factor; }
592
593 // Return a bucket size no smaller than n (as long as n is not above the
594 // highest power of 2).
595 std::size_t
596 _M_next_bkt(std::size_t __n) noexcept
597 {
598 if (__n == 0)
599 // Special case on container 1st initialization with 0 bucket count
600 // hint. We keep _M_next_resize to 0 to make sure that next time we
601 // want to add an element allocation will take place.
602 return 1;
603
604 const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
605 const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
606 std::size_t __res = __clp2(__n);
607
608 if (__res == 0)
609 __res = __max_bkt;
610 else if (__res == 1)
611 // If __res is 1 we force it to 2 to make sure there will be an
612 // allocation so that nothing need to be stored in the initial
613 // single bucket
614 __res = 2;
615
616 if (__res == __max_bkt)
617 // Set next resize to the max value so that we never try to rehash again
618 // as we already reach the biggest possible bucket number.
619 // Note that it might result in max_load_factor not being respected.
620 _M_next_resize = size_t(-1);
621 else
622 _M_next_resize
623 = __builtin_floor(__res * (double)_M_max_load_factor);
624
625 return __res;
626 }
627
628 // Return a bucket count appropriate for n elements
629 std::size_t
630 _M_bkt_for_elements(std::size_t __n) const noexcept
631 { return __builtin_ceil(__n / (double)_M_max_load_factor); }
632
633 // __n_bkt is current bucket count, __n_elt is current element count,
634 // and __n_ins is number of elements to be inserted. Do we need to
635 // increase bucket count? If so, return make_pair(true, n), where n
636 // is the new bucket count. If not, return make_pair(false, 0).
637 std::pair<bool, std::size_t>
638 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
639 std::size_t __n_ins) noexcept
640 {
641 if (__n_elt + __n_ins > _M_next_resize)
642 {
643 // If _M_next_resize is 0 it means that we have nothing allocated so
644 // far and that we start inserting elements. In this case we start
645 // with an initial bucket size of 11.
646 double __min_bkts
647 = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
648 / (double)_M_max_load_factor;
649 if (__min_bkts >= __n_bkt)
650 return { true,
651 _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
652 __n_bkt * _S_growth_factor)) };
653
654 _M_next_resize
655 = __builtin_floor(__n_bkt * (double)_M_max_load_factor);
656 return { false, 0 };
657 }
658 else
659 return { false, 0 };
660 }
661
662 typedef std::size_t _State;
663
664 _State
665 _M_state() const noexcept
666 { return _M_next_resize; }
667
668 void
669 _M_reset() noexcept
670 { _M_next_resize = 0; }
671
672 void
673 _M_reset(_State __state) noexcept
674 { _M_next_resize = __state; }
675
676 static const std::size_t _S_growth_factor = 2;
677
678 float _M_max_load_factor;
679 std::size_t _M_next_resize;
680 };
681
682 // Base classes for std::_Hashtable. We define these base classes
683 // because in some cases we want to do different things depending on
684 // the value of a policy class. In some cases the policy class
685 // affects which member functions and nested typedefs are defined;
686 // we handle that by specializing base class templates. Several of
687 // the base class templates need to access other members of class
688 // template _Hashtable, so we use a variant of the "Curiously
689 // Recurring Template Pattern" (CRTP) technique.
690
691 /**
692 * Primary class template _Map_base.
693 *
694 * If the hashtable has a value type of the form pair<const T1, T2> and
695 * a key extraction policy (_ExtractKey) that returns the first part
696 * of the pair, the hashtable gets a mapped_type typedef. If it
697 * satisfies those criteria and also has unique keys, then it also
698 * gets an operator[].
699 */
700 template<typename _Key, typename _Value, typename _Alloc,
701 typename _ExtractKey, typename _Equal,
702 typename _Hash, typename _RangeHash, typename _Unused,
703 typename _RehashPolicy, typename _Traits,
704 bool _Unique_keys = _Traits::__unique_keys::value>
705 struct _Map_base { };
706
707 /// Partial specialization, __unique_keys set to false, std::pair value type.
708 template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
709 typename _Hash, typename _RangeHash, typename _Unused,
710 typename _RehashPolicy, typename _Traits>
711 struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
712 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
713 {
714 using mapped_type = _Val;
715 };
716
717 /// Partial specialization, __unique_keys set to true.
718 template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
719 typename _Hash, typename _RangeHash, typename _Unused,
720 typename _RehashPolicy, typename _Traits>
721 struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
722 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
723 {
724 private:
725 using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>,
726 _Select1st, _Equal, _Hash,
727 _RangeHash, _Unused,
728 _Traits>;
729
730 using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc,
731 _Select1st, _Equal, _Hash, _RangeHash,
732 _Unused, _RehashPolicy, _Traits>;
733
734 using __hash_code = typename __hashtable_base::__hash_code;
735
736 public:
737 using key_type = typename __hashtable_base::key_type;
738 using mapped_type = _Val;
739
740 mapped_type&
741 operator[](const key_type& __k);
742
743 mapped_type&
744 operator[](key_type&& __k);
745
746 // _GLIBCXX_RESOLVE_LIB_DEFECTS
747 // DR 761. unordered_map needs an at() member function.
748 mapped_type&
749 at(const key_type& __k)
750 {
751 auto __ite = static_cast<__hashtable*>(this)->find(__k);
752 if (!__ite._M_cur)
753 __throw_out_of_range(__N("unordered_map::at"));
754 return __ite->second;
755 }
756
757 const mapped_type&
758 at(const key_type& __k) const
759 {
760 auto __ite = static_cast<const __hashtable*>(this)->find(__k);
761 if (!__ite._M_cur)
762 __throw_out_of_range(__N("unordered_map::at"));
763 return __ite->second;
764 }
765 };
766
767 template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
768 typename _Hash, typename _RangeHash, typename _Unused,
769 typename _RehashPolicy, typename _Traits>
770 auto
771 _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
772 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
773 operator[](const key_type& __k)
774 -> mapped_type&
775 {
776 __hashtable* __h = static_cast<__hashtable*>(this);
777 __hash_code __code = __h->_M_hash_code(__k);
778 std::size_t __bkt = __h->_M_bucket_index(__code);
779 if (auto __node = __h->_M_find_node(__bkt, __k, __code))
780 return __node->_M_v().second;
781
782 typename __hashtable::_Scoped_node __node {
783 __h,
784 std::piecewise_construct,
785 std::tuple<const key_type&>(__k),
786 std::tuple<>()
787 };
788 auto __pos
789 = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
790 __node._M_node = nullptr;
791 return __pos->second;
792 }
793
794 template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
795 typename _Hash, typename _RangeHash, typename _Unused,
796 typename _RehashPolicy, typename _Traits>
797 auto
798 _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
799 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
800 operator[](key_type&& __k)
801 -> mapped_type&
802 {
803 __hashtable* __h = static_cast<__hashtable*>(this);
804 __hash_code __code = __h->_M_hash_code(__k);
805 std::size_t __bkt = __h->_M_bucket_index(__code);
806 if (auto __node = __h->_M_find_node(__bkt, __k, __code))
807 return __node->_M_v().second;
808
809 typename __hashtable::_Scoped_node __node {
810 __h,
811 std::piecewise_construct,
812 std::forward_as_tuple(std::move(__k)),
813 std::tuple<>()
814 };
815 auto __pos
816 = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
817 __node._M_node = nullptr;
818 return __pos->second;
819 }
820
821 // Partial specialization for unordered_map<const T, U>, see PR 104174.
822 template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
823 typename _Hash, typename _RangeHash, typename _Unused,
824 typename _RehashPolicy, typename _Traits, bool __uniq>
825 struct _Map_base<const _Key, pair<const _Key, _Val>,
826 _Alloc, _Select1st, _Equal, _Hash,
827 _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
828 : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash,
829 _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
830 { };
831
832 /**
833 * Primary class template _Insert_base.
834 *
835 * Defines @c insert member functions appropriate to all _Hashtables.
836 */
837 template<typename _Key, typename _Value, typename _Alloc,
838 typename _ExtractKey, typename _Equal,
839 typename _Hash, typename _RangeHash, typename _Unused,
840 typename _RehashPolicy, typename _Traits>
841 struct _Insert_base
842 {
843 protected:
844 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
845 _Equal, _Hash, _RangeHash,
846 _Unused, _Traits>;
847
848 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
849 _Hash, _RangeHash,
850 _Unused, _RehashPolicy, _Traits>;
851
852 using __hash_cached = typename _Traits::__hash_cached;
853 using __constant_iterators = typename _Traits::__constant_iterators;
854
855 using __hashtable_alloc = _Hashtable_alloc<
856 __alloc_rebind<_Alloc, _Hash_node<_Value,
857 __hash_cached::value>>>;
858
859 using value_type = typename __hashtable_base::value_type;
860 using size_type = typename __hashtable_base::size_type;
861
862 using __unique_keys = typename _Traits::__unique_keys;
863 using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type;
864 using __node_gen_type = _AllocNode<__node_alloc_type>;
865
866 __hashtable&
867 _M_conjure_hashtable()
868 { return *(static_cast<__hashtable*>(this)); }
869
870 template<typename _InputIterator, typename _NodeGetter>
871 void
872 _M_insert_range(_InputIterator __first, _InputIterator __last,
873 const _NodeGetter&, true_type __uks);
874
875 template<typename _InputIterator, typename _NodeGetter>
876 void
877 _M_insert_range(_InputIterator __first, _InputIterator __last,
878 const _NodeGetter&, false_type __uks);
879
880 public:
881 using iterator = _Node_iterator<_Value, __constant_iterators::value,
882 __hash_cached::value>;
883
884 using const_iterator = _Node_const_iterator<_Value,
885 __constant_iterators::value,
886 __hash_cached::value>;
887
888 using __ireturn_type = __conditional_t<__unique_keys::value,
889 std::pair<iterator, bool>,
890 iterator>;
891
892 __ireturn_type
893 insert(const value_type& __v)
894 {
895 __hashtable& __h = _M_conjure_hashtable();
896 __node_gen_type __node_gen(__h);
897 return __h._M_insert(__v, __node_gen, __unique_keys{});
898 }
899
900 iterator
901 insert(const_iterator __hint, const value_type& __v)
902 {
903 __hashtable& __h = _M_conjure_hashtable();
904 __node_gen_type __node_gen(__h);
905 return __h._M_insert(__hint, __v, __node_gen, __unique_keys{});
906 }
907
908 template<typename _KType, typename... _Args>
909 std::pair<iterator, bool>
910 try_emplace(const_iterator, _KType&& __k, _Args&&... __args)
911 {
912 __hashtable& __h = _M_conjure_hashtable();
913 auto __code = __h._M_hash_code(__k);
914 std::size_t __bkt = __h._M_bucket_index(__code);
915 if (auto __node = __h._M_find_node(__bkt, __k, __code))
916 return { iterator(__node), false };
917
918 typename __hashtable::_Scoped_node __node {
919 &__h,
920 std::piecewise_construct,
921 std::forward_as_tuple(std::forward<_KType>(__k)),
922 std::forward_as_tuple(std::forward<_Args>(__args)...)
923 };
924 auto __it
925 = __h._M_insert_unique_node(__bkt, __code, __node._M_node);
926 __node._M_node = nullptr;
927 return { __it, true };
928 }
929
930 void
931 insert(initializer_list<value_type> __l)
932 { this->insert(__l.begin(), __l.end()); }
933
934 template<typename _InputIterator>
935 void
936 insert(_InputIterator __first, _InputIterator __last)
937 {
938 __hashtable& __h = _M_conjure_hashtable();
939 __node_gen_type __node_gen(__h);
940 return _M_insert_range(__first, __last, __node_gen, __unique_keys{});
941 }
942 };
943
944 template<typename _Key, typename _Value, typename _Alloc,
945 typename _ExtractKey, typename _Equal,
946 typename _Hash, typename _RangeHash, typename _Unused,
947 typename _RehashPolicy, typename _Traits>
948 template<typename _InputIterator, typename _NodeGetter>
949 void
950 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
951 _Hash, _RangeHash, _Unused,
952 _RehashPolicy, _Traits>::
953 _M_insert_range(_InputIterator __first, _InputIterator __last,
954 const _NodeGetter& __node_gen, true_type __uks)
955 {
956 __hashtable& __h = _M_conjure_hashtable();
957 for (; __first != __last; ++__first)
958 __h._M_insert(*__first, __node_gen, __uks);
959 }
960
961 template<typename _Key, typename _Value, typename _Alloc,
962 typename _ExtractKey, typename _Equal,
963 typename _Hash, typename _RangeHash, typename _Unused,
964 typename _RehashPolicy, typename _Traits>
965 template<typename _InputIterator, typename _NodeGetter>
966 void
967 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
968 _Hash, _RangeHash, _Unused,
969 _RehashPolicy, _Traits>::
970 _M_insert_range(_InputIterator __first, _InputIterator __last,
971 const _NodeGetter& __node_gen, false_type __uks)
972 {
973 using __rehash_type = typename __hashtable::__rehash_type;
974 using __rehash_state = typename __hashtable::__rehash_state;
975 using pair_type = std::pair<bool, std::size_t>;
976
977 size_type __n_elt = __detail::__distance_fw(__first, __last);
978 if (__n_elt == 0)
979 return;
980
981 __hashtable& __h = _M_conjure_hashtable();
982 __rehash_type& __rehash = __h._M_rehash_policy;
983 const __rehash_state& __saved_state = __rehash._M_state();
984 pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
985 __h._M_element_count,
986 __n_elt);
987
988 if (__do_rehash.first)
989 __h._M_rehash(__do_rehash.second, __saved_state);
990
991 for (; __first != __last; ++__first)
992 __h._M_insert(*__first, __node_gen, __uks);
993 }
994
995 /**
996 * Primary class template _Insert.
997 *
998 * Defines @c insert member functions that depend on _Hashtable policies,
999 * via partial specializations.
1000 */
1001 template<typename _Key, typename _Value, typename _Alloc,
1002 typename _ExtractKey, typename _Equal,
1003 typename _Hash, typename _RangeHash, typename _Unused,
1004 typename _RehashPolicy, typename _Traits,
1005 bool _Constant_iterators = _Traits::__constant_iterators::value>
1006 struct _Insert;
1007
1008 /// Specialization.
1009 template<typename _Key, typename _Value, typename _Alloc,
1010 typename _ExtractKey, typename _Equal,
1011 typename _Hash, typename _RangeHash, typename _Unused,
1012 typename _RehashPolicy, typename _Traits>
1013 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1014 _Hash, _RangeHash, _Unused,
1015 _RehashPolicy, _Traits, true>
1016 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1017 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1018 {
1019 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1020 _Equal, _Hash, _RangeHash, _Unused,
1021 _RehashPolicy, _Traits>;
1022
1023 using value_type = typename __base_type::value_type;
1024 using iterator = typename __base_type::iterator;
1025 using const_iterator = typename __base_type::const_iterator;
1026 using __ireturn_type = typename __base_type::__ireturn_type;
1027
1028 using __unique_keys = typename __base_type::__unique_keys;
1029 using __hashtable = typename __base_type::__hashtable;
1030 using __node_gen_type = typename __base_type::__node_gen_type;
1031
1032 using __base_type::insert;
1033
1034 __ireturn_type
1035 insert(value_type&& __v)
1036 {
1037 __hashtable& __h = this->_M_conjure_hashtable();
1038 __node_gen_type __node_gen(__h);
1039 return __h._M_insert(std::move(__v), __node_gen, __unique_keys{});
1040 }
1041
1042 iterator
1043 insert(const_iterator __hint, value_type&& __v)
1044 {
1045 __hashtable& __h = this->_M_conjure_hashtable();
1046 __node_gen_type __node_gen(__h);
1047 return __h._M_insert(__hint, std::move(__v), __node_gen,
1048 __unique_keys{});
1049 }
1050 };
1051
1052 /// Specialization.
1053 template<typename _Key, typename _Value, typename _Alloc,
1054 typename _ExtractKey, typename _Equal,
1055 typename _Hash, typename _RangeHash, typename _Unused,
1056 typename _RehashPolicy, typename _Traits>
1057 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1058 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1059 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1060 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1061 {
1062 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1063 _Equal, _Hash, _RangeHash, _Unused,
1064 _RehashPolicy, _Traits>;
1065 using value_type = typename __base_type::value_type;
1066 using iterator = typename __base_type::iterator;
1067 using const_iterator = typename __base_type::const_iterator;
1068
1069 using __unique_keys = typename __base_type::__unique_keys;
1070 using __hashtable = typename __base_type::__hashtable;
1071 using __ireturn_type = typename __base_type::__ireturn_type;
1072
1073 using __base_type::insert;
1074
1075 template<typename _Pair>
1076 using __is_cons = std::is_constructible<value_type, _Pair&&>;
1077
1078 template<typename _Pair>
1079 using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
1080
1081 template<typename _Pair>
1082 using _IFconsp = typename _IFcons<_Pair>::type;
1083
1084 template<typename _Pair, typename = _IFconsp<_Pair>>
1085 __ireturn_type
1086 insert(_Pair&& __v)
1087 {
1088 __hashtable& __h = this->_M_conjure_hashtable();
1089 return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v));
1090 }
1091
1092 template<typename _Pair, typename = _IFconsp<_Pair>>
1093 iterator
1094 insert(const_iterator __hint, _Pair&& __v)
1095 {
1096 __hashtable& __h = this->_M_conjure_hashtable();
1097 return __h._M_emplace(__hint, __unique_keys{},
1098 std::forward<_Pair>(__v));
1099 }
1100 };
1101
1102 template<typename _Policy>
1103 using __has_load_factor = typename _Policy::__has_load_factor;
1104
1105 /**
1106 * Primary class template _Rehash_base.
1107 *
1108 * Give hashtable the max_load_factor functions and reserve iff the
1109 * rehash policy supports it.
1110 */
1111 template<typename _Key, typename _Value, typename _Alloc,
1112 typename _ExtractKey, typename _Equal,
1113 typename _Hash, typename _RangeHash, typename _Unused,
1114 typename _RehashPolicy, typename _Traits,
1115 typename =
1116 __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
1117 struct _Rehash_base;
1118
1119 /// Specialization when rehash policy doesn't provide load factor management.
1120 template<typename _Key, typename _Value, typename _Alloc,
1121 typename _ExtractKey, typename _Equal,
1122 typename _Hash, typename _RangeHash, typename _Unused,
1123 typename _RehashPolicy, typename _Traits>
1124 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1125 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1126 false_type /* Has load factor */>
1127 {
1128 };
1129
1130 /// Specialization when rehash policy provide load factor management.
1131 template<typename _Key, typename _Value, typename _Alloc,
1132 typename _ExtractKey, typename _Equal,
1133 typename _Hash, typename _RangeHash, typename _Unused,
1134 typename _RehashPolicy, typename _Traits>
1135 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1136 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1137 true_type /* Has load factor */>
1138 {
1139 private:
1140 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1141 _Equal, _Hash, _RangeHash, _Unused,
1142 _RehashPolicy, _Traits>;
1143
1144 public:
1145 float
1146 max_load_factor() const noexcept
1147 {
1148 const __hashtable* __this = static_cast<const __hashtable*>(this);
1149 return __this->__rehash_policy().max_load_factor();
1150 }
1151
1152 void
1153 max_load_factor(float __z)
1154 {
1155 __hashtable* __this = static_cast<__hashtable*>(this);
1156 __this->__rehash_policy(_RehashPolicy(__z));
1157 }
1158
1159 void
1160 reserve(std::size_t __n)
1161 {
1162 __hashtable* __this = static_cast<__hashtable*>(this);
1163 __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
1164 }
1165 };
1166
1167 /**
1168 * Primary class template _Hashtable_ebo_helper.
1169 *
1170 * Helper class using EBO when it is not forbidden (the type is not
1171 * final) and when it is worth it (the type is empty.)
1172 */
1173 template<int _Nm, typename _Tp,
1174 bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1175 struct _Hashtable_ebo_helper;
1176
1177 /// Specialization using EBO.
1178 template<int _Nm, typename _Tp>
1179 struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1180 : private _Tp
1181 {
1182 _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { }
1183
1184 template<typename _OtherTp>
1185 _Hashtable_ebo_helper(_OtherTp&& __tp)
1186 : _Tp(std::forward<_OtherTp>(__tp))
1187 { }
1188
1189 const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
1190 _Tp& _M_get() { return static_cast<_Tp&>(*this); }
1191 };
1192
1193 /// Specialization not using EBO.
1194 template<int _Nm, typename _Tp>
1195 struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1196 {
1197 _Hashtable_ebo_helper() = default;
1198
1199 template<typename _OtherTp>
1200 _Hashtable_ebo_helper(_OtherTp&& __tp)
1201 : _M_tp(std::forward<_OtherTp>(__tp))
1202 { }
1203
1204 const _Tp& _M_cget() const { return _M_tp; }
1205 _Tp& _M_get() { return _M_tp; }
1206
1207 private:
1208 _Tp _M_tp{};
1209 };
1210
1211 /**
1212 * Primary class template _Local_iterator_base.
1213 *
1214 * Base class for local iterators, used to iterate within a bucket
1215 * but not between buckets.
1216 */
1217 template<typename _Key, typename _Value, typename _ExtractKey,
1218 typename _Hash, typename _RangeHash, typename _Unused,
1219 bool __cache_hash_code>
1220 struct _Local_iterator_base;
1221
1222 /**
1223 * Primary class template _Hash_code_base.
1224 *
1225 * Encapsulates two policy issues that aren't quite orthogonal.
1226 * (1) the difference between using a ranged hash function and using
1227 * the combination of a hash function and a range-hashing function.
1228 * In the former case we don't have such things as hash codes, so
1229 * we have a dummy type as placeholder.
1230 * (2) Whether or not we cache hash codes. Caching hash codes is
1231 * meaningless if we have a ranged hash function.
1232 *
1233 * We also put the key extraction objects here, for convenience.
1234 * Each specialization derives from one or more of the template
1235 * parameters to benefit from Ebo. This is important as this type
1236 * is inherited in some cases by the _Local_iterator_base type used
1237 * to implement local_iterator and const_local_iterator. As with
1238 * any iterator type we prefer to make it as small as possible.
1239 */
1240 template<typename _Key, typename _Value, typename _ExtractKey,
1241 typename _Hash, typename _RangeHash, typename _Unused,
1242 bool __cache_hash_code>
1243 struct _Hash_code_base
1244 : private _Hashtable_ebo_helper<1, _Hash>
1245 {
1246 private:
1247 using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1248
1249 // Gives the local iterator implementation access to _M_bucket_index().
1250 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1251 _Hash, _RangeHash, _Unused, false>;
1252
1253 public:
1254 typedef _Hash hasher;
1255
1256 hasher
1257 hash_function() const
1258 { return _M_hash(); }
1259
1260 protected:
1261 typedef std::size_t __hash_code;
1262
1263 // We need the default constructor for the local iterators and _Hashtable
1264 // default constructor.
1265 _Hash_code_base() = default;
1266
1267 _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { }
1268
1269 __hash_code
1270 _M_hash_code(const _Key& __k) const
1271 {
1272 static_assert(__is_invocable<const _Hash&, const _Key&>{},
1273 "hash function must be invocable with an argument of key type");
1274 return _M_hash()(__k);
1275 }
1276
1277 template<typename _Kt>
1278 __hash_code
1279 _M_hash_code_tr(const _Kt& __k) const
1280 {
1281 static_assert(__is_invocable<const _Hash&, const _Kt&>{},
1282 "hash function must be invocable with an argument of key type");
1283 return _M_hash()(__k);
1284 }
1285
1286 __hash_code
1287 _M_hash_code(const _Hash_node_value<_Value, false>& __n) const
1288 { return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1289
1290 __hash_code
1291 _M_hash_code(const _Hash_node_value<_Value, true>& __n) const
1292 { return __n._M_hash_code; }
1293
1294 std::size_t
1295 _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const
1296 { return _RangeHash{}(__c, __bkt_count); }
1297
1298 std::size_t
1299 _M_bucket_index(const _Hash_node_value<_Value, false>& __n,
1300 std::size_t __bkt_count) const
1301 noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>()))
1302 && noexcept(declval<const _RangeHash&>()((__hash_code)0,
1303 (std::size_t)0)) )
1304 {
1305 return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())),
1306 __bkt_count);
1307 }
1308
1309 std::size_t
1310 _M_bucket_index(const _Hash_node_value<_Value, true>& __n,
1311 std::size_t __bkt_count) const
1312 noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0,
1313 (std::size_t)0)) )
1314 { return _RangeHash{}(__n._M_hash_code, __bkt_count); }
1315
1316 void
1317 _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const
1318 { }
1319
1320 void
1321 _M_copy_code(_Hash_node_code_cache<false>&,
1322 const _Hash_node_code_cache<false>&) const
1323 { }
1324
1325 void
1326 _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const
1327 { __n._M_hash_code = __c; }
1328
1329 void
1330 _M_copy_code(_Hash_node_code_cache<true>& __to,
1331 const _Hash_node_code_cache<true>& __from) const
1332 { __to._M_hash_code = __from._M_hash_code; }
1333
1334 void
1335 _M_swap(_Hash_code_base& __x)
1336 { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); }
1337
1338 const _Hash&
1339 _M_hash() const { return __ebo_hash::_M_cget(); }
1340 };
1341
1342 /// Partial specialization used when nodes contain a cached hash code.
1343 template<typename _Key, typename _Value, typename _ExtractKey,
1344 typename _Hash, typename _RangeHash, typename _Unused>
1345 struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1346 _Hash, _RangeHash, _Unused, true>
1347 : public _Node_iterator_base<_Value, true>
1348 {
1349 protected:
1350 using __base_node_iter = _Node_iterator_base<_Value, true>;
1351 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1352 _Hash, _RangeHash, _Unused, true>;
1353
1354 _Local_iterator_base() = default;
1355 _Local_iterator_base(const __hash_code_base&,
1356 _Hash_node<_Value, true>* __p,
1357 std::size_t __bkt, std::size_t __bkt_count)
1358 : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1359 { }
1360
1361 void
1362 _M_incr()
1363 {
1364 __base_node_iter::_M_incr();
1365 if (this->_M_cur)
1366 {
1367 std::size_t __bkt
1368 = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count);
1369 if (__bkt != _M_bucket)
1370 this->_M_cur = nullptr;
1371 }
1372 }
1373
1374 std::size_t _M_bucket;
1375 std::size_t _M_bucket_count;
1376
1377 public:
1378 std::size_t
1379 _M_get_bucket() const { return _M_bucket; } // for debug mode
1380 };
1381
1382 // Uninitialized storage for a _Hash_code_base.
1383 // This type is DefaultConstructible and Assignable even if the
1384 // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1385 // can be DefaultConstructible and Assignable.
1386 template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1387 struct _Hash_code_storage
1388 {
1389 __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1390
1391 _Tp*
1392 _M_h() { return _M_storage._M_ptr(); }
1393
1394 const _Tp*
1395 _M_h() const { return _M_storage._M_ptr(); }
1396 };
1397
1398 // Empty partial specialization for empty _Hash_code_base types.
1399 template<typename _Tp>
1400 struct _Hash_code_storage<_Tp, true>
1401 {
1402 static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1403
1404 // As _Tp is an empty type there will be no bytes written/read through
1405 // the cast pointer, so no strict-aliasing violation.
1406 _Tp*
1407 _M_h() { return reinterpret_cast<_Tp*>(this); }
1408
1409 const _Tp*
1410 _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1411 };
1412
1413 template<typename _Key, typename _Value, typename _ExtractKey,
1414 typename _Hash, typename _RangeHash, typename _Unused>
1415 using __hash_code_for_local_iter
1416 = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1417 _Hash, _RangeHash, _Unused, false>>;
1418
1419 // Partial specialization used when hash codes are not cached
1420 template<typename _Key, typename _Value, typename _ExtractKey,
1421 typename _Hash, typename _RangeHash, typename _Unused>
1422 struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1423 _Hash, _RangeHash, _Unused, false>
1424 : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1425 _Unused>
1426 , _Node_iterator_base<_Value, false>
1427 {
1428 protected:
1429 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1430 _Hash, _RangeHash, _Unused, false>;
1431 using __node_iter_base = _Node_iterator_base<_Value, false>;
1432
1433 _Local_iterator_base() : _M_bucket_count(-1) { }
1434
1435 _Local_iterator_base(const __hash_code_base& __base,
1436 _Hash_node<_Value, false>* __p,
1437 std::size_t __bkt, std::size_t __bkt_count)
1438 : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1439 { _M_init(__base); }
1440
1441 ~_Local_iterator_base()
1442 {
1443 if (_M_bucket_count != size_t(-1))
1444 _M_destroy();
1445 }
1446
1447 _Local_iterator_base(const _Local_iterator_base& __iter)
1448 : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket)
1449 , _M_bucket_count(__iter._M_bucket_count)
1450 {
1451 if (_M_bucket_count != size_t(-1))
1452 _M_init(*__iter._M_h());
1453 }
1454
1455 _Local_iterator_base&
1456 operator=(const _Local_iterator_base& __iter)
1457 {
1458 if (_M_bucket_count != -1)
1459 _M_destroy();
1460 this->_M_cur = __iter._M_cur;
1461 _M_bucket = __iter._M_bucket;
1462 _M_bucket_count = __iter._M_bucket_count;
1463 if (_M_bucket_count != -1)
1464 _M_init(*__iter._M_h());
1465 return *this;
1466 }
1467
1468 void
1469 _M_incr()
1470 {
1471 __node_iter_base::_M_incr();
1472 if (this->_M_cur)
1473 {
1474 std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur,
1475 _M_bucket_count);
1476 if (__bkt != _M_bucket)
1477 this->_M_cur = nullptr;
1478 }
1479 }
1480
1481 std::size_t _M_bucket;
1482 std::size_t _M_bucket_count;
1483
1484 void
1485 _M_init(const __hash_code_base& __base)
1486 { ::new(this->_M_h()) __hash_code_base(__base); }
1487
1488 void
1489 _M_destroy() { this->_M_h()->~__hash_code_base(); }
1490
1491 public:
1492 std::size_t
1493 _M_get_bucket() const { return _M_bucket; } // for debug mode
1494 };
1495
1496 /// local iterators
1497 template<typename _Key, typename _Value, typename _ExtractKey,
1498 typename _Hash, typename _RangeHash, typename _Unused,
1499 bool __constant_iterators, bool __cache>
1500 struct _Local_iterator
1501 : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1502 _Hash, _RangeHash, _Unused, __cache>
1503 {
1504 private:
1505 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1506 _Hash, _RangeHash, _Unused, __cache>;
1507 using __hash_code_base = typename __base_type::__hash_code_base;
1508
1509 public:
1510 using value_type = _Value;
1511 using pointer = __conditional_t<__constant_iterators,
1512 const value_type*, value_type*>;
1513 using reference = __conditional_t<__constant_iterators,
1514 const value_type&, value_type&>;
1515 using difference_type = ptrdiff_t;
1516 using iterator_category = forward_iterator_tag;
1517
1518 _Local_iterator() = default;
1519
1520 _Local_iterator(const __hash_code_base& __base,
1521 _Hash_node<_Value, __cache>* __n,
1522 std::size_t __bkt, std::size_t __bkt_count)
1523 : __base_type(__base, __n, __bkt, __bkt_count)
1524 { }
1525
1526 reference
1527 operator*() const
1528 { return this->_M_cur->_M_v(); }
1529
1530 pointer
1531 operator->() const
1532 { return this->_M_cur->_M_valptr(); }
1533
1534 _Local_iterator&
1535 operator++()
1536 {
1537 this->_M_incr();
1538 return *this;
1539 }
1540
1541 _Local_iterator
1542 operator++(int)
1543 {
1544 _Local_iterator __tmp(*this);
1545 this->_M_incr();
1546 return __tmp;
1547 }
1548 };
1549
1550 /// local const_iterators
1551 template<typename _Key, typename _Value, typename _ExtractKey,
1552 typename _Hash, typename _RangeHash, typename _Unused,
1553 bool __constant_iterators, bool __cache>
1554 struct _Local_const_iterator
1555 : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1556 _Hash, _RangeHash, _Unused, __cache>
1557 {
1558 private:
1559 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1560 _Hash, _RangeHash, _Unused, __cache>;
1561 using __hash_code_base = typename __base_type::__hash_code_base;
1562
1563 public:
1564 typedef _Value value_type;
1565 typedef const value_type* pointer;
1566 typedef const value_type& reference;
1567 typedef std::ptrdiff_t difference_type;
1568 typedef std::forward_iterator_tag iterator_category;
1569
1570 _Local_const_iterator() = default;
1571
1572 _Local_const_iterator(const __hash_code_base& __base,
1573 _Hash_node<_Value, __cache>* __n,
1574 std::size_t __bkt, std::size_t __bkt_count)
1575 : __base_type(__base, __n, __bkt, __bkt_count)
1576 { }
1577
1578 _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1579 _Hash, _RangeHash, _Unused,
1580 __constant_iterators,
1581 __cache>& __x)
1582 : __base_type(__x)
1583 { }
1584
1585 reference
1586 operator*() const
1587 { return this->_M_cur->_M_v(); }
1588
1589 pointer
1590 operator->() const
1591 { return this->_M_cur->_M_valptr(); }
1592
1593 _Local_const_iterator&
1594 operator++()
1595 {
1596 this->_M_incr();
1597 return *this;
1598 }
1599
1600 _Local_const_iterator
1601 operator++(int)
1602 {
1603 _Local_const_iterator __tmp(*this);
1604 this->_M_incr();
1605 return __tmp;
1606 }
1607 };
1608
1609 /**
1610 * Primary class template _Hashtable_base.
1611 *
1612 * Helper class adding management of _Equal functor to
1613 * _Hash_code_base type.
1614 *
1615 * Base class templates are:
1616 * - __detail::_Hash_code_base
1617 * - __detail::_Hashtable_ebo_helper
1618 */
1619 template<typename _Key, typename _Value, typename _ExtractKey,
1620 typename _Equal, typename _Hash, typename _RangeHash,
1621 typename _Unused, typename _Traits>
1622 struct _Hashtable_base
1623 : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1624 _Unused, _Traits::__hash_cached::value>,
1625 private _Hashtable_ebo_helper<0, _Equal>
1626 {
1627 public:
1628 typedef _Key key_type;
1629 typedef _Value value_type;
1630 typedef _Equal key_equal;
1631 typedef std::size_t size_type;
1632 typedef std::ptrdiff_t difference_type;
1633
1634 using __traits_type = _Traits;
1635 using __hash_cached = typename __traits_type::__hash_cached;
1636
1637 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1638 _Hash, _RangeHash, _Unused,
1639 __hash_cached::value>;
1640
1641 using __hash_code = typename __hash_code_base::__hash_code;
1642
1643 private:
1644 using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1645
1646 static bool
1647 _S_equals(__hash_code, const _Hash_node_code_cache<false>&)
1648 { return true; }
1649
1650 static bool
1651 _S_node_equals(const _Hash_node_code_cache<false>&,
1652 const _Hash_node_code_cache<false>&)
1653 { return true; }
1654
1655 static bool
1656 _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n)
1657 { return __c == __n._M_hash_code; }
1658
1659 static bool
1660 _S_node_equals(const _Hash_node_code_cache<true>& __lhn,
1661 const _Hash_node_code_cache<true>& __rhn)
1662 { return __lhn._M_hash_code == __rhn._M_hash_code; }
1663
1664 protected:
1665 _Hashtable_base() = default;
1666
1667 _Hashtable_base(const _Hash& __hash, const _Equal& __eq)
1668 : __hash_code_base(__hash), _EqualEBO(__eq)
1669 { }
1670
1671 bool
1672 _M_key_equals(const _Key& __k,
1673 const _Hash_node_value<_Value,
1674 __hash_cached::value>& __n) const
1675 {
1676 static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1677 "key equality predicate must be invocable with two arguments of "
1678 "key type");
1679 return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1680 }
1681
1682 template<typename _Kt>
1683 bool
1684 _M_key_equals_tr(const _Kt& __k,
1685 const _Hash_node_value<_Value,
1686 __hash_cached::value>& __n) const
1687 {
1688 static_assert(
1689 __is_invocable<const _Equal&, const _Kt&, const _Key&>{},
1690 "key equality predicate must be invocable with two arguments of "
1691 "key type");
1692 return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1693 }
1694
1695 bool
1696 _M_equals(const _Key& __k, __hash_code __c,
1697 const _Hash_node_value<_Value, __hash_cached::value>& __n) const
1698 { return _S_equals(__c, __n) && _M_key_equals(__k, __n); }
1699
1700 template<typename _Kt>
1701 bool
1702 _M_equals_tr(const _Kt& __k, __hash_code __c,
1703 const _Hash_node_value<_Value,
1704 __hash_cached::value>& __n) const
1705 { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); }
1706
1707 bool
1708 _M_node_equals(
1709 const _Hash_node_value<_Value, __hash_cached::value>& __lhn,
1710 const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const
1711 {
1712 return _S_node_equals(__lhn, __rhn)
1713 && _M_key_equals(_ExtractKey{}(__lhn._M_v()), __rhn);
1714 }
1715
1716 void
1717 _M_swap(_Hashtable_base& __x)
1718 {
1719 __hash_code_base::_M_swap(__x);
1720 std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
1721 }
1722
1723 const _Equal&
1724 _M_eq() const { return _EqualEBO::_M_cget(); }
1725 };
1726
1727 /**
1728 * Primary class template _Equality.
1729 *
1730 * This is for implementing equality comparison for unordered
1731 * containers, per N3068, by John Lakos and Pablo Halpern.
1732 * Algorithmically, we follow closely the reference implementations
1733 * therein.
1734 */
1735 template<typename _Key, typename _Value, typename _Alloc,
1736 typename _ExtractKey, typename _Equal,
1737 typename _Hash, typename _RangeHash, typename _Unused,
1738 typename _RehashPolicy, typename _Traits,
1739 bool _Unique_keys = _Traits::__unique_keys::value>
1740 struct _Equality;
1741
1742 /// unordered_map and unordered_set specializations.
1743 template<typename _Key, typename _Value, typename _Alloc,
1744 typename _ExtractKey, typename _Equal,
1745 typename _Hash, typename _RangeHash, typename _Unused,
1746 typename _RehashPolicy, typename _Traits>
1747 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1748 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
1749 {
1750 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1751 _Hash, _RangeHash, _Unused,
1752 _RehashPolicy, _Traits>;
1753
1754 bool
1755 _M_equal(const __hashtable&) const;
1756 };
1757
1758 template<typename _Key, typename _Value, typename _Alloc,
1759 typename _ExtractKey, typename _Equal,
1760 typename _Hash, typename _RangeHash, typename _Unused,
1761 typename _RehashPolicy, typename _Traits>
1762 bool
1763 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1764 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
1765 _M_equal(const __hashtable& __other) const
1766 {
1767 using __node_type = typename __hashtable::__node_type;
1768 const __hashtable* __this = static_cast<const __hashtable*>(this);
1769 if (__this->size() != __other.size())
1770 return false;
1771
1772 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1773 {
1774 std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1775 auto __prev_n = __other._M_buckets[__ybkt];
1776 if (!__prev_n)
1777 return false;
1778
1779 for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
1780 __n = __n->_M_next())
1781 {
1782 if (__n->_M_v() == *__itx)
1783 break;
1784
1785 if (!__n->_M_nxt
1786 || __other._M_bucket_index(*__n->_M_next()) != __ybkt)
1787 return false;
1788 }
1789 }
1790
1791 return true;
1792 }
1793
1794 /// unordered_multiset and unordered_multimap specializations.
1795 template<typename _Key, typename _Value, typename _Alloc,
1796 typename _ExtractKey, typename _Equal,
1797 typename _Hash, typename _RangeHash, typename _Unused,
1798 typename _RehashPolicy, typename _Traits>
1799 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1800 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1801 {
1802 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1803 _Hash, _RangeHash, _Unused,
1804 _RehashPolicy, _Traits>;
1805
1806 bool
1807 _M_equal(const __hashtable&) const;
1808 };
1809
1810 template<typename _Key, typename _Value, typename _Alloc,
1811 typename _ExtractKey, typename _Equal,
1812 typename _Hash, typename _RangeHash, typename _Unused,
1813 typename _RehashPolicy, typename _Traits>
1814 bool
1815 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1816 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>::
1817 _M_equal(const __hashtable& __other) const
1818 {
1819 using __node_type = typename __hashtable::__node_type;
1820 const __hashtable* __this = static_cast<const __hashtable*>(this);
1821 if (__this->size() != __other.size())
1822 return false;
1823
1824 for (auto __itx = __this->begin(); __itx != __this->end();)
1825 {
1826 std::size_t __x_count = 1;
1827 auto __itx_end = __itx;
1828 for (++__itx_end; __itx_end != __this->end()
1829 && __this->key_eq()(_ExtractKey{}(*__itx),
1830 _ExtractKey{}(*__itx_end));
1831 ++__itx_end)
1832 ++__x_count;
1833
1834 std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1835 auto __y_prev_n = __other._M_buckets[__ybkt];
1836 if (!__y_prev_n)
1837 return false;
1838
1839 __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
1840 for (;;)
1841 {
1842 if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()),
1843 _ExtractKey{}(*__itx)))
1844 break;
1845
1846 auto __y_ref_n = __y_n;
1847 for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next())
1848 if (!__other._M_node_equals(*__y_ref_n, *__y_n))
1849 break;
1850
1851 if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt)
1852 return false;
1853 }
1854
1855 typename __hashtable::const_iterator __ity(__y_n);
1856 for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
1857 if (--__x_count == 0)
1858 break;
1859
1860 if (__x_count != 0)
1861 return false;
1862
1863 if (!std::is_permutation(__itx, __itx_end, __ity))
1864 return false;
1865
1866 __itx = __itx_end;
1867 }
1868 return true;
1869 }
1870
1871 /**
1872 * This type deals with all allocation and keeps an allocator instance
1873 * through inheritance to benefit from EBO when possible.
1874 */
1875 template<typename _NodeAlloc>
1876 struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1877 {
1878 private:
1879 using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1880
1881 template<typename>
1882 struct __get_value_type;
1883 template<typename _Val, bool _Cache_hash_code>
1884 struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>>
1885 { using type = _Val; };
1886
1887 public:
1888 using __node_type = typename _NodeAlloc::value_type;
1889 using __node_alloc_type = _NodeAlloc;
1890 // Use __gnu_cxx to benefit from _S_always_equal and al.
1891 using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1892
1893 using __value_alloc_traits = typename __node_alloc_traits::template
1894 rebind_traits<typename __get_value_type<__node_type>::type>;
1895
1896 using __node_ptr = __node_type*;
1897 using __node_base = _Hash_node_base;
1898 using __node_base_ptr = __node_base*;
1899 using __buckets_alloc_type =
1900 __alloc_rebind<__node_alloc_type, __node_base_ptr>;
1901 using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>;
1902 using __buckets_ptr = __node_base_ptr*;
1903
1904 _Hashtable_alloc() = default;
1905 _Hashtable_alloc(const _Hashtable_alloc&) = default;
1906 _Hashtable_alloc(_Hashtable_alloc&&) = default;
1907
1908 template<typename _Alloc>
1909 _Hashtable_alloc(_Alloc&& __a)
1910 : __ebo_node_alloc(std::forward<_Alloc>(__a))
1911 { }
1912
1913 __node_alloc_type&
1914 _M_node_allocator()
1915 { return __ebo_node_alloc::_M_get(); }
1916
1917 const __node_alloc_type&
1918 _M_node_allocator() const
1919 { return __ebo_node_alloc::_M_cget(); }
1920
1921 // Allocate a node and construct an element within it.
1922 template<typename... _Args>
1923 __node_ptr
1924 _M_allocate_node(_Args&&... __args);
1925
1926 // Destroy the element within a node and deallocate the node.
1927 void
1928 _M_deallocate_node(__node_ptr __n);
1929
1930 // Deallocate a node.
1931 void
1932 _M_deallocate_node_ptr(__node_ptr __n);
1933
1934 // Deallocate the linked list of nodes pointed to by __n.
1935 // The elements within the nodes are destroyed.
1936 void
1937 _M_deallocate_nodes(__node_ptr __n);
1938
1939 __buckets_ptr
1940 _M_allocate_buckets(std::size_t __bkt_count);
1941
1942 void
1943 _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count);
1944 };
1945
1946 // Definitions of class template _Hashtable_alloc's out-of-line member
1947 // functions.
1948 template<typename _NodeAlloc>
1949 template<typename... _Args>
1950 auto
1951 _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1952 -> __node_ptr
1953 {
1954 auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1955 __node_ptr __n = std::__to_address(__nptr);
1956 __try
1957 {
1958 ::new ((void*)__n) __node_type;
1959 __node_alloc_traits::construct(_M_node_allocator(),
1960 __n->_M_valptr(),
1961 std::forward<_Args>(__args)...);
1962 return __n;
1963 }
1964 __catch(...)
1965 {
1966 __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1967 __throw_exception_again;
1968 }
1969 }
1970
1971 template<typename _NodeAlloc>
1972 void
1973 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n)
1974 {
1975 __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
1976 _M_deallocate_node_ptr(__n);
1977 }
1978
1979 template<typename _NodeAlloc>
1980 void
1981 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n)
1982 {
1983 typedef typename __node_alloc_traits::pointer _Ptr;
1984 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1985 __n->~__node_type();
1986 __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1987 }
1988
1989 template<typename _NodeAlloc>
1990 void
1991 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n)
1992 {
1993 while (__n)
1994 {
1995 __node_ptr __tmp = __n;
1996 __n = __n->_M_next();
1997 _M_deallocate_node(__tmp);
1998 }
1999 }
2000
2001 template<typename _NodeAlloc>
2002 auto
2003 _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
2004 -> __buckets_ptr
2005 {
2006 __buckets_alloc_type __alloc(_M_node_allocator());
2007
2008 auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count);
2009 __buckets_ptr __p = std::__to_address(__ptr);
2010 __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr));
2011 return __p;
2012 }
2013
2014 template<typename _NodeAlloc>
2015 void
2016 _Hashtable_alloc<_NodeAlloc>::
2017 _M_deallocate_buckets(__buckets_ptr __bkts,
2018 std::size_t __bkt_count)
2019 {
2020 typedef typename __buckets_alloc_traits::pointer _Ptr;
2021 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2022 __buckets_alloc_type __alloc(_M_node_allocator());
2023 __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
2024 }
2025
2026 ///@} hashtable-detail
2027 } // namespace __detail
2028 /// @endcond
2029 _GLIBCXX_END_NAMESPACE_VERSION
2030 } // namespace std
2031
2032 #endif // _HASHTABLE_POLICY_H
2033