xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/doc/xml/manual/allocator.xml (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1<section xmlns="http://docbook.org/ns/docbook" version="5.0"
2	 xml:id="std.util.memory.allocator" xreflabel="Allocator">
3<?dbhtml filename="allocator.html"?>
4
5<info><title>Allocators</title>
6  <keywordset>
7    <keyword>ISO C++</keyword>
8    <keyword>allocator</keyword>
9  </keywordset>
10</info>
11
12
13
14<para>
15 Memory management for Standard Library entities is encapsulated in a
16 class template called <classname>allocator</classname>. The
17 <classname>allocator</classname> abstraction is used throughout the
18 library in <classname>string</classname>, container classes,
19 algorithms, and parts of iostreams. This class, and base classes of
20 it, are the superset of available free store (<quote>heap</quote>)
21 management classes.
22</para>
23
24<section xml:id="allocator.req"><info><title>Requirements</title></info>
25
26
27  <para>
28    The C++ standard only gives a few directives in this area:
29  </para>
30   <itemizedlist>
31     <listitem>
32      <para>
33       When you add elements to a container, and the container must
34       allocate more memory to hold them, the container makes the
35       request via its <type>Allocator</type> template
36       parameter, which is usually aliased to
37       <type>allocator_type</type>.  This includes adding chars
38       to the string class, which acts as a regular STL container in
39       this respect.
40      </para>
41     </listitem>
42     <listitem>
43       <para>
44       The default <type>Allocator</type> argument of every
45       container-of-T is <classname>allocator&lt;T&gt;</classname>.
46       </para>
47     </listitem>
48     <listitem>
49       <para>
50       The interface of the <classname>allocator&lt;T&gt;</classname> class is
51	 extremely simple.  It has about 20 public declarations (nested
52	 typedefs, member functions, etc), but the two which concern us most
53	 are:
54       </para>
55       <programlisting>
56	 T*    allocate   (size_type n, const void* hint = 0);
57	 void  deallocate (T* p, size_type n);
58       </programlisting>
59
60       <para>
61	 The <varname>n</varname> arguments in both those
62	 functions is a <emphasis>count</emphasis> of the number of
63	 <type>T</type>'s to allocate space for, <emphasis>not their
64	 total size</emphasis>.
65	 (This is a simplification; the real signatures use nested typedefs.)
66       </para>
67     </listitem>
68     <listitem>
69       <para>
70	 The storage is obtained by calling <function>::operator
71	 new</function>, but it is unspecified when or how
72	 often this function is called.  The use of the
73	 <varname>hint</varname> is unspecified, but intended as an
74	 aid to locality if an implementation so
75	 desires. <constant>[20.4.1.1]/6</constant>
76       </para>
77      </listitem>
78   </itemizedlist>
79
80   <para>
81     Complete details can be found in the C++ standard, look in
82     <constant>[20.4 Memory]</constant>.
83   </para>
84
85</section>
86
87<section xml:id="allocator.design_issues"><info><title>Design Issues</title></info>
88
89
90  <para>
91    The easiest way of fulfilling the requirements is to call
92    <function>operator new</function> each time a container needs
93    memory, and to call <function>operator delete</function> each time
94    the container releases memory. This method may be <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2001-05/msg00105.html">slower</link>
95    than caching the allocations and re-using previously-allocated
96    memory, but has the advantage of working correctly across a wide
97    variety of hardware and operating systems, including large
98    clusters. The <classname>__gnu_cxx::new_allocator</classname>
99    implements the simple operator new and operator delete semantics,
100    while <classname>__gnu_cxx::malloc_allocator</classname>
101    implements much the same thing, only with the C language functions
102    <function>std::malloc</function> and <function>std::free</function>.
103  </para>
104
105  <para>
106    Another approach is to use intelligence within the allocator
107    class to cache allocations. This extra machinery can take a variety
108    of forms: a bitmap index, an index into an exponentially increasing
109    power-of-two-sized buckets, or simpler fixed-size pooling cache.
110    The cache is shared among all the containers in the program: when
111    your program's <classname>std::vector&lt;int&gt;</classname> gets
112  cut in half and frees a bunch of its storage, that memory can be
113  reused by the private
114  <classname>std::list&lt;WonkyWidget&gt;</classname> brought in from
115  a KDE library that you linked against.  And operators
116  <function>new</function> and <function>delete</function> are not
117  always called to pass the memory on, either, which is a speed
118  bonus. Examples of allocators that use these techniques are
119  <classname>__gnu_cxx::bitmap_allocator</classname>,
120  <classname>__gnu_cxx::pool_allocator</classname>, and
121  <classname>__gnu_cxx::__mt_alloc</classname>.
122  </para>
123
124  <para>
125    Depending on the implementation techniques used, the underlying
126    operating system, and compilation environment, scaling caching
127    allocators can be tricky. In particular, order-of-destruction and
128    order-of-creation for memory pools may be difficult to pin down
129    with certainty, which may create problems when used with plugins
130    or loading and unloading shared objects in memory. As such, using
131    caching allocators on systems that do not support
132    <function>abi::__cxa_atexit</function> is not recommended.
133  </para>
134
135</section>
136
137<section xml:id="allocator.impl"><info><title>Implementation</title></info>
138
139
140  <section xml:id="allocator.interface"><info><title>Interface Design</title></info>
141
142   <para>
143     The only allocator interface that
144     is supported is the standard C++ interface. As such, all STL
145     containers have been adjusted, and all external allocators have
146     been modified to support this change.
147   </para>
148
149   <para>
150     The class <classname>allocator</classname> just has typedef,
151   constructor, and rebind members. It inherits from one of the
152   high-speed extension allocators, covered below. Thus, all
153   allocation and deallocation depends on the base class.
154   </para>
155
156   <para>
157     The choice of base class that <classname>allocator</classname>
158     is derived from is fixed at the time when GCC is built,
159     and the different choices are not ABI compatible.
160</para>
161
162  </section>
163
164  <section xml:id="allocator.default"><info><title>Selecting Default Allocation Policy</title></info>
165
166   <para>
167     It's difficult to pick an allocation strategy that will provide
168   maximum utility, without excessively penalizing some behavior. In
169   fact, it's difficult just deciding which typical actions to measure
170   for speed.
171   </para>
172
173   <para>
174     Three synthetic benchmarks have been created that provide data
175     that is used to compare different C++ allocators. These tests are:
176   </para>
177
178   <orderedlist>
179     <listitem>
180       <para>
181       Insertion.
182       </para>
183       <para>
184       Over multiple iterations, various STL container
185     objects have elements inserted to some maximum amount. A variety
186     of allocators are tested.
187     Test source for <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/sequence.cc?view=markup">sequence</link>
188     and <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/associative.cc?view=markup">associative</link>
189     containers.
190       </para>
191
192     </listitem>
193
194     <listitem>
195       <para>
196       Insertion and erasure in a multi-threaded environment.
197       </para>
198       <para>
199       This test shows the ability of the allocator to reclaim memory
200     on a per-thread basis, as well as measuring thread contention
201     for memory resources.
202     Test source
203    <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert_erase/associative.cc?view=markup">here</link>.
204       </para>
205     </listitem>
206
207     <listitem>
208       <para>
209	 A threaded producer/consumer model.
210       </para>
211       <para>
212       Test source for
213     <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/sequence.cc?view=markup">sequence</link>
214     and
215     <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/associative.cc?view=markup">associative</link>
216     containers.
217     </para>
218     </listitem>
219   </orderedlist>
220
221   <para>
222     Since GCC 12 the default choice for
223     <classname>allocator</classname> is
224     <classname>std::__new_allocator</classname>.
225     Before GCC 12 it was the <classname>__gnu_cxx::new_allocator</classname>
226     extension (which has identical behaviour).
227   </para>
228
229  </section>
230
231  <section xml:id="allocator.caching"><info><title>Disabling Memory Caching</title></info>
232
233    <para>
234      In use, <classname>allocator</classname> may allocate and
235      deallocate using implementation-specific strategies and
236      heuristics. Because of this, a given call to an allocator object's
237      <function>allocate</function> member function may not actually
238      call the global <code>operator new</code> and a given call to
239      to the <function>deallocate</function> member function may not
240      call <code>operator delete</code>.
241    </para>
242
243   <para>
244     This can be confusing.
245   </para>
246
247   <para>
248     In particular, this can make debugging memory errors more
249     difficult, especially when using third-party tools like valgrind or
250     debug versions of <function>new</function>.
251   </para>
252
253   <para>
254     There are various ways to solve this problem. One would be to use
255     a custom allocator that just called operators
256     <function>new</function> and <function>delete</function>
257     directly, for every allocation. (See the default allocator,
258     <filename>include/ext/new_allocator.h</filename>, for instance.)
259     However, that option may involve changing source code to use
260     a non-default allocator. Another option is to force the
261     default allocator to remove caching and pools, and to directly
262     allocate with every call of <function>allocate</function> and
263     directly deallocate with every call of
264     <function>deallocate</function>, regardless of efficiency. As it
265     turns out, this last option is also available.
266   </para>
267
268
269   <para>
270     To globally disable memory caching within the library for some of
271     the optional non-default allocators, merely set
272     <constant>GLIBCXX_FORCE_NEW</constant> (with any value) in the
273     system's environment before running the program. If your program
274     crashes with <constant>GLIBCXX_FORCE_NEW</constant> in the
275     environment, it likely means that you linked against objects
276     built against the older library (objects which might still using the
277     cached allocations...).
278  </para>
279
280  </section>
281
282</section>
283
284<section xml:id="allocator.using"><info><title>Using a Specific Allocator</title></info>
285
286
287   <para>
288     You can specify different memory management schemes on a
289     per-container basis, by overriding the default
290     <type>Allocator</type> template parameter.  For example, an easy
291      (but non-portable) method of specifying that only <function>malloc</function> or <function>free</function>
292      should be used instead of the default node allocator is:
293   </para>
294   <programlisting>
295    std::list &lt;int, __gnu_cxx::malloc_allocator&lt;int&gt; &gt;  malloc_list;</programlisting>
296    <para>
297      Likewise, a debugging form of whichever allocator is currently in use:
298    </para>
299      <programlisting>
300    std::deque &lt;int, __gnu_cxx::debug_allocator&lt;std::allocator&lt;int&gt; &gt; &gt;  debug_deque;
301      </programlisting>
302</section>
303
304<section xml:id="allocator.custom"><info><title>Custom Allocators</title></info>
305
306
307  <para>
308    Writing a portable C++ allocator would dictate that the interface
309    would look much like the one specified for
310    <classname>allocator</classname>. Additional member functions, but
311    not subtractions, would be permissible.
312  </para>
313
314   <para>
315     Probably the best place to start would be to copy one of the
316   extension allocators: say a simple one like
317   <classname>new_allocator</classname>.
318   </para>
319
320   <para>
321     Since C++11 the minimal interface require for an allocator is
322     much smaller, as <classname>std::allocator_traits</classname>
323     can provide default for much of the interface.
324   </para>
325
326
327</section>
328
329<section xml:id="allocator.ext"><info><title>Extension Allocators</title></info>
330
331
332  <para>
333    Several other allocators are provided as part of this
334    implementation.  The location of the extension allocators and their
335    names have changed, but in all cases, functionality is
336    equivalent. Starting with gcc-3.4, all extension allocators are
337    standard style. Before this point, SGI style was the norm. Because of
338    this, the number of template arguments also changed.
339    <xref linkend="table.extension_allocators"/> tracks the changes.
340  </para>
341
342  <para>
343    More details on each of these extension allocators follows.
344  </para>
345   <orderedlist>
346     <listitem>
347       <para>
348       <classname>new_allocator</classname>
349       </para>
350       <para>
351	 Simply wraps <function>::operator new</function>
352	 and <function>::operator delete</function>.
353       </para>
354     </listitem>
355     <listitem>
356       <para>
357       <classname>malloc_allocator</classname>
358       </para>
359       <para>
360	 Simply wraps <function>malloc</function> and
361	 <function>free</function>. There is also a hook for an
362	 out-of-memory handler (for
363	 <function>new</function>/<function>delete</function> this is
364	 taken care of elsewhere).
365       </para>
366     </listitem>
367     <listitem>
368       <para>
369       <classname>debug_allocator</classname>
370       </para>
371       <para>
372	 A wrapper around an arbitrary allocator <classname>A</classname>.
373	 It passes on slightly increased size requests to <classname>A</classname>,
374	 and uses the extra memory to store size information.
375	 When a pointer is passed
376	 to <function>deallocate()</function>, the stored size is
377	 checked, and <function>assert()</function> is used to
378	 guarantee they match.
379       </para>
380     </listitem>
381      <listitem>
382	<para>
383	<classname>throw_allocator</classname>
384	</para>
385	<para>
386	  Includes memory tracking and marking abilities as well as hooks for
387	  throwing exceptions at configurable intervals (including random,
388	  all, none).
389	</para>
390      </listitem>
391     <listitem>
392       <para>
393       <classname>__pool_alloc</classname>
394       </para>
395       <para>
396	 A high-performance, single pool allocator.  The reusable
397	 memory is shared among identical instantiations of this type.
398	 It calls through <function>::operator new</function> to
399	 obtain new memory when its lists run out.  If a client
400	 container requests a block larger than a certain threshold
401	 size, then the pool is bypassed, and the allocate/deallocate
402	 request is passed to <function>::operator new</function>
403	 directly.
404       </para>
405
406       <para>
407	 For thread-enabled configurations, the pool is locked with a
408	 single big lock. In some situations, this implementation detail
409	 may result in severe performance degradation.
410       </para>
411
412       <para>
413	 (Note that the GCC thread abstraction layer allows us to provide
414	 safe zero-overhead stubs for the threading routines, if threads
415	 were disabled at configuration time.)
416       </para>
417     </listitem>
418
419     <listitem>
420       <para>
421       <classname>__mt_alloc</classname>
422       </para>
423       <para>
424	 A high-performance fixed-size allocator with
425	 exponentially-increasing allocations. It has its own
426	 <link linkend="manual.ext.allocator.mt">chapter</link>
427         in the documentation.
428       </para>
429     </listitem>
430
431     <listitem>
432       <para>
433       <classname>bitmap_allocator</classname>
434       </para>
435       <para>
436	 A high-performance allocator that uses a bit-map to keep track
437	 of the used and unused memory locations. It has its own
438	 <link linkend="manual.ext.allocator.bitmap">chapter</link>
439         in the documentation.
440       </para>
441     </listitem>
442   </orderedlist>
443</section>
444
445
446<bibliography xml:id="allocator.biblio"><info><title>Bibliography</title></info>
447
448
449  <biblioentry>
450    <citetitle>
451    ISO/IEC 14882:1998 Programming languages - C++
452    </citetitle>
453    <abbrev>
454      isoc++_1998
455    </abbrev>
456    <pagenums>20.4 Memory</pagenums>
457  </biblioentry>
458
459  <biblioentry>
460    <title>
461      <link xmlns:xlink="http://www.w3.org/1999/xlink"
462	    xlink:href="https://web.archive.org/web/20190622154249/http://www.drdobbs.com/the-standard-librarian-what-are-allocato/184403759">
463      The Standard Librarian: What Are Allocators Good For?
464      </link>
465    </title>
466
467    <author><personname><firstname>Matt</firstname><surname>Austern</surname></personname></author>
468    <publisher>
469      <publishername>
470	C/C++ Users Journal
471      </publishername>
472    </publisher>
473    <pubdate>2000-12</pubdate>
474  </biblioentry>
475
476  <biblioentry>
477      <title>
478	<link xmlns:xlink="http://www.w3.org/1999/xlink"
479	      xlink:href="http://hoard.org">
480      The Hoard Memory Allocator
481	</link>
482      </title>
483
484    <author><personname><firstname>Emery</firstname><surname>Berger</surname></personname></author>
485  </biblioentry>
486
487  <biblioentry>
488      <title>
489	<link xmlns:xlink="http://www.w3.org/1999/xlink"
490	      xlink:href="https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf">
491      Reconsidering Custom Memory Allocation
492	</link>
493      </title>
494
495    <author><personname><firstname>Emery</firstname><surname>Berger</surname></personname></author>
496    <author><personname><firstname>Ben</firstname><surname>Zorn</surname></personname></author>
497    <author><personname><firstname>Kathryn</firstname><surname>McKinley</surname></personname></author>
498    <copyright>
499      <year>2002</year>
500      <holder>OOPSLA</holder>
501    </copyright>
502  </biblioentry>
503
504
505  <biblioentry>
506      <title>
507	<link xmlns:xlink="http://www.w3.org/1999/xlink"
508	      xlink:href="http://www.angelikalanger.com/Articles/C++Report/Allocators/Allocators.html">
509      Allocator Types
510	</link>
511      </title>
512
513
514    <author><personname><firstname>Klaus</firstname><surname>Kreft</surname></personname></author>
515    <author><personname><firstname>Angelika</firstname><surname>Langer</surname></personname></author>
516    <publisher>
517      <publishername>
518	C/C++ Users Journal
519      </publishername>
520    </publisher>
521  </biblioentry>
522
523  <biblioentry>
524    <citetitle>The C++ Programming Language</citetitle>
525    <author><personname><firstname>Bjarne</firstname><surname>Stroustrup</surname></personname></author>
526    <copyright>
527      <year>2000</year>
528      <holder/>
529    </copyright>
530    <pagenums>19.4 Allocators</pagenums>
531    <publisher>
532      <publishername>
533	Addison Wesley
534      </publishername>
535    </publisher>
536  </biblioentry>
537
538  <biblioentry>
539    <citetitle>Yalloc: A Recycling C++ Allocator</citetitle>
540    <author><personname><firstname>Felix</firstname><surname>Yen</surname></personname></author>
541  </biblioentry>
542</bibliography>
543
544</section>
545