xref: /netbsd-src/external/gpl3/gcc/dist/libsanitizer/sanitizer_common/sanitizer_addrhashmap.h (revision ff6d591ca308ed13e9c5ae142cf113a246c2cdc6)
1 //===-- sanitizer_addrhashmap.h ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Concurrent uptr->T hashmap.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef SANITIZER_ADDRHASHMAP_H
14 #define SANITIZER_ADDRHASHMAP_H
15 
16 #include "sanitizer_common.h"
17 #include "sanitizer_mutex.h"
18 #include "sanitizer_atomic.h"
19 #include "sanitizer_allocator_internal.h"
20 
21 namespace __sanitizer {
22 
23 // Concurrent uptr->T hashmap.
24 // T must be a POD type, kSize is preferably a prime but can be any number.
25 // Usage example:
26 //
27 // typedef AddrHashMap<uptr, 11> Map;
28 // Map m;
29 // {
30 //   Map::Handle h(&m, addr);
31 //   use h.operator->() to access the data
32 //   if h.created() then the element was just created, and the current thread
33 //     has exclusive access to it
34 //   otherwise the current thread has only read access to the data
35 // }
36 // {
37 //   Map::Handle h(&m, addr, true);
38 //   this will remove the data from the map in Handle dtor
39 //   the current thread has exclusive access to the data
40 //   if !h.exists() then the element never existed
41 // }
42 // {
43 //   Map::Handle h(&m, addr, false, true);
44 //   this will create a new element or return a handle to an existing element
45 //   if !h.created() this thread does *not* have exclusive access to the data
46 // }
47 template<typename T, uptr kSize>
48 class AddrHashMap {
49  private:
50   struct Cell {
51     atomic_uintptr_t addr;
52     T                val;
53   };
54 
55   struct AddBucket {
56     uptr cap;
57     uptr size;
58     Cell cells[1];  // variable len
59   };
60 
61   static const uptr kBucketSize = 3;
62 
63   struct Bucket {
64     Mutex mtx;
65     atomic_uintptr_t add;
66     Cell             cells[kBucketSize];
67   };
68 
69  public:
70   AddrHashMap();
71 
72   class Handle {
73    public:
74     Handle(AddrHashMap<T, kSize> *map, uptr addr);
75     Handle(AddrHashMap<T, kSize> *map, uptr addr, bool remove);
76     Handle(AddrHashMap<T, kSize> *map, uptr addr, bool remove, bool create);
77 
78     ~Handle();
79     T *operator->();
80     T &operator*();
81     const T &operator*() const;
82     bool created() const;
83     bool exists() const;
84 
85    private:
86     friend AddrHashMap<T, kSize>;
87     AddrHashMap<T, kSize> *map_;
88     Bucket                *bucket_;
89     Cell                  *cell_;
90     uptr                   addr_;
91     uptr                   addidx_;
92     bool                   created_;
93     bool                   remove_;
94     bool                   create_;
95   };
96 
97   typedef void (*ForEachCallback)(const uptr key, const T &val, void *arg);
98   // ForEach acquires a lock on each bucket while iterating over
99   // elements. Note that this only ensures that the structure of the hashmap is
100   // unchanged, there may be a data race to the element itself.
101   void ForEach(ForEachCallback cb, void *arg);
102 
103  private:
104   friend class Handle;
105   Bucket *table_;
106 
107   void acquire(Handle *h);
108   void release(Handle *h);
109   uptr calcHash(uptr addr);
110 };
111 
112 template <typename T, uptr kSize>
ForEach(ForEachCallback cb,void * arg)113 void AddrHashMap<T, kSize>::ForEach(ForEachCallback cb, void *arg) {
114   for (uptr n = 0; n < kSize; n++) {
115     Bucket *bucket = &table_[n];
116 
117     ReadLock lock(&bucket->mtx);
118 
119     for (uptr i = 0; i < kBucketSize; i++) {
120       Cell *c = &bucket->cells[i];
121       uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
122       if (addr1 != 0)
123         cb(addr1, c->val, arg);
124     }
125 
126     // Iterate over any additional cells.
127     if (AddBucket *add =
128             (AddBucket *)atomic_load(&bucket->add, memory_order_acquire)) {
129       for (uptr i = 0; i < add->size; i++) {
130         Cell *c = &add->cells[i];
131         uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
132         if (addr1 != 0)
133           cb(addr1, c->val, arg);
134       }
135     }
136   }
137 }
138 
139 template<typename T, uptr kSize>
Handle(AddrHashMap<T,kSize> * map,uptr addr)140 AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr) {
141   map_ = map;
142   addr_ = addr;
143   remove_ = false;
144   create_ = true;
145   map_->acquire(this);
146 }
147 
148 template<typename T, uptr kSize>
Handle(AddrHashMap<T,kSize> * map,uptr addr,bool remove)149 AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr,
150     bool remove) {
151   map_ = map;
152   addr_ = addr;
153   remove_ = remove;
154   create_ = true;
155   map_->acquire(this);
156 }
157 
158 template<typename T, uptr kSize>
Handle(AddrHashMap<T,kSize> * map,uptr addr,bool remove,bool create)159 AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr,
160     bool remove, bool create) {
161   map_ = map;
162   addr_ = addr;
163   remove_ = remove;
164   create_ = create;
165   map_->acquire(this);
166 }
167 
168 template<typename T, uptr kSize>
~Handle()169 AddrHashMap<T, kSize>::Handle::~Handle() {
170   map_->release(this);
171 }
172 
173 template <typename T, uptr kSize>
174 T *AddrHashMap<T, kSize>::Handle::operator->() {
175   return &cell_->val;
176 }
177 
178 template <typename T, uptr kSize>
179 const T &AddrHashMap<T, kSize>::Handle::operator*() const {
180   return cell_->val;
181 }
182 
183 template <typename T, uptr kSize>
184 T &AddrHashMap<T, kSize>::Handle::operator*() {
185   return cell_->val;
186 }
187 
188 template<typename T, uptr kSize>
created()189 bool AddrHashMap<T, kSize>::Handle::created() const {
190   return created_;
191 }
192 
193 template<typename T, uptr kSize>
exists()194 bool AddrHashMap<T, kSize>::Handle::exists() const {
195   return cell_ != nullptr;
196 }
197 
198 template<typename T, uptr kSize>
AddrHashMap()199 AddrHashMap<T, kSize>::AddrHashMap() {
200   table_ = (Bucket*)MmapOrDie(kSize * sizeof(table_[0]), "AddrHashMap");
201 }
202 
203 template <typename T, uptr kSize>
acquire(Handle * h)204 void AddrHashMap<T, kSize>::acquire(Handle *h) NO_THREAD_SAFETY_ANALYSIS {
205   uptr addr = h->addr_;
206   uptr hash = calcHash(addr);
207   Bucket *b = &table_[hash];
208 
209   h->created_ = false;
210   h->addidx_ = -1U;
211   h->bucket_ = b;
212   h->cell_ = nullptr;
213 
214   // If we want to remove the element, we need exclusive access to the bucket,
215   // so skip the lock-free phase.
216   if (h->remove_)
217     goto locked;
218 
219  retry:
220   // First try to find an existing element w/o read mutex.
221   CHECK(!h->remove_);
222   // Check the embed cells.
223   for (uptr i = 0; i < kBucketSize; i++) {
224     Cell *c = &b->cells[i];
225     uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
226     if (addr1 == addr) {
227       h->cell_ = c;
228       return;
229     }
230   }
231 
232   // Check the add cells with read lock.
233   if (atomic_load(&b->add, memory_order_relaxed)) {
234     b->mtx.ReadLock();
235     AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
236     for (uptr i = 0; i < add->size; i++) {
237       Cell *c = &add->cells[i];
238       uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
239       if (addr1 == addr) {
240         h->addidx_ = i;
241         h->cell_ = c;
242         return;
243       }
244     }
245     b->mtx.ReadUnlock();
246   }
247 
248  locked:
249   // Re-check existence under write lock.
250   // Embed cells.
251   b->mtx.Lock();
252   for (uptr i = 0; i < kBucketSize; i++) {
253     Cell *c = &b->cells[i];
254     uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
255     if (addr1 == addr) {
256       if (h->remove_) {
257         h->cell_ = c;
258         return;
259       }
260       b->mtx.Unlock();
261       goto retry;
262     }
263   }
264 
265   // Add cells.
266   AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
267   if (add) {
268     for (uptr i = 0; i < add->size; i++) {
269       Cell *c = &add->cells[i];
270       uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
271       if (addr1 == addr) {
272         if (h->remove_) {
273           h->addidx_ = i;
274           h->cell_ = c;
275           return;
276         }
277         b->mtx.Unlock();
278         goto retry;
279       }
280     }
281   }
282 
283   // The element does not exist, no need to create it if we want to remove.
284   if (h->remove_ || !h->create_) {
285     b->mtx.Unlock();
286     return;
287   }
288 
289   // Now try to create it under the mutex.
290   h->created_ = true;
291   // See if we have a free embed cell.
292   for (uptr i = 0; i < kBucketSize; i++) {
293     Cell *c = &b->cells[i];
294     uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
295     if (addr1 == 0) {
296       h->cell_ = c;
297       return;
298     }
299   }
300 
301   // Store in the add cells.
302   if (!add) {
303     // Allocate a new add array.
304     const uptr kInitSize = 64;
305     add = (AddBucket*)InternalAlloc(kInitSize);
306     internal_memset(add, 0, kInitSize);
307     add->cap = (kInitSize - sizeof(*add)) / sizeof(add->cells[0]) + 1;
308     add->size = 0;
309     atomic_store(&b->add, (uptr)add, memory_order_relaxed);
310   }
311   if (add->size == add->cap) {
312     // Grow existing add array.
313     uptr oldsize = sizeof(*add) + (add->cap - 1) * sizeof(add->cells[0]);
314     uptr newsize = oldsize * 2;
315     AddBucket *add1 = (AddBucket*)InternalAlloc(newsize);
316     internal_memset(add1, 0, newsize);
317     add1->cap = (newsize - sizeof(*add)) / sizeof(add->cells[0]) + 1;
318     add1->size = add->size;
319     internal_memcpy(add1->cells, add->cells, add->size * sizeof(add->cells[0]));
320     InternalFree(add);
321     atomic_store(&b->add, (uptr)add1, memory_order_relaxed);
322     add = add1;
323   }
324   // Store.
325   uptr i = add->size++;
326   Cell *c = &add->cells[i];
327   CHECK_EQ(atomic_load(&c->addr, memory_order_relaxed), 0);
328   h->addidx_ = i;
329   h->cell_ = c;
330  }
331 
332  template <typename T, uptr kSize>
release(Handle * h)333  void AddrHashMap<T, kSize>::release(Handle *h) NO_THREAD_SAFETY_ANALYSIS {
334    if (!h->cell_)
335      return;
336    Bucket *b = h->bucket_;
337    Cell *c = h->cell_;
338    uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
339    if (h->created_) {
340      // Denote completion of insertion.
341      CHECK_EQ(addr1, 0);
342      // After the following store, the element becomes available
343      // for lock-free reads.
344      atomic_store(&c->addr, h->addr_, memory_order_release);
345      b->mtx.Unlock();
346    } else if (h->remove_) {
347      // Denote that the cell is empty now.
348      CHECK_EQ(addr1, h->addr_);
349      atomic_store(&c->addr, 0, memory_order_release);
350      // See if we need to compact the bucket.
351      AddBucket *add = (AddBucket *)atomic_load(&b->add, memory_order_relaxed);
352      if (h->addidx_ == -1U) {
353        // Removed from embed array, move an add element into the freed cell.
354        if (add && add->size != 0) {
355          uptr last = --add->size;
356          Cell *c1 = &add->cells[last];
357          c->val = c1->val;
358          uptr addr1 = atomic_load(&c1->addr, memory_order_relaxed);
359          atomic_store(&c->addr, addr1, memory_order_release);
360          atomic_store(&c1->addr, 0, memory_order_release);
361        }
362      } else {
363        // Removed from add array, compact it.
364        uptr last = --add->size;
365        Cell *c1 = &add->cells[last];
366        if (c != c1) {
367          *c = *c1;
368          atomic_store(&c1->addr, 0, memory_order_relaxed);
369        }
370      }
371      if (add && add->size == 0) {
372        // FIXME(dvyukov): free add?
373      }
374      b->mtx.Unlock();
375    } else {
376      CHECK_EQ(addr1, h->addr_);
377      if (h->addidx_ != -1U)
378        b->mtx.ReadUnlock();
379    }
380  }
381 
382 template<typename T, uptr kSize>
calcHash(uptr addr)383 uptr AddrHashMap<T, kSize>::calcHash(uptr addr) {
384   addr += addr << 10;
385   addr ^= addr >> 6;
386   return addr % kSize;
387 }
388 
389 } // namespace __sanitizer
390 
391 #endif // SANITIZER_ADDRHASHMAP_H
392