1181254a7Smrg`void 2181254a7Smrg'matmul_name` ('rtype` * const restrict retarray, 3181254a7Smrg 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas, 4181254a7Smrg int blas_limit, blas_call gemm) 5181254a7Smrg{ 6181254a7Smrg const 'rtype_name` * restrict abase; 7181254a7Smrg const 'rtype_name` * restrict bbase; 8181254a7Smrg 'rtype_name` * restrict dest; 9181254a7Smrg 10181254a7Smrg index_type rxstride, rystride, axstride, aystride, bxstride, bystride; 11181254a7Smrg index_type x, y, n, count, xcount, ycount; 12181254a7Smrg 13181254a7Smrg assert (GFC_DESCRIPTOR_RANK (a) == 2 14181254a7Smrg || GFC_DESCRIPTOR_RANK (b) == 2); 15181254a7Smrg 16181254a7Smrg/* C[xcount,ycount] = A[xcount, count] * B[count,ycount] 17181254a7Smrg 18181254a7Smrg Either A or B (but not both) can be rank 1: 19181254a7Smrg 20181254a7Smrg o One-dimensional argument A is implicitly treated as a row matrix 21181254a7Smrg dimensioned [1,count], so xcount=1. 22181254a7Smrg 23181254a7Smrg o One-dimensional argument B is implicitly treated as a column matrix 24181254a7Smrg dimensioned [count, 1], so ycount=1. 25181254a7Smrg*/ 26181254a7Smrg 27181254a7Smrg if (retarray->base_addr == NULL) 28181254a7Smrg { 29181254a7Smrg if (GFC_DESCRIPTOR_RANK (a) == 1) 30181254a7Smrg { 31181254a7Smrg GFC_DIMENSION_SET(retarray->dim[0], 0, 32181254a7Smrg GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); 33181254a7Smrg } 34181254a7Smrg else if (GFC_DESCRIPTOR_RANK (b) == 1) 35181254a7Smrg { 36181254a7Smrg GFC_DIMENSION_SET(retarray->dim[0], 0, 37181254a7Smrg GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); 38181254a7Smrg } 39181254a7Smrg else 40181254a7Smrg { 41181254a7Smrg GFC_DIMENSION_SET(retarray->dim[0], 0, 42181254a7Smrg GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); 43181254a7Smrg 44181254a7Smrg GFC_DIMENSION_SET(retarray->dim[1], 0, 45181254a7Smrg GFC_DESCRIPTOR_EXTENT(b,1) - 1, 46181254a7Smrg GFC_DESCRIPTOR_EXTENT(retarray,0)); 47181254a7Smrg } 48181254a7Smrg 49181254a7Smrg retarray->base_addr 50181254a7Smrg = xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`)); 51181254a7Smrg retarray->offset = 0; 52181254a7Smrg } 53181254a7Smrg else if (unlikely (compile_options.bounds_check)) 54181254a7Smrg { 55181254a7Smrg index_type ret_extent, arg_extent; 56181254a7Smrg 57181254a7Smrg if (GFC_DESCRIPTOR_RANK (a) == 1) 58181254a7Smrg { 59181254a7Smrg arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); 60181254a7Smrg ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); 61181254a7Smrg if (arg_extent != ret_extent) 62181254a7Smrg runtime_error ("Array bound mismatch for dimension 1 of " 63181254a7Smrg "array (%ld/%ld) ", 64181254a7Smrg (long int) ret_extent, (long int) arg_extent); 65181254a7Smrg } 66181254a7Smrg else if (GFC_DESCRIPTOR_RANK (b) == 1) 67181254a7Smrg { 68181254a7Smrg arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); 69181254a7Smrg ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); 70181254a7Smrg if (arg_extent != ret_extent) 71181254a7Smrg runtime_error ("Array bound mismatch for dimension 1 of " 72181254a7Smrg "array (%ld/%ld) ", 73181254a7Smrg (long int) ret_extent, (long int) arg_extent); 74181254a7Smrg } 75181254a7Smrg else 76181254a7Smrg { 77181254a7Smrg arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); 78181254a7Smrg ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); 79181254a7Smrg if (arg_extent != ret_extent) 80181254a7Smrg runtime_error ("Array bound mismatch for dimension 1 of " 81181254a7Smrg "array (%ld/%ld) ", 82181254a7Smrg (long int) ret_extent, (long int) arg_extent); 83181254a7Smrg 84181254a7Smrg arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); 85181254a7Smrg ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); 86181254a7Smrg if (arg_extent != ret_extent) 87181254a7Smrg runtime_error ("Array bound mismatch for dimension 2 of " 88181254a7Smrg "array (%ld/%ld) ", 89181254a7Smrg (long int) ret_extent, (long int) arg_extent); 90181254a7Smrg } 91181254a7Smrg } 92181254a7Smrg' 93181254a7Smrgsinclude(`matmul_asm_'rtype_code`.m4')dnl 94181254a7Smrg` 95181254a7Smrg if (GFC_DESCRIPTOR_RANK (retarray) == 1) 96181254a7Smrg { 97181254a7Smrg /* One-dimensional result may be addressed in the code below 98181254a7Smrg either as a row or a column matrix. We want both cases to 99181254a7Smrg work. */ 100181254a7Smrg rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); 101181254a7Smrg } 102181254a7Smrg else 103181254a7Smrg { 104181254a7Smrg rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); 105181254a7Smrg rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); 106181254a7Smrg } 107181254a7Smrg 108181254a7Smrg 109181254a7Smrg if (GFC_DESCRIPTOR_RANK (a) == 1) 110181254a7Smrg { 111181254a7Smrg /* Treat it as a a row matrix A[1,count]. */ 112181254a7Smrg axstride = GFC_DESCRIPTOR_STRIDE(a,0); 113181254a7Smrg aystride = 1; 114181254a7Smrg 115181254a7Smrg xcount = 1; 116181254a7Smrg count = GFC_DESCRIPTOR_EXTENT(a,0); 117181254a7Smrg } 118181254a7Smrg else 119181254a7Smrg { 120181254a7Smrg axstride = GFC_DESCRIPTOR_STRIDE(a,0); 121181254a7Smrg aystride = GFC_DESCRIPTOR_STRIDE(a,1); 122181254a7Smrg 123181254a7Smrg count = GFC_DESCRIPTOR_EXTENT(a,1); 124181254a7Smrg xcount = GFC_DESCRIPTOR_EXTENT(a,0); 125181254a7Smrg } 126181254a7Smrg 127181254a7Smrg if (count != GFC_DESCRIPTOR_EXTENT(b,0)) 128181254a7Smrg { 129181254a7Smrg if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) 130181254a7Smrg runtime_error ("Incorrect extent in argument B in MATMUL intrinsic " 131181254a7Smrg "in dimension 1: is %ld, should be %ld", 132181254a7Smrg (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count); 133181254a7Smrg } 134181254a7Smrg 135181254a7Smrg if (GFC_DESCRIPTOR_RANK (b) == 1) 136181254a7Smrg { 137181254a7Smrg /* Treat it as a column matrix B[count,1] */ 138181254a7Smrg bxstride = GFC_DESCRIPTOR_STRIDE(b,0); 139181254a7Smrg 140181254a7Smrg /* bystride should never be used for 1-dimensional b. 141181254a7Smrg The value is only used for calculation of the 142181254a7Smrg memory by the buffer. */ 143181254a7Smrg bystride = 256; 144181254a7Smrg ycount = 1; 145181254a7Smrg } 146181254a7Smrg else 147181254a7Smrg { 148181254a7Smrg bxstride = GFC_DESCRIPTOR_STRIDE(b,0); 149181254a7Smrg bystride = GFC_DESCRIPTOR_STRIDE(b,1); 150181254a7Smrg ycount = GFC_DESCRIPTOR_EXTENT(b,1); 151181254a7Smrg } 152181254a7Smrg 153181254a7Smrg abase = a->base_addr; 154181254a7Smrg bbase = b->base_addr; 155181254a7Smrg dest = retarray->base_addr; 156181254a7Smrg 157181254a7Smrg /* Now that everything is set up, we perform the multiplication 158181254a7Smrg itself. */ 159181254a7Smrg 160181254a7Smrg#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) 161181254a7Smrg#define min(a,b) ((a) <= (b) ? (a) : (b)) 162181254a7Smrg#define max(a,b) ((a) >= (b) ? (a) : (b)) 163181254a7Smrg 164181254a7Smrg if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) 165181254a7Smrg && (bxstride == 1 || bystride == 1) 166181254a7Smrg && (((float) xcount) * ((float) ycount) * ((float) count) 167181254a7Smrg > POW3(blas_limit))) 168181254a7Smrg { 169181254a7Smrg const int m = xcount, n = ycount, k = count, ldc = rystride; 170181254a7Smrg const 'rtype_name` one = 1, zero = 0; 171181254a7Smrg const int lda = (axstride == 1) ? aystride : axstride, 172181254a7Smrg ldb = (bxstride == 1) ? bystride : bxstride; 173181254a7Smrg 174181254a7Smrg if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) 175181254a7Smrg { 176181254a7Smrg assert (gemm != NULL); 177181254a7Smrg const char *transa, *transb; 178181254a7Smrg if (try_blas & 2) 179181254a7Smrg transa = "C"; 180181254a7Smrg else 181181254a7Smrg transa = axstride == 1 ? "N" : "T"; 182181254a7Smrg 183181254a7Smrg if (try_blas & 4) 184181254a7Smrg transb = "C"; 185181254a7Smrg else 186181254a7Smrg transb = bxstride == 1 ? "N" : "T"; 187181254a7Smrg 188181254a7Smrg gemm (transa, transb , &m, 189181254a7Smrg &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, 190181254a7Smrg &ldc, 1, 1); 191181254a7Smrg return; 192181254a7Smrg } 193181254a7Smrg } 194181254a7Smrg 195*fb8a8121Smrg if (rxstride == 1 && axstride == 1 && bxstride == 1 196*fb8a8121Smrg && GFC_DESCRIPTOR_RANK (b) != 1) 197181254a7Smrg { 198181254a7Smrg /* This block of code implements a tuned matmul, derived from 199181254a7Smrg Superscalar GEMM-based level 3 BLAS, Beta version 0.1 200181254a7Smrg 201181254a7Smrg Bo Kagstrom and Per Ling 202181254a7Smrg Department of Computing Science 203181254a7Smrg Umea University 204181254a7Smrg S-901 87 Umea, Sweden 205181254a7Smrg 206181254a7Smrg from netlib.org, translated to C, and modified for matmul.m4. */ 207181254a7Smrg 208181254a7Smrg const 'rtype_name` *a, *b; 209181254a7Smrg 'rtype_name` *c; 210181254a7Smrg const index_type m = xcount, n = ycount, k = count; 211181254a7Smrg 212181254a7Smrg /* System generated locals */ 213181254a7Smrg index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, 214181254a7Smrg i1, i2, i3, i4, i5, i6; 215181254a7Smrg 216181254a7Smrg /* Local variables */ 217181254a7Smrg 'rtype_name` f11, f12, f21, f22, f31, f32, f41, f42, 218181254a7Smrg f13, f14, f23, f24, f33, f34, f43, f44; 219181254a7Smrg index_type i, j, l, ii, jj, ll; 220181254a7Smrg index_type isec, jsec, lsec, uisec, ujsec, ulsec; 221181254a7Smrg 'rtype_name` *t1; 222181254a7Smrg 223181254a7Smrg a = abase; 224181254a7Smrg b = bbase; 225181254a7Smrg c = retarray->base_addr; 226181254a7Smrg 227181254a7Smrg /* Parameter adjustments */ 228181254a7Smrg c_dim1 = rystride; 229181254a7Smrg c_offset = 1 + c_dim1; 230181254a7Smrg c -= c_offset; 231181254a7Smrg a_dim1 = aystride; 232181254a7Smrg a_offset = 1 + a_dim1; 233181254a7Smrg a -= a_offset; 234181254a7Smrg b_dim1 = bystride; 235181254a7Smrg b_offset = 1 + b_dim1; 236181254a7Smrg b -= b_offset; 237181254a7Smrg 238181254a7Smrg /* Empty c first. */ 239181254a7Smrg for (j=1; j<=n; j++) 240181254a7Smrg for (i=1; i<=m; i++) 241181254a7Smrg c[i + j * c_dim1] = ('rtype_name`)0; 242181254a7Smrg 243181254a7Smrg /* Early exit if possible */ 244181254a7Smrg if (m == 0 || n == 0 || k == 0) 245181254a7Smrg return; 246181254a7Smrg 247181254a7Smrg /* Adjust size of t1 to what is needed. */ 248181254a7Smrg index_type t1_dim, a_sz; 249181254a7Smrg if (aystride == 1) 250181254a7Smrg a_sz = rystride; 251181254a7Smrg else 252181254a7Smrg a_sz = a_dim1; 253181254a7Smrg 254181254a7Smrg t1_dim = a_sz * 256 + b_dim1; 255181254a7Smrg if (t1_dim > 65536) 256181254a7Smrg t1_dim = 65536; 257181254a7Smrg 258181254a7Smrg t1 = malloc (t1_dim * sizeof('rtype_name`)); 259181254a7Smrg 260181254a7Smrg /* Start turning the crank. */ 261181254a7Smrg i1 = n; 262181254a7Smrg for (jj = 1; jj <= i1; jj += 512) 263181254a7Smrg { 264181254a7Smrg /* Computing MIN */ 265181254a7Smrg i2 = 512; 266181254a7Smrg i3 = n - jj + 1; 267181254a7Smrg jsec = min(i2,i3); 268181254a7Smrg ujsec = jsec - jsec % 4; 269181254a7Smrg i2 = k; 270181254a7Smrg for (ll = 1; ll <= i2; ll += 256) 271181254a7Smrg { 272181254a7Smrg /* Computing MIN */ 273181254a7Smrg i3 = 256; 274181254a7Smrg i4 = k - ll + 1; 275181254a7Smrg lsec = min(i3,i4); 276181254a7Smrg ulsec = lsec - lsec % 2; 277181254a7Smrg 278181254a7Smrg i3 = m; 279181254a7Smrg for (ii = 1; ii <= i3; ii += 256) 280181254a7Smrg { 281181254a7Smrg /* Computing MIN */ 282181254a7Smrg i4 = 256; 283181254a7Smrg i5 = m - ii + 1; 284181254a7Smrg isec = min(i4,i5); 285181254a7Smrg uisec = isec - isec % 2; 286181254a7Smrg i4 = ll + ulsec - 1; 287181254a7Smrg for (l = ll; l <= i4; l += 2) 288181254a7Smrg { 289181254a7Smrg i5 = ii + uisec - 1; 290181254a7Smrg for (i = ii; i <= i5; i += 2) 291181254a7Smrg { 292181254a7Smrg t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = 293181254a7Smrg a[i + l * a_dim1]; 294181254a7Smrg t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = 295181254a7Smrg a[i + (l + 1) * a_dim1]; 296181254a7Smrg t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = 297181254a7Smrg a[i + 1 + l * a_dim1]; 298181254a7Smrg t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = 299181254a7Smrg a[i + 1 + (l + 1) * a_dim1]; 300181254a7Smrg } 301181254a7Smrg if (uisec < isec) 302181254a7Smrg { 303181254a7Smrg t1[l - ll + 1 + (isec << 8) - 257] = 304181254a7Smrg a[ii + isec - 1 + l * a_dim1]; 305181254a7Smrg t1[l - ll + 2 + (isec << 8) - 257] = 306181254a7Smrg a[ii + isec - 1 + (l + 1) * a_dim1]; 307181254a7Smrg } 308181254a7Smrg } 309181254a7Smrg if (ulsec < lsec) 310181254a7Smrg { 311181254a7Smrg i4 = ii + isec - 1; 312181254a7Smrg for (i = ii; i<= i4; ++i) 313181254a7Smrg { 314181254a7Smrg t1[lsec + ((i - ii + 1) << 8) - 257] = 315181254a7Smrg a[i + (ll + lsec - 1) * a_dim1]; 316181254a7Smrg } 317181254a7Smrg } 318181254a7Smrg 319181254a7Smrg uisec = isec - isec % 4; 320181254a7Smrg i4 = jj + ujsec - 1; 321181254a7Smrg for (j = jj; j <= i4; j += 4) 322181254a7Smrg { 323181254a7Smrg i5 = ii + uisec - 1; 324181254a7Smrg for (i = ii; i <= i5; i += 4) 325181254a7Smrg { 326181254a7Smrg f11 = c[i + j * c_dim1]; 327181254a7Smrg f21 = c[i + 1 + j * c_dim1]; 328181254a7Smrg f12 = c[i + (j + 1) * c_dim1]; 329181254a7Smrg f22 = c[i + 1 + (j + 1) * c_dim1]; 330181254a7Smrg f13 = c[i + (j + 2) * c_dim1]; 331181254a7Smrg f23 = c[i + 1 + (j + 2) * c_dim1]; 332181254a7Smrg f14 = c[i + (j + 3) * c_dim1]; 333181254a7Smrg f24 = c[i + 1 + (j + 3) * c_dim1]; 334181254a7Smrg f31 = c[i + 2 + j * c_dim1]; 335181254a7Smrg f41 = c[i + 3 + j * c_dim1]; 336181254a7Smrg f32 = c[i + 2 + (j + 1) * c_dim1]; 337181254a7Smrg f42 = c[i + 3 + (j + 1) * c_dim1]; 338181254a7Smrg f33 = c[i + 2 + (j + 2) * c_dim1]; 339181254a7Smrg f43 = c[i + 3 + (j + 2) * c_dim1]; 340181254a7Smrg f34 = c[i + 2 + (j + 3) * c_dim1]; 341181254a7Smrg f44 = c[i + 3 + (j + 3) * c_dim1]; 342181254a7Smrg i6 = ll + lsec - 1; 343181254a7Smrg for (l = ll; l <= i6; ++l) 344181254a7Smrg { 345181254a7Smrg f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] 346181254a7Smrg * b[l + j * b_dim1]; 347181254a7Smrg f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] 348181254a7Smrg * b[l + j * b_dim1]; 349181254a7Smrg f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] 350181254a7Smrg * b[l + (j + 1) * b_dim1]; 351181254a7Smrg f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] 352181254a7Smrg * b[l + (j + 1) * b_dim1]; 353181254a7Smrg f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] 354181254a7Smrg * b[l + (j + 2) * b_dim1]; 355181254a7Smrg f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] 356181254a7Smrg * b[l + (j + 2) * b_dim1]; 357181254a7Smrg f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] 358181254a7Smrg * b[l + (j + 3) * b_dim1]; 359181254a7Smrg f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] 360181254a7Smrg * b[l + (j + 3) * b_dim1]; 361181254a7Smrg f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] 362181254a7Smrg * b[l + j * b_dim1]; 363181254a7Smrg f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] 364181254a7Smrg * b[l + j * b_dim1]; 365181254a7Smrg f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] 366181254a7Smrg * b[l + (j + 1) * b_dim1]; 367181254a7Smrg f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] 368181254a7Smrg * b[l + (j + 1) * b_dim1]; 369181254a7Smrg f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] 370181254a7Smrg * b[l + (j + 2) * b_dim1]; 371181254a7Smrg f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] 372181254a7Smrg * b[l + (j + 2) * b_dim1]; 373181254a7Smrg f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] 374181254a7Smrg * b[l + (j + 3) * b_dim1]; 375181254a7Smrg f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] 376181254a7Smrg * b[l + (j + 3) * b_dim1]; 377181254a7Smrg } 378181254a7Smrg c[i + j * c_dim1] = f11; 379181254a7Smrg c[i + 1 + j * c_dim1] = f21; 380181254a7Smrg c[i + (j + 1) * c_dim1] = f12; 381181254a7Smrg c[i + 1 + (j + 1) * c_dim1] = f22; 382181254a7Smrg c[i + (j + 2) * c_dim1] = f13; 383181254a7Smrg c[i + 1 + (j + 2) * c_dim1] = f23; 384181254a7Smrg c[i + (j + 3) * c_dim1] = f14; 385181254a7Smrg c[i + 1 + (j + 3) * c_dim1] = f24; 386181254a7Smrg c[i + 2 + j * c_dim1] = f31; 387181254a7Smrg c[i + 3 + j * c_dim1] = f41; 388181254a7Smrg c[i + 2 + (j + 1) * c_dim1] = f32; 389181254a7Smrg c[i + 3 + (j + 1) * c_dim1] = f42; 390181254a7Smrg c[i + 2 + (j + 2) * c_dim1] = f33; 391181254a7Smrg c[i + 3 + (j + 2) * c_dim1] = f43; 392181254a7Smrg c[i + 2 + (j + 3) * c_dim1] = f34; 393181254a7Smrg c[i + 3 + (j + 3) * c_dim1] = f44; 394181254a7Smrg } 395181254a7Smrg if (uisec < isec) 396181254a7Smrg { 397181254a7Smrg i5 = ii + isec - 1; 398181254a7Smrg for (i = ii + uisec; i <= i5; ++i) 399181254a7Smrg { 400181254a7Smrg f11 = c[i + j * c_dim1]; 401181254a7Smrg f12 = c[i + (j + 1) * c_dim1]; 402181254a7Smrg f13 = c[i + (j + 2) * c_dim1]; 403181254a7Smrg f14 = c[i + (j + 3) * c_dim1]; 404181254a7Smrg i6 = ll + lsec - 1; 405181254a7Smrg for (l = ll; l <= i6; ++l) 406181254a7Smrg { 407181254a7Smrg f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 408181254a7Smrg 257] * b[l + j * b_dim1]; 409181254a7Smrg f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 410181254a7Smrg 257] * b[l + (j + 1) * b_dim1]; 411181254a7Smrg f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 412181254a7Smrg 257] * b[l + (j + 2) * b_dim1]; 413181254a7Smrg f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 414181254a7Smrg 257] * b[l + (j + 3) * b_dim1]; 415181254a7Smrg } 416181254a7Smrg c[i + j * c_dim1] = f11; 417181254a7Smrg c[i + (j + 1) * c_dim1] = f12; 418181254a7Smrg c[i + (j + 2) * c_dim1] = f13; 419181254a7Smrg c[i + (j + 3) * c_dim1] = f14; 420181254a7Smrg } 421181254a7Smrg } 422181254a7Smrg } 423181254a7Smrg if (ujsec < jsec) 424181254a7Smrg { 425181254a7Smrg i4 = jj + jsec - 1; 426181254a7Smrg for (j = jj + ujsec; j <= i4; ++j) 427181254a7Smrg { 428181254a7Smrg i5 = ii + uisec - 1; 429181254a7Smrg for (i = ii; i <= i5; i += 4) 430181254a7Smrg { 431181254a7Smrg f11 = c[i + j * c_dim1]; 432181254a7Smrg f21 = c[i + 1 + j * c_dim1]; 433181254a7Smrg f31 = c[i + 2 + j * c_dim1]; 434181254a7Smrg f41 = c[i + 3 + j * c_dim1]; 435181254a7Smrg i6 = ll + lsec - 1; 436181254a7Smrg for (l = ll; l <= i6; ++l) 437181254a7Smrg { 438181254a7Smrg f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 439181254a7Smrg 257] * b[l + j * b_dim1]; 440181254a7Smrg f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 441181254a7Smrg 257] * b[l + j * b_dim1]; 442181254a7Smrg f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 443181254a7Smrg 257] * b[l + j * b_dim1]; 444181254a7Smrg f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 445181254a7Smrg 257] * b[l + j * b_dim1]; 446181254a7Smrg } 447181254a7Smrg c[i + j * c_dim1] = f11; 448181254a7Smrg c[i + 1 + j * c_dim1] = f21; 449181254a7Smrg c[i + 2 + j * c_dim1] = f31; 450181254a7Smrg c[i + 3 + j * c_dim1] = f41; 451181254a7Smrg } 452181254a7Smrg i5 = ii + isec - 1; 453181254a7Smrg for (i = ii + uisec; i <= i5; ++i) 454181254a7Smrg { 455181254a7Smrg f11 = c[i + j * c_dim1]; 456181254a7Smrg i6 = ll + lsec - 1; 457181254a7Smrg for (l = ll; l <= i6; ++l) 458181254a7Smrg { 459181254a7Smrg f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 460181254a7Smrg 257] * b[l + j * b_dim1]; 461181254a7Smrg } 462181254a7Smrg c[i + j * c_dim1] = f11; 463181254a7Smrg } 464181254a7Smrg } 465181254a7Smrg } 466181254a7Smrg } 467181254a7Smrg } 468181254a7Smrg } 469181254a7Smrg free(t1); 470181254a7Smrg return; 471181254a7Smrg } 472181254a7Smrg else if (rxstride == 1 && aystride == 1 && bxstride == 1) 473181254a7Smrg { 474181254a7Smrg if (GFC_DESCRIPTOR_RANK (a) != 1) 475181254a7Smrg { 476181254a7Smrg const 'rtype_name` *restrict abase_x; 477181254a7Smrg const 'rtype_name` *restrict bbase_y; 478181254a7Smrg 'rtype_name` *restrict dest_y; 479181254a7Smrg 'rtype_name` s; 480181254a7Smrg 481181254a7Smrg for (y = 0; y < ycount; y++) 482181254a7Smrg { 483181254a7Smrg bbase_y = &bbase[y*bystride]; 484181254a7Smrg dest_y = &dest[y*rystride]; 485181254a7Smrg for (x = 0; x < xcount; x++) 486181254a7Smrg { 487181254a7Smrg abase_x = &abase[x*axstride]; 488181254a7Smrg s = ('rtype_name`) 0; 489181254a7Smrg for (n = 0; n < count; n++) 490181254a7Smrg s += abase_x[n] * bbase_y[n]; 491181254a7Smrg dest_y[x] = s; 492181254a7Smrg } 493181254a7Smrg } 494181254a7Smrg } 495181254a7Smrg else 496181254a7Smrg { 497181254a7Smrg const 'rtype_name` *restrict bbase_y; 498181254a7Smrg 'rtype_name` s; 499181254a7Smrg 500181254a7Smrg for (y = 0; y < ycount; y++) 501181254a7Smrg { 502181254a7Smrg bbase_y = &bbase[y*bystride]; 503181254a7Smrg s = ('rtype_name`) 0; 504181254a7Smrg for (n = 0; n < count; n++) 505181254a7Smrg s += abase[n*axstride] * bbase_y[n]; 506181254a7Smrg dest[y*rystride] = s; 507181254a7Smrg } 508181254a7Smrg } 509181254a7Smrg } 510181254a7Smrg else if (GFC_DESCRIPTOR_RANK (a) == 1) 511181254a7Smrg { 512181254a7Smrg const 'rtype_name` *restrict bbase_y; 513181254a7Smrg 'rtype_name` s; 514181254a7Smrg 515181254a7Smrg for (y = 0; y < ycount; y++) 516181254a7Smrg { 517181254a7Smrg bbase_y = &bbase[y*bystride]; 518181254a7Smrg s = ('rtype_name`) 0; 519181254a7Smrg for (n = 0; n < count; n++) 520181254a7Smrg s += abase[n*axstride] * bbase_y[n*bxstride]; 521181254a7Smrg dest[y*rxstride] = s; 522181254a7Smrg } 523181254a7Smrg } 524*fb8a8121Smrg else if (axstride < aystride) 525*fb8a8121Smrg { 526*fb8a8121Smrg for (y = 0; y < ycount; y++) 527*fb8a8121Smrg for (x = 0; x < xcount; x++) 528*fb8a8121Smrg dest[x*rxstride + y*rystride] = ('rtype_name`)0; 529*fb8a8121Smrg 530*fb8a8121Smrg for (y = 0; y < ycount; y++) 531*fb8a8121Smrg for (n = 0; n < count; n++) 532*fb8a8121Smrg for (x = 0; x < xcount; x++) 533*fb8a8121Smrg /* dest[x,y] += a[x,n] * b[n,y] */ 534*fb8a8121Smrg dest[x*rxstride + y*rystride] += 535*fb8a8121Smrg abase[x*axstride + n*aystride] * 536*fb8a8121Smrg bbase[n*bxstride + y*bystride]; 537*fb8a8121Smrg } 538181254a7Smrg else 539181254a7Smrg { 540181254a7Smrg const 'rtype_name` *restrict abase_x; 541181254a7Smrg const 'rtype_name` *restrict bbase_y; 542181254a7Smrg 'rtype_name` *restrict dest_y; 543181254a7Smrg 'rtype_name` s; 544181254a7Smrg 545181254a7Smrg for (y = 0; y < ycount; y++) 546181254a7Smrg { 547181254a7Smrg bbase_y = &bbase[y*bystride]; 548181254a7Smrg dest_y = &dest[y*rystride]; 549181254a7Smrg for (x = 0; x < xcount; x++) 550181254a7Smrg { 551181254a7Smrg abase_x = &abase[x*axstride]; 552181254a7Smrg s = ('rtype_name`) 0; 553181254a7Smrg for (n = 0; n < count; n++) 554181254a7Smrg s += abase_x[n*aystride] * bbase_y[n*bxstride]; 555181254a7Smrg dest_y[x*rxstride] = s; 556181254a7Smrg } 557181254a7Smrg } 558181254a7Smrg } 559181254a7Smrg} 560181254a7Smrg#undef POW3 561181254a7Smrg#undef min 562181254a7Smrg#undef max 563181254a7Smrg' 564