xref: /netbsd-src/external/gpl3/gcc/dist/libgfortran/m4/matmul_internal.m4 (revision fb8a8121f28072308659629b86cfb7c449bd93e1)
1181254a7Smrg`void
2181254a7Smrg'matmul_name` ('rtype` * const restrict retarray,
3181254a7Smrg	'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
4181254a7Smrg	int blas_limit, blas_call gemm)
5181254a7Smrg{
6181254a7Smrg  const 'rtype_name` * restrict abase;
7181254a7Smrg  const 'rtype_name` * restrict bbase;
8181254a7Smrg  'rtype_name` * restrict dest;
9181254a7Smrg
10181254a7Smrg  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
11181254a7Smrg  index_type x, y, n, count, xcount, ycount;
12181254a7Smrg
13181254a7Smrg  assert (GFC_DESCRIPTOR_RANK (a) == 2
14181254a7Smrg          || GFC_DESCRIPTOR_RANK (b) == 2);
15181254a7Smrg
16181254a7Smrg/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
17181254a7Smrg
18181254a7Smrg   Either A or B (but not both) can be rank 1:
19181254a7Smrg
20181254a7Smrg   o One-dimensional argument A is implicitly treated as a row matrix
21181254a7Smrg     dimensioned [1,count], so xcount=1.
22181254a7Smrg
23181254a7Smrg   o One-dimensional argument B is implicitly treated as a column matrix
24181254a7Smrg     dimensioned [count, 1], so ycount=1.
25181254a7Smrg*/
26181254a7Smrg
27181254a7Smrg  if (retarray->base_addr == NULL)
28181254a7Smrg    {
29181254a7Smrg      if (GFC_DESCRIPTOR_RANK (a) == 1)
30181254a7Smrg        {
31181254a7Smrg	  GFC_DIMENSION_SET(retarray->dim[0], 0,
32181254a7Smrg	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
33181254a7Smrg        }
34181254a7Smrg      else if (GFC_DESCRIPTOR_RANK (b) == 1)
35181254a7Smrg        {
36181254a7Smrg	  GFC_DIMENSION_SET(retarray->dim[0], 0,
37181254a7Smrg	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
38181254a7Smrg        }
39181254a7Smrg      else
40181254a7Smrg        {
41181254a7Smrg	  GFC_DIMENSION_SET(retarray->dim[0], 0,
42181254a7Smrg	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
43181254a7Smrg
44181254a7Smrg          GFC_DIMENSION_SET(retarray->dim[1], 0,
45181254a7Smrg	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
46181254a7Smrg			    GFC_DESCRIPTOR_EXTENT(retarray,0));
47181254a7Smrg        }
48181254a7Smrg
49181254a7Smrg      retarray->base_addr
50181254a7Smrg	= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
51181254a7Smrg      retarray->offset = 0;
52181254a7Smrg    }
53181254a7Smrg  else if (unlikely (compile_options.bounds_check))
54181254a7Smrg    {
55181254a7Smrg      index_type ret_extent, arg_extent;
56181254a7Smrg
57181254a7Smrg      if (GFC_DESCRIPTOR_RANK (a) == 1)
58181254a7Smrg	{
59181254a7Smrg	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
60181254a7Smrg	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
61181254a7Smrg	  if (arg_extent != ret_extent)
62181254a7Smrg	    runtime_error ("Array bound mismatch for dimension 1 of "
63181254a7Smrg	    		   "array (%ld/%ld) ",
64181254a7Smrg			   (long int) ret_extent, (long int) arg_extent);
65181254a7Smrg	}
66181254a7Smrg      else if (GFC_DESCRIPTOR_RANK (b) == 1)
67181254a7Smrg	{
68181254a7Smrg	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
69181254a7Smrg	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
70181254a7Smrg	  if (arg_extent != ret_extent)
71181254a7Smrg	    runtime_error ("Array bound mismatch for dimension 1 of "
72181254a7Smrg	    		   "array (%ld/%ld) ",
73181254a7Smrg			   (long int) ret_extent, (long int) arg_extent);
74181254a7Smrg	}
75181254a7Smrg      else
76181254a7Smrg	{
77181254a7Smrg	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
78181254a7Smrg	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
79181254a7Smrg	  if (arg_extent != ret_extent)
80181254a7Smrg	    runtime_error ("Array bound mismatch for dimension 1 of "
81181254a7Smrg	    		   "array (%ld/%ld) ",
82181254a7Smrg			   (long int) ret_extent, (long int) arg_extent);
83181254a7Smrg
84181254a7Smrg	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
85181254a7Smrg	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
86181254a7Smrg	  if (arg_extent != ret_extent)
87181254a7Smrg	    runtime_error ("Array bound mismatch for dimension 2 of "
88181254a7Smrg	    		   "array (%ld/%ld) ",
89181254a7Smrg			   (long int) ret_extent, (long int) arg_extent);
90181254a7Smrg	}
91181254a7Smrg    }
92181254a7Smrg'
93181254a7Smrgsinclude(`matmul_asm_'rtype_code`.m4')dnl
94181254a7Smrg`
95181254a7Smrg  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
96181254a7Smrg    {
97181254a7Smrg      /* One-dimensional result may be addressed in the code below
98181254a7Smrg	 either as a row or a column matrix. We want both cases to
99181254a7Smrg	 work. */
100181254a7Smrg      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
101181254a7Smrg    }
102181254a7Smrg  else
103181254a7Smrg    {
104181254a7Smrg      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
105181254a7Smrg      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
106181254a7Smrg    }
107181254a7Smrg
108181254a7Smrg
109181254a7Smrg  if (GFC_DESCRIPTOR_RANK (a) == 1)
110181254a7Smrg    {
111181254a7Smrg      /* Treat it as a a row matrix A[1,count]. */
112181254a7Smrg      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
113181254a7Smrg      aystride = 1;
114181254a7Smrg
115181254a7Smrg      xcount = 1;
116181254a7Smrg      count = GFC_DESCRIPTOR_EXTENT(a,0);
117181254a7Smrg    }
118181254a7Smrg  else
119181254a7Smrg    {
120181254a7Smrg      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
121181254a7Smrg      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
122181254a7Smrg
123181254a7Smrg      count = GFC_DESCRIPTOR_EXTENT(a,1);
124181254a7Smrg      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
125181254a7Smrg    }
126181254a7Smrg
127181254a7Smrg  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
128181254a7Smrg    {
129181254a7Smrg      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
130181254a7Smrg	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
131181254a7Smrg		       "in dimension 1: is %ld, should be %ld",
132181254a7Smrg		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
133181254a7Smrg    }
134181254a7Smrg
135181254a7Smrg  if (GFC_DESCRIPTOR_RANK (b) == 1)
136181254a7Smrg    {
137181254a7Smrg      /* Treat it as a column matrix B[count,1] */
138181254a7Smrg      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
139181254a7Smrg
140181254a7Smrg      /* bystride should never be used for 1-dimensional b.
141181254a7Smrg         The value is only used for calculation of the
142181254a7Smrg         memory by the buffer.  */
143181254a7Smrg      bystride = 256;
144181254a7Smrg      ycount = 1;
145181254a7Smrg    }
146181254a7Smrg  else
147181254a7Smrg    {
148181254a7Smrg      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
149181254a7Smrg      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
150181254a7Smrg      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
151181254a7Smrg    }
152181254a7Smrg
153181254a7Smrg  abase = a->base_addr;
154181254a7Smrg  bbase = b->base_addr;
155181254a7Smrg  dest = retarray->base_addr;
156181254a7Smrg
157181254a7Smrg  /* Now that everything is set up, we perform the multiplication
158181254a7Smrg     itself.  */
159181254a7Smrg
160181254a7Smrg#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
161181254a7Smrg#define min(a,b) ((a) <= (b) ? (a) : (b))
162181254a7Smrg#define max(a,b) ((a) >= (b) ? (a) : (b))
163181254a7Smrg
164181254a7Smrg  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
165181254a7Smrg      && (bxstride == 1 || bystride == 1)
166181254a7Smrg      && (((float) xcount) * ((float) ycount) * ((float) count)
167181254a7Smrg          > POW3(blas_limit)))
168181254a7Smrg    {
169181254a7Smrg      const int m = xcount, n = ycount, k = count, ldc = rystride;
170181254a7Smrg      const 'rtype_name` one = 1, zero = 0;
171181254a7Smrg      const int lda = (axstride == 1) ? aystride : axstride,
172181254a7Smrg		ldb = (bxstride == 1) ? bystride : bxstride;
173181254a7Smrg
174181254a7Smrg      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
175181254a7Smrg	{
176181254a7Smrg	  assert (gemm != NULL);
177181254a7Smrg	  const char *transa, *transb;
178181254a7Smrg	  if (try_blas & 2)
179181254a7Smrg	    transa = "C";
180181254a7Smrg	  else
181181254a7Smrg	    transa = axstride == 1 ? "N" : "T";
182181254a7Smrg
183181254a7Smrg	  if (try_blas & 4)
184181254a7Smrg	    transb = "C";
185181254a7Smrg	  else
186181254a7Smrg	    transb = bxstride == 1 ? "N" : "T";
187181254a7Smrg
188181254a7Smrg	  gemm (transa, transb , &m,
189181254a7Smrg		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
190181254a7Smrg		&ldc, 1, 1);
191181254a7Smrg	  return;
192181254a7Smrg	}
193181254a7Smrg    }
194181254a7Smrg
195*fb8a8121Smrg  if (rxstride == 1 && axstride == 1 && bxstride == 1
196*fb8a8121Smrg      && GFC_DESCRIPTOR_RANK (b) != 1)
197181254a7Smrg    {
198181254a7Smrg      /* This block of code implements a tuned matmul, derived from
199181254a7Smrg         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
200181254a7Smrg
201181254a7Smrg               Bo Kagstrom and Per Ling
202181254a7Smrg               Department of Computing Science
203181254a7Smrg               Umea University
204181254a7Smrg               S-901 87 Umea, Sweden
205181254a7Smrg
206181254a7Smrg	 from netlib.org, translated to C, and modified for matmul.m4.  */
207181254a7Smrg
208181254a7Smrg      const 'rtype_name` *a, *b;
209181254a7Smrg      'rtype_name` *c;
210181254a7Smrg      const index_type m = xcount, n = ycount, k = count;
211181254a7Smrg
212181254a7Smrg      /* System generated locals */
213181254a7Smrg      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
214181254a7Smrg		 i1, i2, i3, i4, i5, i6;
215181254a7Smrg
216181254a7Smrg      /* Local variables */
217181254a7Smrg      'rtype_name` f11, f12, f21, f22, f31, f32, f41, f42,
218181254a7Smrg		 f13, f14, f23, f24, f33, f34, f43, f44;
219181254a7Smrg      index_type i, j, l, ii, jj, ll;
220181254a7Smrg      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
221181254a7Smrg      'rtype_name` *t1;
222181254a7Smrg
223181254a7Smrg      a = abase;
224181254a7Smrg      b = bbase;
225181254a7Smrg      c = retarray->base_addr;
226181254a7Smrg
227181254a7Smrg      /* Parameter adjustments */
228181254a7Smrg      c_dim1 = rystride;
229181254a7Smrg      c_offset = 1 + c_dim1;
230181254a7Smrg      c -= c_offset;
231181254a7Smrg      a_dim1 = aystride;
232181254a7Smrg      a_offset = 1 + a_dim1;
233181254a7Smrg      a -= a_offset;
234181254a7Smrg      b_dim1 = bystride;
235181254a7Smrg      b_offset = 1 + b_dim1;
236181254a7Smrg      b -= b_offset;
237181254a7Smrg
238181254a7Smrg      /* Empty c first.  */
239181254a7Smrg      for (j=1; j<=n; j++)
240181254a7Smrg	for (i=1; i<=m; i++)
241181254a7Smrg	  c[i + j * c_dim1] = ('rtype_name`)0;
242181254a7Smrg
243181254a7Smrg      /* Early exit if possible */
244181254a7Smrg      if (m == 0 || n == 0 || k == 0)
245181254a7Smrg	return;
246181254a7Smrg
247181254a7Smrg      /* Adjust size of t1 to what is needed.  */
248181254a7Smrg      index_type t1_dim, a_sz;
249181254a7Smrg      if (aystride == 1)
250181254a7Smrg        a_sz = rystride;
251181254a7Smrg      else
252181254a7Smrg        a_sz = a_dim1;
253181254a7Smrg
254181254a7Smrg      t1_dim = a_sz * 256 + b_dim1;
255181254a7Smrg      if (t1_dim > 65536)
256181254a7Smrg	t1_dim = 65536;
257181254a7Smrg
258181254a7Smrg      t1 = malloc (t1_dim * sizeof('rtype_name`));
259181254a7Smrg
260181254a7Smrg      /* Start turning the crank. */
261181254a7Smrg      i1 = n;
262181254a7Smrg      for (jj = 1; jj <= i1; jj += 512)
263181254a7Smrg	{
264181254a7Smrg	  /* Computing MIN */
265181254a7Smrg	  i2 = 512;
266181254a7Smrg	  i3 = n - jj + 1;
267181254a7Smrg	  jsec = min(i2,i3);
268181254a7Smrg	  ujsec = jsec - jsec % 4;
269181254a7Smrg	  i2 = k;
270181254a7Smrg	  for (ll = 1; ll <= i2; ll += 256)
271181254a7Smrg	    {
272181254a7Smrg	      /* Computing MIN */
273181254a7Smrg	      i3 = 256;
274181254a7Smrg	      i4 = k - ll + 1;
275181254a7Smrg	      lsec = min(i3,i4);
276181254a7Smrg	      ulsec = lsec - lsec % 2;
277181254a7Smrg
278181254a7Smrg	      i3 = m;
279181254a7Smrg	      for (ii = 1; ii <= i3; ii += 256)
280181254a7Smrg		{
281181254a7Smrg		  /* Computing MIN */
282181254a7Smrg		  i4 = 256;
283181254a7Smrg		  i5 = m - ii + 1;
284181254a7Smrg		  isec = min(i4,i5);
285181254a7Smrg		  uisec = isec - isec % 2;
286181254a7Smrg		  i4 = ll + ulsec - 1;
287181254a7Smrg		  for (l = ll; l <= i4; l += 2)
288181254a7Smrg		    {
289181254a7Smrg		      i5 = ii + uisec - 1;
290181254a7Smrg		      for (i = ii; i <= i5; i += 2)
291181254a7Smrg			{
292181254a7Smrg			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
293181254a7Smrg					a[i + l * a_dim1];
294181254a7Smrg			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
295181254a7Smrg					a[i + (l + 1) * a_dim1];
296181254a7Smrg			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
297181254a7Smrg					a[i + 1 + l * a_dim1];
298181254a7Smrg			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
299181254a7Smrg					a[i + 1 + (l + 1) * a_dim1];
300181254a7Smrg			}
301181254a7Smrg		      if (uisec < isec)
302181254a7Smrg			{
303181254a7Smrg			  t1[l - ll + 1 + (isec << 8) - 257] =
304181254a7Smrg				    a[ii + isec - 1 + l * a_dim1];
305181254a7Smrg			  t1[l - ll + 2 + (isec << 8) - 257] =
306181254a7Smrg				    a[ii + isec - 1 + (l + 1) * a_dim1];
307181254a7Smrg			}
308181254a7Smrg		    }
309181254a7Smrg		  if (ulsec < lsec)
310181254a7Smrg		    {
311181254a7Smrg		      i4 = ii + isec - 1;
312181254a7Smrg		      for (i = ii; i<= i4; ++i)
313181254a7Smrg			{
314181254a7Smrg			  t1[lsec + ((i - ii + 1) << 8) - 257] =
315181254a7Smrg				    a[i + (ll + lsec - 1) * a_dim1];
316181254a7Smrg			}
317181254a7Smrg		    }
318181254a7Smrg
319181254a7Smrg		  uisec = isec - isec % 4;
320181254a7Smrg		  i4 = jj + ujsec - 1;
321181254a7Smrg		  for (j = jj; j <= i4; j += 4)
322181254a7Smrg		    {
323181254a7Smrg		      i5 = ii + uisec - 1;
324181254a7Smrg		      for (i = ii; i <= i5; i += 4)
325181254a7Smrg			{
326181254a7Smrg			  f11 = c[i + j * c_dim1];
327181254a7Smrg			  f21 = c[i + 1 + j * c_dim1];
328181254a7Smrg			  f12 = c[i + (j + 1) * c_dim1];
329181254a7Smrg			  f22 = c[i + 1 + (j + 1) * c_dim1];
330181254a7Smrg			  f13 = c[i + (j + 2) * c_dim1];
331181254a7Smrg			  f23 = c[i + 1 + (j + 2) * c_dim1];
332181254a7Smrg			  f14 = c[i + (j + 3) * c_dim1];
333181254a7Smrg			  f24 = c[i + 1 + (j + 3) * c_dim1];
334181254a7Smrg			  f31 = c[i + 2 + j * c_dim1];
335181254a7Smrg			  f41 = c[i + 3 + j * c_dim1];
336181254a7Smrg			  f32 = c[i + 2 + (j + 1) * c_dim1];
337181254a7Smrg			  f42 = c[i + 3 + (j + 1) * c_dim1];
338181254a7Smrg			  f33 = c[i + 2 + (j + 2) * c_dim1];
339181254a7Smrg			  f43 = c[i + 3 + (j + 2) * c_dim1];
340181254a7Smrg			  f34 = c[i + 2 + (j + 3) * c_dim1];
341181254a7Smrg			  f44 = c[i + 3 + (j + 3) * c_dim1];
342181254a7Smrg			  i6 = ll + lsec - 1;
343181254a7Smrg			  for (l = ll; l <= i6; ++l)
344181254a7Smrg			    {
345181254a7Smrg			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
346181254a7Smrg				      * b[l + j * b_dim1];
347181254a7Smrg			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
348181254a7Smrg				      * b[l + j * b_dim1];
349181254a7Smrg			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
350181254a7Smrg				      * b[l + (j + 1) * b_dim1];
351181254a7Smrg			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
352181254a7Smrg				      * b[l + (j + 1) * b_dim1];
353181254a7Smrg			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
354181254a7Smrg				      * b[l + (j + 2) * b_dim1];
355181254a7Smrg			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
356181254a7Smrg				      * b[l + (j + 2) * b_dim1];
357181254a7Smrg			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
358181254a7Smrg				      * b[l + (j + 3) * b_dim1];
359181254a7Smrg			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
360181254a7Smrg				      * b[l + (j + 3) * b_dim1];
361181254a7Smrg			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
362181254a7Smrg				      * b[l + j * b_dim1];
363181254a7Smrg			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
364181254a7Smrg				      * b[l + j * b_dim1];
365181254a7Smrg			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
366181254a7Smrg				      * b[l + (j + 1) * b_dim1];
367181254a7Smrg			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
368181254a7Smrg				      * b[l + (j + 1) * b_dim1];
369181254a7Smrg			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
370181254a7Smrg				      * b[l + (j + 2) * b_dim1];
371181254a7Smrg			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
372181254a7Smrg				      * b[l + (j + 2) * b_dim1];
373181254a7Smrg			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
374181254a7Smrg				      * b[l + (j + 3) * b_dim1];
375181254a7Smrg			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
376181254a7Smrg				      * b[l + (j + 3) * b_dim1];
377181254a7Smrg			    }
378181254a7Smrg			  c[i + j * c_dim1] = f11;
379181254a7Smrg			  c[i + 1 + j * c_dim1] = f21;
380181254a7Smrg			  c[i + (j + 1) * c_dim1] = f12;
381181254a7Smrg			  c[i + 1 + (j + 1) * c_dim1] = f22;
382181254a7Smrg			  c[i + (j + 2) * c_dim1] = f13;
383181254a7Smrg			  c[i + 1 + (j + 2) * c_dim1] = f23;
384181254a7Smrg			  c[i + (j + 3) * c_dim1] = f14;
385181254a7Smrg			  c[i + 1 + (j + 3) * c_dim1] = f24;
386181254a7Smrg			  c[i + 2 + j * c_dim1] = f31;
387181254a7Smrg			  c[i + 3 + j * c_dim1] = f41;
388181254a7Smrg			  c[i + 2 + (j + 1) * c_dim1] = f32;
389181254a7Smrg			  c[i + 3 + (j + 1) * c_dim1] = f42;
390181254a7Smrg			  c[i + 2 + (j + 2) * c_dim1] = f33;
391181254a7Smrg			  c[i + 3 + (j + 2) * c_dim1] = f43;
392181254a7Smrg			  c[i + 2 + (j + 3) * c_dim1] = f34;
393181254a7Smrg			  c[i + 3 + (j + 3) * c_dim1] = f44;
394181254a7Smrg			}
395181254a7Smrg		      if (uisec < isec)
396181254a7Smrg			{
397181254a7Smrg			  i5 = ii + isec - 1;
398181254a7Smrg			  for (i = ii + uisec; i <= i5; ++i)
399181254a7Smrg			    {
400181254a7Smrg			      f11 = c[i + j * c_dim1];
401181254a7Smrg			      f12 = c[i + (j + 1) * c_dim1];
402181254a7Smrg			      f13 = c[i + (j + 2) * c_dim1];
403181254a7Smrg			      f14 = c[i + (j + 3) * c_dim1];
404181254a7Smrg			      i6 = ll + lsec - 1;
405181254a7Smrg			      for (l = ll; l <= i6; ++l)
406181254a7Smrg				{
407181254a7Smrg				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
408181254a7Smrg					  257] * b[l + j * b_dim1];
409181254a7Smrg				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
410181254a7Smrg					  257] * b[l + (j + 1) * b_dim1];
411181254a7Smrg				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
412181254a7Smrg					  257] * b[l + (j + 2) * b_dim1];
413181254a7Smrg				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
414181254a7Smrg					  257] * b[l + (j + 3) * b_dim1];
415181254a7Smrg				}
416181254a7Smrg			      c[i + j * c_dim1] = f11;
417181254a7Smrg			      c[i + (j + 1) * c_dim1] = f12;
418181254a7Smrg			      c[i + (j + 2) * c_dim1] = f13;
419181254a7Smrg			      c[i + (j + 3) * c_dim1] = f14;
420181254a7Smrg			    }
421181254a7Smrg			}
422181254a7Smrg		    }
423181254a7Smrg		  if (ujsec < jsec)
424181254a7Smrg		    {
425181254a7Smrg		      i4 = jj + jsec - 1;
426181254a7Smrg		      for (j = jj + ujsec; j <= i4; ++j)
427181254a7Smrg			{
428181254a7Smrg			  i5 = ii + uisec - 1;
429181254a7Smrg			  for (i = ii; i <= i5; i += 4)
430181254a7Smrg			    {
431181254a7Smrg			      f11 = c[i + j * c_dim1];
432181254a7Smrg			      f21 = c[i + 1 + j * c_dim1];
433181254a7Smrg			      f31 = c[i + 2 + j * c_dim1];
434181254a7Smrg			      f41 = c[i + 3 + j * c_dim1];
435181254a7Smrg			      i6 = ll + lsec - 1;
436181254a7Smrg			      for (l = ll; l <= i6; ++l)
437181254a7Smrg				{
438181254a7Smrg				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
439181254a7Smrg					  257] * b[l + j * b_dim1];
440181254a7Smrg				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
441181254a7Smrg					  257] * b[l + j * b_dim1];
442181254a7Smrg				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
443181254a7Smrg					  257] * b[l + j * b_dim1];
444181254a7Smrg				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
445181254a7Smrg					  257] * b[l + j * b_dim1];
446181254a7Smrg				}
447181254a7Smrg			      c[i + j * c_dim1] = f11;
448181254a7Smrg			      c[i + 1 + j * c_dim1] = f21;
449181254a7Smrg			      c[i + 2 + j * c_dim1] = f31;
450181254a7Smrg			      c[i + 3 + j * c_dim1] = f41;
451181254a7Smrg			    }
452181254a7Smrg			  i5 = ii + isec - 1;
453181254a7Smrg			  for (i = ii + uisec; i <= i5; ++i)
454181254a7Smrg			    {
455181254a7Smrg			      f11 = c[i + j * c_dim1];
456181254a7Smrg			      i6 = ll + lsec - 1;
457181254a7Smrg			      for (l = ll; l <= i6; ++l)
458181254a7Smrg				{
459181254a7Smrg				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
460181254a7Smrg					  257] * b[l + j * b_dim1];
461181254a7Smrg				}
462181254a7Smrg			      c[i + j * c_dim1] = f11;
463181254a7Smrg			    }
464181254a7Smrg			}
465181254a7Smrg		    }
466181254a7Smrg		}
467181254a7Smrg	    }
468181254a7Smrg	}
469181254a7Smrg      free(t1);
470181254a7Smrg      return;
471181254a7Smrg    }
472181254a7Smrg  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
473181254a7Smrg    {
474181254a7Smrg      if (GFC_DESCRIPTOR_RANK (a) != 1)
475181254a7Smrg	{
476181254a7Smrg	  const 'rtype_name` *restrict abase_x;
477181254a7Smrg	  const 'rtype_name` *restrict bbase_y;
478181254a7Smrg	  'rtype_name` *restrict dest_y;
479181254a7Smrg	  'rtype_name` s;
480181254a7Smrg
481181254a7Smrg	  for (y = 0; y < ycount; y++)
482181254a7Smrg	    {
483181254a7Smrg	      bbase_y = &bbase[y*bystride];
484181254a7Smrg	      dest_y = &dest[y*rystride];
485181254a7Smrg	      for (x = 0; x < xcount; x++)
486181254a7Smrg		{
487181254a7Smrg		  abase_x = &abase[x*axstride];
488181254a7Smrg		  s = ('rtype_name`) 0;
489181254a7Smrg		  for (n = 0; n < count; n++)
490181254a7Smrg		    s += abase_x[n] * bbase_y[n];
491181254a7Smrg		  dest_y[x] = s;
492181254a7Smrg		}
493181254a7Smrg	    }
494181254a7Smrg	}
495181254a7Smrg      else
496181254a7Smrg	{
497181254a7Smrg	  const 'rtype_name` *restrict bbase_y;
498181254a7Smrg	  'rtype_name` s;
499181254a7Smrg
500181254a7Smrg	  for (y = 0; y < ycount; y++)
501181254a7Smrg	    {
502181254a7Smrg	      bbase_y = &bbase[y*bystride];
503181254a7Smrg	      s = ('rtype_name`) 0;
504181254a7Smrg	      for (n = 0; n < count; n++)
505181254a7Smrg		s += abase[n*axstride] * bbase_y[n];
506181254a7Smrg	      dest[y*rystride] = s;
507181254a7Smrg	    }
508181254a7Smrg	}
509181254a7Smrg    }
510181254a7Smrg  else if (GFC_DESCRIPTOR_RANK (a) == 1)
511181254a7Smrg    {
512181254a7Smrg      const 'rtype_name` *restrict bbase_y;
513181254a7Smrg      'rtype_name` s;
514181254a7Smrg
515181254a7Smrg      for (y = 0; y < ycount; y++)
516181254a7Smrg	{
517181254a7Smrg	  bbase_y = &bbase[y*bystride];
518181254a7Smrg	  s = ('rtype_name`) 0;
519181254a7Smrg	  for (n = 0; n < count; n++)
520181254a7Smrg	    s += abase[n*axstride] * bbase_y[n*bxstride];
521181254a7Smrg	  dest[y*rxstride] = s;
522181254a7Smrg	}
523181254a7Smrg    }
524*fb8a8121Smrg  else if (axstride < aystride)
525*fb8a8121Smrg    {
526*fb8a8121Smrg      for (y = 0; y < ycount; y++)
527*fb8a8121Smrg	for (x = 0; x < xcount; x++)
528*fb8a8121Smrg	  dest[x*rxstride + y*rystride] = ('rtype_name`)0;
529*fb8a8121Smrg
530*fb8a8121Smrg      for (y = 0; y < ycount; y++)
531*fb8a8121Smrg	for (n = 0; n < count; n++)
532*fb8a8121Smrg	  for (x = 0; x < xcount; x++)
533*fb8a8121Smrg	    /* dest[x,y] += a[x,n] * b[n,y] */
534*fb8a8121Smrg	    dest[x*rxstride + y*rystride] +=
535*fb8a8121Smrg					abase[x*axstride + n*aystride] *
536*fb8a8121Smrg					bbase[n*bxstride + y*bystride];
537*fb8a8121Smrg    }
538181254a7Smrg  else
539181254a7Smrg    {
540181254a7Smrg      const 'rtype_name` *restrict abase_x;
541181254a7Smrg      const 'rtype_name` *restrict bbase_y;
542181254a7Smrg      'rtype_name` *restrict dest_y;
543181254a7Smrg      'rtype_name` s;
544181254a7Smrg
545181254a7Smrg      for (y = 0; y < ycount; y++)
546181254a7Smrg	{
547181254a7Smrg	  bbase_y = &bbase[y*bystride];
548181254a7Smrg	  dest_y = &dest[y*rystride];
549181254a7Smrg	  for (x = 0; x < xcount; x++)
550181254a7Smrg	    {
551181254a7Smrg	      abase_x = &abase[x*axstride];
552181254a7Smrg	      s = ('rtype_name`) 0;
553181254a7Smrg	      for (n = 0; n < count; n++)
554181254a7Smrg		s += abase_x[n*aystride] * bbase_y[n*bxstride];
555181254a7Smrg	      dest_y[x*rxstride] = s;
556181254a7Smrg	    }
557181254a7Smrg	}
558181254a7Smrg    }
559181254a7Smrg}
560181254a7Smrg#undef POW3
561181254a7Smrg#undef min
562181254a7Smrg#undef max
563181254a7Smrg'
564