xref: /netbsd-src/external/gpl3/gcc/dist/libgfortran/m4/matmul_internal.m4 (revision fb8a8121f28072308659629b86cfb7c449bd93e1)
1`void
2'matmul_name` ('rtype` * const restrict retarray,
3	'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
4	int blas_limit, blas_call gemm)
5{
6  const 'rtype_name` * restrict abase;
7  const 'rtype_name` * restrict bbase;
8  'rtype_name` * restrict dest;
9
10  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
11  index_type x, y, n, count, xcount, ycount;
12
13  assert (GFC_DESCRIPTOR_RANK (a) == 2
14          || GFC_DESCRIPTOR_RANK (b) == 2);
15
16/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
17
18   Either A or B (but not both) can be rank 1:
19
20   o One-dimensional argument A is implicitly treated as a row matrix
21     dimensioned [1,count], so xcount=1.
22
23   o One-dimensional argument B is implicitly treated as a column matrix
24     dimensioned [count, 1], so ycount=1.
25*/
26
27  if (retarray->base_addr == NULL)
28    {
29      if (GFC_DESCRIPTOR_RANK (a) == 1)
30        {
31	  GFC_DIMENSION_SET(retarray->dim[0], 0,
32	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
33        }
34      else if (GFC_DESCRIPTOR_RANK (b) == 1)
35        {
36	  GFC_DIMENSION_SET(retarray->dim[0], 0,
37	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
38        }
39      else
40        {
41	  GFC_DIMENSION_SET(retarray->dim[0], 0,
42	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
43
44          GFC_DIMENSION_SET(retarray->dim[1], 0,
45	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
46			    GFC_DESCRIPTOR_EXTENT(retarray,0));
47        }
48
49      retarray->base_addr
50	= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
51      retarray->offset = 0;
52    }
53  else if (unlikely (compile_options.bounds_check))
54    {
55      index_type ret_extent, arg_extent;
56
57      if (GFC_DESCRIPTOR_RANK (a) == 1)
58	{
59	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
60	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
61	  if (arg_extent != ret_extent)
62	    runtime_error ("Array bound mismatch for dimension 1 of "
63	    		   "array (%ld/%ld) ",
64			   (long int) ret_extent, (long int) arg_extent);
65	}
66      else if (GFC_DESCRIPTOR_RANK (b) == 1)
67	{
68	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
69	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
70	  if (arg_extent != ret_extent)
71	    runtime_error ("Array bound mismatch for dimension 1 of "
72	    		   "array (%ld/%ld) ",
73			   (long int) ret_extent, (long int) arg_extent);
74	}
75      else
76	{
77	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
78	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
79	  if (arg_extent != ret_extent)
80	    runtime_error ("Array bound mismatch for dimension 1 of "
81	    		   "array (%ld/%ld) ",
82			   (long int) ret_extent, (long int) arg_extent);
83
84	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
85	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
86	  if (arg_extent != ret_extent)
87	    runtime_error ("Array bound mismatch for dimension 2 of "
88	    		   "array (%ld/%ld) ",
89			   (long int) ret_extent, (long int) arg_extent);
90	}
91    }
92'
93sinclude(`matmul_asm_'rtype_code`.m4')dnl
94`
95  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
96    {
97      /* One-dimensional result may be addressed in the code below
98	 either as a row or a column matrix. We want both cases to
99	 work. */
100      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
101    }
102  else
103    {
104      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
105      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
106    }
107
108
109  if (GFC_DESCRIPTOR_RANK (a) == 1)
110    {
111      /* Treat it as a a row matrix A[1,count]. */
112      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
113      aystride = 1;
114
115      xcount = 1;
116      count = GFC_DESCRIPTOR_EXTENT(a,0);
117    }
118  else
119    {
120      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
121      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
122
123      count = GFC_DESCRIPTOR_EXTENT(a,1);
124      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
125    }
126
127  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
128    {
129      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
130	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
131		       "in dimension 1: is %ld, should be %ld",
132		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
133    }
134
135  if (GFC_DESCRIPTOR_RANK (b) == 1)
136    {
137      /* Treat it as a column matrix B[count,1] */
138      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
139
140      /* bystride should never be used for 1-dimensional b.
141         The value is only used for calculation of the
142         memory by the buffer.  */
143      bystride = 256;
144      ycount = 1;
145    }
146  else
147    {
148      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
149      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
150      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
151    }
152
153  abase = a->base_addr;
154  bbase = b->base_addr;
155  dest = retarray->base_addr;
156
157  /* Now that everything is set up, we perform the multiplication
158     itself.  */
159
160#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
161#define min(a,b) ((a) <= (b) ? (a) : (b))
162#define max(a,b) ((a) >= (b) ? (a) : (b))
163
164  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
165      && (bxstride == 1 || bystride == 1)
166      && (((float) xcount) * ((float) ycount) * ((float) count)
167          > POW3(blas_limit)))
168    {
169      const int m = xcount, n = ycount, k = count, ldc = rystride;
170      const 'rtype_name` one = 1, zero = 0;
171      const int lda = (axstride == 1) ? aystride : axstride,
172		ldb = (bxstride == 1) ? bystride : bxstride;
173
174      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
175	{
176	  assert (gemm != NULL);
177	  const char *transa, *transb;
178	  if (try_blas & 2)
179	    transa = "C";
180	  else
181	    transa = axstride == 1 ? "N" : "T";
182
183	  if (try_blas & 4)
184	    transb = "C";
185	  else
186	    transb = bxstride == 1 ? "N" : "T";
187
188	  gemm (transa, transb , &m,
189		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
190		&ldc, 1, 1);
191	  return;
192	}
193    }
194
195  if (rxstride == 1 && axstride == 1 && bxstride == 1
196      && GFC_DESCRIPTOR_RANK (b) != 1)
197    {
198      /* This block of code implements a tuned matmul, derived from
199         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
200
201               Bo Kagstrom and Per Ling
202               Department of Computing Science
203               Umea University
204               S-901 87 Umea, Sweden
205
206	 from netlib.org, translated to C, and modified for matmul.m4.  */
207
208      const 'rtype_name` *a, *b;
209      'rtype_name` *c;
210      const index_type m = xcount, n = ycount, k = count;
211
212      /* System generated locals */
213      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
214		 i1, i2, i3, i4, i5, i6;
215
216      /* Local variables */
217      'rtype_name` f11, f12, f21, f22, f31, f32, f41, f42,
218		 f13, f14, f23, f24, f33, f34, f43, f44;
219      index_type i, j, l, ii, jj, ll;
220      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
221      'rtype_name` *t1;
222
223      a = abase;
224      b = bbase;
225      c = retarray->base_addr;
226
227      /* Parameter adjustments */
228      c_dim1 = rystride;
229      c_offset = 1 + c_dim1;
230      c -= c_offset;
231      a_dim1 = aystride;
232      a_offset = 1 + a_dim1;
233      a -= a_offset;
234      b_dim1 = bystride;
235      b_offset = 1 + b_dim1;
236      b -= b_offset;
237
238      /* Empty c first.  */
239      for (j=1; j<=n; j++)
240	for (i=1; i<=m; i++)
241	  c[i + j * c_dim1] = ('rtype_name`)0;
242
243      /* Early exit if possible */
244      if (m == 0 || n == 0 || k == 0)
245	return;
246
247      /* Adjust size of t1 to what is needed.  */
248      index_type t1_dim, a_sz;
249      if (aystride == 1)
250        a_sz = rystride;
251      else
252        a_sz = a_dim1;
253
254      t1_dim = a_sz * 256 + b_dim1;
255      if (t1_dim > 65536)
256	t1_dim = 65536;
257
258      t1 = malloc (t1_dim * sizeof('rtype_name`));
259
260      /* Start turning the crank. */
261      i1 = n;
262      for (jj = 1; jj <= i1; jj += 512)
263	{
264	  /* Computing MIN */
265	  i2 = 512;
266	  i3 = n - jj + 1;
267	  jsec = min(i2,i3);
268	  ujsec = jsec - jsec % 4;
269	  i2 = k;
270	  for (ll = 1; ll <= i2; ll += 256)
271	    {
272	      /* Computing MIN */
273	      i3 = 256;
274	      i4 = k - ll + 1;
275	      lsec = min(i3,i4);
276	      ulsec = lsec - lsec % 2;
277
278	      i3 = m;
279	      for (ii = 1; ii <= i3; ii += 256)
280		{
281		  /* Computing MIN */
282		  i4 = 256;
283		  i5 = m - ii + 1;
284		  isec = min(i4,i5);
285		  uisec = isec - isec % 2;
286		  i4 = ll + ulsec - 1;
287		  for (l = ll; l <= i4; l += 2)
288		    {
289		      i5 = ii + uisec - 1;
290		      for (i = ii; i <= i5; i += 2)
291			{
292			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
293					a[i + l * a_dim1];
294			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
295					a[i + (l + 1) * a_dim1];
296			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
297					a[i + 1 + l * a_dim1];
298			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
299					a[i + 1 + (l + 1) * a_dim1];
300			}
301		      if (uisec < isec)
302			{
303			  t1[l - ll + 1 + (isec << 8) - 257] =
304				    a[ii + isec - 1 + l * a_dim1];
305			  t1[l - ll + 2 + (isec << 8) - 257] =
306				    a[ii + isec - 1 + (l + 1) * a_dim1];
307			}
308		    }
309		  if (ulsec < lsec)
310		    {
311		      i4 = ii + isec - 1;
312		      for (i = ii; i<= i4; ++i)
313			{
314			  t1[lsec + ((i - ii + 1) << 8) - 257] =
315				    a[i + (ll + lsec - 1) * a_dim1];
316			}
317		    }
318
319		  uisec = isec - isec % 4;
320		  i4 = jj + ujsec - 1;
321		  for (j = jj; j <= i4; j += 4)
322		    {
323		      i5 = ii + uisec - 1;
324		      for (i = ii; i <= i5; i += 4)
325			{
326			  f11 = c[i + j * c_dim1];
327			  f21 = c[i + 1 + j * c_dim1];
328			  f12 = c[i + (j + 1) * c_dim1];
329			  f22 = c[i + 1 + (j + 1) * c_dim1];
330			  f13 = c[i + (j + 2) * c_dim1];
331			  f23 = c[i + 1 + (j + 2) * c_dim1];
332			  f14 = c[i + (j + 3) * c_dim1];
333			  f24 = c[i + 1 + (j + 3) * c_dim1];
334			  f31 = c[i + 2 + j * c_dim1];
335			  f41 = c[i + 3 + j * c_dim1];
336			  f32 = c[i + 2 + (j + 1) * c_dim1];
337			  f42 = c[i + 3 + (j + 1) * c_dim1];
338			  f33 = c[i + 2 + (j + 2) * c_dim1];
339			  f43 = c[i + 3 + (j + 2) * c_dim1];
340			  f34 = c[i + 2 + (j + 3) * c_dim1];
341			  f44 = c[i + 3 + (j + 3) * c_dim1];
342			  i6 = ll + lsec - 1;
343			  for (l = ll; l <= i6; ++l)
344			    {
345			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
346				      * b[l + j * b_dim1];
347			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
348				      * b[l + j * b_dim1];
349			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
350				      * b[l + (j + 1) * b_dim1];
351			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
352				      * b[l + (j + 1) * b_dim1];
353			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
354				      * b[l + (j + 2) * b_dim1];
355			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
356				      * b[l + (j + 2) * b_dim1];
357			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
358				      * b[l + (j + 3) * b_dim1];
359			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
360				      * b[l + (j + 3) * b_dim1];
361			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
362				      * b[l + j * b_dim1];
363			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
364				      * b[l + j * b_dim1];
365			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
366				      * b[l + (j + 1) * b_dim1];
367			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
368				      * b[l + (j + 1) * b_dim1];
369			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
370				      * b[l + (j + 2) * b_dim1];
371			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
372				      * b[l + (j + 2) * b_dim1];
373			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
374				      * b[l + (j + 3) * b_dim1];
375			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
376				      * b[l + (j + 3) * b_dim1];
377			    }
378			  c[i + j * c_dim1] = f11;
379			  c[i + 1 + j * c_dim1] = f21;
380			  c[i + (j + 1) * c_dim1] = f12;
381			  c[i + 1 + (j + 1) * c_dim1] = f22;
382			  c[i + (j + 2) * c_dim1] = f13;
383			  c[i + 1 + (j + 2) * c_dim1] = f23;
384			  c[i + (j + 3) * c_dim1] = f14;
385			  c[i + 1 + (j + 3) * c_dim1] = f24;
386			  c[i + 2 + j * c_dim1] = f31;
387			  c[i + 3 + j * c_dim1] = f41;
388			  c[i + 2 + (j + 1) * c_dim1] = f32;
389			  c[i + 3 + (j + 1) * c_dim1] = f42;
390			  c[i + 2 + (j + 2) * c_dim1] = f33;
391			  c[i + 3 + (j + 2) * c_dim1] = f43;
392			  c[i + 2 + (j + 3) * c_dim1] = f34;
393			  c[i + 3 + (j + 3) * c_dim1] = f44;
394			}
395		      if (uisec < isec)
396			{
397			  i5 = ii + isec - 1;
398			  for (i = ii + uisec; i <= i5; ++i)
399			    {
400			      f11 = c[i + j * c_dim1];
401			      f12 = c[i + (j + 1) * c_dim1];
402			      f13 = c[i + (j + 2) * c_dim1];
403			      f14 = c[i + (j + 3) * c_dim1];
404			      i6 = ll + lsec - 1;
405			      for (l = ll; l <= i6; ++l)
406				{
407				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
408					  257] * b[l + j * b_dim1];
409				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
410					  257] * b[l + (j + 1) * b_dim1];
411				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
412					  257] * b[l + (j + 2) * b_dim1];
413				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
414					  257] * b[l + (j + 3) * b_dim1];
415				}
416			      c[i + j * c_dim1] = f11;
417			      c[i + (j + 1) * c_dim1] = f12;
418			      c[i + (j + 2) * c_dim1] = f13;
419			      c[i + (j + 3) * c_dim1] = f14;
420			    }
421			}
422		    }
423		  if (ujsec < jsec)
424		    {
425		      i4 = jj + jsec - 1;
426		      for (j = jj + ujsec; j <= i4; ++j)
427			{
428			  i5 = ii + uisec - 1;
429			  for (i = ii; i <= i5; i += 4)
430			    {
431			      f11 = c[i + j * c_dim1];
432			      f21 = c[i + 1 + j * c_dim1];
433			      f31 = c[i + 2 + j * c_dim1];
434			      f41 = c[i + 3 + j * c_dim1];
435			      i6 = ll + lsec - 1;
436			      for (l = ll; l <= i6; ++l)
437				{
438				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
439					  257] * b[l + j * b_dim1];
440				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
441					  257] * b[l + j * b_dim1];
442				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
443					  257] * b[l + j * b_dim1];
444				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
445					  257] * b[l + j * b_dim1];
446				}
447			      c[i + j * c_dim1] = f11;
448			      c[i + 1 + j * c_dim1] = f21;
449			      c[i + 2 + j * c_dim1] = f31;
450			      c[i + 3 + j * c_dim1] = f41;
451			    }
452			  i5 = ii + isec - 1;
453			  for (i = ii + uisec; i <= i5; ++i)
454			    {
455			      f11 = c[i + j * c_dim1];
456			      i6 = ll + lsec - 1;
457			      for (l = ll; l <= i6; ++l)
458				{
459				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
460					  257] * b[l + j * b_dim1];
461				}
462			      c[i + j * c_dim1] = f11;
463			    }
464			}
465		    }
466		}
467	    }
468	}
469      free(t1);
470      return;
471    }
472  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
473    {
474      if (GFC_DESCRIPTOR_RANK (a) != 1)
475	{
476	  const 'rtype_name` *restrict abase_x;
477	  const 'rtype_name` *restrict bbase_y;
478	  'rtype_name` *restrict dest_y;
479	  'rtype_name` s;
480
481	  for (y = 0; y < ycount; y++)
482	    {
483	      bbase_y = &bbase[y*bystride];
484	      dest_y = &dest[y*rystride];
485	      for (x = 0; x < xcount; x++)
486		{
487		  abase_x = &abase[x*axstride];
488		  s = ('rtype_name`) 0;
489		  for (n = 0; n < count; n++)
490		    s += abase_x[n] * bbase_y[n];
491		  dest_y[x] = s;
492		}
493	    }
494	}
495      else
496	{
497	  const 'rtype_name` *restrict bbase_y;
498	  'rtype_name` s;
499
500	  for (y = 0; y < ycount; y++)
501	    {
502	      bbase_y = &bbase[y*bystride];
503	      s = ('rtype_name`) 0;
504	      for (n = 0; n < count; n++)
505		s += abase[n*axstride] * bbase_y[n];
506	      dest[y*rystride] = s;
507	    }
508	}
509    }
510  else if (GFC_DESCRIPTOR_RANK (a) == 1)
511    {
512      const 'rtype_name` *restrict bbase_y;
513      'rtype_name` s;
514
515      for (y = 0; y < ycount; y++)
516	{
517	  bbase_y = &bbase[y*bystride];
518	  s = ('rtype_name`) 0;
519	  for (n = 0; n < count; n++)
520	    s += abase[n*axstride] * bbase_y[n*bxstride];
521	  dest[y*rxstride] = s;
522	}
523    }
524  else if (axstride < aystride)
525    {
526      for (y = 0; y < ycount; y++)
527	for (x = 0; x < xcount; x++)
528	  dest[x*rxstride + y*rystride] = ('rtype_name`)0;
529
530      for (y = 0; y < ycount; y++)
531	for (n = 0; n < count; n++)
532	  for (x = 0; x < xcount; x++)
533	    /* dest[x,y] += a[x,n] * b[n,y] */
534	    dest[x*rxstride + y*rystride] +=
535					abase[x*axstride + n*aystride] *
536					bbase[n*bxstride + y*bystride];
537    }
538  else
539    {
540      const 'rtype_name` *restrict abase_x;
541      const 'rtype_name` *restrict bbase_y;
542      'rtype_name` *restrict dest_y;
543      'rtype_name` s;
544
545      for (y = 0; y < ycount; y++)
546	{
547	  bbase_y = &bbase[y*bystride];
548	  dest_y = &dest[y*rystride];
549	  for (x = 0; x < xcount; x++)
550	    {
551	      abase_x = &abase[x*axstride];
552	      s = ('rtype_name`) 0;
553	      for (n = 0; n < count; n++)
554		s += abase_x[n*aystride] * bbase_y[n*bxstride];
555	      dest_y[x*rxstride] = s;
556	    }
557	}
558    }
559}
560#undef POW3
561#undef min
562#undef max
563'
564