xref: /netbsd-src/external/gpl3/gcc/dist/libgfortran/generated/bessel_r10.c (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Implementation of the BESSEL_JN and BESSEL_YN transformational
2    function using a recurrence algorithm.
3    Copyright (C) 2010-2022 Free Software Foundation, Inc.
4    Contributed by Tobias Burnus <burnus@net-b.de>
5 
6 This file is part of the GNU Fortran runtime library (libgfortran).
7 
8 Libgfortran is free software; you can redistribute it and/or
9 modify it under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either
11 version 3 of the License, or (at your option) any later version.
12 
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21 
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
25 <http://www.gnu.org/licenses/>.  */
26 
27 #include "libgfortran.h"
28 
29 
30 
31 #define MATHFUNC(funcname) funcname ## l
32 
33 #if defined (HAVE_GFC_REAL_10)
34 
35 
36 
37 #if defined (HAVE_JNL)
38 extern void bessel_jn_r10 (gfc_array_r10 * const restrict ret, int n1,
39 				     int n2, GFC_REAL_10 x);
40 export_proto(bessel_jn_r10);
41 
42 void
bessel_jn_r10(gfc_array_r10 * const restrict ret,int n1,int n2,GFC_REAL_10 x)43 bessel_jn_r10 (gfc_array_r10 * const restrict ret, int n1, int n2, GFC_REAL_10 x)
44 {
45   int i;
46   index_type stride;
47 
48   GFC_REAL_10 last1, last2, x2rev;
49 
50   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
51 
52   if (ret->base_addr == NULL)
53     {
54       size_t size = n2 < n1 ? 0 : n2-n1+1;
55       GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
56       ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_10));
57       ret->offset = 0;
58     }
59 
60   if (unlikely (n2 < n1))
61     return;
62 
63   if (unlikely (compile_options.bounds_check)
64       && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
65     runtime_error("Incorrect extent in return value of BESSEL_JN "
66 		  "(%ld vs. %ld)", (long int) n2-n1,
67 		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
68 
69   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
70 
71   if (unlikely (x == 0))
72     {
73       ret->base_addr[0] = 1;
74       for (i = 1; i <= n2-n1; i++)
75         ret->base_addr[i*stride] = 0;
76       return;
77     }
78 
79   last1 = MATHFUNC(jn) (n2, x);
80   ret->base_addr[(n2-n1)*stride] = last1;
81 
82   if (n1 == n2)
83     return;
84 
85   last2 = MATHFUNC(jn) (n2 - 1, x);
86   ret->base_addr[(n2-n1-1)*stride] = last2;
87 
88   if (n1 + 1 == n2)
89     return;
90 
91   x2rev = GFC_REAL_10_LITERAL(2.)/x;
92 
93   for (i = n2-n1-2; i >= 0; i--)
94     {
95       ret->base_addr[i*stride] = x2rev * (i+1+n1) * last2 - last1;
96       last1 = last2;
97       last2 = ret->base_addr[i*stride];
98     }
99 }
100 
101 #endif
102 
103 #if defined (HAVE_YNL)
104 extern void bessel_yn_r10 (gfc_array_r10 * const restrict ret,
105 				     int n1, int n2, GFC_REAL_10 x);
106 export_proto(bessel_yn_r10);
107 
108 void
bessel_yn_r10(gfc_array_r10 * const restrict ret,int n1,int n2,GFC_REAL_10 x)109 bessel_yn_r10 (gfc_array_r10 * const restrict ret, int n1, int n2,
110 			 GFC_REAL_10 x)
111 {
112   int i;
113   index_type stride;
114 
115   GFC_REAL_10 last1, last2, x2rev;
116 
117   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
118 
119   if (ret->base_addr == NULL)
120     {
121       size_t size = n2 < n1 ? 0 : n2-n1+1;
122       GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
123       ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_10));
124       ret->offset = 0;
125     }
126 
127   if (unlikely (n2 < n1))
128     return;
129 
130   if (unlikely (compile_options.bounds_check)
131       && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
132     runtime_error("Incorrect extent in return value of BESSEL_JN "
133 		  "(%ld vs. %ld)", (long int) n2-n1,
134 		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
135 
136   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
137 
138   if (unlikely (x == 0))
139     {
140       for (i = 0; i <= n2-n1; i++)
141 #if defined(GFC_REAL_10_INFINITY)
142         ret->base_addr[i*stride] = -GFC_REAL_10_INFINITY;
143 #else
144         ret->base_addr[i*stride] = -GFC_REAL_10_HUGE;
145 #endif
146       return;
147     }
148 
149   last1 = MATHFUNC(yn) (n1, x);
150   ret->base_addr[0] = last1;
151 
152   if (n1 == n2)
153     return;
154 
155   last2 = MATHFUNC(yn) (n1 + 1, x);
156   ret->base_addr[1*stride] = last2;
157 
158   if (n1 + 1 == n2)
159     return;
160 
161   x2rev = GFC_REAL_10_LITERAL(2.)/x;
162 
163   for (i = 2; i <= n2 - n1; i++)
164     {
165 #if defined(GFC_REAL_10_INFINITY)
166       if (unlikely (last2 == -GFC_REAL_10_INFINITY))
167 	{
168 	  ret->base_addr[i*stride] = -GFC_REAL_10_INFINITY;
169 	}
170       else
171 #endif
172 	{
173 	  ret->base_addr[i*stride] = x2rev * (i-1+n1) * last2 - last1;
174 	  last1 = last2;
175 	  last2 = ret->base_addr[i*stride];
176 	}
177     }
178 }
179 #endif
180 
181 #endif
182 
183