xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/ext/bitmap_allocator.h (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/bitmap_allocator.h
26  *  This file is a GNU extension to the Standard C++ Library.
27  */
28 
29 #ifndef _BITMAP_ALLOCATOR_H
30 #define _BITMAP_ALLOCATOR_H 1
31 
32 #include <utility> // For std::pair.
33 #include <bits/functexcept.h> // For __throw_bad_alloc().
34 #include <bits/stl_function.h> // For greater_equal, and less_equal.
35 #include <new> // For operator new.
36 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37 #include <ext/concurrence.h>
38 #include <bits/move.h>
39 
40 /** @brief The constant in the expression below is the alignment
41  * required in bytes.
42  */
43 #define _BALLOC_ALIGN_BYTES 8
44 
_GLIBCXX_VISIBILITY(default)45 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46 {
47 _GLIBCXX_BEGIN_NAMESPACE_VERSION
48 
49   namespace __detail
50   {
51     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
52      *
53      *  @brief  __mini_vector<> is a stripped down version of the
54      *  full-fledged std::vector<>.
55      *
56      *  It is to be used only for built-in types or PODs. Notable
57      *  differences are:
58      *
59      *  1. Not all accessor functions are present.
60      *  2. Used ONLY for PODs.
61      *  3. No Allocator template argument. Uses ::operator new() to get
62      *  memory, and ::operator delete() to free it.
63      *  Caveat: The dtor does NOT free the memory allocated, so this a
64      *  memory-leaking vector!
65      */
66     template<typename _Tp>
67       class __mini_vector
68       {
69 	__mini_vector(const __mini_vector&);
70 	__mini_vector& operator=(const __mini_vector&);
71 
72       public:
73 	typedef _Tp value_type;
74 	typedef _Tp* pointer;
75 	typedef _Tp& reference;
76 	typedef const _Tp& const_reference;
77 	typedef std::size_t size_type;
78 	typedef std::ptrdiff_t difference_type;
79 	typedef pointer iterator;
80 
81       private:
82 	pointer _M_start;
83 	pointer _M_finish;
84 	pointer _M_end_of_storage;
85 
86 	size_type
87 	_M_space_left() const throw()
88 	{ return _M_end_of_storage - _M_finish; }
89 
90 	_GLIBCXX_NODISCARD pointer
91 	allocate(size_type __n)
92 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
93 
94 	void
95 	deallocate(pointer __p, size_type)
96 	{ ::operator delete(__p); }
97 
98       public:
99 	// Members used: size(), push_back(), pop_back(),
100 	// insert(iterator, const_reference), erase(iterator),
101 	// begin(), end(), back(), operator[].
102 
103 	__mini_vector()
104         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
105 
106 	size_type
107 	size() const throw()
108 	{ return _M_finish - _M_start; }
109 
110 	iterator
111 	begin() const throw()
112 	{ return this->_M_start; }
113 
114 	iterator
115 	end() const throw()
116 	{ return this->_M_finish; }
117 
118 	reference
119 	back() const throw()
120 	{ return *(this->end() - 1); }
121 
122 	reference
123 	operator[](const size_type __pos) const throw()
124 	{ return this->_M_start[__pos]; }
125 
126 	void
127 	insert(iterator __pos, const_reference __x);
128 
129 	void
130 	push_back(const_reference __x)
131 	{
132 	  if (this->_M_space_left())
133 	    {
134 	      *this->end() = __x;
135 	      ++this->_M_finish;
136 	    }
137 	  else
138 	    this->insert(this->end(), __x);
139 	}
140 
141 	void
142 	pop_back() throw()
143 	{ --this->_M_finish; }
144 
145 	void
146 	erase(iterator __pos) throw();
147 
148 	void
149 	clear() throw()
150 	{ this->_M_finish = this->_M_start; }
151       };
152 
153     // Out of line function definitions.
154     template<typename _Tp>
155       void __mini_vector<_Tp>::
156       insert(iterator __pos, const_reference __x)
157       {
158 	if (this->_M_space_left())
159 	  {
160 	    size_type __to_move = this->_M_finish - __pos;
161 	    iterator __dest = this->end();
162 	    iterator __src = this->end() - 1;
163 
164 	    ++this->_M_finish;
165 	    while (__to_move)
166 	      {
167 		*__dest = *__src;
168 		--__dest; --__src; --__to_move;
169 	      }
170 	    *__pos = __x;
171 	  }
172 	else
173 	  {
174 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
175 	    iterator __new_start = this->allocate(__new_size);
176 	    iterator __first = this->begin();
177 	    iterator __start = __new_start;
178 	    while (__first != __pos)
179 	      {
180 		*__start = *__first;
181 		++__start; ++__first;
182 	      }
183 	    *__start = __x;
184 	    ++__start;
185 	    while (__first != this->end())
186 	      {
187 		*__start = *__first;
188 		++__start; ++__first;
189 	      }
190 	    if (this->_M_start)
191 	      this->deallocate(this->_M_start, this->size());
192 
193 	    this->_M_start = __new_start;
194 	    this->_M_finish = __start;
195 	    this->_M_end_of_storage = this->_M_start + __new_size;
196 	  }
197       }
198 
199     template<typename _Tp>
200       void __mini_vector<_Tp>::
201       erase(iterator __pos) throw()
202       {
203 	while (__pos + 1 != this->end())
204 	  {
205 	    *__pos = __pos[1];
206 	    ++__pos;
207 	  }
208 	--this->_M_finish;
209       }
210 
211 
212     template<typename _Tp>
213       struct __mv_iter_traits
214       {
215 	typedef typename _Tp::value_type value_type;
216 	typedef typename _Tp::difference_type difference_type;
217       };
218 
219     template<typename _Tp>
220       struct __mv_iter_traits<_Tp*>
221       {
222 	typedef _Tp value_type;
223 	typedef std::ptrdiff_t difference_type;
224       };
225 
226     enum
227       {
228 	bits_per_byte = 8,
229 	bits_per_block = sizeof(std::size_t) * std::size_t(bits_per_byte)
230       };
231 
232     template<typename _ForwardIterator, typename _Tp, typename _Compare>
233       _ForwardIterator
234       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
235 		    const _Tp& __val, _Compare __comp)
236       {
237 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
238 	  _DistanceType;
239 
240 	_DistanceType __len = __last - __first;
241 	_DistanceType __half;
242 	_ForwardIterator __middle;
243 
244 	while (__len > 0)
245 	  {
246 	    __half = __len >> 1;
247 	    __middle = __first;
248 	    __middle += __half;
249 	    if (__comp(*__middle, __val))
250 	      {
251 		__first = __middle;
252 		++__first;
253 		__len = __len - __half - 1;
254 	      }
255 	    else
256 	      __len = __half;
257 	  }
258 	return __first;
259       }
260 
261     /** @brief The number of Blocks pointed to by the address pair
262      *  passed to the function.
263      */
264     template<typename _AddrPair>
265       inline std::size_t
266       __num_blocks(_AddrPair __ap)
267       { return (__ap.second - __ap.first) + 1; }
268 
269     /** @brief The number of Bit-maps pointed to by the address pair
270      *  passed to the function.
271      */
272     template<typename _AddrPair>
273       inline std::size_t
274       __num_bitmaps(_AddrPair __ap)
275       { return __num_blocks(__ap) / std::size_t(bits_per_block); }
276 
277     // _Tp should be a pointer type.
278     template<typename _Tp>
279       class _Inclusive_between
280       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
281       {
282 	typedef _Tp pointer;
283 	pointer _M_ptr_value;
284 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
285 
286       public:
287 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
288 	{ }
289 
290 	bool
291 	operator()(_Block_pair __bp) const throw()
292 	{
293 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
294 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
295 	    return true;
296 	  else
297 	    return false;
298 	}
299       };
300 
301     // Used to pass a Functor to functions by reference.
302     template<typename _Functor>
303       class _Functor_Ref
304       : public std::unary_function<typename _Functor::argument_type,
305 				   typename _Functor::result_type>
306       {
307 	_Functor& _M_fref;
308 
309       public:
310 	typedef typename _Functor::argument_type argument_type;
311 	typedef typename _Functor::result_type result_type;
312 
313 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
314 	{ }
315 
316 	result_type
317 	operator()(argument_type __arg)
318 	{ return _M_fref(__arg); }
319       };
320 
321     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
322      *
323      *  @brief  The class which acts as a predicate for applying the
324      *  first-fit memory allocation policy for the bitmap allocator.
325      */
326     // _Tp should be a pointer type, and _Alloc is the Allocator for
327     // the vector.
328     template<typename _Tp>
329       class _Ffit_finder
330       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
331       {
332 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
333 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
334 	typedef typename _BPVector::difference_type _Counter_type;
335 
336 	std::size_t* _M_pbitmap;
337 	_Counter_type _M_data_offset;
338 
339       public:
340 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
341 	{ }
342 
343 	bool
344 	operator()(_Block_pair __bp) throw()
345 	{
346 	  using std::size_t;
347 	  // Set the _rover to the last physical location bitmap,
348 	  // which is the bitmap which belongs to the first free
349 	  // block. Thus, the bitmaps are in exact reverse order of
350 	  // the actual memory layout. So, we count down the bitmaps,
351 	  // which is the same as moving up the memory.
352 
353 	  // If the used count stored at the start of the Bit Map headers
354 	  // is equal to the number of Objects that the current Block can
355 	  // store, then there is definitely no space for another single
356 	  // object, so just return false.
357 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
358 
359 	  if (*(reinterpret_cast<size_t*>
360 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
361 	    return false;
362 
363 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
364 
365 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
366 	    {
367 	      _M_data_offset = __i;
368 	      if (*__rover)
369 		{
370 		  _M_pbitmap = __rover;
371 		  return true;
372 		}
373 	      --__rover;
374 	    }
375 	  return false;
376 	}
377 
378 	std::size_t*
379 	_M_get() const throw()
380 	{ return _M_pbitmap; }
381 
382 	_Counter_type
383 	_M_offset() const throw()
384 	{ return _M_data_offset * std::size_t(bits_per_block); }
385       };
386 
387     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
388      *
389      *  @brief  The bitmap counter which acts as the bitmap
390      *  manipulator, and manages the bit-manipulation functions and
391      *  the searching and identification functions on the bit-map.
392      */
393     // _Tp should be a pointer type.
394     template<typename _Tp>
395       class _Bitmap_counter
396       {
397 	typedef typename
398 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
399 	typedef typename _BPVector::size_type _Index_type;
400 	typedef _Tp pointer;
401 
402 	_BPVector& _M_vbp;
403 	std::size_t* _M_curr_bmap;
404 	std::size_t* _M_last_bmap_in_block;
405 	_Index_type _M_curr_index;
406 
407       public:
408 	// Use the 2nd parameter with care. Make sure that such an
409 	// entry exists in the vector before passing that particular
410 	// index to this ctor.
411 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
412 	{ this->_M_reset(__index); }
413 
414 	void
415 	_M_reset(long __index = -1) throw()
416 	{
417 	  if (__index == -1)
418 	    {
419 	      _M_curr_bmap = 0;
420 	      _M_curr_index = static_cast<_Index_type>(-1);
421 	      return;
422 	    }
423 
424 	  _M_curr_index = __index;
425 	  _M_curr_bmap = reinterpret_cast<std::size_t*>
426 	    (_M_vbp[_M_curr_index].first) - 1;
427 
428 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
429 
430 	  _M_last_bmap_in_block = _M_curr_bmap
431 	    - ((_M_vbp[_M_curr_index].second
432 		- _M_vbp[_M_curr_index].first + 1)
433 	       / std::size_t(bits_per_block) - 1);
434 	}
435 
436 	// Dangerous Function! Use with extreme care. Pass to this
437 	// function ONLY those values that are known to be correct,
438 	// otherwise this will mess up big time.
439 	void
440 	_M_set_internal_bitmap(std::size_t* __new_internal_marker) throw()
441 	{ _M_curr_bmap = __new_internal_marker; }
442 
443 	bool
444 	_M_finished() const throw()
445 	{ return(_M_curr_bmap == 0); }
446 
447 	_Bitmap_counter&
448 	operator++() throw()
449 	{
450 	  if (_M_curr_bmap == _M_last_bmap_in_block)
451 	    {
452 	      if (++_M_curr_index == _M_vbp.size())
453 		_M_curr_bmap = 0;
454 	      else
455 		this->_M_reset(_M_curr_index);
456 	    }
457 	  else
458 	    --_M_curr_bmap;
459 	  return *this;
460 	}
461 
462 	std::size_t*
463 	_M_get() const throw()
464 	{ return _M_curr_bmap; }
465 
466 	pointer
467 	_M_base() const throw()
468 	{ return _M_vbp[_M_curr_index].first; }
469 
470 	_Index_type
471 	_M_offset() const throw()
472 	{
473 	  return std::size_t(bits_per_block)
474 	    * ((reinterpret_cast<std::size_t*>(this->_M_base())
475 		- _M_curr_bmap) - 1);
476 	}
477 
478 	_Index_type
479 	_M_where() const throw()
480 	{ return _M_curr_index; }
481       };
482 
483     /** @brief  Mark a memory address as allocated by re-setting the
484      *  corresponding bit in the bit-map.
485      */
486     inline void
487     __bit_allocate(std::size_t* __pbmap, std::size_t __pos) throw()
488     {
489       std::size_t __mask = 1 << __pos;
490       __mask = ~__mask;
491       *__pbmap &= __mask;
492     }
493 
494     /** @brief  Mark a memory address as free by setting the
495      *  corresponding bit in the bit-map.
496      */
497     inline void
498     __bit_free(std::size_t* __pbmap, std::size_t __pos) throw()
499     {
500       std::size_t __mask = 1 << __pos;
501       *__pbmap |= __mask;
502     }
503   } // namespace __detail
504 
505   /** @brief  Generic Version of the bsf instruction.
506    */
507   inline std::size_t
508   _Bit_scan_forward(std::size_t __num)
509   { return static_cast<std::size_t>(__builtin_ctzl(__num)); }
510 
511   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
512    *
513    *  @brief  The free list class for managing chunks of memory to be
514    *  given to and returned by the bitmap_allocator.
515    */
516   class free_list
517   {
518   public:
519     typedef std::size_t* 			value_type;
520     typedef __detail::__mini_vector<value_type> vector_type;
521     typedef vector_type::iterator 		iterator;
522     typedef __mutex				__mutex_type;
523 
524   private:
525     struct _LT_pointer_compare
526     {
527       bool
528       operator()(const std::size_t* __pui,
529 		 const std::size_t __cui) const throw()
530       { return *__pui < __cui; }
531     };
532 
533 #if defined __GTHREADS
534     __mutex_type&
535     _M_get_mutex()
536     {
537       static __mutex_type _S_mutex;
538       return _S_mutex;
539     }
540 #endif
541 
542     vector_type&
543     _M_get_free_list()
544     {
545       static vector_type _S_free_list;
546       return _S_free_list;
547     }
548 
549     /** @brief  Performs validation of memory based on their size.
550      *
551      *  @param  __addr The pointer to the memory block to be
552      *  validated.
553      *
554      *  Validates the memory block passed to this function and
555      *  appropriately performs the action of managing the free list of
556      *  blocks by adding this block to the free list or deleting this
557      *  or larger blocks from the free list.
558      */
559     void
560     _M_validate(std::size_t* __addr) throw()
561     {
562       vector_type& __free_list = _M_get_free_list();
563       const vector_type::size_type __max_size = 64;
564       if (__free_list.size() >= __max_size)
565 	{
566 	  // Ok, the threshold value has been reached.  We determine
567 	  // which block to remove from the list of free blocks.
568 	  if (*__addr >= *__free_list.back())
569 	    {
570 	      // Ok, the new block is greater than or equal to the
571 	      // last block in the list of free blocks. We just free
572 	      // the new block.
573 	      ::operator delete(static_cast<void*>(__addr));
574 	      return;
575 	    }
576 	  else
577 	    {
578 	      // Deallocate the last block in the list of free lists,
579 	      // and insert the new one in its correct position.
580 	      ::operator delete(static_cast<void*>(__free_list.back()));
581 	      __free_list.pop_back();
582 	    }
583 	}
584 
585       // Just add the block to the list of free lists unconditionally.
586       iterator __temp = __detail::__lower_bound
587 	(__free_list.begin(), __free_list.end(),
588 	 *__addr, _LT_pointer_compare());
589 
590       // We may insert the new free list before _temp;
591       __free_list.insert(__temp, __addr);
592     }
593 
594     /** @brief  Decides whether the wastage of memory is acceptable for
595      *  the current memory request and returns accordingly.
596      *
597      *  @param __block_size The size of the block available in the free
598      *  list.
599      *
600      *  @param __required_size The required size of the memory block.
601      *
602      *  @return true if the wastage incurred is acceptable, else returns
603      *  false.
604      */
605     bool
606     _M_should_i_give(std::size_t __block_size,
607 		     std::size_t __required_size) throw()
608     {
609       const std::size_t __max_wastage_percentage = 36;
610       if (__block_size >= __required_size &&
611 	  (((__block_size - __required_size) * 100 / __block_size)
612 	   < __max_wastage_percentage))
613 	return true;
614       else
615 	return false;
616     }
617 
618   public:
619     /** @brief This function returns the block of memory to the
620      *  internal free list.
621      *
622      *  @param  __addr The pointer to the memory block that was given
623      *  by a call to the _M_get function.
624      */
625     inline void
626     _M_insert(std::size_t* __addr) throw()
627     {
628 #if defined __GTHREADS
629       __scoped_lock __bfl_lock(_M_get_mutex());
630 #endif
631       // Call _M_validate to decide what should be done with
632       // this particular free list.
633       this->_M_validate(reinterpret_cast<std::size_t*>(__addr) - 1);
634       // See discussion as to why this is 1!
635     }
636 
637     /** @brief  This function gets a block of memory of the specified
638      *  size from the free list.
639      *
640      *  @param  __sz The size in bytes of the memory required.
641      *
642      *  @return  A pointer to the new memory block of size at least
643      *  equal to that requested.
644      */
645     std::size_t*
646     _M_get(std::size_t __sz) _GLIBCXX_THROW(std::bad_alloc);
647 
648     /** @brief  This function just clears the internal Free List, and
649      *  gives back all the memory to the OS.
650      */
651     void
652     _M_clear();
653   };
654 
655 
656   // Forward declare the class.
657   template<typename _Tp>
658     class bitmap_allocator;
659 
660   // Specialize for void:
661   template<>
662     class bitmap_allocator<void>
663     {
664     public:
665       typedef void*       pointer;
666       typedef const void* const_pointer;
667 
668       // Reference-to-void members are impossible.
669       typedef void  value_type;
670       template<typename _Tp1>
671         struct rebind
672 	{
673 	  typedef bitmap_allocator<_Tp1> other;
674 	};
675     };
676 
677   /**
678    * @brief Bitmap Allocator, primary template.
679    * @ingroup allocators
680    */
681   template<typename _Tp>
682     class bitmap_allocator : private free_list
683     {
684     public:
685       typedef std::size_t    		size_type;
686       typedef std::ptrdiff_t 		difference_type;
687       typedef _Tp*        		pointer;
688       typedef const _Tp*  		const_pointer;
689       typedef _Tp&        		reference;
690       typedef const _Tp&  		const_reference;
691       typedef _Tp         		value_type;
692       typedef free_list::__mutex_type 	__mutex_type;
693 
694       template<typename _Tp1>
695         struct rebind
696 	{
697 	  typedef bitmap_allocator<_Tp1> other;
698 	};
699 
700 #if __cplusplus >= 201103L
701       // _GLIBCXX_RESOLVE_LIB_DEFECTS
702       // 2103. propagate_on_container_move_assignment
703       typedef std::true_type propagate_on_container_move_assignment;
704 #endif
705 
706     private:
707       template<std::size_t _BSize, std::size_t _AlignSize>
708         struct aligned_size
709 	{
710 	  enum
711 	    {
712 	      modulus = _BSize % _AlignSize,
713 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
714 	    };
715 	};
716 
717       struct _Alloc_block
718       {
719 	char __M_unused[aligned_size<sizeof(value_type),
720 			_BALLOC_ALIGN_BYTES>::value];
721       };
722 
723 
724       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
725 
726       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
727       typedef typename _BPVector::iterator _BPiter;
728 
729       template<typename _Predicate>
730         static _BPiter
731         _S_find(_Predicate __p)
732         {
733 	  _BPiter __first = _S_mem_blocks.begin();
734 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
735 	    ++__first;
736 	  return __first;
737 	}
738 
739 #if defined _GLIBCXX_DEBUG
740       // Complexity: O(lg(N)). Where, N is the number of block of size
741       // sizeof(value_type).
742       void
743       _S_check_for_free_blocks() throw()
744       {
745 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
746 	_BPiter __bpi = _S_find(_FFF());
747 
748 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
749       }
750 #endif
751 
752       /** @brief  Responsible for exponentially growing the internal
753        *  memory pool.
754        *
755        *  @throw  std::bad_alloc. If memory cannot be allocated.
756        *
757        *  Complexity: O(1), but internally depends upon the
758        *  complexity of the function free_list::_M_get. The part where
759        *  the bitmap headers are written has complexity: O(X),where X
760        *  is the number of blocks of size sizeof(value_type) within
761        *  the newly acquired block. Having a tight bound.
762        */
763       void
764       _S_refill_pool() _GLIBCXX_THROW(std::bad_alloc)
765       {
766 	using std::size_t;
767 #if defined _GLIBCXX_DEBUG
768 	_S_check_for_free_blocks();
769 #endif
770 
771 	const size_t __num_bitmaps = (_S_block_size
772 				      / size_t(__detail::bits_per_block));
773 	const size_t __size_to_allocate = sizeof(size_t)
774 	  + _S_block_size * sizeof(_Alloc_block)
775 	  + __num_bitmaps * sizeof(size_t);
776 
777 	size_t* __temp =
778 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
779 	*__temp = 0;
780 	++__temp;
781 
782 	// The Header information goes at the Beginning of the Block.
783 	_Block_pair __bp =
784 	  std::make_pair(reinterpret_cast<_Alloc_block*>
785 			 (__temp + __num_bitmaps),
786 			 reinterpret_cast<_Alloc_block*>
787 			 (__temp + __num_bitmaps)
788 			 + _S_block_size - 1);
789 
790 	// Fill the Vector with this information.
791 	_S_mem_blocks.push_back(__bp);
792 
793 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
794 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
795 
796 	_S_block_size *= 2;
797       }
798 
799       static _BPVector _S_mem_blocks;
800       static std::size_t _S_block_size;
801       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
802       static typename _BPVector::size_type _S_last_dealloc_index;
803 #if defined __GTHREADS
804       static __mutex_type _S_mut;
805 #endif
806 
807     public:
808 
809       /** @brief  Allocates memory for a single object of size
810        *  sizeof(_Tp).
811        *
812        *  @throw  std::bad_alloc. If memory cannot be allocated.
813        *
814        *  Complexity: Worst case complexity is O(N), but that
815        *  is hardly ever hit. If and when this particular case is
816        *  encountered, the next few cases are guaranteed to have a
817        *  worst case complexity of O(1)!  That's why this function
818        *  performs very well on average. You can consider this
819        *  function to have a complexity referred to commonly as:
820        *  Amortized Constant time.
821        */
822       pointer
823       _M_allocate_single_object() _GLIBCXX_THROW(std::bad_alloc)
824       {
825 	using std::size_t;
826 #if defined __GTHREADS
827 	__scoped_lock __bit_lock(_S_mut);
828 #endif
829 
830 	// The algorithm is something like this: The last_request
831 	// variable points to the last accessed Bit Map. When such a
832 	// condition occurs, we try to find a free block in the
833 	// current bitmap, or succeeding bitmaps until the last bitmap
834 	// is reached. If no free block turns up, we resort to First
835 	// Fit method.
836 
837 	// WARNING: Do not re-order the condition in the while
838 	// statement below, because it relies on C++'s short-circuit
839 	// evaluation. The return from _S_last_request->_M_get() will
840 	// NOT be dereference able if _S_last_request->_M_finished()
841 	// returns true. This would inevitably lead to a NULL pointer
842 	// dereference if tinkered with.
843 	while (_S_last_request._M_finished() == false
844 	       && (*(_S_last_request._M_get()) == 0))
845 	  _S_last_request.operator++();
846 
847 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
848 	  {
849 	    // Fall Back to First Fit algorithm.
850 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
851 	    _FFF __fff;
852 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
853 
854 	    if (__bpi != _S_mem_blocks.end())
855 	      {
856 		// Search was successful. Ok, now mark the first bit from
857 		// the right as 0, meaning Allocated. This bit is obtained
858 		// by calling _M_get() on __fff.
859 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
860 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
861 
862 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
863 
864 		// Now, get the address of the bit we marked as allocated.
865 		pointer __ret = reinterpret_cast<pointer>
866 		  (__bpi->first + __fff._M_offset() + __nz_bit);
867 		size_t* __puse_count =
868 		  reinterpret_cast<size_t*>
869 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
870 
871 		++(*__puse_count);
872 		return __ret;
873 	      }
874 	    else
875 	      {
876 		// Search was unsuccessful. We Add more memory to the
877 		// pool by calling _S_refill_pool().
878 		_S_refill_pool();
879 
880 		// _M_Reset the _S_last_request structure to the first
881 		// free block's bit map.
882 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
883 
884 		// Now, mark that bit as allocated.
885 	      }
886 	  }
887 
888 	// _S_last_request holds a pointer to a valid bit map, that
889 	// points to a free block in memory.
890 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
891 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
892 
893 	pointer __ret = reinterpret_cast<pointer>
894 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
895 
896 	size_t* __puse_count = reinterpret_cast<size_t*>
897 	  (_S_mem_blocks[_S_last_request._M_where()].first)
898 	  - (__detail::
899 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
900 
901 	++(*__puse_count);
902 	return __ret;
903       }
904 
905       /** @brief  Deallocates memory that belongs to a single object of
906        *  size sizeof(_Tp).
907        *
908        *  Complexity: O(lg(N)), but the worst case is not hit
909        *  often!  This is because containers usually deallocate memory
910        *  close to each other and this case is handled in O(1) time by
911        *  the deallocate function.
912        */
913       void
914       _M_deallocate_single_object(pointer __p) throw()
915       {
916 	using std::size_t;
917 #if defined __GTHREADS
918 	__scoped_lock __bit_lock(_S_mut);
919 #endif
920 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
921 
922 	typedef typename _BPVector::iterator _Iterator;
923 	typedef typename _BPVector::difference_type _Difference_type;
924 
925 	_Difference_type __diff;
926 	long __displacement;
927 
928 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
929 
930 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
931 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
932 	  {
933 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
934 				  <= _S_mem_blocks.size() - 1);
935 
936 	    // Initial Assumption was correct!
937 	    __diff = _S_last_dealloc_index;
938 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
939 	  }
940 	else
941 	  {
942 	    _Iterator _iter = _S_find(__ibt);
943 
944 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
945 
946 	    __diff = _iter - _S_mem_blocks.begin();
947 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
948 	    _S_last_dealloc_index = __diff;
949 	  }
950 
951 	// Get the position of the iterator that has been found.
952 	const size_t __rotate = (__displacement
953 				 % size_t(__detail::bits_per_block));
954 	size_t* __bitmapC =
955 	  reinterpret_cast<size_t*>
956 	  (_S_mem_blocks[__diff].first) - 1;
957 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
958 
959 	__detail::__bit_free(__bitmapC, __rotate);
960 	size_t* __puse_count = reinterpret_cast<size_t*>
961 	  (_S_mem_blocks[__diff].first)
962 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
963 
964 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
965 
966 	--(*__puse_count);
967 
968 	if (__builtin_expect(*__puse_count == 0, false))
969 	  {
970 	    _S_block_size /= 2;
971 
972 	    // We can safely remove this block.
973 	    // _Block_pair __bp = _S_mem_blocks[__diff];
974 	    this->_M_insert(__puse_count);
975 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
976 
977 	    // Reset the _S_last_request variable to reflect the
978 	    // erased block. We do this to protect future requests
979 	    // after the last block has been removed from a particular
980 	    // memory Chunk, which in turn has been returned to the
981 	    // free list, and hence had been erased from the vector,
982 	    // so the size of the vector gets reduced by 1.
983 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
984 	      _S_last_request._M_reset(__diff);
985 
986 	    // If the Index into the vector of the region of memory
987 	    // that might hold the next address that will be passed to
988 	    // deallocated may have been invalidated due to the above
989 	    // erase procedure being called on the vector, hence we
990 	    // try to restore this invariant too.
991 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
992 	      {
993 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
994 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
995 	      }
996 	  }
997       }
998 
999     public:
1000       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1001       { }
1002 
1003       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1004       { }
1005 
1006       template<typename _Tp1>
1007         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1008         { }
1009 
1010       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1011       { }
1012 
1013       _GLIBCXX_NODISCARD pointer
1014       allocate(size_type __n)
1015       {
1016 	if (__n > this->max_size())
1017 	  std::__throw_bad_alloc();
1018 
1019 #if __cpp_aligned_new
1020 	if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1021 	  {
1022 	    const size_type __b = __n * sizeof(value_type);
1023 	    std::align_val_t __al = std::align_val_t(alignof(value_type));
1024 	    return static_cast<pointer>(::operator new(__b, __al));
1025 	  }
1026 #endif
1027 
1028 	if (__builtin_expect(__n == 1, true))
1029 	  return this->_M_allocate_single_object();
1030 	else
1031 	  {
1032 	    const size_type __b = __n * sizeof(value_type);
1033 	    return reinterpret_cast<pointer>(::operator new(__b));
1034 	  }
1035       }
1036 
1037       _GLIBCXX_NODISCARD pointer
1038       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1039       { return allocate(__n); }
1040 
1041       void
1042       deallocate(pointer __p, size_type __n) throw()
1043       {
1044 	if (__builtin_expect(__p != 0, true))
1045 	  {
1046 #if __cpp_aligned_new
1047 	    // Types with extended alignment are handled by operator delete.
1048 	    if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1049 	      {
1050 		::operator delete(__p, std::align_val_t(alignof(value_type)));
1051 		return;
1052 	      }
1053 #endif
1054 
1055 	    if (__builtin_expect(__n == 1, true))
1056 	      this->_M_deallocate_single_object(__p);
1057 	    else
1058 	      ::operator delete(__p);
1059 	  }
1060       }
1061 
1062       pointer
1063       address(reference __r) const _GLIBCXX_NOEXCEPT
1064       { return std::__addressof(__r); }
1065 
1066       const_pointer
1067       address(const_reference __r) const _GLIBCXX_NOEXCEPT
1068       { return std::__addressof(__r); }
1069 
1070       size_type
1071       max_size() const _GLIBCXX_USE_NOEXCEPT
1072       { return size_type(-1) / sizeof(value_type); }
1073 
1074 #if __cplusplus >= 201103L
1075       template<typename _Up, typename... _Args>
1076         void
1077         construct(_Up* __p, _Args&&... __args)
1078 	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1079 
1080       template<typename _Up>
1081         void
1082         destroy(_Up* __p)
1083         { __p->~_Up(); }
1084 #else
1085       void
1086       construct(pointer __p, const_reference __data)
1087       { ::new((void *)__p) value_type(__data); }
1088 
1089       void
1090       destroy(pointer __p)
1091       { __p->~value_type(); }
1092 #endif
1093     };
1094 
1095   template<typename _Tp1, typename _Tp2>
1096     bool
1097     operator==(const bitmap_allocator<_Tp1>&,
1098 	       const bitmap_allocator<_Tp2>&) throw()
1099     { return true; }
1100 
1101 #if __cpp_impl_three_way_comparison < 201907L
1102   template<typename _Tp1, typename _Tp2>
1103     bool
1104     operator!=(const bitmap_allocator<_Tp1>&,
1105 	       const bitmap_allocator<_Tp2>&) throw()
1106     { return false; }
1107 #endif
1108 
1109   // Static member definitions.
1110   template<typename _Tp>
1111     typename bitmap_allocator<_Tp>::_BPVector
1112     bitmap_allocator<_Tp>::_S_mem_blocks;
1113 
1114   template<typename _Tp>
1115     std::size_t bitmap_allocator<_Tp>::_S_block_size
1116       = 2 * std::size_t(__detail::bits_per_block);
1117 
1118   template<typename _Tp>
1119     typename bitmap_allocator<_Tp>::_BPVector::size_type
1120     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1121 
1122   template<typename _Tp>
1123     __detail::_Bitmap_counter
1124       <typename bitmap_allocator<_Tp>::_Alloc_block*>
1125     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1126 
1127 #if defined __GTHREADS
1128   template<typename _Tp>
1129     typename bitmap_allocator<_Tp>::__mutex_type
1130     bitmap_allocator<_Tp>::_S_mut;
1131 #endif
1132 
1133 _GLIBCXX_END_NAMESPACE_VERSION
1134 } // namespace __gnu_cxx
1135 
1136 #endif
1137