xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/hashtable.h (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41   template<typename _Tp, typename _Hash>
42     using __cache_default
43       =  __not_<__and_<// Do not cache for fast hasher.
44 		       __is_fast_hash<_Hash>,
45 		       // Mandatory to have erase not throwing.
46 		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48   /**
49    *  Primary class template _Hashtable.
50    *
51    *  @ingroup hashtable-detail
52    *
53    *  @tparam _Value  CopyConstructible type.
54    *
55    *  @tparam _Key    CopyConstructible type.
56    *
57    *  @tparam _Alloc  An allocator type
58    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
59    *  _Value.  As a conforming extension, we allow for
60    *  _Alloc::value_type != _Value.
61    *
62    *  @tparam _ExtractKey  Function object that takes an object of type
63    *  _Value and returns a value of type _Key.
64    *
65    *  @tparam _Equal  Function object that takes two objects of type k
66    *  and returns a bool-like value that is true if the two objects
67    *  are considered equal.
68    *
69    *  @tparam _H1  The hash function. A unary function object with
70    *  argument type _Key and result type size_t. Return values should
71    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72    *
73    *  @tparam _H2  The range-hashing function (in the terminology of
74    *  Tavori and Dreizin).  A binary function object whose argument
75    *  types and result type are all size_t.  Given arguments r and N,
76    *  the return value is in the range [0, N).
77    *
78    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
79    *  binary function whose argument types are _Key and size_t and
80    *  whose result type is size_t.  Given arguments k and N, the
81    *  return value is in the range [0, N).  Default: hash(k, N) =
82    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
83    *  and _H2 are ignored.
84    *
85    *  @tparam _RehashPolicy  Policy class with three members, all of
86    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
87    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
88    *  bucket count appropriate for an element count of n.
89    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90    *  current bucket count is n_bkt and the current element count is
91    *  n_elt, we need to increase the bucket count.  If so, returns
92    *  make_pair(true, n), where n is the new bucket count.  If not,
93    *  returns make_pair(false, <anything>)
94    *
95    *  @tparam _Traits  Compile-time class with three boolean
96    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
97    *   __unique_keys.
98    *
99    *  Each _Hashtable data structure has:
100    *
101    *  - _Bucket[]       _M_buckets
102    *  - _Hash_node_base _M_before_begin
103    *  - size_type       _M_bucket_count
104    *  - size_type       _M_element_count
105    *
106    *  with _Bucket being _Hash_node* and _Hash_node containing:
107    *
108    *  - _Hash_node*   _M_next
109    *  - Tp            _M_value
110    *  - size_t        _M_hash_code if cache_hash_code is true
111    *
112    *  In terms of Standard containers the hashtable is like the aggregation of:
113    *
114    *  - std::forward_list<_Node> containing the elements
115    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116    *
117    *  The non-empty buckets contain the node before the first node in the
118    *  bucket. This design makes it possible to implement something like a
119    *  std::forward_list::insert_after on container insertion and
120    *  std::forward_list::erase_after on container erase
121    *  calls. _M_before_begin is equivalent to
122    *  std::forward_list::before_begin. Empty buckets contain
123    *  nullptr.  Note that one of the non-empty buckets contains
124    *  &_M_before_begin which is not a dereferenceable node so the
125    *  node pointer in a bucket shall never be dereferenced, only its
126    *  next node can be.
127    *
128    *  Walking through a bucket's nodes requires a check on the hash code to
129    *  see if each node is still in the bucket. Such a design assumes a
130    *  quite efficient hash functor and is one of the reasons it is
131    *  highly advisable to set __cache_hash_code to true.
132    *
133    *  The container iterators are simply built from nodes. This way
134    *  incrementing the iterator is perfectly efficient independent of
135    *  how many empty buckets there are in the container.
136    *
137    *  On insert we compute the element's hash code and use it to find the
138    *  bucket index. If the element must be inserted in an empty bucket
139    *  we add it at the beginning of the singly linked list and make the
140    *  bucket point to _M_before_begin. The bucket that used to point to
141    *  _M_before_begin, if any, is updated to point to its new before
142    *  begin node.
143    *
144    *  On erase, the simple iterator design requires using the hash
145    *  functor to get the index of the bucket to update. For this
146    *  reason, when __cache_hash_code is set to false the hash functor must
147    *  not throw and this is enforced by a static assertion.
148    *
149    *  Functionality is implemented by decomposition into base classes,
150    *  where the derived _Hashtable class is used in _Map_base,
151    *  _Insert, _Rehash_base, and _Equality base classes to access the
152    *  "this" pointer. _Hashtable_base is used in the base classes as a
153    *  non-recursive, fully-completed-type so that detailed nested type
154    *  information, such as iterator type and node type, can be
155    *  used. This is similar to the "Curiously Recurring Template
156    *  Pattern" (CRTP) technique, but uses a reconstructed, not
157    *  explicitly passed, template pattern.
158    *
159    *  Base class templates are:
160    *    - __detail::_Hashtable_base
161    *    - __detail::_Map_base
162    *    - __detail::_Insert
163    *    - __detail::_Rehash_base
164    *    - __detail::_Equality
165    */
166   template<typename _Key, typename _Value, typename _Alloc,
167 	   typename _ExtractKey, typename _Equal,
168 	   typename _H1, typename _H2, typename _Hash,
169 	   typename _RehashPolicy, typename _Traits>
170     class _Hashtable
171     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 				       _H1, _H2, _Hash, _Traits>,
173       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181       private __detail::_Hashtable_alloc<
182 	__alloc_rebind<_Alloc,
183 		       __detail::_Hash_node<_Value,
184 					    _Traits::__hash_cached::value>>>
185     {
186       using __traits_type = _Traits;
187       using __hash_cached = typename __traits_type::__hash_cached;
188       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
190 
191       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
192 
193       using __value_alloc_traits =
194 	typename __hashtable_alloc::__value_alloc_traits;
195       using __node_alloc_traits =
196 	typename __hashtable_alloc::__node_alloc_traits;
197       using __node_base = typename __hashtable_alloc::__node_base;
198       using __bucket_type = typename __hashtable_alloc::__bucket_type;
199 
200     public:
201       typedef _Key						key_type;
202       typedef _Value						value_type;
203       typedef _Alloc						allocator_type;
204       typedef _Equal						key_equal;
205 
206       // mapped_type, if present, comes from _Map_base.
207       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
208       typedef typename __value_alloc_traits::pointer		pointer;
209       typedef typename __value_alloc_traits::const_pointer	const_pointer;
210       typedef value_type&					reference;
211       typedef const value_type&					const_reference;
212 
213     private:
214       using __rehash_type = _RehashPolicy;
215       using __rehash_state = typename __rehash_type::_State;
216 
217       using __constant_iterators = typename __traits_type::__constant_iterators;
218       using __unique_keys = typename __traits_type::__unique_keys;
219 
220       using __key_extract = typename std::conditional<
221 					     __constant_iterators::value,
222 				       	     __detail::_Identity,
223 					     __detail::_Select1st>::type;
224 
225       using __hashtable_base = __detail::
226 			       _Hashtable_base<_Key, _Value, _ExtractKey,
227 					      _Equal, _H1, _H2, _Hash, _Traits>;
228 
229       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
230       using __hash_code =  typename __hashtable_base::__hash_code;
231       using __ireturn_type = typename __hashtable_base::__ireturn_type;
232 
233       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
234 					     _Equal, _H1, _H2, _Hash,
235 					     _RehashPolicy, _Traits>;
236 
237       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
238 						   _ExtractKey, _Equal,
239 						   _H1, _H2, _Hash,
240 						   _RehashPolicy, _Traits>;
241 
242       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
243 					    _Equal, _H1, _H2, _Hash,
244 					    _RehashPolicy, _Traits>;
245 
246       using __reuse_or_alloc_node_type =
247 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
248 
249       // Metaprogramming for picking apart hash caching.
250       template<typename _Cond>
251 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
252 
253       template<typename _Cond>
254 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
255 
256       // Compile-time diagnostics.
257 
258       // _Hash_code_base has everything protected, so use this derived type to
259       // access it.
260       struct __hash_code_base_access : __hash_code_base
261       { using __hash_code_base::_M_bucket_index; };
262 
263       // Getting a bucket index from a node shall not throw because it is used
264       // in methods (erase, swap...) that shall not throw.
265       static_assert(noexcept(declval<const __hash_code_base_access&>()
266 			     ._M_bucket_index((const __node_type*)nullptr,
267 					      (std::size_t)0)),
268 		    "Cache the hash code or qualify your functors involved"
269 		    " in hash code and bucket index computation with noexcept");
270 
271       // Following two static assertions are necessary to guarantee
272       // that local_iterator will be default constructible.
273 
274       // When hash codes are cached local iterator inherits from H2 functor
275       // which must then be default constructible.
276       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
277 		    "Functor used to map hash code to bucket index"
278 		    " must be default constructible");
279 
280       template<typename _Keya, typename _Valuea, typename _Alloca,
281 	       typename _ExtractKeya, typename _Equala,
282 	       typename _H1a, typename _H2a, typename _Hasha,
283 	       typename _RehashPolicya, typename _Traitsa,
284 	       bool _Unique_keysa>
285 	friend struct __detail::_Map_base;
286 
287       template<typename _Keya, typename _Valuea, typename _Alloca,
288 	       typename _ExtractKeya, typename _Equala,
289 	       typename _H1a, typename _H2a, typename _Hasha,
290 	       typename _RehashPolicya, typename _Traitsa>
291 	friend struct __detail::_Insert_base;
292 
293       template<typename _Keya, typename _Valuea, typename _Alloca,
294 	       typename _ExtractKeya, typename _Equala,
295 	       typename _H1a, typename _H2a, typename _Hasha,
296 	       typename _RehashPolicya, typename _Traitsa,
297 	       bool _Constant_iteratorsa, bool _Unique_keysa>
298 	friend struct __detail::_Insert;
299 
300     public:
301       using size_type = typename __hashtable_base::size_type;
302       using difference_type = typename __hashtable_base::difference_type;
303 
304       using iterator = typename __hashtable_base::iterator;
305       using const_iterator = typename __hashtable_base::const_iterator;
306 
307       using local_iterator = typename __hashtable_base::local_iterator;
308       using const_local_iterator = typename __hashtable_base::
309 				   const_local_iterator;
310 
311     private:
312       __bucket_type*		_M_buckets		= &_M_single_bucket;
313       size_type			_M_bucket_count		= 1;
314       __node_base		_M_before_begin;
315       size_type			_M_element_count	= 0;
316       _RehashPolicy		_M_rehash_policy;
317 
318       // A single bucket used when only need for 1 bucket. Especially
319       // interesting in move semantic to leave hashtable with only 1 buckets
320       // which is not allocated so that we can have those operations noexcept
321       // qualified.
322       // Note that we can't leave hashtable with 0 bucket without adding
323       // numerous checks in the code to avoid 0 modulus.
324       __bucket_type		_M_single_bucket	= nullptr;
325 
326       bool
327       _M_uses_single_bucket(__bucket_type* __bkts) const
328       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
329 
330       bool
331       _M_uses_single_bucket() const
332       { return _M_uses_single_bucket(_M_buckets); }
333 
334       __hashtable_alloc&
335       _M_base_alloc() { return *this; }
336 
337       __bucket_type*
338       _M_allocate_buckets(size_type __n)
339       {
340 	if (__builtin_expect(__n == 1, false))
341 	  {
342 	    _M_single_bucket = nullptr;
343 	    return &_M_single_bucket;
344 	  }
345 
346 	return __hashtable_alloc::_M_allocate_buckets(__n);
347       }
348 
349       void
350       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
351       {
352 	if (_M_uses_single_bucket(__bkts))
353 	  return;
354 
355 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
356       }
357 
358       void
359       _M_deallocate_buckets()
360       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
361 
362       // Gets bucket begin, deals with the fact that non-empty buckets contain
363       // their before begin node.
364       __node_type*
365       _M_bucket_begin(size_type __bkt) const;
366 
367       __node_type*
368       _M_begin() const
369       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
370 
371       template<typename _NodeGenerator>
372 	void
373 	_M_assign(const _Hashtable&, const _NodeGenerator&);
374 
375       void
376       _M_move_assign(_Hashtable&&, std::true_type);
377 
378       void
379       _M_move_assign(_Hashtable&&, std::false_type);
380 
381       void
382       _M_reset() noexcept;
383 
384       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
385 		 const _Equal& __eq, const _ExtractKey& __exk,
386 		 const allocator_type& __a)
387 	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
388 	  __hashtable_alloc(__node_alloc_type(__a))
389       { }
390 
391     public:
392       // Constructor, destructor, assignment, swap
393       _Hashtable() = default;
394       _Hashtable(size_type __bucket_hint,
395 		 const _H1&, const _H2&, const _Hash&,
396 		 const _Equal&, const _ExtractKey&,
397 		 const allocator_type&);
398 
399       template<typename _InputIterator>
400 	_Hashtable(_InputIterator __first, _InputIterator __last,
401 		   size_type __bucket_hint,
402 		   const _H1&, const _H2&, const _Hash&,
403 		   const _Equal&, const _ExtractKey&,
404 		   const allocator_type&);
405 
406       _Hashtable(const _Hashtable&);
407 
408       _Hashtable(_Hashtable&&) noexcept;
409 
410       _Hashtable(const _Hashtable&, const allocator_type&);
411 
412       _Hashtable(_Hashtable&&, const allocator_type&);
413 
414       // Use delegating constructors.
415       explicit
416       _Hashtable(const allocator_type& __a)
417 	: __hashtable_alloc(__node_alloc_type(__a))
418       { }
419 
420       explicit
421       _Hashtable(size_type __n,
422 		 const _H1& __hf = _H1(),
423 		 const key_equal& __eql = key_equal(),
424 		 const allocator_type& __a = allocator_type())
425       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
426 		   __key_extract(), __a)
427       { }
428 
429       template<typename _InputIterator>
430 	_Hashtable(_InputIterator __f, _InputIterator __l,
431 		   size_type __n = 0,
432 		   const _H1& __hf = _H1(),
433 		   const key_equal& __eql = key_equal(),
434 		   const allocator_type& __a = allocator_type())
435 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
436 		     __key_extract(), __a)
437 	{ }
438 
439       _Hashtable(initializer_list<value_type> __l,
440 		 size_type __n = 0,
441 		 const _H1& __hf = _H1(),
442 		 const key_equal& __eql = key_equal(),
443 		 const allocator_type& __a = allocator_type())
444       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
445 		   __key_extract(), __a)
446       { }
447 
448       _Hashtable&
449       operator=(const _Hashtable& __ht);
450 
451       _Hashtable&
452       operator=(_Hashtable&& __ht)
453       noexcept(__node_alloc_traits::_S_nothrow_move()
454 	       && is_nothrow_move_assignable<_H1>::value
455 	       && is_nothrow_move_assignable<_Equal>::value)
456       {
457         constexpr bool __move_storage =
458 	  __node_alloc_traits::_S_propagate_on_move_assign()
459 	  || __node_alloc_traits::_S_always_equal();
460 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
461 	return *this;
462       }
463 
464       _Hashtable&
465       operator=(initializer_list<value_type> __l)
466       {
467 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
468 	_M_before_begin._M_nxt = nullptr;
469 	clear();
470 	this->_M_insert_range(__l.begin(), __l.end(), __roan);
471 	return *this;
472       }
473 
474       ~_Hashtable() noexcept;
475 
476       void
477       swap(_Hashtable&)
478       noexcept(__is_nothrow_swappable<_H1>::value
479 	       && __is_nothrow_swappable<_Equal>::value);
480 
481       // Basic container operations
482       iterator
483       begin() noexcept
484       { return iterator(_M_begin()); }
485 
486       const_iterator
487       begin() const noexcept
488       { return const_iterator(_M_begin()); }
489 
490       iterator
491       end() noexcept
492       { return iterator(nullptr); }
493 
494       const_iterator
495       end() const noexcept
496       { return const_iterator(nullptr); }
497 
498       const_iterator
499       cbegin() const noexcept
500       { return const_iterator(_M_begin()); }
501 
502       const_iterator
503       cend() const noexcept
504       { return const_iterator(nullptr); }
505 
506       size_type
507       size() const noexcept
508       { return _M_element_count; }
509 
510       bool
511       empty() const noexcept
512       { return size() == 0; }
513 
514       allocator_type
515       get_allocator() const noexcept
516       { return allocator_type(this->_M_node_allocator()); }
517 
518       size_type
519       max_size() const noexcept
520       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
521 
522       // Observers
523       key_equal
524       key_eq() const
525       { return this->_M_eq(); }
526 
527       // hash_function, if present, comes from _Hash_code_base.
528 
529       // Bucket operations
530       size_type
531       bucket_count() const noexcept
532       { return _M_bucket_count; }
533 
534       size_type
535       max_bucket_count() const noexcept
536       { return max_size(); }
537 
538       size_type
539       bucket_size(size_type __n) const
540       { return std::distance(begin(__n), end(__n)); }
541 
542       size_type
543       bucket(const key_type& __k) const
544       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
545 
546       local_iterator
547       begin(size_type __n)
548       {
549 	return local_iterator(*this, _M_bucket_begin(__n),
550 			      __n, _M_bucket_count);
551       }
552 
553       local_iterator
554       end(size_type __n)
555       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
556 
557       const_local_iterator
558       begin(size_type __n) const
559       {
560 	return const_local_iterator(*this, _M_bucket_begin(__n),
561 				    __n, _M_bucket_count);
562       }
563 
564       const_local_iterator
565       end(size_type __n) const
566       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
567 
568       // DR 691.
569       const_local_iterator
570       cbegin(size_type __n) const
571       {
572 	return const_local_iterator(*this, _M_bucket_begin(__n),
573 				    __n, _M_bucket_count);
574       }
575 
576       const_local_iterator
577       cend(size_type __n) const
578       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
579 
580       float
581       load_factor() const noexcept
582       {
583 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
584       }
585 
586       // max_load_factor, if present, comes from _Rehash_base.
587 
588       // Generalization of max_load_factor.  Extension, not found in
589       // TR1.  Only useful if _RehashPolicy is something other than
590       // the default.
591       const _RehashPolicy&
592       __rehash_policy() const
593       { return _M_rehash_policy; }
594 
595       void
596       __rehash_policy(const _RehashPolicy& __pol)
597       { _M_rehash_policy = __pol; }
598 
599       // Lookup.
600       iterator
601       find(const key_type& __k);
602 
603       const_iterator
604       find(const key_type& __k) const;
605 
606       size_type
607       count(const key_type& __k) const;
608 
609       std::pair<iterator, iterator>
610       equal_range(const key_type& __k);
611 
612       std::pair<const_iterator, const_iterator>
613       equal_range(const key_type& __k) const;
614 
615     protected:
616       // Bucket index computation helpers.
617       size_type
618       _M_bucket_index(__node_type* __n) const noexcept
619       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
620 
621       size_type
622       _M_bucket_index(const key_type& __k, __hash_code __c) const
623       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
624 
625       // Find and insert helper functions and types
626       // Find the node before the one matching the criteria.
627       __node_base*
628       _M_find_before_node(size_type, const key_type&, __hash_code) const;
629 
630       __node_type*
631       _M_find_node(size_type __bkt, const key_type& __key,
632 		   __hash_code __c) const
633       {
634 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
635 	if (__before_n)
636 	  return static_cast<__node_type*>(__before_n->_M_nxt);
637 	return nullptr;
638       }
639 
640       // Insert a node at the beginning of a bucket.
641       void
642       _M_insert_bucket_begin(size_type, __node_type*);
643 
644       // Remove the bucket first node
645       void
646       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
647 			     size_type __next_bkt);
648 
649       // Get the node before __n in the bucket __bkt
650       __node_base*
651       _M_get_previous_node(size_type __bkt, __node_base* __n);
652 
653       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
654       // no element with its key already present). Take ownership of the node,
655       // deallocate it on exception.
656       iterator
657       _M_insert_unique_node(size_type __bkt, __hash_code __code,
658 			    __node_type* __n);
659 
660       // Insert node with hash code __code. Take ownership of the node,
661       // deallocate it on exception.
662       iterator
663       _M_insert_multi_node(__node_type* __hint,
664 			   __hash_code __code, __node_type* __n);
665 
666       template<typename... _Args>
667 	std::pair<iterator, bool>
668 	_M_emplace(std::true_type, _Args&&... __args);
669 
670       template<typename... _Args>
671 	iterator
672 	_M_emplace(std::false_type __uk, _Args&&... __args)
673 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
674 
675       // Emplace with hint, useless when keys are unique.
676       template<typename... _Args>
677 	iterator
678 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
679 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
680 
681       template<typename... _Args>
682 	iterator
683 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
684 
685       template<typename _Arg, typename _NodeGenerator>
686 	std::pair<iterator, bool>
687 	_M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
688 
689       template<typename _Arg, typename _NodeGenerator>
690 	iterator
691 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
692 		  std::false_type __uk)
693 	{
694 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
695 			   __uk);
696 	}
697 
698       // Insert with hint, not used when keys are unique.
699       template<typename _Arg, typename _NodeGenerator>
700 	iterator
701 	_M_insert(const_iterator, _Arg&& __arg,
702 		  const _NodeGenerator& __node_gen, std::true_type __uk)
703 	{
704 	  return
705 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
706 	}
707 
708       // Insert with hint when keys are not unique.
709       template<typename _Arg, typename _NodeGenerator>
710 	iterator
711 	_M_insert(const_iterator, _Arg&&,
712 		  const _NodeGenerator&, std::false_type);
713 
714       size_type
715       _M_erase(std::true_type, const key_type&);
716 
717       size_type
718       _M_erase(std::false_type, const key_type&);
719 
720       iterator
721       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
722 
723     public:
724       // Emplace
725       template<typename... _Args>
726 	__ireturn_type
727 	emplace(_Args&&... __args)
728 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
729 
730       template<typename... _Args>
731 	iterator
732 	emplace_hint(const_iterator __hint, _Args&&... __args)
733 	{
734 	  return _M_emplace(__hint, __unique_keys(),
735 			    std::forward<_Args>(__args)...);
736 	}
737 
738       // Insert member functions via inheritance.
739 
740       // Erase
741       iterator
742       erase(const_iterator);
743 
744       // LWG 2059.
745       iterator
746       erase(iterator __it)
747       { return erase(const_iterator(__it)); }
748 
749       size_type
750       erase(const key_type& __k)
751       { return _M_erase(__unique_keys(), __k); }
752 
753       iterator
754       erase(const_iterator, const_iterator);
755 
756       void
757       clear() noexcept;
758 
759       // Set number of buckets to be appropriate for container of n element.
760       void rehash(size_type __n);
761 
762       // DR 1189.
763       // reserve, if present, comes from _Rehash_base.
764 
765     private:
766       // Helper rehash method used when keys are unique.
767       void _M_rehash_aux(size_type __n, std::true_type);
768 
769       // Helper rehash method used when keys can be non-unique.
770       void _M_rehash_aux(size_type __n, std::false_type);
771 
772       // Unconditionally change size of bucket array to n, restore
773       // hash policy state to __state on exception.
774       void _M_rehash(size_type __n, const __rehash_state& __state);
775     };
776 
777 
778   // Definitions of class template _Hashtable's out-of-line member functions.
779   template<typename _Key, typename _Value,
780 	   typename _Alloc, typename _ExtractKey, typename _Equal,
781 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
782 	   typename _Traits>
783     auto
784     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
785 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
786     _M_bucket_begin(size_type __bkt) const
787     -> __node_type*
788     {
789       __node_base* __n = _M_buckets[__bkt];
790       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
791     }
792 
793   template<typename _Key, typename _Value,
794 	   typename _Alloc, typename _ExtractKey, typename _Equal,
795 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
796 	   typename _Traits>
797     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
798 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
799     _Hashtable(size_type __bucket_hint,
800 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
801 	       const _Equal& __eq, const _ExtractKey& __exk,
802 	       const allocator_type& __a)
803       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
804     {
805       auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
806       if (__bkt > _M_bucket_count)
807 	{
808 	  _M_buckets = _M_allocate_buckets(__bkt);
809 	  _M_bucket_count = __bkt;
810 	}
811     }
812 
813   template<typename _Key, typename _Value,
814 	   typename _Alloc, typename _ExtractKey, typename _Equal,
815 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
816 	   typename _Traits>
817     template<typename _InputIterator>
818       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
819 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
820       _Hashtable(_InputIterator __f, _InputIterator __l,
821 		 size_type __bucket_hint,
822 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
823 		 const _Equal& __eq, const _ExtractKey& __exk,
824 		 const allocator_type& __a)
825 	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
826       {
827 	auto __nb_elems = __detail::__distance_fw(__f, __l);
828 	auto __bkt_count =
829 	  _M_rehash_policy._M_next_bkt(
830 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
831 		     __bucket_hint));
832 
833 	if (__bkt_count > _M_bucket_count)
834 	  {
835 	    _M_buckets = _M_allocate_buckets(__bkt_count);
836 	    _M_bucket_count = __bkt_count;
837 	  }
838 
839 	for (; __f != __l; ++__f)
840 	  this->insert(*__f);
841       }
842 
843   template<typename _Key, typename _Value,
844 	   typename _Alloc, typename _ExtractKey, typename _Equal,
845 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
846 	   typename _Traits>
847     auto
848     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
849 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
850     operator=(const _Hashtable& __ht)
851     -> _Hashtable&
852     {
853       if (&__ht == this)
854 	return *this;
855 
856       if (__node_alloc_traits::_S_propagate_on_copy_assign())
857 	{
858 	  auto& __this_alloc = this->_M_node_allocator();
859 	  auto& __that_alloc = __ht._M_node_allocator();
860 	  if (!__node_alloc_traits::_S_always_equal()
861 	      && __this_alloc != __that_alloc)
862 	    {
863 	      // Replacement allocator cannot free existing storage.
864 	      this->_M_deallocate_nodes(_M_begin());
865 	      _M_before_begin._M_nxt = nullptr;
866 	      _M_deallocate_buckets();
867 	      _M_buckets = nullptr;
868 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
869 	      __hashtable_base::operator=(__ht);
870 	      _M_bucket_count = __ht._M_bucket_count;
871 	      _M_element_count = __ht._M_element_count;
872 	      _M_rehash_policy = __ht._M_rehash_policy;
873 	      __try
874 		{
875 		  _M_assign(__ht,
876 			    [this](const __node_type* __n)
877 			    { return this->_M_allocate_node(__n->_M_v()); });
878 		}
879 	      __catch(...)
880 		{
881 		  // _M_assign took care of deallocating all memory. Now we
882 		  // must make sure this instance remains in a usable state.
883 		  _M_reset();
884 		  __throw_exception_again;
885 		}
886 	      return *this;
887 	    }
888 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
889 	}
890 
891       // Reuse allocated buckets and nodes.
892       __bucket_type* __former_buckets = nullptr;
893       std::size_t __former_bucket_count = _M_bucket_count;
894       const __rehash_state& __former_state = _M_rehash_policy._M_state();
895 
896       if (_M_bucket_count != __ht._M_bucket_count)
897 	{
898 	  __former_buckets = _M_buckets;
899 	  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
900 	  _M_bucket_count = __ht._M_bucket_count;
901 	}
902       else
903 	__builtin_memset(_M_buckets, 0,
904 			 _M_bucket_count * sizeof(__bucket_type));
905 
906       __try
907 	{
908 	  __hashtable_base::operator=(__ht);
909 	  _M_element_count = __ht._M_element_count;
910 	  _M_rehash_policy = __ht._M_rehash_policy;
911 	  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
912 	  _M_before_begin._M_nxt = nullptr;
913 	  _M_assign(__ht,
914 		    [&__roan](const __node_type* __n)
915 		    { return __roan(__n->_M_v()); });
916 	  if (__former_buckets)
917 	    _M_deallocate_buckets(__former_buckets, __former_bucket_count);
918 	}
919       __catch(...)
920 	{
921 	  if (__former_buckets)
922 	    {
923 	      // Restore previous buckets.
924 	      _M_deallocate_buckets();
925 	      _M_rehash_policy._M_reset(__former_state);
926 	      _M_buckets = __former_buckets;
927 	      _M_bucket_count = __former_bucket_count;
928 	    }
929 	  __builtin_memset(_M_buckets, 0,
930 			   _M_bucket_count * sizeof(__bucket_type));
931 	  __throw_exception_again;
932 	}
933       return *this;
934     }
935 
936   template<typename _Key, typename _Value,
937 	   typename _Alloc, typename _ExtractKey, typename _Equal,
938 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
939 	   typename _Traits>
940     template<typename _NodeGenerator>
941       void
942       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
943 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
944       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
945       {
946 	__bucket_type* __buckets = nullptr;
947 	if (!_M_buckets)
948 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
949 
950 	__try
951 	  {
952 	    if (!__ht._M_before_begin._M_nxt)
953 	      return;
954 
955 	    // First deal with the special first node pointed to by
956 	    // _M_before_begin.
957 	    __node_type* __ht_n = __ht._M_begin();
958 	    __node_type* __this_n = __node_gen(__ht_n);
959 	    this->_M_copy_code(__this_n, __ht_n);
960 	    _M_before_begin._M_nxt = __this_n;
961 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
962 
963 	    // Then deal with other nodes.
964 	    __node_base* __prev_n = __this_n;
965 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
966 	      {
967 		__this_n = __node_gen(__ht_n);
968 		__prev_n->_M_nxt = __this_n;
969 		this->_M_copy_code(__this_n, __ht_n);
970 		size_type __bkt = _M_bucket_index(__this_n);
971 		if (!_M_buckets[__bkt])
972 		  _M_buckets[__bkt] = __prev_n;
973 		__prev_n = __this_n;
974 	      }
975 	  }
976 	__catch(...)
977 	  {
978 	    clear();
979 	    if (__buckets)
980 	      _M_deallocate_buckets();
981 	    __throw_exception_again;
982 	  }
983       }
984 
985   template<typename _Key, typename _Value,
986 	   typename _Alloc, typename _ExtractKey, typename _Equal,
987 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
988 	   typename _Traits>
989     void
990     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
991 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
992     _M_reset() noexcept
993     {
994       _M_rehash_policy._M_reset();
995       _M_bucket_count = 1;
996       _M_single_bucket = nullptr;
997       _M_buckets = &_M_single_bucket;
998       _M_before_begin._M_nxt = nullptr;
999       _M_element_count = 0;
1000     }
1001 
1002   template<typename _Key, typename _Value,
1003 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1004 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1005 	   typename _Traits>
1006     void
1007     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1008 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1009     _M_move_assign(_Hashtable&& __ht, std::true_type)
1010     {
1011       this->_M_deallocate_nodes(_M_begin());
1012       _M_deallocate_buckets();
1013       __hashtable_base::operator=(std::move(__ht));
1014       _M_rehash_policy = __ht._M_rehash_policy;
1015       if (!__ht._M_uses_single_bucket())
1016 	_M_buckets = __ht._M_buckets;
1017       else
1018 	{
1019 	  _M_buckets = &_M_single_bucket;
1020 	  _M_single_bucket = __ht._M_single_bucket;
1021 	}
1022       _M_bucket_count = __ht._M_bucket_count;
1023       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1024       _M_element_count = __ht._M_element_count;
1025       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1026 
1027       // Fix buckets containing the _M_before_begin pointers that can't be
1028       // moved.
1029       if (_M_begin())
1030 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1031       __ht._M_reset();
1032     }
1033 
1034   template<typename _Key, typename _Value,
1035 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1036 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1037 	   typename _Traits>
1038     void
1039     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1040 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1041     _M_move_assign(_Hashtable&& __ht, std::false_type)
1042     {
1043       if (__ht._M_node_allocator() == this->_M_node_allocator())
1044 	_M_move_assign(std::move(__ht), std::true_type());
1045       else
1046 	{
1047 	  // Can't move memory, move elements then.
1048 	  __bucket_type* __former_buckets = nullptr;
1049 	  size_type __former_bucket_count = _M_bucket_count;
1050 	  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1051 
1052 	  if (_M_bucket_count != __ht._M_bucket_count)
1053 	    {
1054 	      __former_buckets = _M_buckets;
1055 	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1056 	      _M_bucket_count = __ht._M_bucket_count;
1057 	    }
1058 	  else
1059 	    __builtin_memset(_M_buckets, 0,
1060 			     _M_bucket_count * sizeof(__bucket_type));
1061 
1062 	  __try
1063 	    {
1064 	      __hashtable_base::operator=(std::move(__ht));
1065 	      _M_element_count = __ht._M_element_count;
1066 	      _M_rehash_policy = __ht._M_rehash_policy;
1067 	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1068 	      _M_before_begin._M_nxt = nullptr;
1069 	      _M_assign(__ht,
1070 			[&__roan](__node_type* __n)
1071 			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1072 	      __ht.clear();
1073 	    }
1074 	  __catch(...)
1075 	    {
1076 	      if (__former_buckets)
1077 		{
1078 		  _M_deallocate_buckets();
1079 		  _M_rehash_policy._M_reset(__former_state);
1080 		  _M_buckets = __former_buckets;
1081 		  _M_bucket_count = __former_bucket_count;
1082 		}
1083 	      __builtin_memset(_M_buckets, 0,
1084 			       _M_bucket_count * sizeof(__bucket_type));
1085 	      __throw_exception_again;
1086 	    }
1087 	}
1088     }
1089 
1090   template<typename _Key, typename _Value,
1091 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1092 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1093 	   typename _Traits>
1094     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1095 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1096     _Hashtable(const _Hashtable& __ht)
1097     : __hashtable_base(__ht),
1098       __map_base(__ht),
1099       __rehash_base(__ht),
1100       __hashtable_alloc(
1101 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1102       _M_buckets(nullptr),
1103       _M_bucket_count(__ht._M_bucket_count),
1104       _M_element_count(__ht._M_element_count),
1105       _M_rehash_policy(__ht._M_rehash_policy)
1106     {
1107       _M_assign(__ht,
1108 		[this](const __node_type* __n)
1109 		{ return this->_M_allocate_node(__n->_M_v()); });
1110     }
1111 
1112   template<typename _Key, typename _Value,
1113 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1114 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1115 	   typename _Traits>
1116     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1117 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1118     _Hashtable(_Hashtable&& __ht) noexcept
1119     : __hashtable_base(__ht),
1120       __map_base(__ht),
1121       __rehash_base(__ht),
1122       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1123       _M_buckets(__ht._M_buckets),
1124       _M_bucket_count(__ht._M_bucket_count),
1125       _M_before_begin(__ht._M_before_begin._M_nxt),
1126       _M_element_count(__ht._M_element_count),
1127       _M_rehash_policy(__ht._M_rehash_policy)
1128     {
1129       // Update, if necessary, buckets if __ht is using its single bucket.
1130       if (__ht._M_uses_single_bucket())
1131 	{
1132 	  _M_buckets = &_M_single_bucket;
1133 	  _M_single_bucket = __ht._M_single_bucket;
1134 	}
1135 
1136       // Update, if necessary, bucket pointing to before begin that hasn't
1137       // moved.
1138       if (_M_begin())
1139 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1140 
1141       __ht._M_reset();
1142     }
1143 
1144   template<typename _Key, typename _Value,
1145 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1146 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1147 	   typename _Traits>
1148     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1149 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1150     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1151     : __hashtable_base(__ht),
1152       __map_base(__ht),
1153       __rehash_base(__ht),
1154       __hashtable_alloc(__node_alloc_type(__a)),
1155       _M_buckets(),
1156       _M_bucket_count(__ht._M_bucket_count),
1157       _M_element_count(__ht._M_element_count),
1158       _M_rehash_policy(__ht._M_rehash_policy)
1159     {
1160       _M_assign(__ht,
1161 		[this](const __node_type* __n)
1162 		{ return this->_M_allocate_node(__n->_M_v()); });
1163     }
1164 
1165   template<typename _Key, typename _Value,
1166 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1167 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1168 	   typename _Traits>
1169     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1170 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1171     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1172     : __hashtable_base(__ht),
1173       __map_base(__ht),
1174       __rehash_base(__ht),
1175       __hashtable_alloc(__node_alloc_type(__a)),
1176       _M_buckets(nullptr),
1177       _M_bucket_count(__ht._M_bucket_count),
1178       _M_element_count(__ht._M_element_count),
1179       _M_rehash_policy(__ht._M_rehash_policy)
1180     {
1181       if (__ht._M_node_allocator() == this->_M_node_allocator())
1182 	{
1183 	  if (__ht._M_uses_single_bucket())
1184 	    {
1185 	      _M_buckets = &_M_single_bucket;
1186 	      _M_single_bucket = __ht._M_single_bucket;
1187 	    }
1188 	  else
1189 	    _M_buckets = __ht._M_buckets;
1190 
1191 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1192 	  // Update, if necessary, bucket pointing to before begin that hasn't
1193 	  // moved.
1194 	  if (_M_begin())
1195 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1196 	  __ht._M_reset();
1197 	}
1198       else
1199 	{
1200 	  _M_assign(__ht,
1201 		    [this](__node_type* __n)
1202 		    {
1203 		      return this->_M_allocate_node(
1204 					std::move_if_noexcept(__n->_M_v()));
1205 		    });
1206 	  __ht.clear();
1207 	}
1208     }
1209 
1210   template<typename _Key, typename _Value,
1211 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1212 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1213 	   typename _Traits>
1214     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1215 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1216     ~_Hashtable() noexcept
1217     {
1218       clear();
1219       _M_deallocate_buckets();
1220     }
1221 
1222   template<typename _Key, typename _Value,
1223 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1224 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1225 	   typename _Traits>
1226     void
1227     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1228 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1229     swap(_Hashtable& __x)
1230     noexcept(__is_nothrow_swappable<_H1>::value
1231 	     && __is_nothrow_swappable<_Equal>::value)
1232     {
1233       // The only base class with member variables is hash_code_base.
1234       // We define _Hash_code_base::_M_swap because different
1235       // specializations have different members.
1236       this->_M_swap(__x);
1237 
1238       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1239       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1240 
1241       // Deal properly with potentially moved instances.
1242       if (this->_M_uses_single_bucket())
1243 	{
1244 	  if (!__x._M_uses_single_bucket())
1245 	    {
1246 	      _M_buckets = __x._M_buckets;
1247 	      __x._M_buckets = &__x._M_single_bucket;
1248 	    }
1249 	}
1250       else if (__x._M_uses_single_bucket())
1251 	{
1252 	  __x._M_buckets = _M_buckets;
1253 	  _M_buckets = &_M_single_bucket;
1254 	}
1255       else
1256 	std::swap(_M_buckets, __x._M_buckets);
1257 
1258       std::swap(_M_bucket_count, __x._M_bucket_count);
1259       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1260       std::swap(_M_element_count, __x._M_element_count);
1261       std::swap(_M_single_bucket, __x._M_single_bucket);
1262 
1263       // Fix buckets containing the _M_before_begin pointers that can't be
1264       // swapped.
1265       if (_M_begin())
1266 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1267 
1268       if (__x._M_begin())
1269 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1270 	  = &__x._M_before_begin;
1271     }
1272 
1273   template<typename _Key, typename _Value,
1274 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1275 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1276 	   typename _Traits>
1277     auto
1278     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1279 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1280     find(const key_type& __k)
1281     -> iterator
1282     {
1283       __hash_code __code = this->_M_hash_code(__k);
1284       std::size_t __n = _M_bucket_index(__k, __code);
1285       __node_type* __p = _M_find_node(__n, __k, __code);
1286       return __p ? iterator(__p) : end();
1287     }
1288 
1289   template<typename _Key, typename _Value,
1290 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1291 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1292 	   typename _Traits>
1293     auto
1294     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1295 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1296     find(const key_type& __k) const
1297     -> const_iterator
1298     {
1299       __hash_code __code = this->_M_hash_code(__k);
1300       std::size_t __n = _M_bucket_index(__k, __code);
1301       __node_type* __p = _M_find_node(__n, __k, __code);
1302       return __p ? const_iterator(__p) : end();
1303     }
1304 
1305   template<typename _Key, typename _Value,
1306 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1307 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1308 	   typename _Traits>
1309     auto
1310     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1311 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1312     count(const key_type& __k) const
1313     -> size_type
1314     {
1315       __hash_code __code = this->_M_hash_code(__k);
1316       std::size_t __n = _M_bucket_index(__k, __code);
1317       __node_type* __p = _M_bucket_begin(__n);
1318       if (!__p)
1319 	return 0;
1320 
1321       std::size_t __result = 0;
1322       for (;; __p = __p->_M_next())
1323 	{
1324 	  if (this->_M_equals(__k, __code, __p))
1325 	    ++__result;
1326 	  else if (__result)
1327 	    // All equivalent values are next to each other, if we
1328 	    // found a non-equivalent value after an equivalent one it
1329 	    // means that we won't find any new equivalent value.
1330 	    break;
1331 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1332 	    break;
1333 	}
1334       return __result;
1335     }
1336 
1337   template<typename _Key, typename _Value,
1338 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1339 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1340 	   typename _Traits>
1341     auto
1342     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1343 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1344     equal_range(const key_type& __k)
1345     -> pair<iterator, iterator>
1346     {
1347       __hash_code __code = this->_M_hash_code(__k);
1348       std::size_t __n = _M_bucket_index(__k, __code);
1349       __node_type* __p = _M_find_node(__n, __k, __code);
1350 
1351       if (__p)
1352 	{
1353 	  __node_type* __p1 = __p->_M_next();
1354 	  while (__p1 && _M_bucket_index(__p1) == __n
1355 		 && this->_M_equals(__k, __code, __p1))
1356 	    __p1 = __p1->_M_next();
1357 
1358 	  return std::make_pair(iterator(__p), iterator(__p1));
1359 	}
1360       else
1361 	return std::make_pair(end(), end());
1362     }
1363 
1364   template<typename _Key, typename _Value,
1365 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1366 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1367 	   typename _Traits>
1368     auto
1369     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1370 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1371     equal_range(const key_type& __k) const
1372     -> pair<const_iterator, const_iterator>
1373     {
1374       __hash_code __code = this->_M_hash_code(__k);
1375       std::size_t __n = _M_bucket_index(__k, __code);
1376       __node_type* __p = _M_find_node(__n, __k, __code);
1377 
1378       if (__p)
1379 	{
1380 	  __node_type* __p1 = __p->_M_next();
1381 	  while (__p1 && _M_bucket_index(__p1) == __n
1382 		 && this->_M_equals(__k, __code, __p1))
1383 	    __p1 = __p1->_M_next();
1384 
1385 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1386 	}
1387       else
1388 	return std::make_pair(end(), end());
1389     }
1390 
1391   // Find the node whose key compares equal to k in the bucket n.
1392   // Return nullptr if no node is found.
1393   template<typename _Key, typename _Value,
1394 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1395 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1396 	   typename _Traits>
1397     auto
1398     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1399 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1400     _M_find_before_node(size_type __n, const key_type& __k,
1401 			__hash_code __code) const
1402     -> __node_base*
1403     {
1404       __node_base* __prev_p = _M_buckets[__n];
1405       if (!__prev_p)
1406 	return nullptr;
1407 
1408       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1409 	   __p = __p->_M_next())
1410 	{
1411 	  if (this->_M_equals(__k, __code, __p))
1412 	    return __prev_p;
1413 
1414 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1415 	    break;
1416 	  __prev_p = __p;
1417 	}
1418       return nullptr;
1419     }
1420 
1421   template<typename _Key, typename _Value,
1422 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1423 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1424 	   typename _Traits>
1425     void
1426     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1427 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1428     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1429     {
1430       if (_M_buckets[__bkt])
1431 	{
1432 	  // Bucket is not empty, we just need to insert the new node
1433 	  // after the bucket before begin.
1434 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1435 	  _M_buckets[__bkt]->_M_nxt = __node;
1436 	}
1437       else
1438 	{
1439 	  // The bucket is empty, the new node is inserted at the
1440 	  // beginning of the singly-linked list and the bucket will
1441 	  // contain _M_before_begin pointer.
1442 	  __node->_M_nxt = _M_before_begin._M_nxt;
1443 	  _M_before_begin._M_nxt = __node;
1444 	  if (__node->_M_nxt)
1445 	    // We must update former begin bucket that is pointing to
1446 	    // _M_before_begin.
1447 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1448 	  _M_buckets[__bkt] = &_M_before_begin;
1449 	}
1450     }
1451 
1452   template<typename _Key, typename _Value,
1453 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1454 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1455 	   typename _Traits>
1456     void
1457     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1458 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1459     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1460 			   size_type __next_bkt)
1461     {
1462       if (!__next || __next_bkt != __bkt)
1463 	{
1464 	  // Bucket is now empty
1465 	  // First update next bucket if any
1466 	  if (__next)
1467 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1468 
1469 	  // Second update before begin node if necessary
1470 	  if (&_M_before_begin == _M_buckets[__bkt])
1471 	    _M_before_begin._M_nxt = __next;
1472 	  _M_buckets[__bkt] = nullptr;
1473 	}
1474     }
1475 
1476   template<typename _Key, typename _Value,
1477 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1478 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1479 	   typename _Traits>
1480     auto
1481     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1482 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1483     _M_get_previous_node(size_type __bkt, __node_base* __n)
1484     -> __node_base*
1485     {
1486       __node_base* __prev_n = _M_buckets[__bkt];
1487       while (__prev_n->_M_nxt != __n)
1488 	__prev_n = __prev_n->_M_nxt;
1489       return __prev_n;
1490     }
1491 
1492   template<typename _Key, typename _Value,
1493 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1494 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1495 	   typename _Traits>
1496     template<typename... _Args>
1497       auto
1498       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1499 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1500       _M_emplace(std::true_type, _Args&&... __args)
1501       -> pair<iterator, bool>
1502       {
1503 	// First build the node to get access to the hash code
1504 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1505 	const key_type& __k = this->_M_extract()(__node->_M_v());
1506 	__hash_code __code;
1507 	__try
1508 	  {
1509 	    __code = this->_M_hash_code(__k);
1510 	  }
1511 	__catch(...)
1512 	  {
1513 	    this->_M_deallocate_node(__node);
1514 	    __throw_exception_again;
1515 	  }
1516 
1517 	size_type __bkt = _M_bucket_index(__k, __code);
1518 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1519 	  {
1520 	    // There is already an equivalent node, no insertion
1521 	    this->_M_deallocate_node(__node);
1522 	    return std::make_pair(iterator(__p), false);
1523 	  }
1524 
1525 	// Insert the node
1526 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1527 			      true);
1528       }
1529 
1530   template<typename _Key, typename _Value,
1531 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1532 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1533 	   typename _Traits>
1534     template<typename... _Args>
1535       auto
1536       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1537 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1538       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1539       -> iterator
1540       {
1541 	// First build the node to get its hash code.
1542 	__node_type* __node =
1543 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1544 
1545 	__hash_code __code;
1546 	__try
1547 	  {
1548 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1549 	  }
1550 	__catch(...)
1551 	  {
1552 	    this->_M_deallocate_node(__node);
1553 	    __throw_exception_again;
1554 	  }
1555 
1556 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1557       }
1558 
1559   template<typename _Key, typename _Value,
1560 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1561 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1562 	   typename _Traits>
1563     auto
1564     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1565 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1566     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1567 			  __node_type* __node)
1568     -> iterator
1569     {
1570       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1571       std::pair<bool, std::size_t> __do_rehash
1572 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1573 
1574       __try
1575 	{
1576 	  if (__do_rehash.first)
1577 	    {
1578 	      _M_rehash(__do_rehash.second, __saved_state);
1579 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1580 	    }
1581 
1582 	  this->_M_store_code(__node, __code);
1583 
1584 	  // Always insert at the beginning of the bucket.
1585 	  _M_insert_bucket_begin(__bkt, __node);
1586 	  ++_M_element_count;
1587 	  return iterator(__node);
1588 	}
1589       __catch(...)
1590 	{
1591 	  this->_M_deallocate_node(__node);
1592 	  __throw_exception_again;
1593 	}
1594     }
1595 
1596   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1597   // already present). Take ownership of the node, deallocate it on exception.
1598   template<typename _Key, typename _Value,
1599 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1600 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1601 	   typename _Traits>
1602     auto
1603     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1604 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1605     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1606 			 __node_type* __node)
1607     -> iterator
1608     {
1609       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1610       std::pair<bool, std::size_t> __do_rehash
1611 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1612 
1613       __try
1614 	{
1615 	  if (__do_rehash.first)
1616 	    _M_rehash(__do_rehash.second, __saved_state);
1617 
1618 	  this->_M_store_code(__node, __code);
1619 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1620 	  size_type __bkt = _M_bucket_index(__k, __code);
1621 
1622 	  // Find the node before an equivalent one or use hint if it exists and
1623 	  // if it is equivalent.
1624 	  __node_base* __prev
1625 	    = __builtin_expect(__hint != nullptr, false)
1626 	      && this->_M_equals(__k, __code, __hint)
1627 		? __hint
1628 		: _M_find_before_node(__bkt, __k, __code);
1629 	  if (__prev)
1630 	    {
1631 	      // Insert after the node before the equivalent one.
1632 	      __node->_M_nxt = __prev->_M_nxt;
1633 	      __prev->_M_nxt = __node;
1634 	      if (__builtin_expect(__prev == __hint, false))
1635 	      	// hint might be the last bucket node, in this case we need to
1636 	      	// update next bucket.
1637 	      	if (__node->_M_nxt
1638 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1639 	      	  {
1640 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1641 	      	    if (__next_bkt != __bkt)
1642 	      	      _M_buckets[__next_bkt] = __node;
1643 	      	  }
1644 	    }
1645 	  else
1646 	    // The inserted node has no equivalent in the
1647 	    // hashtable. We must insert the new node at the
1648 	    // beginning of the bucket to preserve equivalent
1649 	    // elements' relative positions.
1650 	    _M_insert_bucket_begin(__bkt, __node);
1651 	  ++_M_element_count;
1652 	  return iterator(__node);
1653 	}
1654       __catch(...)
1655 	{
1656 	  this->_M_deallocate_node(__node);
1657 	  __throw_exception_again;
1658 	}
1659     }
1660 
1661   // Insert v if no element with its key is already present.
1662   template<typename _Key, typename _Value,
1663 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1664 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1665 	   typename _Traits>
1666     template<typename _Arg, typename _NodeGenerator>
1667       auto
1668       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1669 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1670       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1671       -> pair<iterator, bool>
1672       {
1673 	const key_type& __k = this->_M_extract()(__v);
1674 	__hash_code __code = this->_M_hash_code(__k);
1675 	size_type __bkt = _M_bucket_index(__k, __code);
1676 
1677 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1678 	if (__n)
1679 	  return std::make_pair(iterator(__n), false);
1680 
1681 	__n = __node_gen(std::forward<_Arg>(__v));
1682 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1683       }
1684 
1685   // Insert v unconditionally.
1686   template<typename _Key, typename _Value,
1687 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1688 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1689 	   typename _Traits>
1690     template<typename _Arg, typename _NodeGenerator>
1691       auto
1692       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1693 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1694       _M_insert(const_iterator __hint, _Arg&& __v,
1695 		const _NodeGenerator& __node_gen, std::false_type)
1696       -> iterator
1697       {
1698 	// First compute the hash code so that we don't do anything if it
1699 	// throws.
1700 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1701 
1702 	// Second allocate new node so that we don't rehash if it throws.
1703 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1704 
1705 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1706       }
1707 
1708   template<typename _Key, typename _Value,
1709 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1710 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1711 	   typename _Traits>
1712     auto
1713     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1714 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1715     erase(const_iterator __it)
1716     -> iterator
1717     {
1718       __node_type* __n = __it._M_cur;
1719       std::size_t __bkt = _M_bucket_index(__n);
1720 
1721       // Look for previous node to unlink it from the erased one, this
1722       // is why we need buckets to contain the before begin to make
1723       // this search fast.
1724       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1725       return _M_erase(__bkt, __prev_n, __n);
1726     }
1727 
1728   template<typename _Key, typename _Value,
1729 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1730 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1731 	   typename _Traits>
1732     auto
1733     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1734 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1735     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1736     -> iterator
1737     {
1738       if (__prev_n == _M_buckets[__bkt])
1739 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1740 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1741       else if (__n->_M_nxt)
1742 	{
1743 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1744 	  if (__next_bkt != __bkt)
1745 	    _M_buckets[__next_bkt] = __prev_n;
1746 	}
1747 
1748       __prev_n->_M_nxt = __n->_M_nxt;
1749       iterator __result(__n->_M_next());
1750       this->_M_deallocate_node(__n);
1751       --_M_element_count;
1752 
1753       return __result;
1754     }
1755 
1756   template<typename _Key, typename _Value,
1757 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1758 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1759 	   typename _Traits>
1760     auto
1761     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1762 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1763     _M_erase(std::true_type, const key_type& __k)
1764     -> size_type
1765     {
1766       __hash_code __code = this->_M_hash_code(__k);
1767       std::size_t __bkt = _M_bucket_index(__k, __code);
1768 
1769       // Look for the node before the first matching node.
1770       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1771       if (!__prev_n)
1772 	return 0;
1773 
1774       // We found a matching node, erase it.
1775       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1776       _M_erase(__bkt, __prev_n, __n);
1777       return 1;
1778     }
1779 
1780   template<typename _Key, typename _Value,
1781 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1782 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1783 	   typename _Traits>
1784     auto
1785     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1786 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1787     _M_erase(std::false_type, const key_type& __k)
1788     -> size_type
1789     {
1790       __hash_code __code = this->_M_hash_code(__k);
1791       std::size_t __bkt = _M_bucket_index(__k, __code);
1792 
1793       // Look for the node before the first matching node.
1794       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1795       if (!__prev_n)
1796 	return 0;
1797 
1798       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1799       // 526. Is it undefined if a function in the standard changes
1800       // in parameters?
1801       // We use one loop to find all matching nodes and another to deallocate
1802       // them so that the key stays valid during the first loop. It might be
1803       // invalidated indirectly when destroying nodes.
1804       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1805       __node_type* __n_last = __n;
1806       std::size_t __n_last_bkt = __bkt;
1807       do
1808 	{
1809 	  __n_last = __n_last->_M_next();
1810 	  if (!__n_last)
1811 	    break;
1812 	  __n_last_bkt = _M_bucket_index(__n_last);
1813 	}
1814       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1815 
1816       // Deallocate nodes.
1817       size_type __result = 0;
1818       do
1819 	{
1820 	  __node_type* __p = __n->_M_next();
1821 	  this->_M_deallocate_node(__n);
1822 	  __n = __p;
1823 	  ++__result;
1824 	  --_M_element_count;
1825 	}
1826       while (__n != __n_last);
1827 
1828       if (__prev_n == _M_buckets[__bkt])
1829 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1830       else if (__n_last && __n_last_bkt != __bkt)
1831 	_M_buckets[__n_last_bkt] = __prev_n;
1832       __prev_n->_M_nxt = __n_last;
1833       return __result;
1834     }
1835 
1836   template<typename _Key, typename _Value,
1837 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1838 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1839 	   typename _Traits>
1840     auto
1841     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1842 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1843     erase(const_iterator __first, const_iterator __last)
1844     -> iterator
1845     {
1846       __node_type* __n = __first._M_cur;
1847       __node_type* __last_n = __last._M_cur;
1848       if (__n == __last_n)
1849 	return iterator(__n);
1850 
1851       std::size_t __bkt = _M_bucket_index(__n);
1852 
1853       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1854       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1855       std::size_t __n_bkt = __bkt;
1856       for (;;)
1857 	{
1858 	  do
1859 	    {
1860 	      __node_type* __tmp = __n;
1861 	      __n = __n->_M_next();
1862 	      this->_M_deallocate_node(__tmp);
1863 	      --_M_element_count;
1864 	      if (!__n)
1865 		break;
1866 	      __n_bkt = _M_bucket_index(__n);
1867 	    }
1868 	  while (__n != __last_n && __n_bkt == __bkt);
1869 	  if (__is_bucket_begin)
1870 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1871 	  if (__n == __last_n)
1872 	    break;
1873 	  __is_bucket_begin = true;
1874 	  __bkt = __n_bkt;
1875 	}
1876 
1877       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1878 	_M_buckets[__n_bkt] = __prev_n;
1879       __prev_n->_M_nxt = __n;
1880       return iterator(__n);
1881     }
1882 
1883   template<typename _Key, typename _Value,
1884 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1885 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1886 	   typename _Traits>
1887     void
1888     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1889 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1890     clear() noexcept
1891     {
1892       this->_M_deallocate_nodes(_M_begin());
1893       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1894       _M_element_count = 0;
1895       _M_before_begin._M_nxt = nullptr;
1896     }
1897 
1898   template<typename _Key, typename _Value,
1899 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1900 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1901 	   typename _Traits>
1902     void
1903     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1904 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1905     rehash(size_type __n)
1906     {
1907       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1908       std::size_t __buckets
1909 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1910 		   __n);
1911       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1912 
1913       if (__buckets != _M_bucket_count)
1914 	_M_rehash(__buckets, __saved_state);
1915       else
1916 	// No rehash, restore previous state to keep a consistent state.
1917 	_M_rehash_policy._M_reset(__saved_state);
1918     }
1919 
1920   template<typename _Key, typename _Value,
1921 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1922 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1923 	   typename _Traits>
1924     void
1925     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1926 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1927     _M_rehash(size_type __n, const __rehash_state& __state)
1928     {
1929       __try
1930 	{
1931 	  _M_rehash_aux(__n, __unique_keys());
1932 	}
1933       __catch(...)
1934 	{
1935 	  // A failure here means that buckets allocation failed.  We only
1936 	  // have to restore hash policy previous state.
1937 	  _M_rehash_policy._M_reset(__state);
1938 	  __throw_exception_again;
1939 	}
1940     }
1941 
1942   // Rehash when there is no equivalent elements.
1943   template<typename _Key, typename _Value,
1944 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1945 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1946 	   typename _Traits>
1947     void
1948     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1949 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1950     _M_rehash_aux(size_type __n, std::true_type)
1951     {
1952       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1953       __node_type* __p = _M_begin();
1954       _M_before_begin._M_nxt = nullptr;
1955       std::size_t __bbegin_bkt = 0;
1956       while (__p)
1957 	{
1958 	  __node_type* __next = __p->_M_next();
1959 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1960 	  if (!__new_buckets[__bkt])
1961 	    {
1962 	      __p->_M_nxt = _M_before_begin._M_nxt;
1963 	      _M_before_begin._M_nxt = __p;
1964 	      __new_buckets[__bkt] = &_M_before_begin;
1965 	      if (__p->_M_nxt)
1966 		__new_buckets[__bbegin_bkt] = __p;
1967 	      __bbegin_bkt = __bkt;
1968 	    }
1969 	  else
1970 	    {
1971 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1972 	      __new_buckets[__bkt]->_M_nxt = __p;
1973 	    }
1974 	  __p = __next;
1975 	}
1976 
1977       _M_deallocate_buckets();
1978       _M_bucket_count = __n;
1979       _M_buckets = __new_buckets;
1980     }
1981 
1982   // Rehash when there can be equivalent elements, preserve their relative
1983   // order.
1984   template<typename _Key, typename _Value,
1985 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1986 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1987 	   typename _Traits>
1988     void
1989     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1990 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1991     _M_rehash_aux(size_type __n, std::false_type)
1992     {
1993       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1994 
1995       __node_type* __p = _M_begin();
1996       _M_before_begin._M_nxt = nullptr;
1997       std::size_t __bbegin_bkt = 0;
1998       std::size_t __prev_bkt = 0;
1999       __node_type* __prev_p = nullptr;
2000       bool __check_bucket = false;
2001 
2002       while (__p)
2003 	{
2004 	  __node_type* __next = __p->_M_next();
2005 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2006 
2007 	  if (__prev_p && __prev_bkt == __bkt)
2008 	    {
2009 	      // Previous insert was already in this bucket, we insert after
2010 	      // the previously inserted one to preserve equivalent elements
2011 	      // relative order.
2012 	      __p->_M_nxt = __prev_p->_M_nxt;
2013 	      __prev_p->_M_nxt = __p;
2014 
2015 	      // Inserting after a node in a bucket require to check that we
2016 	      // haven't change the bucket last node, in this case next
2017 	      // bucket containing its before begin node must be updated. We
2018 	      // schedule a check as soon as we move out of the sequence of
2019 	      // equivalent nodes to limit the number of checks.
2020 	      __check_bucket = true;
2021 	    }
2022 	  else
2023 	    {
2024 	      if (__check_bucket)
2025 		{
2026 		  // Check if we shall update the next bucket because of
2027 		  // insertions into __prev_bkt bucket.
2028 		  if (__prev_p->_M_nxt)
2029 		    {
2030 		      std::size_t __next_bkt
2031 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2032 							    __n);
2033 		      if (__next_bkt != __prev_bkt)
2034 			__new_buckets[__next_bkt] = __prev_p;
2035 		    }
2036 		  __check_bucket = false;
2037 		}
2038 
2039 	      if (!__new_buckets[__bkt])
2040 		{
2041 		  __p->_M_nxt = _M_before_begin._M_nxt;
2042 		  _M_before_begin._M_nxt = __p;
2043 		  __new_buckets[__bkt] = &_M_before_begin;
2044 		  if (__p->_M_nxt)
2045 		    __new_buckets[__bbegin_bkt] = __p;
2046 		  __bbegin_bkt = __bkt;
2047 		}
2048 	      else
2049 		{
2050 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2051 		  __new_buckets[__bkt]->_M_nxt = __p;
2052 		}
2053 	    }
2054 	  __prev_p = __p;
2055 	  __prev_bkt = __bkt;
2056 	  __p = __next;
2057 	}
2058 
2059       if (__check_bucket && __prev_p->_M_nxt)
2060 	{
2061 	  std::size_t __next_bkt
2062 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2063 	  if (__next_bkt != __prev_bkt)
2064 	    __new_buckets[__next_bkt] = __prev_p;
2065 	}
2066 
2067       _M_deallocate_buckets();
2068       _M_bucket_count = __n;
2069       _M_buckets = __new_buckets;
2070     }
2071 
2072 _GLIBCXX_END_NAMESPACE_VERSION
2073 } // namespace std
2074 
2075 #endif // _HASHTABLE_H
2076