1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36 #include <bits/enable_special_members.h>
37 #if __cplusplus > 201402L
38 # include <bits/node_handle.h>
39 #endif
40
_GLIBCXX_VISIBILITY(default)41 namespace std _GLIBCXX_VISIBILITY(default)
42 {
43 _GLIBCXX_BEGIN_NAMESPACE_VERSION
44
45 template<typename _Tp, typename _Hash>
46 using __cache_default
47 = __not_<__and_<// Do not cache for fast hasher.
48 __is_fast_hash<_Hash>,
49 // Mandatory to have erase not throwing.
50 __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
51
52 // Helper to conditionally delete the default constructor.
53 // The _Hash_node_base type is used to distinguish this specialization
54 // from any other potentially-overlapping subobjects of the hashtable.
55 template<typename _Equal, typename _Hash, typename _Allocator>
56 using _Hashtable_enable_default_ctor
57 = _Enable_default_constructor<__and_<is_default_constructible<_Equal>,
58 is_default_constructible<_Hash>,
59 is_default_constructible<_Allocator>>{},
60 __detail::_Hash_node_base>;
61
62 /**
63 * Primary class template _Hashtable.
64 *
65 * @ingroup hashtable-detail
66 *
67 * @tparam _Value CopyConstructible type.
68 *
69 * @tparam _Key CopyConstructible type.
70 *
71 * @tparam _Alloc An allocator type
72 * ([lib.allocator.requirements]) whose _Alloc::value_type is
73 * _Value. As a conforming extension, we allow for
74 * _Alloc::value_type != _Value.
75 *
76 * @tparam _ExtractKey Function object that takes an object of type
77 * _Value and returns a value of type _Key.
78 *
79 * @tparam _Equal Function object that takes two objects of type k
80 * and returns a bool-like value that is true if the two objects
81 * are considered equal.
82 *
83 * @tparam _H1 The hash function. A unary function object with
84 * argument type _Key and result type size_t. Return values should
85 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
86 *
87 * @tparam _H2 The range-hashing function (in the terminology of
88 * Tavori and Dreizin). A binary function object whose argument
89 * types and result type are all size_t. Given arguments r and N,
90 * the return value is in the range [0, N).
91 *
92 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
93 * binary function whose argument types are _Key and size_t and
94 * whose result type is size_t. Given arguments k and N, the
95 * return value is in the range [0, N). Default: hash(k, N) =
96 * h2(h1(k), N). If _Hash is anything other than the default, _H1
97 * and _H2 are ignored.
98 *
99 * @tparam _RehashPolicy Policy class with three members, all of
100 * which govern the bucket count. _M_next_bkt(n) returns a bucket
101 * count no smaller than n. _M_bkt_for_elements(n) returns a
102 * bucket count appropriate for an element count of n.
103 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
104 * current bucket count is n_bkt and the current element count is
105 * n_elt, we need to increase the bucket count. If so, returns
106 * make_pair(true, n), where n is the new bucket count. If not,
107 * returns make_pair(false, <anything>)
108 *
109 * @tparam _Traits Compile-time class with three boolean
110 * std::integral_constant members: __cache_hash_code, __constant_iterators,
111 * __unique_keys.
112 *
113 * Each _Hashtable data structure has:
114 *
115 * - _Bucket[] _M_buckets
116 * - _Hash_node_base _M_before_begin
117 * - size_type _M_bucket_count
118 * - size_type _M_element_count
119 *
120 * with _Bucket being _Hash_node* and _Hash_node containing:
121 *
122 * - _Hash_node* _M_next
123 * - Tp _M_value
124 * - size_t _M_hash_code if cache_hash_code is true
125 *
126 * In terms of Standard containers the hashtable is like the aggregation of:
127 *
128 * - std::forward_list<_Node> containing the elements
129 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
130 *
131 * The non-empty buckets contain the node before the first node in the
132 * bucket. This design makes it possible to implement something like a
133 * std::forward_list::insert_after on container insertion and
134 * std::forward_list::erase_after on container erase
135 * calls. _M_before_begin is equivalent to
136 * std::forward_list::before_begin. Empty buckets contain
137 * nullptr. Note that one of the non-empty buckets contains
138 * &_M_before_begin which is not a dereferenceable node so the
139 * node pointer in a bucket shall never be dereferenced, only its
140 * next node can be.
141 *
142 * Walking through a bucket's nodes requires a check on the hash code to
143 * see if each node is still in the bucket. Such a design assumes a
144 * quite efficient hash functor and is one of the reasons it is
145 * highly advisable to set __cache_hash_code to true.
146 *
147 * The container iterators are simply built from nodes. This way
148 * incrementing the iterator is perfectly efficient independent of
149 * how many empty buckets there are in the container.
150 *
151 * On insert we compute the element's hash code and use it to find the
152 * bucket index. If the element must be inserted in an empty bucket
153 * we add it at the beginning of the singly linked list and make the
154 * bucket point to _M_before_begin. The bucket that used to point to
155 * _M_before_begin, if any, is updated to point to its new before
156 * begin node.
157 *
158 * On erase, the simple iterator design requires using the hash
159 * functor to get the index of the bucket to update. For this
160 * reason, when __cache_hash_code is set to false the hash functor must
161 * not throw and this is enforced by a static assertion.
162 *
163 * Functionality is implemented by decomposition into base classes,
164 * where the derived _Hashtable class is used in _Map_base,
165 * _Insert, _Rehash_base, and _Equality base classes to access the
166 * "this" pointer. _Hashtable_base is used in the base classes as a
167 * non-recursive, fully-completed-type so that detailed nested type
168 * information, such as iterator type and node type, can be
169 * used. This is similar to the "Curiously Recurring Template
170 * Pattern" (CRTP) technique, but uses a reconstructed, not
171 * explicitly passed, template pattern.
172 *
173 * Base class templates are:
174 * - __detail::_Hashtable_base
175 * - __detail::_Map_base
176 * - __detail::_Insert
177 * - __detail::_Rehash_base
178 * - __detail::_Equality
179 */
180 template<typename _Key, typename _Value, typename _Alloc,
181 typename _ExtractKey, typename _Equal,
182 typename _H1, typename _H2, typename _Hash,
183 typename _RehashPolicy, typename _Traits>
184 class _Hashtable
185 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
186 _H1, _H2, _Hash, _Traits>,
187 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
188 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
189 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
190 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
191 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
192 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
193 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
194 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
195 private __detail::_Hashtable_alloc<
196 __alloc_rebind<_Alloc,
197 __detail::_Hash_node<_Value,
198 _Traits::__hash_cached::value>>>,
199 private _Hashtable_enable_default_ctor<_Equal, _H1, _Alloc>
200 {
201 static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
202 "unordered container must have a non-const, non-volatile value_type");
203 #if __cplusplus > 201703L || defined __STRICT_ANSI__
204 static_assert(is_same<typename _Alloc::value_type, _Value>{},
205 "unordered container must have the same value_type as its allocator");
206 #endif
207
208 using __traits_type = _Traits;
209 using __hash_cached = typename __traits_type::__hash_cached;
210 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
211 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
212
213 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
214
215 using __value_alloc_traits =
216 typename __hashtable_alloc::__value_alloc_traits;
217 using __node_alloc_traits =
218 typename __hashtable_alloc::__node_alloc_traits;
219 using __node_base = typename __hashtable_alloc::__node_base;
220 using __bucket_type = typename __hashtable_alloc::__bucket_type;
221 using __enable_default_ctor
222 = _Hashtable_enable_default_ctor<_Equal, _H1, _Alloc>;
223
224 public:
225 typedef _Key key_type;
226 typedef _Value value_type;
227 typedef _Alloc allocator_type;
228 typedef _Equal key_equal;
229
230 // mapped_type, if present, comes from _Map_base.
231 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
232 typedef typename __value_alloc_traits::pointer pointer;
233 typedef typename __value_alloc_traits::const_pointer const_pointer;
234 typedef value_type& reference;
235 typedef const value_type& const_reference;
236
237 private:
238 using __rehash_type = _RehashPolicy;
239 using __rehash_state = typename __rehash_type::_State;
240
241 using __constant_iterators = typename __traits_type::__constant_iterators;
242 using __unique_keys = typename __traits_type::__unique_keys;
243
244 using __key_extract = typename std::conditional<
245 __constant_iterators::value,
246 __detail::_Identity,
247 __detail::_Select1st>::type;
248
249 using __hashtable_base = __detail::
250 _Hashtable_base<_Key, _Value, _ExtractKey,
251 _Equal, _H1, _H2, _Hash, _Traits>;
252
253 using __hash_code_base = typename __hashtable_base::__hash_code_base;
254 using __hash_code = typename __hashtable_base::__hash_code;
255 using __ireturn_type = typename __hashtable_base::__ireturn_type;
256
257 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
258 _Equal, _H1, _H2, _Hash,
259 _RehashPolicy, _Traits>;
260
261 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
262 _ExtractKey, _Equal,
263 _H1, _H2, _Hash,
264 _RehashPolicy, _Traits>;
265
266 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
267 _Equal, _H1, _H2, _Hash,
268 _RehashPolicy, _Traits>;
269
270 using __reuse_or_alloc_node_gen_t =
271 __detail::_ReuseOrAllocNode<__node_alloc_type>;
272 using __alloc_node_gen_t =
273 __detail::_AllocNode<__node_alloc_type>;
274
275 // Simple RAII type for managing a node containing an element
276 struct _Scoped_node
277 {
278 // Take ownership of a node with a constructed element.
279 _Scoped_node(__node_type* __n, __hashtable_alloc* __h)
280 : _M_h(__h), _M_node(__n) { }
281
282 // Allocate a node and construct an element within it.
283 template<typename... _Args>
284 _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
285 : _M_h(__h),
286 _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
287 { }
288
289 // Destroy element and deallocate node.
290 ~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
291
292 _Scoped_node(const _Scoped_node&) = delete;
293 _Scoped_node& operator=(const _Scoped_node&) = delete;
294
295 __hashtable_alloc* _M_h;
296 __node_type* _M_node;
297 };
298
299 template<typename _Ht>
300 static constexpr
301 typename conditional<std::is_lvalue_reference<_Ht>::value,
302 const value_type&, value_type&&>::type
303 __fwd_value_for(value_type& __val) noexcept
304 { return std::move(__val); }
305
306 // Metaprogramming for picking apart hash caching.
307 template<typename _Cond>
308 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
309
310 template<typename _Cond>
311 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
312
313 // Compile-time diagnostics.
314
315 // _Hash_code_base has everything protected, so use this derived type to
316 // access it.
317 struct __hash_code_base_access : __hash_code_base
318 { using __hash_code_base::_M_bucket_index; };
319
320 // Getting a bucket index from a node shall not throw because it is used
321 // in methods (erase, swap...) that shall not throw.
322 static_assert(noexcept(declval<const __hash_code_base_access&>()
323 ._M_bucket_index((const __node_type*)nullptr,
324 (std::size_t)0)),
325 "Cache the hash code or qualify your functors involved"
326 " in hash code and bucket index computation with noexcept");
327
328 // When hash codes are cached local iterator inherits from H2 functor
329 // which must then be default constructible.
330 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
331 "Functor used to map hash code to bucket index"
332 " must be default constructible");
333
334 template<typename _Keya, typename _Valuea, typename _Alloca,
335 typename _ExtractKeya, typename _Equala,
336 typename _H1a, typename _H2a, typename _Hasha,
337 typename _RehashPolicya, typename _Traitsa,
338 bool _Unique_keysa>
339 friend struct __detail::_Map_base;
340
341 template<typename _Keya, typename _Valuea, typename _Alloca,
342 typename _ExtractKeya, typename _Equala,
343 typename _H1a, typename _H2a, typename _Hasha,
344 typename _RehashPolicya, typename _Traitsa>
345 friend struct __detail::_Insert_base;
346
347 template<typename _Keya, typename _Valuea, typename _Alloca,
348 typename _ExtractKeya, typename _Equala,
349 typename _H1a, typename _H2a, typename _Hasha,
350 typename _RehashPolicya, typename _Traitsa,
351 bool _Constant_iteratorsa>
352 friend struct __detail::_Insert;
353
354 template<typename _Keya, typename _Valuea, typename _Alloca,
355 typename _ExtractKeya, typename _Equala,
356 typename _H1a, typename _H2a, typename _Hasha,
357 typename _RehashPolicya, typename _Traitsa,
358 bool _Unique_keysa>
359 friend struct __detail::_Equality;
360
361 public:
362 using size_type = typename __hashtable_base::size_type;
363 using difference_type = typename __hashtable_base::difference_type;
364
365 using iterator = typename __hashtable_base::iterator;
366 using const_iterator = typename __hashtable_base::const_iterator;
367
368 using local_iterator = typename __hashtable_base::local_iterator;
369 using const_local_iterator = typename __hashtable_base::
370 const_local_iterator;
371
372 #if __cplusplus > 201402L
373 using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
374 using insert_return_type = _Node_insert_return<iterator, node_type>;
375 #endif
376
377 private:
378 __bucket_type* _M_buckets = &_M_single_bucket;
379 size_type _M_bucket_count = 1;
380 __node_base _M_before_begin;
381 size_type _M_element_count = 0;
382 _RehashPolicy _M_rehash_policy;
383
384 // A single bucket used when only need for 1 bucket. Especially
385 // interesting in move semantic to leave hashtable with only 1 bucket
386 // which is not allocated so that we can have those operations noexcept
387 // qualified.
388 // Note that we can't leave hashtable with 0 bucket without adding
389 // numerous checks in the code to avoid 0 modulus.
390 __bucket_type _M_single_bucket = nullptr;
391
392 bool
393 _M_uses_single_bucket(__bucket_type* __bkts) const
394 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
395
396 bool
397 _M_uses_single_bucket() const
398 { return _M_uses_single_bucket(_M_buckets); }
399
400 __hashtable_alloc&
401 _M_base_alloc() { return *this; }
402
403 __bucket_type*
404 _M_allocate_buckets(size_type __bkt_count)
405 {
406 if (__builtin_expect(__bkt_count == 1, false))
407 {
408 _M_single_bucket = nullptr;
409 return &_M_single_bucket;
410 }
411
412 return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
413 }
414
415 void
416 _M_deallocate_buckets(__bucket_type* __bkts, size_type __bkt_count)
417 {
418 if (_M_uses_single_bucket(__bkts))
419 return;
420
421 __hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
422 }
423
424 void
425 _M_deallocate_buckets()
426 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
427
428 // Gets bucket begin, deals with the fact that non-empty buckets contain
429 // their before begin node.
430 __node_type*
431 _M_bucket_begin(size_type __bkt) const;
432
433 __node_type*
434 _M_begin() const
435 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
436
437 // Assign *this using another _Hashtable instance. Whether elements
438 // are copied or moved depends on the _Ht reference.
439 template<typename _Ht>
440 void
441 _M_assign_elements(_Ht&&);
442
443 template<typename _Ht, typename _NodeGenerator>
444 void
445 _M_assign(_Ht&&, const _NodeGenerator&);
446
447 void
448 _M_move_assign(_Hashtable&&, true_type);
449
450 void
451 _M_move_assign(_Hashtable&&, false_type);
452
453 void
454 _M_reset() noexcept;
455
456 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
457 const _Equal& __eq, const _ExtractKey& __exk,
458 const allocator_type& __a)
459 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
460 __hashtable_alloc(__node_alloc_type(__a)),
461 __enable_default_ctor(_Enable_default_constructor_tag{})
462 { }
463
464 template<bool _No_realloc = true>
465 static constexpr bool
466 _S_nothrow_move()
467 {
468 #if __cplusplus <= 201402L
469 return __and_<__bool_constant<_No_realloc>,
470 is_nothrow_copy_constructible<_H1>,
471 is_nothrow_copy_constructible<_Equal>>::value;
472 #else
473 if constexpr (_No_realloc)
474 if constexpr (is_nothrow_copy_constructible<_H1>())
475 return is_nothrow_copy_constructible<_Equal>();
476 return false;
477 #endif
478 }
479
480 _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
481 true_type /* alloc always equal */)
482 noexcept(_S_nothrow_move());
483
484 _Hashtable(_Hashtable&&, __node_alloc_type&&,
485 false_type /* alloc always equal */);
486
487
488 public:
489 // Constructor, destructor, assignment, swap
490 _Hashtable() = default;
491 _Hashtable(size_type __bkt_count_hint,
492 const _H1&, const _H2&, const _Hash&,
493 const _Equal&, const _ExtractKey&,
494 const allocator_type&);
495
496 template<typename _InputIterator>
497 _Hashtable(_InputIterator __first, _InputIterator __last,
498 size_type __bkt_count_hint,
499 const _H1&, const _H2&, const _Hash&,
500 const _Equal&, const _ExtractKey&,
501 const allocator_type&);
502
503 _Hashtable(const _Hashtable&);
504
505 _Hashtable(_Hashtable&& __ht)
506 noexcept(_S_nothrow_move())
507 : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
508 true_type{})
509 { }
510
511 _Hashtable(const _Hashtable&, const allocator_type&);
512
513 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
514 noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
515 : _Hashtable(std::move(__ht), __node_alloc_type(__a),
516 typename __node_alloc_traits::is_always_equal{})
517 { }
518
519 // Use delegating constructors.
520 explicit
521 _Hashtable(const allocator_type& __a)
522 : __hashtable_alloc(__node_alloc_type(__a)),
523 __enable_default_ctor(_Enable_default_constructor_tag{})
524 { }
525
526 explicit
527 _Hashtable(size_type __bkt_count_hint,
528 const _H1& __hf = _H1(),
529 const key_equal& __eql = key_equal(),
530 const allocator_type& __a = allocator_type())
531 : _Hashtable(__bkt_count_hint, __hf, _H2(), _Hash(), __eql,
532 __key_extract(), __a)
533 { }
534
535 template<typename _InputIterator>
536 _Hashtable(_InputIterator __f, _InputIterator __l,
537 size_type __bkt_count_hint = 0,
538 const _H1& __hf = _H1(),
539 const key_equal& __eql = key_equal(),
540 const allocator_type& __a = allocator_type())
541 : _Hashtable(__f, __l, __bkt_count_hint, __hf, _H2(), _Hash(), __eql,
542 __key_extract(), __a)
543 { }
544
545 _Hashtable(initializer_list<value_type> __l,
546 size_type __bkt_count_hint = 0,
547 const _H1& __hf = _H1(),
548 const key_equal& __eql = key_equal(),
549 const allocator_type& __a = allocator_type())
550 : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
551 __hf, _H2(), _Hash(), __eql,
552 __key_extract(), __a)
553 { }
554
555 _Hashtable&
556 operator=(const _Hashtable& __ht);
557
558 _Hashtable&
559 operator=(_Hashtable&& __ht)
560 noexcept(__node_alloc_traits::_S_nothrow_move()
561 && is_nothrow_move_assignable<_H1>::value
562 && is_nothrow_move_assignable<_Equal>::value)
563 {
564 constexpr bool __move_storage =
565 __node_alloc_traits::_S_propagate_on_move_assign()
566 || __node_alloc_traits::_S_always_equal();
567 _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
568 return *this;
569 }
570
571 _Hashtable&
572 operator=(initializer_list<value_type> __l)
573 {
574 __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
575 _M_before_begin._M_nxt = nullptr;
576 clear();
577 this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
578 return *this;
579 }
580
581 ~_Hashtable() noexcept;
582
583 void
584 swap(_Hashtable&)
585 noexcept(__and_<__is_nothrow_swappable<_H1>,
586 __is_nothrow_swappable<_Equal>>::value);
587
588 // Basic container operations
589 iterator
590 begin() noexcept
591 { return iterator(_M_begin()); }
592
593 const_iterator
594 begin() const noexcept
595 { return const_iterator(_M_begin()); }
596
597 iterator
598 end() noexcept
599 { return iterator(nullptr); }
600
601 const_iterator
602 end() const noexcept
603 { return const_iterator(nullptr); }
604
605 const_iterator
606 cbegin() const noexcept
607 { return const_iterator(_M_begin()); }
608
609 const_iterator
610 cend() const noexcept
611 { return const_iterator(nullptr); }
612
613 size_type
614 size() const noexcept
615 { return _M_element_count; }
616
617 _GLIBCXX_NODISCARD bool
618 empty() const noexcept
619 { return size() == 0; }
620
621 allocator_type
622 get_allocator() const noexcept
623 { return allocator_type(this->_M_node_allocator()); }
624
625 size_type
626 max_size() const noexcept
627 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
628
629 // Observers
630 key_equal
631 key_eq() const
632 { return this->_M_eq(); }
633
634 // hash_function, if present, comes from _Hash_code_base.
635
636 // Bucket operations
637 size_type
638 bucket_count() const noexcept
639 { return _M_bucket_count; }
640
641 size_type
642 max_bucket_count() const noexcept
643 { return max_size(); }
644
645 size_type
646 bucket_size(size_type __bkt) const
647 { return std::distance(begin(__bkt), end(__bkt)); }
648
649 size_type
650 bucket(const key_type& __k) const
651 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
652
653 local_iterator
654 begin(size_type __bkt)
655 {
656 return local_iterator(*this, _M_bucket_begin(__bkt),
657 __bkt, _M_bucket_count);
658 }
659
660 local_iterator
661 end(size_type __bkt)
662 { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
663
664 const_local_iterator
665 begin(size_type __bkt) const
666 {
667 return const_local_iterator(*this, _M_bucket_begin(__bkt),
668 __bkt, _M_bucket_count);
669 }
670
671 const_local_iterator
672 end(size_type __bkt) const
673 { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
674
675 // DR 691.
676 const_local_iterator
677 cbegin(size_type __bkt) const
678 {
679 return const_local_iterator(*this, _M_bucket_begin(__bkt),
680 __bkt, _M_bucket_count);
681 }
682
683 const_local_iterator
684 cend(size_type __bkt) const
685 { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
686
687 float
688 load_factor() const noexcept
689 {
690 return static_cast<float>(size()) / static_cast<float>(bucket_count());
691 }
692
693 // max_load_factor, if present, comes from _Rehash_base.
694
695 // Generalization of max_load_factor. Extension, not found in
696 // TR1. Only useful if _RehashPolicy is something other than
697 // the default.
698 const _RehashPolicy&
699 __rehash_policy() const
700 { return _M_rehash_policy; }
701
702 void
703 __rehash_policy(const _RehashPolicy& __pol)
704 { _M_rehash_policy = __pol; }
705
706 // Lookup.
707 iterator
708 find(const key_type& __k);
709
710 const_iterator
711 find(const key_type& __k) const;
712
713 size_type
714 count(const key_type& __k) const;
715
716 std::pair<iterator, iterator>
717 equal_range(const key_type& __k);
718
719 std::pair<const_iterator, const_iterator>
720 equal_range(const key_type& __k) const;
721
722 protected:
723 // Bucket index computation helpers.
724 size_type
725 _M_bucket_index(__node_type* __n) const noexcept
726 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
727
728 size_type
729 _M_bucket_index(const key_type& __k, __hash_code __c) const
730 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
731
732 // Find and insert helper functions and types
733 // Find the node before the one matching the criteria.
734 __node_base*
735 _M_find_before_node(size_type, const key_type&, __hash_code) const;
736
737 __node_type*
738 _M_find_node(size_type __bkt, const key_type& __key,
739 __hash_code __c) const
740 {
741 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
742 if (__before_n)
743 return static_cast<__node_type*>(__before_n->_M_nxt);
744 return nullptr;
745 }
746
747 // Insert a node at the beginning of a bucket.
748 void
749 _M_insert_bucket_begin(size_type, __node_type*);
750
751 // Remove the bucket first node
752 void
753 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
754 size_type __next_bkt);
755
756 // Get the node before __n in the bucket __bkt
757 __node_base*
758 _M_get_previous_node(size_type __bkt, __node_base* __n);
759
760 // Insert node __n with key __k and hash code __code, in bucket __bkt
761 // if no rehash (assumes no element with same key already present).
762 // Takes ownership of __n if insertion succeeds, throws otherwise.
763 iterator
764 _M_insert_unique_node(const key_type& __k, size_type __bkt,
765 __hash_code __code, __node_type* __n,
766 size_type __n_elt = 1);
767
768 // Insert node __n with key __k and hash code __code.
769 // Takes ownership of __n if insertion succeeds, throws otherwise.
770 iterator
771 _M_insert_multi_node(__node_type* __hint, const key_type& __k,
772 __hash_code __code, __node_type* __n);
773
774 template<typename... _Args>
775 std::pair<iterator, bool>
776 _M_emplace(true_type, _Args&&... __args);
777
778 template<typename... _Args>
779 iterator
780 _M_emplace(false_type __uk, _Args&&... __args)
781 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
782
783 // Emplace with hint, useless when keys are unique.
784 template<typename... _Args>
785 iterator
786 _M_emplace(const_iterator, true_type __uk, _Args&&... __args)
787 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
788
789 template<typename... _Args>
790 iterator
791 _M_emplace(const_iterator, false_type, _Args&&... __args);
792
793 template<typename _Arg, typename _NodeGenerator>
794 std::pair<iterator, bool>
795 _M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
796
797 template<typename _Arg, typename _NodeGenerator>
798 iterator
799 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
800 false_type __uk)
801 {
802 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
803 __uk);
804 }
805
806 // Insert with hint, not used when keys are unique.
807 template<typename _Arg, typename _NodeGenerator>
808 iterator
809 _M_insert(const_iterator, _Arg&& __arg,
810 const _NodeGenerator& __node_gen, true_type __uk)
811 {
812 return
813 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
814 }
815
816 // Insert with hint when keys are not unique.
817 template<typename _Arg, typename _NodeGenerator>
818 iterator
819 _M_insert(const_iterator, _Arg&&,
820 const _NodeGenerator&, false_type);
821
822 size_type
823 _M_erase(true_type, const key_type&);
824
825 size_type
826 _M_erase(false_type, const key_type&);
827
828 iterator
829 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
830
831 public:
832 // Emplace
833 template<typename... _Args>
834 __ireturn_type
835 emplace(_Args&&... __args)
836 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
837
838 template<typename... _Args>
839 iterator
840 emplace_hint(const_iterator __hint, _Args&&... __args)
841 {
842 return _M_emplace(__hint, __unique_keys(),
843 std::forward<_Args>(__args)...);
844 }
845
846 // Insert member functions via inheritance.
847
848 // Erase
849 iterator
850 erase(const_iterator);
851
852 // LWG 2059.
853 iterator
854 erase(iterator __it)
855 { return erase(const_iterator(__it)); }
856
857 size_type
858 erase(const key_type& __k)
859 { return _M_erase(__unique_keys(), __k); }
860
861 iterator
862 erase(const_iterator, const_iterator);
863
864 void
865 clear() noexcept;
866
867 // Set number of buckets keeping it appropriate for container's number
868 // of elements.
869 void rehash(size_type __bkt_count);
870
871 // DR 1189.
872 // reserve, if present, comes from _Rehash_base.
873
874 #if __cplusplus > 201402L
875 /// Re-insert an extracted node into a container with unique keys.
876 insert_return_type
877 _M_reinsert_node(node_type&& __nh)
878 {
879 insert_return_type __ret;
880 if (__nh.empty())
881 __ret.position = end();
882 else
883 {
884 __glibcxx_assert(get_allocator() == __nh.get_allocator());
885
886 const key_type& __k = __nh._M_key();
887 __hash_code __code = this->_M_hash_code(__k);
888 size_type __bkt = _M_bucket_index(__k, __code);
889 if (__node_type* __n = _M_find_node(__bkt, __k, __code))
890 {
891 __ret.node = std::move(__nh);
892 __ret.position = iterator(__n);
893 __ret.inserted = false;
894 }
895 else
896 {
897 __ret.position
898 = _M_insert_unique_node(__k, __bkt, __code, __nh._M_ptr);
899 __nh._M_ptr = nullptr;
900 __ret.inserted = true;
901 }
902 }
903 return __ret;
904 }
905
906 /// Re-insert an extracted node into a container with equivalent keys.
907 iterator
908 _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
909 {
910 if (__nh.empty())
911 return end();
912
913 __glibcxx_assert(get_allocator() == __nh.get_allocator());
914
915 const key_type& __k = __nh._M_key();
916 auto __code = this->_M_hash_code(__k);
917 auto __ret
918 = _M_insert_multi_node(__hint._M_cur, __k, __code, __nh._M_ptr);
919 __nh._M_ptr = nullptr;
920 return __ret;
921 }
922
923 private:
924 node_type
925 _M_extract_node(size_t __bkt, __node_base* __prev_n)
926 {
927 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
928 if (__prev_n == _M_buckets[__bkt])
929 _M_remove_bucket_begin(__bkt, __n->_M_next(),
930 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
931 else if (__n->_M_nxt)
932 {
933 size_type __next_bkt = _M_bucket_index(__n->_M_next());
934 if (__next_bkt != __bkt)
935 _M_buckets[__next_bkt] = __prev_n;
936 }
937
938 __prev_n->_M_nxt = __n->_M_nxt;
939 __n->_M_nxt = nullptr;
940 --_M_element_count;
941 return { __n, this->_M_node_allocator() };
942 }
943
944 public:
945 // Extract a node.
946 node_type
947 extract(const_iterator __pos)
948 {
949 size_t __bkt = _M_bucket_index(__pos._M_cur);
950 return _M_extract_node(__bkt,
951 _M_get_previous_node(__bkt, __pos._M_cur));
952 }
953
954 /// Extract a node.
955 node_type
956 extract(const _Key& __k)
957 {
958 node_type __nh;
959 __hash_code __code = this->_M_hash_code(__k);
960 std::size_t __bkt = _M_bucket_index(__k, __code);
961 if (__node_base* __prev_node = _M_find_before_node(__bkt, __k, __code))
962 __nh = _M_extract_node(__bkt, __prev_node);
963 return __nh;
964 }
965
966 /// Merge from a compatible container into one with unique keys.
967 template<typename _Compatible_Hashtable>
968 void
969 _M_merge_unique(_Compatible_Hashtable& __src) noexcept
970 {
971 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
972 node_type>, "Node types are compatible");
973 __glibcxx_assert(get_allocator() == __src.get_allocator());
974
975 auto __n_elt = __src.size();
976 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
977 {
978 auto __pos = __i++;
979 const key_type& __k = this->_M_extract()(*__pos);
980 __hash_code __code = this->_M_hash_code(__k);
981 size_type __bkt = _M_bucket_index(__k, __code);
982 if (_M_find_node(__bkt, __k, __code) == nullptr)
983 {
984 auto __nh = __src.extract(__pos);
985 _M_insert_unique_node(__k, __bkt, __code, __nh._M_ptr,
986 __n_elt);
987 __nh._M_ptr = nullptr;
988 __n_elt = 1;
989 }
990 else if (__n_elt != 1)
991 --__n_elt;
992 }
993 }
994
995 /// Merge from a compatible container into one with equivalent keys.
996 template<typename _Compatible_Hashtable>
997 void
998 _M_merge_multi(_Compatible_Hashtable& __src) noexcept
999 {
1000 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1001 node_type>, "Node types are compatible");
1002 __glibcxx_assert(get_allocator() == __src.get_allocator());
1003
1004 this->reserve(size() + __src.size());
1005 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
1006 _M_reinsert_node_multi(cend(), __src.extract(__i++));
1007 }
1008 #endif // C++17
1009
1010 private:
1011 // Helper rehash method used when keys are unique.
1012 void _M_rehash_aux(size_type __bkt_count, true_type);
1013
1014 // Helper rehash method used when keys can be non-unique.
1015 void _M_rehash_aux(size_type __bkt_count, false_type);
1016
1017 // Unconditionally change size of bucket array to n, restore
1018 // hash policy state to __state on exception.
1019 void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
1020 };
1021
1022
1023 // Definitions of class template _Hashtable's out-of-line member functions.
1024 template<typename _Key, typename _Value,
1025 typename _Alloc, typename _ExtractKey, typename _Equal,
1026 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1027 typename _Traits>
1028 auto
1029 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1030 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1031 _M_bucket_begin(size_type __bkt) const
1032 -> __node_type*
1033 {
1034 __node_base* __n = _M_buckets[__bkt];
1035 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
1036 }
1037
1038 template<typename _Key, typename _Value,
1039 typename _Alloc, typename _ExtractKey, typename _Equal,
1040 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1041 typename _Traits>
1042 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1043 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1044 _Hashtable(size_type __bkt_count_hint,
1045 const _H1& __h1, const _H2& __h2, const _Hash& __h,
1046 const _Equal& __eq, const _ExtractKey& __exk,
1047 const allocator_type& __a)
1048 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1049 {
1050 auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
1051 if (__bkt_count > _M_bucket_count)
1052 {
1053 _M_buckets = _M_allocate_buckets(__bkt_count);
1054 _M_bucket_count = __bkt_count;
1055 }
1056 }
1057
1058 template<typename _Key, typename _Value,
1059 typename _Alloc, typename _ExtractKey, typename _Equal,
1060 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1061 typename _Traits>
1062 template<typename _InputIterator>
1063 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1064 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1065 _Hashtable(_InputIterator __f, _InputIterator __l,
1066 size_type __bkt_count_hint,
1067 const _H1& __h1, const _H2& __h2, const _Hash& __h,
1068 const _Equal& __eq, const _ExtractKey& __exk,
1069 const allocator_type& __a)
1070 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1071 {
1072 auto __nb_elems = __detail::__distance_fw(__f, __l);
1073 auto __bkt_count =
1074 _M_rehash_policy._M_next_bkt(
1075 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1076 __bkt_count_hint));
1077
1078 if (__bkt_count > _M_bucket_count)
1079 {
1080 _M_buckets = _M_allocate_buckets(__bkt_count);
1081 _M_bucket_count = __bkt_count;
1082 }
1083
1084 for (; __f != __l; ++__f)
1085 this->insert(*__f);
1086 }
1087
1088 template<typename _Key, typename _Value,
1089 typename _Alloc, typename _ExtractKey, typename _Equal,
1090 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1091 typename _Traits>
1092 auto
1093 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1094 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1095 operator=(const _Hashtable& __ht)
1096 -> _Hashtable&
1097 {
1098 if (&__ht == this)
1099 return *this;
1100
1101 if (__node_alloc_traits::_S_propagate_on_copy_assign())
1102 {
1103 auto& __this_alloc = this->_M_node_allocator();
1104 auto& __that_alloc = __ht._M_node_allocator();
1105 if (!__node_alloc_traits::_S_always_equal()
1106 && __this_alloc != __that_alloc)
1107 {
1108 // Replacement allocator cannot free existing storage.
1109 this->_M_deallocate_nodes(_M_begin());
1110 _M_before_begin._M_nxt = nullptr;
1111 _M_deallocate_buckets();
1112 _M_buckets = nullptr;
1113 std::__alloc_on_copy(__this_alloc, __that_alloc);
1114 __hashtable_base::operator=(__ht);
1115 _M_bucket_count = __ht._M_bucket_count;
1116 _M_element_count = __ht._M_element_count;
1117 _M_rehash_policy = __ht._M_rehash_policy;
1118 __alloc_node_gen_t __alloc_node_gen(*this);
1119 __try
1120 {
1121 _M_assign(__ht, __alloc_node_gen);
1122 }
1123 __catch(...)
1124 {
1125 // _M_assign took care of deallocating all memory. Now we
1126 // must make sure this instance remains in a usable state.
1127 _M_reset();
1128 __throw_exception_again;
1129 }
1130 return *this;
1131 }
1132 std::__alloc_on_copy(__this_alloc, __that_alloc);
1133 }
1134
1135 // Reuse allocated buckets and nodes.
1136 _M_assign_elements(__ht);
1137 return *this;
1138 }
1139
1140 template<typename _Key, typename _Value,
1141 typename _Alloc, typename _ExtractKey, typename _Equal,
1142 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1143 typename _Traits>
1144 template<typename _Ht>
1145 void
1146 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1147 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1148 _M_assign_elements(_Ht&& __ht)
1149 {
1150 __bucket_type* __former_buckets = nullptr;
1151 std::size_t __former_bucket_count = _M_bucket_count;
1152 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1153
1154 if (_M_bucket_count != __ht._M_bucket_count)
1155 {
1156 __former_buckets = _M_buckets;
1157 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1158 _M_bucket_count = __ht._M_bucket_count;
1159 }
1160 else
1161 __builtin_memset(_M_buckets, 0,
1162 _M_bucket_count * sizeof(__bucket_type));
1163
1164 __try
1165 {
1166 __hashtable_base::operator=(std::forward<_Ht>(__ht));
1167 _M_element_count = __ht._M_element_count;
1168 _M_rehash_policy = __ht._M_rehash_policy;
1169 __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
1170 _M_before_begin._M_nxt = nullptr;
1171 _M_assign(std::forward<_Ht>(__ht), __roan);
1172 if (__former_buckets)
1173 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1174 }
1175 __catch(...)
1176 {
1177 if (__former_buckets)
1178 {
1179 // Restore previous buckets.
1180 _M_deallocate_buckets();
1181 _M_rehash_policy._M_reset(__former_state);
1182 _M_buckets = __former_buckets;
1183 _M_bucket_count = __former_bucket_count;
1184 }
1185 __builtin_memset(_M_buckets, 0,
1186 _M_bucket_count * sizeof(__bucket_type));
1187 __throw_exception_again;
1188 }
1189 }
1190
1191 template<typename _Key, typename _Value,
1192 typename _Alloc, typename _ExtractKey, typename _Equal,
1193 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1194 typename _Traits>
1195 template<typename _Ht, typename _NodeGenerator>
1196 void
1197 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1198 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1199 _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
1200 {
1201 __bucket_type* __buckets = nullptr;
1202 if (!_M_buckets)
1203 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1204
1205 __try
1206 {
1207 if (!__ht._M_before_begin._M_nxt)
1208 return;
1209
1210 // First deal with the special first node pointed to by
1211 // _M_before_begin.
1212 __node_type* __ht_n = __ht._M_begin();
1213 __node_type* __this_n
1214 = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1215 this->_M_copy_code(__this_n, __ht_n);
1216 _M_before_begin._M_nxt = __this_n;
1217 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1218
1219 // Then deal with other nodes.
1220 __node_base* __prev_n = __this_n;
1221 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1222 {
1223 __this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1224 __prev_n->_M_nxt = __this_n;
1225 this->_M_copy_code(__this_n, __ht_n);
1226 size_type __bkt = _M_bucket_index(__this_n);
1227 if (!_M_buckets[__bkt])
1228 _M_buckets[__bkt] = __prev_n;
1229 __prev_n = __this_n;
1230 }
1231 }
1232 __catch(...)
1233 {
1234 clear();
1235 if (__buckets)
1236 _M_deallocate_buckets();
1237 __throw_exception_again;
1238 }
1239 }
1240
1241 template<typename _Key, typename _Value,
1242 typename _Alloc, typename _ExtractKey, typename _Equal,
1243 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1244 typename _Traits>
1245 void
1246 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1247 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1248 _M_reset() noexcept
1249 {
1250 _M_rehash_policy._M_reset();
1251 _M_bucket_count = 1;
1252 _M_single_bucket = nullptr;
1253 _M_buckets = &_M_single_bucket;
1254 _M_before_begin._M_nxt = nullptr;
1255 _M_element_count = 0;
1256 }
1257
1258 template<typename _Key, typename _Value,
1259 typename _Alloc, typename _ExtractKey, typename _Equal,
1260 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1261 typename _Traits>
1262 void
1263 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1264 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1265 _M_move_assign(_Hashtable&& __ht, true_type)
1266 {
1267 this->_M_deallocate_nodes(_M_begin());
1268 _M_deallocate_buckets();
1269 __hashtable_base::operator=(std::move(__ht));
1270 _M_rehash_policy = __ht._M_rehash_policy;
1271 if (!__ht._M_uses_single_bucket())
1272 _M_buckets = __ht._M_buckets;
1273 else
1274 {
1275 _M_buckets = &_M_single_bucket;
1276 _M_single_bucket = __ht._M_single_bucket;
1277 }
1278 _M_bucket_count = __ht._M_bucket_count;
1279 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1280 _M_element_count = __ht._M_element_count;
1281 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1282
1283 // Fix buckets containing the _M_before_begin pointers that can't be
1284 // moved.
1285 if (_M_begin())
1286 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1287 __ht._M_reset();
1288 }
1289
1290 template<typename _Key, typename _Value,
1291 typename _Alloc, typename _ExtractKey, typename _Equal,
1292 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1293 typename _Traits>
1294 void
1295 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1296 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1297 _M_move_assign(_Hashtable&& __ht, false_type)
1298 {
1299 if (__ht._M_node_allocator() == this->_M_node_allocator())
1300 _M_move_assign(std::move(__ht), true_type());
1301 else
1302 {
1303 // Can't move memory, move elements then.
1304 _M_assign_elements(std::move(__ht));
1305 __ht.clear();
1306 }
1307 }
1308
1309 template<typename _Key, typename _Value,
1310 typename _Alloc, typename _ExtractKey, typename _Equal,
1311 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1312 typename _Traits>
1313 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1314 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1315 _Hashtable(const _Hashtable& __ht)
1316 : __hashtable_base(__ht),
1317 __map_base(__ht),
1318 __rehash_base(__ht),
1319 __hashtable_alloc(
1320 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1321 __enable_default_ctor(__ht),
1322 _M_buckets(nullptr),
1323 _M_bucket_count(__ht._M_bucket_count),
1324 _M_element_count(__ht._M_element_count),
1325 _M_rehash_policy(__ht._M_rehash_policy)
1326 {
1327 __alloc_node_gen_t __alloc_node_gen(*this);
1328 _M_assign(__ht, __alloc_node_gen);
1329 }
1330
1331 template<typename _Key, typename _Value,
1332 typename _Alloc, typename _ExtractKey, typename _Equal,
1333 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1334 typename _Traits>
1335 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1336 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1337 _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1338 true_type /* alloc always equal */)
1339 noexcept(_S_nothrow_move())
1340 : __hashtable_base(__ht),
1341 __map_base(__ht),
1342 __rehash_base(__ht),
1343 __hashtable_alloc(std::move(__a)),
1344 __enable_default_ctor(__ht),
1345 _M_buckets(__ht._M_buckets),
1346 _M_bucket_count(__ht._M_bucket_count),
1347 _M_before_begin(__ht._M_before_begin._M_nxt),
1348 _M_element_count(__ht._M_element_count),
1349 _M_rehash_policy(__ht._M_rehash_policy)
1350 {
1351 // Update buckets if __ht is using its single bucket.
1352 if (__ht._M_uses_single_bucket())
1353 {
1354 _M_buckets = &_M_single_bucket;
1355 _M_single_bucket = __ht._M_single_bucket;
1356 }
1357
1358 // Update, if necessary, bucket pointing to before begin that hasn't
1359 // moved.
1360 if (_M_begin())
1361 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1362
1363 __ht._M_reset();
1364 }
1365
1366 template<typename _Key, typename _Value,
1367 typename _Alloc, typename _ExtractKey, typename _Equal,
1368 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1369 typename _Traits>
1370 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1371 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1372 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1373 : __hashtable_base(__ht),
1374 __map_base(__ht),
1375 __rehash_base(__ht),
1376 __hashtable_alloc(__node_alloc_type(__a)),
1377 __enable_default_ctor(__ht),
1378 _M_buckets(),
1379 _M_bucket_count(__ht._M_bucket_count),
1380 _M_element_count(__ht._M_element_count),
1381 _M_rehash_policy(__ht._M_rehash_policy)
1382 {
1383 __alloc_node_gen_t __alloc_node_gen(*this);
1384 _M_assign(__ht, __alloc_node_gen);
1385 }
1386
1387 template<typename _Key, typename _Value,
1388 typename _Alloc, typename _ExtractKey, typename _Equal,
1389 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1390 typename _Traits>
1391 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1392 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1393 _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1394 false_type /* alloc always equal */)
1395 : __hashtable_base(__ht),
1396 __map_base(__ht),
1397 __rehash_base(__ht),
1398 __hashtable_alloc(std::move(__a)),
1399 __enable_default_ctor(__ht),
1400 _M_buckets(nullptr),
1401 _M_bucket_count(__ht._M_bucket_count),
1402 _M_element_count(__ht._M_element_count),
1403 _M_rehash_policy(__ht._M_rehash_policy)
1404 {
1405 if (__ht._M_node_allocator() == this->_M_node_allocator())
1406 {
1407 if (__ht._M_uses_single_bucket())
1408 {
1409 _M_buckets = &_M_single_bucket;
1410 _M_single_bucket = __ht._M_single_bucket;
1411 }
1412 else
1413 _M_buckets = __ht._M_buckets;
1414
1415 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1416 // Update, if necessary, bucket pointing to before begin that hasn't
1417 // moved.
1418 if (_M_begin())
1419 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1420 __ht._M_reset();
1421 }
1422 else
1423 {
1424 __alloc_node_gen_t __alloc_gen(*this);
1425
1426 using _Fwd_Ht = typename
1427 conditional<__move_if_noexcept_cond<value_type>::value,
1428 const _Hashtable&, _Hashtable&&>::type;
1429 _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
1430 __ht.clear();
1431 }
1432 }
1433
1434 template<typename _Key, typename _Value,
1435 typename _Alloc, typename _ExtractKey, typename _Equal,
1436 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1437 typename _Traits>
1438 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1439 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1440 ~_Hashtable() noexcept
1441 {
1442 clear();
1443 _M_deallocate_buckets();
1444 }
1445
1446 template<typename _Key, typename _Value,
1447 typename _Alloc, typename _ExtractKey, typename _Equal,
1448 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1449 typename _Traits>
1450 void
1451 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1452 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1453 swap(_Hashtable& __x)
1454 noexcept(__and_<__is_nothrow_swappable<_H1>,
1455 __is_nothrow_swappable<_Equal>>::value)
1456 {
1457 // The only base class with member variables is hash_code_base.
1458 // We define _Hash_code_base::_M_swap because different
1459 // specializations have different members.
1460 this->_M_swap(__x);
1461
1462 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1463 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1464
1465 // Deal properly with potentially moved instances.
1466 if (this->_M_uses_single_bucket())
1467 {
1468 if (!__x._M_uses_single_bucket())
1469 {
1470 _M_buckets = __x._M_buckets;
1471 __x._M_buckets = &__x._M_single_bucket;
1472 }
1473 }
1474 else if (__x._M_uses_single_bucket())
1475 {
1476 __x._M_buckets = _M_buckets;
1477 _M_buckets = &_M_single_bucket;
1478 }
1479 else
1480 std::swap(_M_buckets, __x._M_buckets);
1481
1482 std::swap(_M_bucket_count, __x._M_bucket_count);
1483 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1484 std::swap(_M_element_count, __x._M_element_count);
1485 std::swap(_M_single_bucket, __x._M_single_bucket);
1486
1487 // Fix buckets containing the _M_before_begin pointers that can't be
1488 // swapped.
1489 if (_M_begin())
1490 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1491
1492 if (__x._M_begin())
1493 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1494 = &__x._M_before_begin;
1495 }
1496
1497 template<typename _Key, typename _Value,
1498 typename _Alloc, typename _ExtractKey, typename _Equal,
1499 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1500 typename _Traits>
1501 auto
1502 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1503 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1504 find(const key_type& __k)
1505 -> iterator
1506 {
1507 __hash_code __code = this->_M_hash_code(__k);
1508 std::size_t __bkt = _M_bucket_index(__k, __code);
1509 __node_type* __p = _M_find_node(__bkt, __k, __code);
1510 return __p ? iterator(__p) : end();
1511 }
1512
1513 template<typename _Key, typename _Value,
1514 typename _Alloc, typename _ExtractKey, typename _Equal,
1515 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1516 typename _Traits>
1517 auto
1518 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1519 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1520 find(const key_type& __k) const
1521 -> const_iterator
1522 {
1523 __hash_code __code = this->_M_hash_code(__k);
1524 std::size_t __bkt = _M_bucket_index(__k, __code);
1525 __node_type* __p = _M_find_node(__bkt, __k, __code);
1526 return __p ? const_iterator(__p) : end();
1527 }
1528
1529 template<typename _Key, typename _Value,
1530 typename _Alloc, typename _ExtractKey, typename _Equal,
1531 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1532 typename _Traits>
1533 auto
1534 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1535 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1536 count(const key_type& __k) const
1537 -> size_type
1538 {
1539 __hash_code __code = this->_M_hash_code(__k);
1540 std::size_t __bkt = _M_bucket_index(__k, __code);
1541 __node_type* __p = _M_bucket_begin(__bkt);
1542 if (!__p)
1543 return 0;
1544
1545 std::size_t __result = 0;
1546 for (;; __p = __p->_M_next())
1547 {
1548 if (this->_M_equals(__k, __code, __p))
1549 ++__result;
1550 else if (__result)
1551 // All equivalent values are next to each other, if we
1552 // found a non-equivalent value after an equivalent one it
1553 // means that we won't find any new equivalent value.
1554 break;
1555 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __bkt)
1556 break;
1557 }
1558 return __result;
1559 }
1560
1561 template<typename _Key, typename _Value,
1562 typename _Alloc, typename _ExtractKey, typename _Equal,
1563 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1564 typename _Traits>
1565 auto
1566 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1567 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1568 equal_range(const key_type& __k)
1569 -> pair<iterator, iterator>
1570 {
1571 __hash_code __code = this->_M_hash_code(__k);
1572 std::size_t __bkt = _M_bucket_index(__k, __code);
1573 __node_type* __p = _M_find_node(__bkt, __k, __code);
1574
1575 if (__p)
1576 {
1577 __node_type* __p1 = __p->_M_next();
1578 while (__p1 && _M_bucket_index(__p1) == __bkt
1579 && this->_M_equals(__k, __code, __p1))
1580 __p1 = __p1->_M_next();
1581
1582 return std::make_pair(iterator(__p), iterator(__p1));
1583 }
1584 else
1585 return std::make_pair(end(), end());
1586 }
1587
1588 template<typename _Key, typename _Value,
1589 typename _Alloc, typename _ExtractKey, typename _Equal,
1590 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1591 typename _Traits>
1592 auto
1593 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1594 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1595 equal_range(const key_type& __k) const
1596 -> pair<const_iterator, const_iterator>
1597 {
1598 __hash_code __code = this->_M_hash_code(__k);
1599 std::size_t __bkt = _M_bucket_index(__k, __code);
1600 __node_type* __p = _M_find_node(__bkt, __k, __code);
1601
1602 if (__p)
1603 {
1604 __node_type* __p1 = __p->_M_next();
1605 while (__p1 && _M_bucket_index(__p1) == __bkt
1606 && this->_M_equals(__k, __code, __p1))
1607 __p1 = __p1->_M_next();
1608
1609 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1610 }
1611 else
1612 return std::make_pair(end(), end());
1613 }
1614
1615 // Find the node whose key compares equal to k in the bucket bkt.
1616 // Return nullptr if no node is found.
1617 template<typename _Key, typename _Value,
1618 typename _Alloc, typename _ExtractKey, typename _Equal,
1619 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1620 typename _Traits>
1621 auto
1622 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1623 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1624 _M_find_before_node(size_type __bkt, const key_type& __k,
1625 __hash_code __code) const
1626 -> __node_base*
1627 {
1628 __node_base* __prev_p = _M_buckets[__bkt];
1629 if (!__prev_p)
1630 return nullptr;
1631
1632 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1633 __p = __p->_M_next())
1634 {
1635 if (this->_M_equals(__k, __code, __p))
1636 return __prev_p;
1637
1638 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __bkt)
1639 break;
1640 __prev_p = __p;
1641 }
1642 return nullptr;
1643 }
1644
1645 template<typename _Key, typename _Value,
1646 typename _Alloc, typename _ExtractKey, typename _Equal,
1647 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1648 typename _Traits>
1649 void
1650 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1651 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1652 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1653 {
1654 if (_M_buckets[__bkt])
1655 {
1656 // Bucket is not empty, we just need to insert the new node
1657 // after the bucket before begin.
1658 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1659 _M_buckets[__bkt]->_M_nxt = __node;
1660 }
1661 else
1662 {
1663 // The bucket is empty, the new node is inserted at the
1664 // beginning of the singly-linked list and the bucket will
1665 // contain _M_before_begin pointer.
1666 __node->_M_nxt = _M_before_begin._M_nxt;
1667 _M_before_begin._M_nxt = __node;
1668 if (__node->_M_nxt)
1669 // We must update former begin bucket that is pointing to
1670 // _M_before_begin.
1671 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1672 _M_buckets[__bkt] = &_M_before_begin;
1673 }
1674 }
1675
1676 template<typename _Key, typename _Value,
1677 typename _Alloc, typename _ExtractKey, typename _Equal,
1678 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1679 typename _Traits>
1680 void
1681 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1682 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1683 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1684 size_type __next_bkt)
1685 {
1686 if (!__next || __next_bkt != __bkt)
1687 {
1688 // Bucket is now empty
1689 // First update next bucket if any
1690 if (__next)
1691 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1692
1693 // Second update before begin node if necessary
1694 if (&_M_before_begin == _M_buckets[__bkt])
1695 _M_before_begin._M_nxt = __next;
1696 _M_buckets[__bkt] = nullptr;
1697 }
1698 }
1699
1700 template<typename _Key, typename _Value,
1701 typename _Alloc, typename _ExtractKey, typename _Equal,
1702 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1703 typename _Traits>
1704 auto
1705 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1706 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1707 _M_get_previous_node(size_type __bkt, __node_base* __n)
1708 -> __node_base*
1709 {
1710 __node_base* __prev_n = _M_buckets[__bkt];
1711 while (__prev_n->_M_nxt != __n)
1712 __prev_n = __prev_n->_M_nxt;
1713 return __prev_n;
1714 }
1715
1716 template<typename _Key, typename _Value,
1717 typename _Alloc, typename _ExtractKey, typename _Equal,
1718 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1719 typename _Traits>
1720 template<typename... _Args>
1721 auto
1722 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1723 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1724 _M_emplace(true_type, _Args&&... __args)
1725 -> pair<iterator, bool>
1726 {
1727 // First build the node to get access to the hash code
1728 _Scoped_node __node { this, std::forward<_Args>(__args)... };
1729 const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1730 __hash_code __code = this->_M_hash_code(__k);
1731 size_type __bkt = _M_bucket_index(__k, __code);
1732 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1733 // There is already an equivalent node, no insertion
1734 return std::make_pair(iterator(__p), false);
1735
1736 // Insert the node
1737 auto __pos = _M_insert_unique_node(__k, __bkt, __code, __node._M_node);
1738 __node._M_node = nullptr;
1739 return { __pos, true };
1740 }
1741
1742 template<typename _Key, typename _Value,
1743 typename _Alloc, typename _ExtractKey, typename _Equal,
1744 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1745 typename _Traits>
1746 template<typename... _Args>
1747 auto
1748 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1749 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1750 _M_emplace(const_iterator __hint, false_type, _Args&&... __args)
1751 -> iterator
1752 {
1753 // First build the node to get its hash code.
1754 _Scoped_node __node { this, std::forward<_Args>(__args)... };
1755 const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1756
1757 __hash_code __code = this->_M_hash_code(__k);
1758 auto __pos
1759 = _M_insert_multi_node(__hint._M_cur, __k, __code, __node._M_node);
1760 __node._M_node = nullptr;
1761 return __pos;
1762 }
1763
1764 template<typename _Key, typename _Value,
1765 typename _Alloc, typename _ExtractKey, typename _Equal,
1766 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1767 typename _Traits>
1768 auto
1769 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1770 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1771 _M_insert_unique_node(const key_type& __k, size_type __bkt,
1772 __hash_code __code, __node_type* __node,
1773 size_type __n_elt)
1774 -> iterator
1775 {
1776 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1777 std::pair<bool, std::size_t> __do_rehash
1778 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1779 __n_elt);
1780
1781 if (__do_rehash.first)
1782 {
1783 _M_rehash(__do_rehash.second, __saved_state);
1784 __bkt = _M_bucket_index(__k, __code);
1785 }
1786
1787 this->_M_store_code(__node, __code);
1788
1789 // Always insert at the beginning of the bucket.
1790 _M_insert_bucket_begin(__bkt, __node);
1791 ++_M_element_count;
1792 return iterator(__node);
1793 }
1794
1795 template<typename _Key, typename _Value,
1796 typename _Alloc, typename _ExtractKey, typename _Equal,
1797 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1798 typename _Traits>
1799 auto
1800 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1801 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1802 _M_insert_multi_node(__node_type* __hint, const key_type& __k,
1803 __hash_code __code, __node_type* __node)
1804 -> iterator
1805 {
1806 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1807 std::pair<bool, std::size_t> __do_rehash
1808 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1809
1810 if (__do_rehash.first)
1811 _M_rehash(__do_rehash.second, __saved_state);
1812
1813 this->_M_store_code(__node, __code);
1814 size_type __bkt = _M_bucket_index(__k, __code);
1815
1816 // Find the node before an equivalent one or use hint if it exists and
1817 // if it is equivalent.
1818 __node_base* __prev
1819 = __builtin_expect(__hint != nullptr, false)
1820 && this->_M_equals(__k, __code, __hint)
1821 ? __hint
1822 : _M_find_before_node(__bkt, __k, __code);
1823 if (__prev)
1824 {
1825 // Insert after the node before the equivalent one.
1826 __node->_M_nxt = __prev->_M_nxt;
1827 __prev->_M_nxt = __node;
1828 if (__builtin_expect(__prev == __hint, false))
1829 // hint might be the last bucket node, in this case we need to
1830 // update next bucket.
1831 if (__node->_M_nxt
1832 && !this->_M_equals(__k, __code, __node->_M_next()))
1833 {
1834 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1835 if (__next_bkt != __bkt)
1836 _M_buckets[__next_bkt] = __node;
1837 }
1838 }
1839 else
1840 // The inserted node has no equivalent in the hashtable. We must
1841 // insert the new node at the beginning of the bucket to preserve
1842 // equivalent elements' relative positions.
1843 _M_insert_bucket_begin(__bkt, __node);
1844 ++_M_element_count;
1845 return iterator(__node);
1846 }
1847
1848 // Insert v if no element with its key is already present.
1849 template<typename _Key, typename _Value,
1850 typename _Alloc, typename _ExtractKey, typename _Equal,
1851 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1852 typename _Traits>
1853 template<typename _Arg, typename _NodeGenerator>
1854 auto
1855 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1856 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1857 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1858 size_type __n_elt)
1859 -> pair<iterator, bool>
1860 {
1861 const key_type& __k = this->_M_extract()(__v);
1862 __hash_code __code = this->_M_hash_code(__k);
1863 size_type __bkt = _M_bucket_index(__k, __code);
1864
1865 if (__node_type* __node = _M_find_node(__bkt, __k, __code))
1866 return { iterator(__node), false };
1867
1868 _Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
1869 auto __pos
1870 = _M_insert_unique_node(__k, __bkt, __code, __node._M_node, __n_elt);
1871 __node._M_node = nullptr;
1872 return { __pos, true };
1873 }
1874
1875 // Insert v unconditionally.
1876 template<typename _Key, typename _Value,
1877 typename _Alloc, typename _ExtractKey, typename _Equal,
1878 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1879 typename _Traits>
1880 template<typename _Arg, typename _NodeGenerator>
1881 auto
1882 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1883 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1884 _M_insert(const_iterator __hint, _Arg&& __v,
1885 const _NodeGenerator& __node_gen, false_type)
1886 -> iterator
1887 {
1888 // First compute the hash code so that we don't do anything if it
1889 // throws.
1890 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1891
1892 // Second allocate new node so that we don't rehash if it throws.
1893 _Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
1894 const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1895 auto __pos
1896 = _M_insert_multi_node(__hint._M_cur, __k, __code, __node._M_node);
1897 __node._M_node = nullptr;
1898 return __pos;
1899 }
1900
1901 template<typename _Key, typename _Value,
1902 typename _Alloc, typename _ExtractKey, typename _Equal,
1903 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1904 typename _Traits>
1905 auto
1906 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1907 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1908 erase(const_iterator __it)
1909 -> iterator
1910 {
1911 __node_type* __n = __it._M_cur;
1912 std::size_t __bkt = _M_bucket_index(__n);
1913
1914 // Look for previous node to unlink it from the erased one, this
1915 // is why we need buckets to contain the before begin to make
1916 // this search fast.
1917 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1918 return _M_erase(__bkt, __prev_n, __n);
1919 }
1920
1921 template<typename _Key, typename _Value,
1922 typename _Alloc, typename _ExtractKey, typename _Equal,
1923 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1924 typename _Traits>
1925 auto
1926 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1927 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1928 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1929 -> iterator
1930 {
1931 if (__prev_n == _M_buckets[__bkt])
1932 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1933 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1934 else if (__n->_M_nxt)
1935 {
1936 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1937 if (__next_bkt != __bkt)
1938 _M_buckets[__next_bkt] = __prev_n;
1939 }
1940
1941 __prev_n->_M_nxt = __n->_M_nxt;
1942 iterator __result(__n->_M_next());
1943 this->_M_deallocate_node(__n);
1944 --_M_element_count;
1945
1946 return __result;
1947 }
1948
1949 template<typename _Key, typename _Value,
1950 typename _Alloc, typename _ExtractKey, typename _Equal,
1951 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1952 typename _Traits>
1953 auto
1954 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1955 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1956 _M_erase(true_type, const key_type& __k)
1957 -> size_type
1958 {
1959 __hash_code __code = this->_M_hash_code(__k);
1960 std::size_t __bkt = _M_bucket_index(__k, __code);
1961
1962 // Look for the node before the first matching node.
1963 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1964 if (!__prev_n)
1965 return 0;
1966
1967 // We found a matching node, erase it.
1968 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1969 _M_erase(__bkt, __prev_n, __n);
1970 return 1;
1971 }
1972
1973 template<typename _Key, typename _Value,
1974 typename _Alloc, typename _ExtractKey, typename _Equal,
1975 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1976 typename _Traits>
1977 auto
1978 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1979 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1980 _M_erase(false_type, const key_type& __k)
1981 -> size_type
1982 {
1983 __hash_code __code = this->_M_hash_code(__k);
1984 std::size_t __bkt = _M_bucket_index(__k, __code);
1985
1986 // Look for the node before the first matching node.
1987 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1988 if (!__prev_n)
1989 return 0;
1990
1991 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1992 // 526. Is it undefined if a function in the standard changes
1993 // in parameters?
1994 // We use one loop to find all matching nodes and another to deallocate
1995 // them so that the key stays valid during the first loop. It might be
1996 // invalidated indirectly when destroying nodes.
1997 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1998 __node_type* __n_last = __n;
1999 std::size_t __n_last_bkt = __bkt;
2000 do
2001 {
2002 __n_last = __n_last->_M_next();
2003 if (!__n_last)
2004 break;
2005 __n_last_bkt = _M_bucket_index(__n_last);
2006 }
2007 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
2008
2009 // Deallocate nodes.
2010 size_type __result = 0;
2011 do
2012 {
2013 __node_type* __p = __n->_M_next();
2014 this->_M_deallocate_node(__n);
2015 __n = __p;
2016 ++__result;
2017 --_M_element_count;
2018 }
2019 while (__n != __n_last);
2020
2021 if (__prev_n == _M_buckets[__bkt])
2022 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
2023 else if (__n_last && __n_last_bkt != __bkt)
2024 _M_buckets[__n_last_bkt] = __prev_n;
2025 __prev_n->_M_nxt = __n_last;
2026 return __result;
2027 }
2028
2029 template<typename _Key, typename _Value,
2030 typename _Alloc, typename _ExtractKey, typename _Equal,
2031 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2032 typename _Traits>
2033 auto
2034 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2035 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2036 erase(const_iterator __first, const_iterator __last)
2037 -> iterator
2038 {
2039 __node_type* __n = __first._M_cur;
2040 __node_type* __last_n = __last._M_cur;
2041 if (__n == __last_n)
2042 return iterator(__n);
2043
2044 std::size_t __bkt = _M_bucket_index(__n);
2045
2046 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
2047 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2048 std::size_t __n_bkt = __bkt;
2049 for (;;)
2050 {
2051 do
2052 {
2053 __node_type* __tmp = __n;
2054 __n = __n->_M_next();
2055 this->_M_deallocate_node(__tmp);
2056 --_M_element_count;
2057 if (!__n)
2058 break;
2059 __n_bkt = _M_bucket_index(__n);
2060 }
2061 while (__n != __last_n && __n_bkt == __bkt);
2062 if (__is_bucket_begin)
2063 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2064 if (__n == __last_n)
2065 break;
2066 __is_bucket_begin = true;
2067 __bkt = __n_bkt;
2068 }
2069
2070 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2071 _M_buckets[__n_bkt] = __prev_n;
2072 __prev_n->_M_nxt = __n;
2073 return iterator(__n);
2074 }
2075
2076 template<typename _Key, typename _Value,
2077 typename _Alloc, typename _ExtractKey, typename _Equal,
2078 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2079 typename _Traits>
2080 void
2081 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2082 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2083 clear() noexcept
2084 {
2085 this->_M_deallocate_nodes(_M_begin());
2086 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2087 _M_element_count = 0;
2088 _M_before_begin._M_nxt = nullptr;
2089 }
2090
2091 template<typename _Key, typename _Value,
2092 typename _Alloc, typename _ExtractKey, typename _Equal,
2093 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2094 typename _Traits>
2095 void
2096 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2097 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2098 rehash(size_type __bkt_count)
2099 {
2100 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2101 __bkt_count
2102 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2103 __bkt_count);
2104 __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
2105
2106 if (__bkt_count != _M_bucket_count)
2107 _M_rehash(__bkt_count, __saved_state);
2108 else
2109 // No rehash, restore previous state to keep it consistent with
2110 // container state.
2111 _M_rehash_policy._M_reset(__saved_state);
2112 }
2113
2114 template<typename _Key, typename _Value,
2115 typename _Alloc, typename _ExtractKey, typename _Equal,
2116 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2117 typename _Traits>
2118 void
2119 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2120 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2121 _M_rehash(size_type __bkt_count, const __rehash_state& __state)
2122 {
2123 __try
2124 {
2125 _M_rehash_aux(__bkt_count, __unique_keys());
2126 }
2127 __catch(...)
2128 {
2129 // A failure here means that buckets allocation failed. We only
2130 // have to restore hash policy previous state.
2131 _M_rehash_policy._M_reset(__state);
2132 __throw_exception_again;
2133 }
2134 }
2135
2136 // Rehash when there is no equivalent elements.
2137 template<typename _Key, typename _Value,
2138 typename _Alloc, typename _ExtractKey, typename _Equal,
2139 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2140 typename _Traits>
2141 void
2142 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2143 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2144 _M_rehash_aux(size_type __bkt_count, true_type)
2145 {
2146 __bucket_type* __new_buckets = _M_allocate_buckets(__bkt_count);
2147 __node_type* __p = _M_begin();
2148 _M_before_begin._M_nxt = nullptr;
2149 std::size_t __bbegin_bkt = 0;
2150 while (__p)
2151 {
2152 __node_type* __next = __p->_M_next();
2153 std::size_t __bkt
2154 = __hash_code_base::_M_bucket_index(__p, __bkt_count);
2155 if (!__new_buckets[__bkt])
2156 {
2157 __p->_M_nxt = _M_before_begin._M_nxt;
2158 _M_before_begin._M_nxt = __p;
2159 __new_buckets[__bkt] = &_M_before_begin;
2160 if (__p->_M_nxt)
2161 __new_buckets[__bbegin_bkt] = __p;
2162 __bbegin_bkt = __bkt;
2163 }
2164 else
2165 {
2166 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2167 __new_buckets[__bkt]->_M_nxt = __p;
2168 }
2169 __p = __next;
2170 }
2171
2172 _M_deallocate_buckets();
2173 _M_bucket_count = __bkt_count;
2174 _M_buckets = __new_buckets;
2175 }
2176
2177 // Rehash when there can be equivalent elements, preserve their relative
2178 // order.
2179 template<typename _Key, typename _Value,
2180 typename _Alloc, typename _ExtractKey, typename _Equal,
2181 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2182 typename _Traits>
2183 void
2184 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2185 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2186 _M_rehash_aux(size_type __bkt_count, false_type)
2187 {
2188 __bucket_type* __new_buckets = _M_allocate_buckets(__bkt_count);
2189
2190 __node_type* __p = _M_begin();
2191 _M_before_begin._M_nxt = nullptr;
2192 std::size_t __bbegin_bkt = 0;
2193 std::size_t __prev_bkt = 0;
2194 __node_type* __prev_p = nullptr;
2195 bool __check_bucket = false;
2196
2197 while (__p)
2198 {
2199 __node_type* __next = __p->_M_next();
2200 std::size_t __bkt
2201 = __hash_code_base::_M_bucket_index(__p, __bkt_count);
2202
2203 if (__prev_p && __prev_bkt == __bkt)
2204 {
2205 // Previous insert was already in this bucket, we insert after
2206 // the previously inserted one to preserve equivalent elements
2207 // relative order.
2208 __p->_M_nxt = __prev_p->_M_nxt;
2209 __prev_p->_M_nxt = __p;
2210
2211 // Inserting after a node in a bucket require to check that we
2212 // haven't change the bucket last node, in this case next
2213 // bucket containing its before begin node must be updated. We
2214 // schedule a check as soon as we move out of the sequence of
2215 // equivalent nodes to limit the number of checks.
2216 __check_bucket = true;
2217 }
2218 else
2219 {
2220 if (__check_bucket)
2221 {
2222 // Check if we shall update the next bucket because of
2223 // insertions into __prev_bkt bucket.
2224 if (__prev_p->_M_nxt)
2225 {
2226 std::size_t __next_bkt
2227 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2228 __bkt_count);
2229 if (__next_bkt != __prev_bkt)
2230 __new_buckets[__next_bkt] = __prev_p;
2231 }
2232 __check_bucket = false;
2233 }
2234
2235 if (!__new_buckets[__bkt])
2236 {
2237 __p->_M_nxt = _M_before_begin._M_nxt;
2238 _M_before_begin._M_nxt = __p;
2239 __new_buckets[__bkt] = &_M_before_begin;
2240 if (__p->_M_nxt)
2241 __new_buckets[__bbegin_bkt] = __p;
2242 __bbegin_bkt = __bkt;
2243 }
2244 else
2245 {
2246 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2247 __new_buckets[__bkt]->_M_nxt = __p;
2248 }
2249 }
2250 __prev_p = __p;
2251 __prev_bkt = __bkt;
2252 __p = __next;
2253 }
2254
2255 if (__check_bucket && __prev_p->_M_nxt)
2256 {
2257 std::size_t __next_bkt
2258 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2259 __bkt_count);
2260 if (__next_bkt != __prev_bkt)
2261 __new_buckets[__next_bkt] = __prev_p;
2262 }
2263
2264 _M_deallocate_buckets();
2265 _M_bucket_count = __bkt_count;
2266 _M_buckets = __new_buckets;
2267 }
2268
2269 #if __cplusplus > 201402L
2270 template<typename, typename, typename> class _Hash_merge_helper { };
2271 #endif // C++17
2272
2273 #if __cpp_deduction_guides >= 201606
2274 // Used to constrain deduction guides
2275 template<typename _Hash>
2276 using _RequireNotAllocatorOrIntegral
2277 = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2278 #endif
2279
2280 _GLIBCXX_END_NAMESPACE_VERSION
2281 } // namespace std
2282
2283 #endif // _HASHTABLE_H
2284