xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/hashtable.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39 
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44   template<typename _Tp, typename _Hash>
45     using __cache_default
46       =  __not_<__and_<// Do not cache for fast hasher.
47 		       __is_fast_hash<_Hash>,
48 		       // Mandatory to have erase not throwing.
49 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50 
51   /**
52    *  Primary class template _Hashtable.
53    *
54    *  @ingroup hashtable-detail
55    *
56    *  @tparam _Value  CopyConstructible type.
57    *
58    *  @tparam _Key    CopyConstructible type.
59    *
60    *  @tparam _Alloc  An allocator type
61    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
62    *  _Value.  As a conforming extension, we allow for
63    *  _Alloc::value_type != _Value.
64    *
65    *  @tparam _ExtractKey  Function object that takes an object of type
66    *  _Value and returns a value of type _Key.
67    *
68    *  @tparam _Equal  Function object that takes two objects of type k
69    *  and returns a bool-like value that is true if the two objects
70    *  are considered equal.
71    *
72    *  @tparam _H1  The hash function. A unary function object with
73    *  argument type _Key and result type size_t. Return values should
74    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75    *
76    *  @tparam _H2  The range-hashing function (in the terminology of
77    *  Tavori and Dreizin).  A binary function object whose argument
78    *  types and result type are all size_t.  Given arguments r and N,
79    *  the return value is in the range [0, N).
80    *
81    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
82    *  binary function whose argument types are _Key and size_t and
83    *  whose result type is size_t.  Given arguments k and N, the
84    *  return value is in the range [0, N).  Default: hash(k, N) =
85    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
86    *  and _H2 are ignored.
87    *
88    *  @tparam _RehashPolicy  Policy class with three members, all of
89    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
90    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
91    *  bucket count appropriate for an element count of n.
92    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93    *  current bucket count is n_bkt and the current element count is
94    *  n_elt, we need to increase the bucket count.  If so, returns
95    *  make_pair(true, n), where n is the new bucket count.  If not,
96    *  returns make_pair(false, <anything>)
97    *
98    *  @tparam _Traits  Compile-time class with three boolean
99    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
100    *   __unique_keys.
101    *
102    *  Each _Hashtable data structure has:
103    *
104    *  - _Bucket[]       _M_buckets
105    *  - _Hash_node_base _M_before_begin
106    *  - size_type       _M_bucket_count
107    *  - size_type       _M_element_count
108    *
109    *  with _Bucket being _Hash_node* and _Hash_node containing:
110    *
111    *  - _Hash_node*   _M_next
112    *  - Tp            _M_value
113    *  - size_t        _M_hash_code if cache_hash_code is true
114    *
115    *  In terms of Standard containers the hashtable is like the aggregation of:
116    *
117    *  - std::forward_list<_Node> containing the elements
118    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119    *
120    *  The non-empty buckets contain the node before the first node in the
121    *  bucket. This design makes it possible to implement something like a
122    *  std::forward_list::insert_after on container insertion and
123    *  std::forward_list::erase_after on container erase
124    *  calls. _M_before_begin is equivalent to
125    *  std::forward_list::before_begin. Empty buckets contain
126    *  nullptr.  Note that one of the non-empty buckets contains
127    *  &_M_before_begin which is not a dereferenceable node so the
128    *  node pointer in a bucket shall never be dereferenced, only its
129    *  next node can be.
130    *
131    *  Walking through a bucket's nodes requires a check on the hash code to
132    *  see if each node is still in the bucket. Such a design assumes a
133    *  quite efficient hash functor and is one of the reasons it is
134    *  highly advisable to set __cache_hash_code to true.
135    *
136    *  The container iterators are simply built from nodes. This way
137    *  incrementing the iterator is perfectly efficient independent of
138    *  how many empty buckets there are in the container.
139    *
140    *  On insert we compute the element's hash code and use it to find the
141    *  bucket index. If the element must be inserted in an empty bucket
142    *  we add it at the beginning of the singly linked list and make the
143    *  bucket point to _M_before_begin. The bucket that used to point to
144    *  _M_before_begin, if any, is updated to point to its new before
145    *  begin node.
146    *
147    *  On erase, the simple iterator design requires using the hash
148    *  functor to get the index of the bucket to update. For this
149    *  reason, when __cache_hash_code is set to false the hash functor must
150    *  not throw and this is enforced by a static assertion.
151    *
152    *  Functionality is implemented by decomposition into base classes,
153    *  where the derived _Hashtable class is used in _Map_base,
154    *  _Insert, _Rehash_base, and _Equality base classes to access the
155    *  "this" pointer. _Hashtable_base is used in the base classes as a
156    *  non-recursive, fully-completed-type so that detailed nested type
157    *  information, such as iterator type and node type, can be
158    *  used. This is similar to the "Curiously Recurring Template
159    *  Pattern" (CRTP) technique, but uses a reconstructed, not
160    *  explicitly passed, template pattern.
161    *
162    *  Base class templates are:
163    *    - __detail::_Hashtable_base
164    *    - __detail::_Map_base
165    *    - __detail::_Insert
166    *    - __detail::_Rehash_base
167    *    - __detail::_Equality
168    */
169   template<typename _Key, typename _Value, typename _Alloc,
170 	   typename _ExtractKey, typename _Equal,
171 	   typename _H1, typename _H2, typename _Hash,
172 	   typename _RehashPolicy, typename _Traits>
173     class _Hashtable
174     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 				       _H1, _H2, _Hash, _Traits>,
176       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184       private __detail::_Hashtable_alloc<
185 	__alloc_rebind<_Alloc,
186 		       __detail::_Hash_node<_Value,
187 					    _Traits::__hash_cached::value>>>
188     {
189       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 	  "unordered container must have a non-const, non-volatile value_type");
191 #ifdef __STRICT_ANSI__
192       static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 	  "unordered container must have the same value_type as its allocator");
194 #endif
195 
196       using __traits_type = _Traits;
197       using __hash_cached = typename __traits_type::__hash_cached;
198       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
199       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
200 
201       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
202 
203       using __value_alloc_traits =
204 	typename __hashtable_alloc::__value_alloc_traits;
205       using __node_alloc_traits =
206 	typename __hashtable_alloc::__node_alloc_traits;
207       using __node_base = typename __hashtable_alloc::__node_base;
208       using __bucket_type = typename __hashtable_alloc::__bucket_type;
209 
210     public:
211       typedef _Key						key_type;
212       typedef _Value						value_type;
213       typedef _Alloc						allocator_type;
214       typedef _Equal						key_equal;
215 
216       // mapped_type, if present, comes from _Map_base.
217       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
218       typedef typename __value_alloc_traits::pointer		pointer;
219       typedef typename __value_alloc_traits::const_pointer	const_pointer;
220       typedef value_type&					reference;
221       typedef const value_type&					const_reference;
222 
223     private:
224       using __rehash_type = _RehashPolicy;
225       using __rehash_state = typename __rehash_type::_State;
226 
227       using __constant_iterators = typename __traits_type::__constant_iterators;
228       using __unique_keys = typename __traits_type::__unique_keys;
229 
230       using __key_extract = typename std::conditional<
231 					     __constant_iterators::value,
232 				       	     __detail::_Identity,
233 					     __detail::_Select1st>::type;
234 
235       using __hashtable_base = __detail::
236 			       _Hashtable_base<_Key, _Value, _ExtractKey,
237 					      _Equal, _H1, _H2, _Hash, _Traits>;
238 
239       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
240       using __hash_code =  typename __hashtable_base::__hash_code;
241       using __ireturn_type = typename __hashtable_base::__ireturn_type;
242 
243       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
244 					     _Equal, _H1, _H2, _Hash,
245 					     _RehashPolicy, _Traits>;
246 
247       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
248 						   _ExtractKey, _Equal,
249 						   _H1, _H2, _Hash,
250 						   _RehashPolicy, _Traits>;
251 
252       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
253 					    _Equal, _H1, _H2, _Hash,
254 					    _RehashPolicy, _Traits>;
255 
256       using __reuse_or_alloc_node_type =
257 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
258 
259       // Metaprogramming for picking apart hash caching.
260       template<typename _Cond>
261 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
262 
263       template<typename _Cond>
264 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
265 
266       // Compile-time diagnostics.
267 
268       // _Hash_code_base has everything protected, so use this derived type to
269       // access it.
270       struct __hash_code_base_access : __hash_code_base
271       { using __hash_code_base::_M_bucket_index; };
272 
273       // Getting a bucket index from a node shall not throw because it is used
274       // in methods (erase, swap...) that shall not throw.
275       static_assert(noexcept(declval<const __hash_code_base_access&>()
276 			     ._M_bucket_index((const __node_type*)nullptr,
277 					      (std::size_t)0)),
278 		    "Cache the hash code or qualify your functors involved"
279 		    " in hash code and bucket index computation with noexcept");
280 
281       // Following two static assertions are necessary to guarantee
282       // that local_iterator will be default constructible.
283 
284       // When hash codes are cached local iterator inherits from H2 functor
285       // which must then be default constructible.
286       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
287 		    "Functor used to map hash code to bucket index"
288 		    " must be default constructible");
289 
290       template<typename _Keya, typename _Valuea, typename _Alloca,
291 	       typename _ExtractKeya, typename _Equala,
292 	       typename _H1a, typename _H2a, typename _Hasha,
293 	       typename _RehashPolicya, typename _Traitsa,
294 	       bool _Unique_keysa>
295 	friend struct __detail::_Map_base;
296 
297       template<typename _Keya, typename _Valuea, typename _Alloca,
298 	       typename _ExtractKeya, typename _Equala,
299 	       typename _H1a, typename _H2a, typename _Hasha,
300 	       typename _RehashPolicya, typename _Traitsa>
301 	friend struct __detail::_Insert_base;
302 
303       template<typename _Keya, typename _Valuea, typename _Alloca,
304 	       typename _ExtractKeya, typename _Equala,
305 	       typename _H1a, typename _H2a, typename _Hasha,
306 	       typename _RehashPolicya, typename _Traitsa,
307 	       bool _Constant_iteratorsa>
308 	friend struct __detail::_Insert;
309 
310     public:
311       using size_type = typename __hashtable_base::size_type;
312       using difference_type = typename __hashtable_base::difference_type;
313 
314       using iterator = typename __hashtable_base::iterator;
315       using const_iterator = typename __hashtable_base::const_iterator;
316 
317       using local_iterator = typename __hashtable_base::local_iterator;
318       using const_local_iterator = typename __hashtable_base::
319 				   const_local_iterator;
320 
321 #if __cplusplus > 201402L
322       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
323       using insert_return_type = _Node_insert_return<iterator, node_type>;
324 #endif
325 
326     private:
327       __bucket_type*		_M_buckets		= &_M_single_bucket;
328       size_type			_M_bucket_count		= 1;
329       __node_base		_M_before_begin;
330       size_type			_M_element_count	= 0;
331       _RehashPolicy		_M_rehash_policy;
332 
333       // A single bucket used when only need for 1 bucket. Especially
334       // interesting in move semantic to leave hashtable with only 1 buckets
335       // which is not allocated so that we can have those operations noexcept
336       // qualified.
337       // Note that we can't leave hashtable with 0 bucket without adding
338       // numerous checks in the code to avoid 0 modulus.
339       __bucket_type		_M_single_bucket	= nullptr;
340 
341       bool
342       _M_uses_single_bucket(__bucket_type* __bkts) const
343       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
344 
345       bool
346       _M_uses_single_bucket() const
347       { return _M_uses_single_bucket(_M_buckets); }
348 
349       __hashtable_alloc&
350       _M_base_alloc() { return *this; }
351 
352       __bucket_type*
353       _M_allocate_buckets(size_type __n)
354       {
355 	if (__builtin_expect(__n == 1, false))
356 	  {
357 	    _M_single_bucket = nullptr;
358 	    return &_M_single_bucket;
359 	  }
360 
361 	return __hashtable_alloc::_M_allocate_buckets(__n);
362       }
363 
364       void
365       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
366       {
367 	if (_M_uses_single_bucket(__bkts))
368 	  return;
369 
370 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
371       }
372 
373       void
374       _M_deallocate_buckets()
375       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
376 
377       // Gets bucket begin, deals with the fact that non-empty buckets contain
378       // their before begin node.
379       __node_type*
380       _M_bucket_begin(size_type __bkt) const;
381 
382       __node_type*
383       _M_begin() const
384       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
385 
386       // Assign *this using another _Hashtable instance. Either elements
387       // are copy or move depends on the _NodeGenerator.
388       template<typename _Ht, typename _NodeGenerator>
389 	void
390 	_M_assign_elements(_Ht&&, const _NodeGenerator&);
391 
392       template<typename _NodeGenerator>
393 	void
394 	_M_assign(const _Hashtable&, const _NodeGenerator&);
395 
396       void
397       _M_move_assign(_Hashtable&&, std::true_type);
398 
399       void
400       _M_move_assign(_Hashtable&&, std::false_type);
401 
402       void
403       _M_reset() noexcept;
404 
405       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
406 		 const _Equal& __eq, const _ExtractKey& __exk,
407 		 const allocator_type& __a)
408 	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
409 	  __hashtable_alloc(__node_alloc_type(__a))
410       { }
411 
412     public:
413       // Constructor, destructor, assignment, swap
414       _Hashtable() = default;
415       _Hashtable(size_type __bucket_hint,
416 		 const _H1&, const _H2&, const _Hash&,
417 		 const _Equal&, const _ExtractKey&,
418 		 const allocator_type&);
419 
420       template<typename _InputIterator>
421 	_Hashtable(_InputIterator __first, _InputIterator __last,
422 		   size_type __bucket_hint,
423 		   const _H1&, const _H2&, const _Hash&,
424 		   const _Equal&, const _ExtractKey&,
425 		   const allocator_type&);
426 
427       _Hashtable(const _Hashtable&);
428 
429       _Hashtable(_Hashtable&&) noexcept;
430 
431       _Hashtable(const _Hashtable&, const allocator_type&);
432 
433       _Hashtable(_Hashtable&&, const allocator_type&);
434 
435       // Use delegating constructors.
436       explicit
437       _Hashtable(const allocator_type& __a)
438 	: __hashtable_alloc(__node_alloc_type(__a))
439       { }
440 
441       explicit
442       _Hashtable(size_type __n,
443 		 const _H1& __hf = _H1(),
444 		 const key_equal& __eql = key_equal(),
445 		 const allocator_type& __a = allocator_type())
446       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
447 		   __key_extract(), __a)
448       { }
449 
450       template<typename _InputIterator>
451 	_Hashtable(_InputIterator __f, _InputIterator __l,
452 		   size_type __n = 0,
453 		   const _H1& __hf = _H1(),
454 		   const key_equal& __eql = key_equal(),
455 		   const allocator_type& __a = allocator_type())
456 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
457 		     __key_extract(), __a)
458 	{ }
459 
460       _Hashtable(initializer_list<value_type> __l,
461 		 size_type __n = 0,
462 		 const _H1& __hf = _H1(),
463 		 const key_equal& __eql = key_equal(),
464 		 const allocator_type& __a = allocator_type())
465       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
466 		   __key_extract(), __a)
467       { }
468 
469       _Hashtable&
470       operator=(const _Hashtable& __ht);
471 
472       _Hashtable&
473       operator=(_Hashtable&& __ht)
474       noexcept(__node_alloc_traits::_S_nothrow_move()
475 	       && is_nothrow_move_assignable<_H1>::value
476 	       && is_nothrow_move_assignable<_Equal>::value)
477       {
478         constexpr bool __move_storage =
479 	  __node_alloc_traits::_S_propagate_on_move_assign()
480 	  || __node_alloc_traits::_S_always_equal();
481 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
482 	return *this;
483       }
484 
485       _Hashtable&
486       operator=(initializer_list<value_type> __l)
487       {
488 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
489 	_M_before_begin._M_nxt = nullptr;
490 	clear();
491 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
492 	return *this;
493       }
494 
495       ~_Hashtable() noexcept;
496 
497       void
498       swap(_Hashtable&)
499       noexcept(__and_<__is_nothrow_swappable<_H1>,
500 	                  __is_nothrow_swappable<_Equal>>::value);
501 
502       // Basic container operations
503       iterator
504       begin() noexcept
505       { return iterator(_M_begin()); }
506 
507       const_iterator
508       begin() const noexcept
509       { return const_iterator(_M_begin()); }
510 
511       iterator
512       end() noexcept
513       { return iterator(nullptr); }
514 
515       const_iterator
516       end() const noexcept
517       { return const_iterator(nullptr); }
518 
519       const_iterator
520       cbegin() const noexcept
521       { return const_iterator(_M_begin()); }
522 
523       const_iterator
524       cend() const noexcept
525       { return const_iterator(nullptr); }
526 
527       size_type
528       size() const noexcept
529       { return _M_element_count; }
530 
531       _GLIBCXX_NODISCARD bool
532       empty() const noexcept
533       { return size() == 0; }
534 
535       allocator_type
536       get_allocator() const noexcept
537       { return allocator_type(this->_M_node_allocator()); }
538 
539       size_type
540       max_size() const noexcept
541       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
542 
543       // Observers
544       key_equal
545       key_eq() const
546       { return this->_M_eq(); }
547 
548       // hash_function, if present, comes from _Hash_code_base.
549 
550       // Bucket operations
551       size_type
552       bucket_count() const noexcept
553       { return _M_bucket_count; }
554 
555       size_type
556       max_bucket_count() const noexcept
557       { return max_size(); }
558 
559       size_type
560       bucket_size(size_type __n) const
561       { return std::distance(begin(__n), end(__n)); }
562 
563       size_type
564       bucket(const key_type& __k) const
565       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
566 
567       local_iterator
568       begin(size_type __n)
569       {
570 	return local_iterator(*this, _M_bucket_begin(__n),
571 			      __n, _M_bucket_count);
572       }
573 
574       local_iterator
575       end(size_type __n)
576       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
577 
578       const_local_iterator
579       begin(size_type __n) const
580       {
581 	return const_local_iterator(*this, _M_bucket_begin(__n),
582 				    __n, _M_bucket_count);
583       }
584 
585       const_local_iterator
586       end(size_type __n) const
587       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
588 
589       // DR 691.
590       const_local_iterator
591       cbegin(size_type __n) const
592       {
593 	return const_local_iterator(*this, _M_bucket_begin(__n),
594 				    __n, _M_bucket_count);
595       }
596 
597       const_local_iterator
598       cend(size_type __n) const
599       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
600 
601       float
602       load_factor() const noexcept
603       {
604 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
605       }
606 
607       // max_load_factor, if present, comes from _Rehash_base.
608 
609       // Generalization of max_load_factor.  Extension, not found in
610       // TR1.  Only useful if _RehashPolicy is something other than
611       // the default.
612       const _RehashPolicy&
613       __rehash_policy() const
614       { return _M_rehash_policy; }
615 
616       void
617       __rehash_policy(const _RehashPolicy& __pol)
618       { _M_rehash_policy = __pol; }
619 
620       // Lookup.
621       iterator
622       find(const key_type& __k);
623 
624       const_iterator
625       find(const key_type& __k) const;
626 
627       size_type
628       count(const key_type& __k) const;
629 
630       std::pair<iterator, iterator>
631       equal_range(const key_type& __k);
632 
633       std::pair<const_iterator, const_iterator>
634       equal_range(const key_type& __k) const;
635 
636     protected:
637       // Bucket index computation helpers.
638       size_type
639       _M_bucket_index(__node_type* __n) const noexcept
640       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
641 
642       size_type
643       _M_bucket_index(const key_type& __k, __hash_code __c) const
644       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
645 
646       // Find and insert helper functions and types
647       // Find the node before the one matching the criteria.
648       __node_base*
649       _M_find_before_node(size_type, const key_type&, __hash_code) const;
650 
651       __node_type*
652       _M_find_node(size_type __bkt, const key_type& __key,
653 		   __hash_code __c) const
654       {
655 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
656 	if (__before_n)
657 	  return static_cast<__node_type*>(__before_n->_M_nxt);
658 	return nullptr;
659       }
660 
661       // Insert a node at the beginning of a bucket.
662       void
663       _M_insert_bucket_begin(size_type, __node_type*);
664 
665       // Remove the bucket first node
666       void
667       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
668 			     size_type __next_bkt);
669 
670       // Get the node before __n in the bucket __bkt
671       __node_base*
672       _M_get_previous_node(size_type __bkt, __node_base* __n);
673 
674       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
675       // no element with its key already present). Take ownership of the node,
676       // deallocate it on exception.
677       iterator
678       _M_insert_unique_node(size_type __bkt, __hash_code __code,
679 			    __node_type* __n, size_type __n_elt = 1);
680 
681       // Insert node with hash code __code. Take ownership of the node,
682       // deallocate it on exception.
683       iterator
684       _M_insert_multi_node(__node_type* __hint,
685 			   __hash_code __code, __node_type* __n);
686 
687       template<typename... _Args>
688 	std::pair<iterator, bool>
689 	_M_emplace(std::true_type, _Args&&... __args);
690 
691       template<typename... _Args>
692 	iterator
693 	_M_emplace(std::false_type __uk, _Args&&... __args)
694 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
695 
696       // Emplace with hint, useless when keys are unique.
697       template<typename... _Args>
698 	iterator
699 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
700 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
701 
702       template<typename... _Args>
703 	iterator
704 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
705 
706       template<typename _Arg, typename _NodeGenerator>
707 	std::pair<iterator, bool>
708 	_M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
709 
710       template<typename _Arg, typename _NodeGenerator>
711 	iterator
712 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
713 		  false_type __uk)
714 	{
715 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
716 			   __uk);
717 	}
718 
719       // Insert with hint, not used when keys are unique.
720       template<typename _Arg, typename _NodeGenerator>
721 	iterator
722 	_M_insert(const_iterator, _Arg&& __arg,
723 		  const _NodeGenerator& __node_gen, true_type __uk)
724 	{
725 	  return
726 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
727 	}
728 
729       // Insert with hint when keys are not unique.
730       template<typename _Arg, typename _NodeGenerator>
731 	iterator
732 	_M_insert(const_iterator, _Arg&&,
733 		  const _NodeGenerator&, false_type);
734 
735       size_type
736       _M_erase(std::true_type, const key_type&);
737 
738       size_type
739       _M_erase(std::false_type, const key_type&);
740 
741       iterator
742       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
743 
744     public:
745       // Emplace
746       template<typename... _Args>
747 	__ireturn_type
748 	emplace(_Args&&... __args)
749 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
750 
751       template<typename... _Args>
752 	iterator
753 	emplace_hint(const_iterator __hint, _Args&&... __args)
754 	{
755 	  return _M_emplace(__hint, __unique_keys(),
756 			    std::forward<_Args>(__args)...);
757 	}
758 
759       // Insert member functions via inheritance.
760 
761       // Erase
762       iterator
763       erase(const_iterator);
764 
765       // LWG 2059.
766       iterator
767       erase(iterator __it)
768       { return erase(const_iterator(__it)); }
769 
770       size_type
771       erase(const key_type& __k)
772       { return _M_erase(__unique_keys(), __k); }
773 
774       iterator
775       erase(const_iterator, const_iterator);
776 
777       void
778       clear() noexcept;
779 
780       // Set number of buckets to be appropriate for container of n element.
781       void rehash(size_type __n);
782 
783       // DR 1189.
784       // reserve, if present, comes from _Rehash_base.
785 
786 #if __cplusplus > 201402L
787       /// Re-insert an extracted node into a container with unique keys.
788       insert_return_type
789       _M_reinsert_node(node_type&& __nh)
790       {
791 	insert_return_type __ret;
792 	if (__nh.empty())
793 	  __ret.position = end();
794 	else
795 	  {
796 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
797 
798 	    const key_type& __k = __nh._M_key();
799 	    __hash_code __code = this->_M_hash_code(__k);
800 	    size_type __bkt = _M_bucket_index(__k, __code);
801 	    if (__node_type* __n = _M_find_node(__bkt, __k, __code))
802 	      {
803 		__ret.node = std::move(__nh);
804 		__ret.position = iterator(__n);
805 		__ret.inserted = false;
806 	      }
807 	    else
808 	      {
809 		__ret.position
810 		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
811 		__nh._M_ptr = nullptr;
812 		__ret.inserted = true;
813 	      }
814 	  }
815 	return __ret;
816       }
817 
818       /// Re-insert an extracted node into a container with equivalent keys.
819       iterator
820       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
821       {
822 	iterator __ret;
823 	if (__nh.empty())
824 	  __ret = end();
825 	else
826 	  {
827 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
828 
829 	    auto __code = this->_M_hash_code(__nh._M_key());
830 	    auto __node = std::exchange(__nh._M_ptr, nullptr);
831 	    // FIXME: this deallocates the node on exception.
832 	    __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
833 	  }
834 	return __ret;
835       }
836 
837       /// Extract a node.
838       node_type
839       extract(const_iterator __pos)
840       {
841 	__node_type* __n = __pos._M_cur;
842 	size_t __bkt = _M_bucket_index(__n);
843 
844 	// Look for previous node to unlink it from the erased one, this
845 	// is why we need buckets to contain the before begin to make
846 	// this search fast.
847 	__node_base* __prev_n = _M_get_previous_node(__bkt, __n);
848 
849 	if (__prev_n == _M_buckets[__bkt])
850 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
851 	     __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
852 	else if (__n->_M_nxt)
853 	  {
854 	    size_type __next_bkt = _M_bucket_index(__n->_M_next());
855 	    if (__next_bkt != __bkt)
856 	      _M_buckets[__next_bkt] = __prev_n;
857 	  }
858 
859 	__prev_n->_M_nxt = __n->_M_nxt;
860 	__n->_M_nxt = nullptr;
861 	--_M_element_count;
862 	return { __n, this->_M_node_allocator() };
863       }
864 
865       /// Extract a node.
866       node_type
867       extract(const _Key& __k)
868       {
869 	node_type __nh;
870 	auto __pos = find(__k);
871 	if (__pos != end())
872 	  __nh = extract(const_iterator(__pos));
873 	return __nh;
874       }
875 
876       /// Merge from a compatible container into one with unique keys.
877       template<typename _Compatible_Hashtable>
878 	void
879 	_M_merge_unique(_Compatible_Hashtable& __src) noexcept
880 	{
881 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
882 	      node_type>, "Node types are compatible");
883 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
884 
885 	  auto __n_elt = __src.size();
886 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
887 	    {
888 	      auto __pos = __i++;
889 	      const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
890 	      __hash_code __code = this->_M_hash_code(__k);
891 	      size_type __bkt = _M_bucket_index(__k, __code);
892 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
893 		{
894 		  auto __nh = __src.extract(__pos);
895 		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
896 		  __nh._M_ptr = nullptr;
897 		  __n_elt = 1;
898 		}
899 	      else if (__n_elt != 1)
900 		--__n_elt;
901 	    }
902 	}
903 
904       /// Merge from a compatible container into one with equivalent keys.
905       template<typename _Compatible_Hashtable>
906 	void
907 	_M_merge_multi(_Compatible_Hashtable& __src) noexcept
908 	{
909 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
910 	      node_type>, "Node types are compatible");
911 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
912 
913 	  this->reserve(size() + __src.size());
914 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
915 	    _M_reinsert_node_multi(cend(), __src.extract(__i++));
916 	}
917 #endif // C++17
918 
919     private:
920       // Helper rehash method used when keys are unique.
921       void _M_rehash_aux(size_type __n, std::true_type);
922 
923       // Helper rehash method used when keys can be non-unique.
924       void _M_rehash_aux(size_type __n, std::false_type);
925 
926       // Unconditionally change size of bucket array to n, restore
927       // hash policy state to __state on exception.
928       void _M_rehash(size_type __n, const __rehash_state& __state);
929     };
930 
931 
932   // Definitions of class template _Hashtable's out-of-line member functions.
933   template<typename _Key, typename _Value,
934 	   typename _Alloc, typename _ExtractKey, typename _Equal,
935 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
936 	   typename _Traits>
937     auto
938     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
939 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
940     _M_bucket_begin(size_type __bkt) const
941     -> __node_type*
942     {
943       __node_base* __n = _M_buckets[__bkt];
944       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
945     }
946 
947   template<typename _Key, typename _Value,
948 	   typename _Alloc, typename _ExtractKey, typename _Equal,
949 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
950 	   typename _Traits>
951     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
952 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
953     _Hashtable(size_type __bucket_hint,
954 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
955 	       const _Equal& __eq, const _ExtractKey& __exk,
956 	       const allocator_type& __a)
957       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
958     {
959       auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
960       if (__bkt > _M_bucket_count)
961 	{
962 	  _M_buckets = _M_allocate_buckets(__bkt);
963 	  _M_bucket_count = __bkt;
964 	}
965     }
966 
967   template<typename _Key, typename _Value,
968 	   typename _Alloc, typename _ExtractKey, typename _Equal,
969 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
970 	   typename _Traits>
971     template<typename _InputIterator>
972       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
973 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
974       _Hashtable(_InputIterator __f, _InputIterator __l,
975 		 size_type __bucket_hint,
976 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
977 		 const _Equal& __eq, const _ExtractKey& __exk,
978 		 const allocator_type& __a)
979 	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
980       {
981 	auto __nb_elems = __detail::__distance_fw(__f, __l);
982 	auto __bkt_count =
983 	  _M_rehash_policy._M_next_bkt(
984 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
985 		     __bucket_hint));
986 
987 	if (__bkt_count > _M_bucket_count)
988 	  {
989 	    _M_buckets = _M_allocate_buckets(__bkt_count);
990 	    _M_bucket_count = __bkt_count;
991 	  }
992 
993 	for (; __f != __l; ++__f)
994 	  this->insert(*__f);
995       }
996 
997   template<typename _Key, typename _Value,
998 	   typename _Alloc, typename _ExtractKey, typename _Equal,
999 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1000 	   typename _Traits>
1001     auto
1002     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1003 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1004     operator=(const _Hashtable& __ht)
1005     -> _Hashtable&
1006     {
1007       if (&__ht == this)
1008 	return *this;
1009 
1010       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1011 	{
1012 	  auto& __this_alloc = this->_M_node_allocator();
1013 	  auto& __that_alloc = __ht._M_node_allocator();
1014 	  if (!__node_alloc_traits::_S_always_equal()
1015 	      && __this_alloc != __that_alloc)
1016 	    {
1017 	      // Replacement allocator cannot free existing storage.
1018 	      this->_M_deallocate_nodes(_M_begin());
1019 	      _M_before_begin._M_nxt = nullptr;
1020 	      _M_deallocate_buckets();
1021 	      _M_buckets = nullptr;
1022 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1023 	      __hashtable_base::operator=(__ht);
1024 	      _M_bucket_count = __ht._M_bucket_count;
1025 	      _M_element_count = __ht._M_element_count;
1026 	      _M_rehash_policy = __ht._M_rehash_policy;
1027 	      __try
1028 		{
1029 		  _M_assign(__ht,
1030 			    [this](const __node_type* __n)
1031 			    { return this->_M_allocate_node(__n->_M_v()); });
1032 		}
1033 	      __catch(...)
1034 		{
1035 		  // _M_assign took care of deallocating all memory. Now we
1036 		  // must make sure this instance remains in a usable state.
1037 		  _M_reset();
1038 		  __throw_exception_again;
1039 		}
1040 	      return *this;
1041 	    }
1042 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1043 	}
1044 
1045       // Reuse allocated buckets and nodes.
1046       _M_assign_elements(__ht,
1047 	[](const __reuse_or_alloc_node_type& __roan, const __node_type* __n)
1048 	{ return __roan(__n->_M_v()); });
1049       return *this;
1050     }
1051 
1052   template<typename _Key, typename _Value,
1053 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1054 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1055 	   typename _Traits>
1056     template<typename _Ht, typename _NodeGenerator>
1057       void
1058       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1059 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1060       _M_assign_elements(_Ht&& __ht, const _NodeGenerator& __node_gen)
1061       {
1062 	__bucket_type* __former_buckets = nullptr;
1063 	std::size_t __former_bucket_count = _M_bucket_count;
1064 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
1065 
1066 	if (_M_bucket_count != __ht._M_bucket_count)
1067 	  {
1068 	    __former_buckets = _M_buckets;
1069 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1070 	    _M_bucket_count = __ht._M_bucket_count;
1071 	  }
1072 	else
1073 	  __builtin_memset(_M_buckets, 0,
1074 			   _M_bucket_count * sizeof(__bucket_type));
1075 
1076 	__try
1077 	  {
1078 	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
1079 	    _M_element_count = __ht._M_element_count;
1080 	    _M_rehash_policy = __ht._M_rehash_policy;
1081 	    __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1082 	    _M_before_begin._M_nxt = nullptr;
1083 	    _M_assign(__ht,
1084 		      [&__node_gen, &__roan](__node_type* __n)
1085 		      { return __node_gen(__roan, __n); });
1086 	    if (__former_buckets)
1087 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1088 	  }
1089 	__catch(...)
1090 	  {
1091 	    if (__former_buckets)
1092 	      {
1093 		// Restore previous buckets.
1094 		_M_deallocate_buckets();
1095 		_M_rehash_policy._M_reset(__former_state);
1096 		_M_buckets = __former_buckets;
1097 		_M_bucket_count = __former_bucket_count;
1098 	      }
1099 	    __builtin_memset(_M_buckets, 0,
1100 			     _M_bucket_count * sizeof(__bucket_type));
1101 	    __throw_exception_again;
1102 	  }
1103       }
1104 
1105   template<typename _Key, typename _Value,
1106 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1107 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1108 	   typename _Traits>
1109     template<typename _NodeGenerator>
1110       void
1111       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1112 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1113       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1114       {
1115 	__bucket_type* __buckets = nullptr;
1116 	if (!_M_buckets)
1117 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1118 
1119 	__try
1120 	  {
1121 	    if (!__ht._M_before_begin._M_nxt)
1122 	      return;
1123 
1124 	    // First deal with the special first node pointed to by
1125 	    // _M_before_begin.
1126 	    __node_type* __ht_n = __ht._M_begin();
1127 	    __node_type* __this_n = __node_gen(__ht_n);
1128 	    this->_M_copy_code(__this_n, __ht_n);
1129 	    _M_before_begin._M_nxt = __this_n;
1130 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1131 
1132 	    // Then deal with other nodes.
1133 	    __node_base* __prev_n = __this_n;
1134 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1135 	      {
1136 		__this_n = __node_gen(__ht_n);
1137 		__prev_n->_M_nxt = __this_n;
1138 		this->_M_copy_code(__this_n, __ht_n);
1139 		size_type __bkt = _M_bucket_index(__this_n);
1140 		if (!_M_buckets[__bkt])
1141 		  _M_buckets[__bkt] = __prev_n;
1142 		__prev_n = __this_n;
1143 	      }
1144 	  }
1145 	__catch(...)
1146 	  {
1147 	    clear();
1148 	    if (__buckets)
1149 	      _M_deallocate_buckets();
1150 	    __throw_exception_again;
1151 	  }
1152       }
1153 
1154   template<typename _Key, typename _Value,
1155 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1156 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1157 	   typename _Traits>
1158     void
1159     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1160 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1161     _M_reset() noexcept
1162     {
1163       _M_rehash_policy._M_reset();
1164       _M_bucket_count = 1;
1165       _M_single_bucket = nullptr;
1166       _M_buckets = &_M_single_bucket;
1167       _M_before_begin._M_nxt = nullptr;
1168       _M_element_count = 0;
1169     }
1170 
1171   template<typename _Key, typename _Value,
1172 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1173 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1174 	   typename _Traits>
1175     void
1176     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1177 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1178     _M_move_assign(_Hashtable&& __ht, std::true_type)
1179     {
1180       this->_M_deallocate_nodes(_M_begin());
1181       _M_deallocate_buckets();
1182       __hashtable_base::operator=(std::move(__ht));
1183       _M_rehash_policy = __ht._M_rehash_policy;
1184       if (!__ht._M_uses_single_bucket())
1185 	_M_buckets = __ht._M_buckets;
1186       else
1187 	{
1188 	  _M_buckets = &_M_single_bucket;
1189 	  _M_single_bucket = __ht._M_single_bucket;
1190 	}
1191       _M_bucket_count = __ht._M_bucket_count;
1192       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1193       _M_element_count = __ht._M_element_count;
1194       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1195 
1196       // Fix buckets containing the _M_before_begin pointers that can't be
1197       // moved.
1198       if (_M_begin())
1199 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1200       __ht._M_reset();
1201     }
1202 
1203   template<typename _Key, typename _Value,
1204 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1205 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1206 	   typename _Traits>
1207     void
1208     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1209 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1210     _M_move_assign(_Hashtable&& __ht, std::false_type)
1211     {
1212       if (__ht._M_node_allocator() == this->_M_node_allocator())
1213 	_M_move_assign(std::move(__ht), std::true_type());
1214       else
1215 	{
1216 	  // Can't move memory, move elements then.
1217 	  _M_assign_elements(std::move(__ht),
1218 		[](const __reuse_or_alloc_node_type& __roan, __node_type* __n)
1219 		{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1220 	  __ht.clear();
1221 	}
1222     }
1223 
1224   template<typename _Key, typename _Value,
1225 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1226 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1227 	   typename _Traits>
1228     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1229 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1230     _Hashtable(const _Hashtable& __ht)
1231     : __hashtable_base(__ht),
1232       __map_base(__ht),
1233       __rehash_base(__ht),
1234       __hashtable_alloc(
1235 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1236       _M_buckets(nullptr),
1237       _M_bucket_count(__ht._M_bucket_count),
1238       _M_element_count(__ht._M_element_count),
1239       _M_rehash_policy(__ht._M_rehash_policy)
1240     {
1241       _M_assign(__ht,
1242 		[this](const __node_type* __n)
1243 		{ return this->_M_allocate_node(__n->_M_v()); });
1244     }
1245 
1246   template<typename _Key, typename _Value,
1247 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1248 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1249 	   typename _Traits>
1250     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1251 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1252     _Hashtable(_Hashtable&& __ht) noexcept
1253     : __hashtable_base(__ht),
1254       __map_base(__ht),
1255       __rehash_base(__ht),
1256       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1257       _M_buckets(__ht._M_buckets),
1258       _M_bucket_count(__ht._M_bucket_count),
1259       _M_before_begin(__ht._M_before_begin._M_nxt),
1260       _M_element_count(__ht._M_element_count),
1261       _M_rehash_policy(__ht._M_rehash_policy)
1262     {
1263       // Update, if necessary, buckets if __ht is using its single bucket.
1264       if (__ht._M_uses_single_bucket())
1265 	{
1266 	  _M_buckets = &_M_single_bucket;
1267 	  _M_single_bucket = __ht._M_single_bucket;
1268 	}
1269 
1270       // Update, if necessary, bucket pointing to before begin that hasn't
1271       // moved.
1272       if (_M_begin())
1273 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1274 
1275       __ht._M_reset();
1276     }
1277 
1278   template<typename _Key, typename _Value,
1279 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1280 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1281 	   typename _Traits>
1282     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1283 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1284     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1285     : __hashtable_base(__ht),
1286       __map_base(__ht),
1287       __rehash_base(__ht),
1288       __hashtable_alloc(__node_alloc_type(__a)),
1289       _M_buckets(),
1290       _M_bucket_count(__ht._M_bucket_count),
1291       _M_element_count(__ht._M_element_count),
1292       _M_rehash_policy(__ht._M_rehash_policy)
1293     {
1294       _M_assign(__ht,
1295 		[this](const __node_type* __n)
1296 		{ return this->_M_allocate_node(__n->_M_v()); });
1297     }
1298 
1299   template<typename _Key, typename _Value,
1300 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1301 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1302 	   typename _Traits>
1303     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1304 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1305     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1306     : __hashtable_base(__ht),
1307       __map_base(__ht),
1308       __rehash_base(__ht),
1309       __hashtable_alloc(__node_alloc_type(__a)),
1310       _M_buckets(nullptr),
1311       _M_bucket_count(__ht._M_bucket_count),
1312       _M_element_count(__ht._M_element_count),
1313       _M_rehash_policy(__ht._M_rehash_policy)
1314     {
1315       if (__ht._M_node_allocator() == this->_M_node_allocator())
1316 	{
1317 	  if (__ht._M_uses_single_bucket())
1318 	    {
1319 	      _M_buckets = &_M_single_bucket;
1320 	      _M_single_bucket = __ht._M_single_bucket;
1321 	    }
1322 	  else
1323 	    _M_buckets = __ht._M_buckets;
1324 
1325 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1326 	  // Update, if necessary, bucket pointing to before begin that hasn't
1327 	  // moved.
1328 	  if (_M_begin())
1329 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1330 	  __ht._M_reset();
1331 	}
1332       else
1333 	{
1334 	  _M_assign(__ht,
1335 		    [this](__node_type* __n)
1336 		    {
1337 		      return this->_M_allocate_node(
1338 					std::move_if_noexcept(__n->_M_v()));
1339 		    });
1340 	  __ht.clear();
1341 	}
1342     }
1343 
1344   template<typename _Key, typename _Value,
1345 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1346 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1347 	   typename _Traits>
1348     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1349 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1350     ~_Hashtable() noexcept
1351     {
1352       clear();
1353       _M_deallocate_buckets();
1354     }
1355 
1356   template<typename _Key, typename _Value,
1357 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1358 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1359 	   typename _Traits>
1360     void
1361     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1362 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1363     swap(_Hashtable& __x)
1364     noexcept(__and_<__is_nothrow_swappable<_H1>,
1365 	                __is_nothrow_swappable<_Equal>>::value)
1366     {
1367       // The only base class with member variables is hash_code_base.
1368       // We define _Hash_code_base::_M_swap because different
1369       // specializations have different members.
1370       this->_M_swap(__x);
1371 
1372       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1373       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1374 
1375       // Deal properly with potentially moved instances.
1376       if (this->_M_uses_single_bucket())
1377 	{
1378 	  if (!__x._M_uses_single_bucket())
1379 	    {
1380 	      _M_buckets = __x._M_buckets;
1381 	      __x._M_buckets = &__x._M_single_bucket;
1382 	    }
1383 	}
1384       else if (__x._M_uses_single_bucket())
1385 	{
1386 	  __x._M_buckets = _M_buckets;
1387 	  _M_buckets = &_M_single_bucket;
1388 	}
1389       else
1390 	std::swap(_M_buckets, __x._M_buckets);
1391 
1392       std::swap(_M_bucket_count, __x._M_bucket_count);
1393       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1394       std::swap(_M_element_count, __x._M_element_count);
1395       std::swap(_M_single_bucket, __x._M_single_bucket);
1396 
1397       // Fix buckets containing the _M_before_begin pointers that can't be
1398       // swapped.
1399       if (_M_begin())
1400 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1401 
1402       if (__x._M_begin())
1403 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1404 	  = &__x._M_before_begin;
1405     }
1406 
1407   template<typename _Key, typename _Value,
1408 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1409 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1410 	   typename _Traits>
1411     auto
1412     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1413 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1414     find(const key_type& __k)
1415     -> iterator
1416     {
1417       __hash_code __code = this->_M_hash_code(__k);
1418       std::size_t __n = _M_bucket_index(__k, __code);
1419       __node_type* __p = _M_find_node(__n, __k, __code);
1420       return __p ? iterator(__p) : end();
1421     }
1422 
1423   template<typename _Key, typename _Value,
1424 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1425 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1426 	   typename _Traits>
1427     auto
1428     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1429 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1430     find(const key_type& __k) const
1431     -> const_iterator
1432     {
1433       __hash_code __code = this->_M_hash_code(__k);
1434       std::size_t __n = _M_bucket_index(__k, __code);
1435       __node_type* __p = _M_find_node(__n, __k, __code);
1436       return __p ? const_iterator(__p) : end();
1437     }
1438 
1439   template<typename _Key, typename _Value,
1440 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1441 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1442 	   typename _Traits>
1443     auto
1444     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1445 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1446     count(const key_type& __k) const
1447     -> size_type
1448     {
1449       __hash_code __code = this->_M_hash_code(__k);
1450       std::size_t __n = _M_bucket_index(__k, __code);
1451       __node_type* __p = _M_bucket_begin(__n);
1452       if (!__p)
1453 	return 0;
1454 
1455       std::size_t __result = 0;
1456       for (;; __p = __p->_M_next())
1457 	{
1458 	  if (this->_M_equals(__k, __code, __p))
1459 	    ++__result;
1460 	  else if (__result)
1461 	    // All equivalent values are next to each other, if we
1462 	    // found a non-equivalent value after an equivalent one it
1463 	    // means that we won't find any new equivalent value.
1464 	    break;
1465 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1466 	    break;
1467 	}
1468       return __result;
1469     }
1470 
1471   template<typename _Key, typename _Value,
1472 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1473 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1474 	   typename _Traits>
1475     auto
1476     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1477 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1478     equal_range(const key_type& __k)
1479     -> pair<iterator, iterator>
1480     {
1481       __hash_code __code = this->_M_hash_code(__k);
1482       std::size_t __n = _M_bucket_index(__k, __code);
1483       __node_type* __p = _M_find_node(__n, __k, __code);
1484 
1485       if (__p)
1486 	{
1487 	  __node_type* __p1 = __p->_M_next();
1488 	  while (__p1 && _M_bucket_index(__p1) == __n
1489 		 && this->_M_equals(__k, __code, __p1))
1490 	    __p1 = __p1->_M_next();
1491 
1492 	  return std::make_pair(iterator(__p), iterator(__p1));
1493 	}
1494       else
1495 	return std::make_pair(end(), end());
1496     }
1497 
1498   template<typename _Key, typename _Value,
1499 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1500 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1501 	   typename _Traits>
1502     auto
1503     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1504 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1505     equal_range(const key_type& __k) const
1506     -> pair<const_iterator, const_iterator>
1507     {
1508       __hash_code __code = this->_M_hash_code(__k);
1509       std::size_t __n = _M_bucket_index(__k, __code);
1510       __node_type* __p = _M_find_node(__n, __k, __code);
1511 
1512       if (__p)
1513 	{
1514 	  __node_type* __p1 = __p->_M_next();
1515 	  while (__p1 && _M_bucket_index(__p1) == __n
1516 		 && this->_M_equals(__k, __code, __p1))
1517 	    __p1 = __p1->_M_next();
1518 
1519 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1520 	}
1521       else
1522 	return std::make_pair(end(), end());
1523     }
1524 
1525   // Find the node whose key compares equal to k in the bucket n.
1526   // Return nullptr if no node is found.
1527   template<typename _Key, typename _Value,
1528 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1529 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530 	   typename _Traits>
1531     auto
1532     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1533 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1534     _M_find_before_node(size_type __n, const key_type& __k,
1535 			__hash_code __code) const
1536     -> __node_base*
1537     {
1538       __node_base* __prev_p = _M_buckets[__n];
1539       if (!__prev_p)
1540 	return nullptr;
1541 
1542       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1543 	   __p = __p->_M_next())
1544 	{
1545 	  if (this->_M_equals(__k, __code, __p))
1546 	    return __prev_p;
1547 
1548 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1549 	    break;
1550 	  __prev_p = __p;
1551 	}
1552       return nullptr;
1553     }
1554 
1555   template<typename _Key, typename _Value,
1556 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1557 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1558 	   typename _Traits>
1559     void
1560     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1561 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1562     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1563     {
1564       if (_M_buckets[__bkt])
1565 	{
1566 	  // Bucket is not empty, we just need to insert the new node
1567 	  // after the bucket before begin.
1568 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1569 	  _M_buckets[__bkt]->_M_nxt = __node;
1570 	}
1571       else
1572 	{
1573 	  // The bucket is empty, the new node is inserted at the
1574 	  // beginning of the singly-linked list and the bucket will
1575 	  // contain _M_before_begin pointer.
1576 	  __node->_M_nxt = _M_before_begin._M_nxt;
1577 	  _M_before_begin._M_nxt = __node;
1578 	  if (__node->_M_nxt)
1579 	    // We must update former begin bucket that is pointing to
1580 	    // _M_before_begin.
1581 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1582 	  _M_buckets[__bkt] = &_M_before_begin;
1583 	}
1584     }
1585 
1586   template<typename _Key, typename _Value,
1587 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1588 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1589 	   typename _Traits>
1590     void
1591     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1592 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1593     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1594 			   size_type __next_bkt)
1595     {
1596       if (!__next || __next_bkt != __bkt)
1597 	{
1598 	  // Bucket is now empty
1599 	  // First update next bucket if any
1600 	  if (__next)
1601 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1602 
1603 	  // Second update before begin node if necessary
1604 	  if (&_M_before_begin == _M_buckets[__bkt])
1605 	    _M_before_begin._M_nxt = __next;
1606 	  _M_buckets[__bkt] = nullptr;
1607 	}
1608     }
1609 
1610   template<typename _Key, typename _Value,
1611 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1612 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1613 	   typename _Traits>
1614     auto
1615     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1616 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1617     _M_get_previous_node(size_type __bkt, __node_base* __n)
1618     -> __node_base*
1619     {
1620       __node_base* __prev_n = _M_buckets[__bkt];
1621       while (__prev_n->_M_nxt != __n)
1622 	__prev_n = __prev_n->_M_nxt;
1623       return __prev_n;
1624     }
1625 
1626   template<typename _Key, typename _Value,
1627 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1628 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1629 	   typename _Traits>
1630     template<typename... _Args>
1631       auto
1632       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1633 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1634       _M_emplace(std::true_type, _Args&&... __args)
1635       -> pair<iterator, bool>
1636       {
1637 	// First build the node to get access to the hash code
1638 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1639 	const key_type& __k = this->_M_extract()(__node->_M_v());
1640 	__hash_code __code;
1641 	__try
1642 	  {
1643 	    __code = this->_M_hash_code(__k);
1644 	  }
1645 	__catch(...)
1646 	  {
1647 	    this->_M_deallocate_node(__node);
1648 	    __throw_exception_again;
1649 	  }
1650 
1651 	size_type __bkt = _M_bucket_index(__k, __code);
1652 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1653 	  {
1654 	    // There is already an equivalent node, no insertion
1655 	    this->_M_deallocate_node(__node);
1656 	    return std::make_pair(iterator(__p), false);
1657 	  }
1658 
1659 	// Insert the node
1660 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1661 			      true);
1662       }
1663 
1664   template<typename _Key, typename _Value,
1665 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1666 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1667 	   typename _Traits>
1668     template<typename... _Args>
1669       auto
1670       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1671 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1672       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1673       -> iterator
1674       {
1675 	// First build the node to get its hash code.
1676 	__node_type* __node =
1677 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1678 
1679 	__hash_code __code;
1680 	__try
1681 	  {
1682 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1683 	  }
1684 	__catch(...)
1685 	  {
1686 	    this->_M_deallocate_node(__node);
1687 	    __throw_exception_again;
1688 	  }
1689 
1690 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1691       }
1692 
1693   template<typename _Key, typename _Value,
1694 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1695 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1696 	   typename _Traits>
1697     auto
1698     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1699 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1700     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1701 			  __node_type* __node, size_type __n_elt)
1702     -> iterator
1703     {
1704       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1705       std::pair<bool, std::size_t> __do_rehash
1706 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1707 					  __n_elt);
1708 
1709       __try
1710 	{
1711 	  if (__do_rehash.first)
1712 	    {
1713 	      _M_rehash(__do_rehash.second, __saved_state);
1714 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1715 	    }
1716 
1717 	  this->_M_store_code(__node, __code);
1718 
1719 	  // Always insert at the beginning of the bucket.
1720 	  _M_insert_bucket_begin(__bkt, __node);
1721 	  ++_M_element_count;
1722 	  return iterator(__node);
1723 	}
1724       __catch(...)
1725 	{
1726 	  this->_M_deallocate_node(__node);
1727 	  __throw_exception_again;
1728 	}
1729     }
1730 
1731   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1732   // already present). Take ownership of the node, deallocate it on exception.
1733   template<typename _Key, typename _Value,
1734 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1735 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1736 	   typename _Traits>
1737     auto
1738     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1739 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1740     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1741 			 __node_type* __node)
1742     -> iterator
1743     {
1744       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1745       std::pair<bool, std::size_t> __do_rehash
1746 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1747 
1748       __try
1749 	{
1750 	  if (__do_rehash.first)
1751 	    _M_rehash(__do_rehash.second, __saved_state);
1752 
1753 	  this->_M_store_code(__node, __code);
1754 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1755 	  size_type __bkt = _M_bucket_index(__k, __code);
1756 
1757 	  // Find the node before an equivalent one or use hint if it exists and
1758 	  // if it is equivalent.
1759 	  __node_base* __prev
1760 	    = __builtin_expect(__hint != nullptr, false)
1761 	      && this->_M_equals(__k, __code, __hint)
1762 		? __hint
1763 		: _M_find_before_node(__bkt, __k, __code);
1764 	  if (__prev)
1765 	    {
1766 	      // Insert after the node before the equivalent one.
1767 	      __node->_M_nxt = __prev->_M_nxt;
1768 	      __prev->_M_nxt = __node;
1769 	      if (__builtin_expect(__prev == __hint, false))
1770 	      	// hint might be the last bucket node, in this case we need to
1771 	      	// update next bucket.
1772 	      	if (__node->_M_nxt
1773 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1774 	      	  {
1775 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1776 	      	    if (__next_bkt != __bkt)
1777 	      	      _M_buckets[__next_bkt] = __node;
1778 	      	  }
1779 	    }
1780 	  else
1781 	    // The inserted node has no equivalent in the
1782 	    // hashtable. We must insert the new node at the
1783 	    // beginning of the bucket to preserve equivalent
1784 	    // elements' relative positions.
1785 	    _M_insert_bucket_begin(__bkt, __node);
1786 	  ++_M_element_count;
1787 	  return iterator(__node);
1788 	}
1789       __catch(...)
1790 	{
1791 	  this->_M_deallocate_node(__node);
1792 	  __throw_exception_again;
1793 	}
1794     }
1795 
1796   // Insert v if no element with its key is already present.
1797   template<typename _Key, typename _Value,
1798 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1799 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1800 	   typename _Traits>
1801     template<typename _Arg, typename _NodeGenerator>
1802       auto
1803       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1804 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1805       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1806 		size_type __n_elt)
1807       -> pair<iterator, bool>
1808       {
1809 	const key_type& __k = this->_M_extract()(__v);
1810 	__hash_code __code = this->_M_hash_code(__k);
1811 	size_type __bkt = _M_bucket_index(__k, __code);
1812 
1813 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1814 	if (__n)
1815 	  return std::make_pair(iterator(__n), false);
1816 
1817 	__n = __node_gen(std::forward<_Arg>(__v));
1818 	return { _M_insert_unique_node(__bkt, __code, __n, __n_elt), true };
1819       }
1820 
1821   // Insert v unconditionally.
1822   template<typename _Key, typename _Value,
1823 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1824 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1825 	   typename _Traits>
1826     template<typename _Arg, typename _NodeGenerator>
1827       auto
1828       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1829 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1830       _M_insert(const_iterator __hint, _Arg&& __v,
1831 		const _NodeGenerator& __node_gen, false_type)
1832       -> iterator
1833       {
1834 	// First compute the hash code so that we don't do anything if it
1835 	// throws.
1836 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1837 
1838 	// Second allocate new node so that we don't rehash if it throws.
1839 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1840 
1841 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1842       }
1843 
1844   template<typename _Key, typename _Value,
1845 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1846 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1847 	   typename _Traits>
1848     auto
1849     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1850 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1851     erase(const_iterator __it)
1852     -> iterator
1853     {
1854       __node_type* __n = __it._M_cur;
1855       std::size_t __bkt = _M_bucket_index(__n);
1856 
1857       // Look for previous node to unlink it from the erased one, this
1858       // is why we need buckets to contain the before begin to make
1859       // this search fast.
1860       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1861       return _M_erase(__bkt, __prev_n, __n);
1862     }
1863 
1864   template<typename _Key, typename _Value,
1865 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1866 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1867 	   typename _Traits>
1868     auto
1869     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1870 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1871     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1872     -> iterator
1873     {
1874       if (__prev_n == _M_buckets[__bkt])
1875 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1876 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1877       else if (__n->_M_nxt)
1878 	{
1879 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1880 	  if (__next_bkt != __bkt)
1881 	    _M_buckets[__next_bkt] = __prev_n;
1882 	}
1883 
1884       __prev_n->_M_nxt = __n->_M_nxt;
1885       iterator __result(__n->_M_next());
1886       this->_M_deallocate_node(__n);
1887       --_M_element_count;
1888 
1889       return __result;
1890     }
1891 
1892   template<typename _Key, typename _Value,
1893 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1894 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1895 	   typename _Traits>
1896     auto
1897     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1898 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1899     _M_erase(std::true_type, const key_type& __k)
1900     -> size_type
1901     {
1902       __hash_code __code = this->_M_hash_code(__k);
1903       std::size_t __bkt = _M_bucket_index(__k, __code);
1904 
1905       // Look for the node before the first matching node.
1906       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1907       if (!__prev_n)
1908 	return 0;
1909 
1910       // We found a matching node, erase it.
1911       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1912       _M_erase(__bkt, __prev_n, __n);
1913       return 1;
1914     }
1915 
1916   template<typename _Key, typename _Value,
1917 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1918 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1919 	   typename _Traits>
1920     auto
1921     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1922 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1923     _M_erase(std::false_type, const key_type& __k)
1924     -> size_type
1925     {
1926       __hash_code __code = this->_M_hash_code(__k);
1927       std::size_t __bkt = _M_bucket_index(__k, __code);
1928 
1929       // Look for the node before the first matching node.
1930       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1931       if (!__prev_n)
1932 	return 0;
1933 
1934       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1935       // 526. Is it undefined if a function in the standard changes
1936       // in parameters?
1937       // We use one loop to find all matching nodes and another to deallocate
1938       // them so that the key stays valid during the first loop. It might be
1939       // invalidated indirectly when destroying nodes.
1940       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1941       __node_type* __n_last = __n;
1942       std::size_t __n_last_bkt = __bkt;
1943       do
1944 	{
1945 	  __n_last = __n_last->_M_next();
1946 	  if (!__n_last)
1947 	    break;
1948 	  __n_last_bkt = _M_bucket_index(__n_last);
1949 	}
1950       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1951 
1952       // Deallocate nodes.
1953       size_type __result = 0;
1954       do
1955 	{
1956 	  __node_type* __p = __n->_M_next();
1957 	  this->_M_deallocate_node(__n);
1958 	  __n = __p;
1959 	  ++__result;
1960 	  --_M_element_count;
1961 	}
1962       while (__n != __n_last);
1963 
1964       if (__prev_n == _M_buckets[__bkt])
1965 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1966       else if (__n_last && __n_last_bkt != __bkt)
1967 	_M_buckets[__n_last_bkt] = __prev_n;
1968       __prev_n->_M_nxt = __n_last;
1969       return __result;
1970     }
1971 
1972   template<typename _Key, typename _Value,
1973 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1974 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1975 	   typename _Traits>
1976     auto
1977     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1978 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1979     erase(const_iterator __first, const_iterator __last)
1980     -> iterator
1981     {
1982       __node_type* __n = __first._M_cur;
1983       __node_type* __last_n = __last._M_cur;
1984       if (__n == __last_n)
1985 	return iterator(__n);
1986 
1987       std::size_t __bkt = _M_bucket_index(__n);
1988 
1989       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1990       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1991       std::size_t __n_bkt = __bkt;
1992       for (;;)
1993 	{
1994 	  do
1995 	    {
1996 	      __node_type* __tmp = __n;
1997 	      __n = __n->_M_next();
1998 	      this->_M_deallocate_node(__tmp);
1999 	      --_M_element_count;
2000 	      if (!__n)
2001 		break;
2002 	      __n_bkt = _M_bucket_index(__n);
2003 	    }
2004 	  while (__n != __last_n && __n_bkt == __bkt);
2005 	  if (__is_bucket_begin)
2006 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2007 	  if (__n == __last_n)
2008 	    break;
2009 	  __is_bucket_begin = true;
2010 	  __bkt = __n_bkt;
2011 	}
2012 
2013       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2014 	_M_buckets[__n_bkt] = __prev_n;
2015       __prev_n->_M_nxt = __n;
2016       return iterator(__n);
2017     }
2018 
2019   template<typename _Key, typename _Value,
2020 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2021 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2022 	   typename _Traits>
2023     void
2024     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2025 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2026     clear() noexcept
2027     {
2028       this->_M_deallocate_nodes(_M_begin());
2029       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2030       _M_element_count = 0;
2031       _M_before_begin._M_nxt = nullptr;
2032     }
2033 
2034   template<typename _Key, typename _Value,
2035 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2036 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2037 	   typename _Traits>
2038     void
2039     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2040 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2041     rehash(size_type __n)
2042     {
2043       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2044       std::size_t __buckets
2045 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2046 		   __n);
2047       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2048 
2049       if (__buckets != _M_bucket_count)
2050 	_M_rehash(__buckets, __saved_state);
2051       else
2052 	// No rehash, restore previous state to keep a consistent state.
2053 	_M_rehash_policy._M_reset(__saved_state);
2054     }
2055 
2056   template<typename _Key, typename _Value,
2057 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2058 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2059 	   typename _Traits>
2060     void
2061     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2062 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2063     _M_rehash(size_type __n, const __rehash_state& __state)
2064     {
2065       __try
2066 	{
2067 	  _M_rehash_aux(__n, __unique_keys());
2068 	}
2069       __catch(...)
2070 	{
2071 	  // A failure here means that buckets allocation failed.  We only
2072 	  // have to restore hash policy previous state.
2073 	  _M_rehash_policy._M_reset(__state);
2074 	  __throw_exception_again;
2075 	}
2076     }
2077 
2078   // Rehash when there is no equivalent elements.
2079   template<typename _Key, typename _Value,
2080 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2081 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2082 	   typename _Traits>
2083     void
2084     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2085 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2086     _M_rehash_aux(size_type __n, std::true_type)
2087     {
2088       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2089       __node_type* __p = _M_begin();
2090       _M_before_begin._M_nxt = nullptr;
2091       std::size_t __bbegin_bkt = 0;
2092       while (__p)
2093 	{
2094 	  __node_type* __next = __p->_M_next();
2095 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2096 	  if (!__new_buckets[__bkt])
2097 	    {
2098 	      __p->_M_nxt = _M_before_begin._M_nxt;
2099 	      _M_before_begin._M_nxt = __p;
2100 	      __new_buckets[__bkt] = &_M_before_begin;
2101 	      if (__p->_M_nxt)
2102 		__new_buckets[__bbegin_bkt] = __p;
2103 	      __bbegin_bkt = __bkt;
2104 	    }
2105 	  else
2106 	    {
2107 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2108 	      __new_buckets[__bkt]->_M_nxt = __p;
2109 	    }
2110 	  __p = __next;
2111 	}
2112 
2113       _M_deallocate_buckets();
2114       _M_bucket_count = __n;
2115       _M_buckets = __new_buckets;
2116     }
2117 
2118   // Rehash when there can be equivalent elements, preserve their relative
2119   // order.
2120   template<typename _Key, typename _Value,
2121 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2122 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2123 	   typename _Traits>
2124     void
2125     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2126 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2127     _M_rehash_aux(size_type __n, std::false_type)
2128     {
2129       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2130 
2131       __node_type* __p = _M_begin();
2132       _M_before_begin._M_nxt = nullptr;
2133       std::size_t __bbegin_bkt = 0;
2134       std::size_t __prev_bkt = 0;
2135       __node_type* __prev_p = nullptr;
2136       bool __check_bucket = false;
2137 
2138       while (__p)
2139 	{
2140 	  __node_type* __next = __p->_M_next();
2141 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2142 
2143 	  if (__prev_p && __prev_bkt == __bkt)
2144 	    {
2145 	      // Previous insert was already in this bucket, we insert after
2146 	      // the previously inserted one to preserve equivalent elements
2147 	      // relative order.
2148 	      __p->_M_nxt = __prev_p->_M_nxt;
2149 	      __prev_p->_M_nxt = __p;
2150 
2151 	      // Inserting after a node in a bucket require to check that we
2152 	      // haven't change the bucket last node, in this case next
2153 	      // bucket containing its before begin node must be updated. We
2154 	      // schedule a check as soon as we move out of the sequence of
2155 	      // equivalent nodes to limit the number of checks.
2156 	      __check_bucket = true;
2157 	    }
2158 	  else
2159 	    {
2160 	      if (__check_bucket)
2161 		{
2162 		  // Check if we shall update the next bucket because of
2163 		  // insertions into __prev_bkt bucket.
2164 		  if (__prev_p->_M_nxt)
2165 		    {
2166 		      std::size_t __next_bkt
2167 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2168 							    __n);
2169 		      if (__next_bkt != __prev_bkt)
2170 			__new_buckets[__next_bkt] = __prev_p;
2171 		    }
2172 		  __check_bucket = false;
2173 		}
2174 
2175 	      if (!__new_buckets[__bkt])
2176 		{
2177 		  __p->_M_nxt = _M_before_begin._M_nxt;
2178 		  _M_before_begin._M_nxt = __p;
2179 		  __new_buckets[__bkt] = &_M_before_begin;
2180 		  if (__p->_M_nxt)
2181 		    __new_buckets[__bbegin_bkt] = __p;
2182 		  __bbegin_bkt = __bkt;
2183 		}
2184 	      else
2185 		{
2186 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2187 		  __new_buckets[__bkt]->_M_nxt = __p;
2188 		}
2189 	    }
2190 	  __prev_p = __p;
2191 	  __prev_bkt = __bkt;
2192 	  __p = __next;
2193 	}
2194 
2195       if (__check_bucket && __prev_p->_M_nxt)
2196 	{
2197 	  std::size_t __next_bkt
2198 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2199 	  if (__next_bkt != __prev_bkt)
2200 	    __new_buckets[__next_bkt] = __prev_p;
2201 	}
2202 
2203       _M_deallocate_buckets();
2204       _M_bucket_count = __n;
2205       _M_buckets = __new_buckets;
2206     }
2207 
2208 #if __cplusplus > 201402L
2209   template<typename, typename, typename> class _Hash_merge_helper { };
2210 #endif // C++17
2211 
2212 #if __cpp_deduction_guides >= 201606
2213   // Used to constrain deduction guides
2214   template<typename _Hash>
2215     using _RequireNotAllocatorOrIntegral
2216       = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2217 #endif
2218 
2219 _GLIBCXX_END_NAMESPACE_VERSION
2220 } // namespace std
2221 
2222 #endif // _HASHTABLE_H
2223