xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/doc/html/manual/policy_data_structures_design.html (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1<?xml version="1.0" encoding="UTF-8" standalone="no"?>
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Design</title><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><meta name="keywords" content="ISO C++, policy, container, data, structure, associated, tree, trie, hash, metaprogramming" /><meta name="keywords" content="ISO C++, library" /><meta name="keywords" content="ISO C++, runtime, library" /><link rel="home" href="../index.html" title="The GNU C++ Library" /><link rel="up" href="policy_data_structures.html" title="Chapter 21. Policy-Based Data Structures" /><link rel="prev" href="policy_data_structures_using.html" title="Using" /><link rel="next" href="policy_based_data_structures_test.html" title="Testing" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Design</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="policy_data_structures_using.html">Prev</a> </td><th width="60%" align="center">Chapter 21. Policy-Based Data Structures</th><td width="20%" align="right"> <a accesskey="n" href="policy_based_data_structures_test.html">Next</a></td></tr></table><hr /></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="containers.pbds.design"></a>Design</h2></div></div></div><p></p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="pbds.design.concepts"></a>Concepts</h3></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.concepts.null_type"></a>Null Policy Classes</h4></div></div></div><p>
3	Associative containers are typically parametrized by various
4	policies. For example, a hash-based associative container is
5	parametrized by a hash-functor, transforming each key into an
6	non-negative numerical type. Each such value is then further mapped
7	into a position within the table. The mapping of a key into a
8	position within the table is therefore a two-step process.
9      </p><p>
10	In some cases, instantiations are redundant. For example, when the
11	keys are integers, it is possible to use a redundant hash policy,
12	which transforms each key into its value.
13      </p><p>
14	In some other cases, these policies are irrelevant.  For example, a
15	hash-based associative container might transform keys into positions
16	within a table by a different method than the two-step method
17	described above. In such a case, the hash functor is simply
18	irrelevant.
19      </p><p>
20	When a policy is either redundant or irrelevant, it can be replaced
21	by <code class="classname">null_type</code>.
22      </p><p>
23	For example, a <span class="emphasis"><em>set</em></span> is an associative
24	container with one of its template parameters (the one for the
25	mapped type) replaced with <code class="classname">null_type</code>. Other
26	places simplifications are made possible with this technique
27	include node updates in tree and trie data structures, and hash
28	and probe functions for hash data structures.
29      </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.concepts.associative_semantics"></a>Map and Set Semantics</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="concepts.associative_semantics.set_vs_map"></a>
30	    Distinguishing Between Maps and Sets
31	  </h5></div></div></div><p>
32	  Anyone familiar with the standard knows that there are four kinds
33	  of associative containers: maps, sets, multimaps, and
34	  multisets. The map datatype associates each key to
35	  some data.
36	</p><p>
37	  Sets are associative containers that simply store keys -
38	  they do not map them to anything. In the standard, each map class
39	  has a corresponding set class. E.g.,
40	  <code class="classname">std::map&lt;int, char&gt;</code> maps each
41	  <code class="classname">int</code> to a <code class="classname">char</code>, but
42	  <code class="classname">std::set&lt;int, char&gt;</code> simply stores
43	  <code class="classname">int</code>s. In this library, however, there are no
44	  distinct classes for maps and sets. Instead, an associative
45	  container's <code class="classname">Mapped</code> template parameter is a policy: if
46	  it is instantiated by <code class="classname">null_type</code>, then it
47	  is a "set"; otherwise, it is a "map". E.g.,
48	</p><pre class="programlisting">
49	  cc_hash_table&lt;int, char&gt;
50	</pre><p>
51	  is a "map" mapping each <span class="type">int</span> value to a <span class="type">
52	  char</span>, but
53	</p><pre class="programlisting">
54	  cc_hash_table&lt;int, null_type&gt;
55	</pre><p>
56	  is a type that uniquely stores <span class="type">int</span> values.
57	</p><p>Once the <code class="classname">Mapped</code> template parameter is instantiated
58	by <code class="classname">null_type</code>, then
59	the "set" acts very similarly to the standard's sets - it does not
60	map each key to a distinct <code class="classname">null_type</code> object. Also,
61	, the container's <span class="type">value_type</span> is essentially
62	its <span class="type">key_type</span> - just as with the standard's sets
63	.</p><p>
64	  The standard's multimaps and multisets allow, respectively,
65	  non-uniquely mapping keys and non-uniquely storing keys. As
66	  discussed, the
67	  reasons why this might be necessary are 1) that a key might be
68	  decomposed into a primary key and a secondary key, 2) that a
69	  key might appear more than once, or 3) any arbitrary
70	  combination of 1)s and 2)s. Correspondingly,
71	  one should use 1) "maps" mapping primary keys to secondary
72	  keys, 2) "maps" mapping keys to size types, or 3) any arbitrary
73	  combination of 1)s and 2)s. Thus, for example, an
74	  <code class="classname">std::multiset&lt;int&gt;</code> might be used to store
75	  multiple instances of integers, but using this library's
76	  containers, one might use
77	</p><pre class="programlisting">
78	  tree&lt;int, size_t&gt;
79	</pre><p>
80	  i.e., a <code class="classname">map</code> of <span class="type">int</span>s to
81	  <span class="type">size_t</span>s.
82	</p><p>
83	  These "multimaps" and "multisets" might be confusing to
84	  anyone familiar with the standard's <code class="classname">std::multimap</code> and
85	  <code class="classname">std::multiset</code>, because there is no clear
86	  correspondence between the two. For example, in some cases
87	  where one uses <code class="classname">std::multiset</code> in the standard, one might use
88	  in this library a "multimap" of "multisets" - i.e., a
89	  container that maps primary keys each to an associative
90	  container that maps each secondary key to the number of times
91	  it occurs.
92	</p><p>
93	  When one uses a "multimap," one should choose with care the
94	  type of container used for secondary keys.
95	</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="concepts.associative_semantics.multi"></a>Alternatives to <code class="classname">std::multiset</code> and <code class="classname">std::multimap</code></h5></div></div></div><p>
96	  Brace onself: this library does not contain containers like
97	  <code class="classname">std::multimap</code> or
98	  <code class="classname">std::multiset</code>. Instead, these data
99	  structures can be synthesized via manipulation of the
100	  <code class="classname">Mapped</code> template parameter.
101	</p><p>
102	  One maps the unique part of a key - the primary key, into an
103	  associative-container of the (originally) non-unique parts of
104	  the key - the secondary key. A primary associative-container
105	  is an associative container of primary keys; a secondary
106	  associative-container is an associative container of
107	  secondary keys.
108	</p><p>
109	  Stepping back a bit, and starting in from the beginning.
110	</p><p>
111	  Maps (or sets) allow mapping (or storing) unique-key values.
112	  The standard library also supplies associative containers which
113	  map (or store) multiple values with equivalent keys:
114	  <code class="classname">std::multimap</code>, <code class="classname">std::multiset</code>,
115	  <code class="classname">std::tr1::unordered_multimap</code>, and
116	  <code class="classname">unordered_multiset</code>. We first discuss how these might
117	  be used, then why we think it is best to avoid them.
118	</p><p>
119	  Suppose one builds a simple bank-account application that
120	  records for each client (identified by an <code class="classname">std::string</code>)
121	  and account-id (marked by an <span class="type">unsigned long</span>) -
122	  the balance in the account (described by a
123	  <span class="type">float</span>). Suppose further that ordering this
124	  information is not useful, so a hash-based container is
125	  preferable to a tree based container. Then one can use
126	</p><pre class="programlisting">
127	  std::tr1::unordered_map&lt;std::pair&lt;std::string, unsigned long&gt;, float, ...&gt;
128	</pre><p>
129	  which hashes every combination of client and account-id. This
130	  might work well, except for the fact that it is now impossible
131	  to efficiently list all of the accounts of a specific client
132	  (this would practically require iterating over all
133	  entries). Instead, one can use
134	</p><pre class="programlisting">
135	  std::tr1::unordered_multimap&lt;std::pair&lt;std::string, unsigned long&gt;, float, ...&gt;
136	</pre><p>
137	  which hashes every client, and decides equivalence based on
138	  client only. This will ensure that all accounts belonging to a
139	  specific user are stored consecutively.
140	</p><p>
141	  Also, suppose one wants an integers' priority queue
142	  (a container that supports <code class="function">push</code>,
143	  <code class="function">pop</code>, and <code class="function">top</code> operations, the last of which
144	  returns the largest <span class="type">int</span>) that also supports
145	  operations such as <code class="function">find</code> and <code class="function">lower_bound</code>. A
146	  reasonable solution is to build an adapter over
147	  <code class="classname">std::set&lt;int&gt;</code>. In this adapter,
148	  <code class="function">push</code> will just call the tree-based
149	  associative container's <code class="function">insert</code> method; <code class="function">pop</code>
150	  will call its <code class="function">end</code> method, and use it to return the
151	  preceding element (which must be the largest). Then this might
152	  work well, except that the container object cannot hold
153	  multiple instances of the same integer (<code class="function">push(4)</code>,
154	  will be a no-op if <code class="constant">4</code> is already in the
155	  container object). If multiple keys are necessary, then one
156	  might build the adapter over an
157	  <code class="classname">std::multiset&lt;int&gt;</code>.
158	</p><p>
159	  The standard library's non-unique-mapping containers are useful
160	  when (1) a key can be decomposed in to a primary key and a
161	  secondary key, (2) a key is needed multiple times, or (3) any
162	  combination of (1) and (2).
163	</p><p>
164	  The graphic below shows how the standard library's container
165	  design works internally; in this figure nodes shaded equally
166	  represent equivalent-key values. Equivalent keys are stored
167	  consecutively using the properties of the underlying data
168	  structure: binary search trees (label A) store equivalent-key
169	  values consecutively (in the sense of an in-order walk)
170	  naturally; collision-chaining hash tables (label B) store
171	  equivalent-key values in the same bucket, the bucket can be
172	  arranged so that equivalent-key values are consecutive.
173	</p><div class="figure"><a id="id-1.3.5.8.4.3.3.3.14"></a><p class="title"><strong>Figure 21.8. Non-unique Mapping Standard Containers</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_embedded_lists_1.png" align="middle" alt="Non-unique Mapping Standard Containers" /></div></div></div><br class="figure-break" /><p>
174	  Put differently, the standards' non-unique mapping
175	  associative-containers are associative containers that map
176	  primary keys to linked lists that are embedded into the
177	  container. The graphic below shows again the two
178	  containers from the first graphic above, this time with
179	  the embedded linked lists of the grayed nodes marked
180	  explicitly.
181	</p><div class="figure"><a id="fig.pbds_embedded_lists_2"></a><p class="title"><strong>Figure 21.9. 
182	    Effect of embedded lists in
183	    <code class="classname">std::multimap</code>
184	  </strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_embedded_lists_2.png" align="middle" alt="Effect of embedded lists in std::multimap" /></div></div></div><br class="figure-break" /><p>
185	  These embedded linked lists have several disadvantages.
186	</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
187	      The underlying data structure embeds the linked lists
188	      according to its own consideration, which means that the
189	      search path for a value might include several different
190	      equivalent-key values. For example, the search path for the
191	      the black node in either of the first graphic, labels A or B,
192	      includes more than a single gray node.
193	    </p></li><li class="listitem"><p>
194	      The links of the linked lists are the underlying data
195	      structures' nodes, which typically are quite structured.  In
196	      the case of tree-based containers (the grapic above, label
197	      B), each "link" is actually a node with three pointers (one
198	      to a parent and two to children), and a
199	      relatively-complicated iteration algorithm. The linked
200	      lists, therefore, can take up quite a lot of memory, and
201	      iterating over all values equal to a given key (through the
202	      return value of the standard
203	      library's <code class="function">equal_range</code>) can be
204	      expensive.
205	    </p></li><li class="listitem"><p>
206	      The primary key is stored multiply; this uses more memory.
207	    </p></li><li class="listitem"><p>
208	      Finally, the interface of this design excludes several
209	      useful underlying data structures. Of all the unordered
210	      self-organizing data structures, practically only
211	      collision-chaining hash tables can (efficiently) guarantee
212	      that equivalent-key values are stored consecutively.
213	    </p></li></ol></div><p>
214	  The above reasons hold even when the ratio of secondary keys to
215	  primary keys (or average number of identical keys) is small, but
216	  when it is large, there are more severe problems:
217	</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
218	      The underlying data structures order the links inside each
219	      embedded linked-lists according to their internal
220	      considerations, which effectively means that each of the
221	      links is unordered. Irrespective of the underlying data
222	      structure, searching for a specific value can degrade to
223	      linear complexity.
224	    </p></li><li class="listitem"><p>
225	      Similarly to the above point, it is impossible to apply
226	      to the secondary keys considerations that apply to primary
227	      keys. For example, it is not possible to maintain secondary
228	      keys by sorted order.
229	    </p></li><li class="listitem"><p>
230	      While the interface "understands" that all equivalent-key
231	      values constitute a distinct list (through
232	      <code class="function">equal_range</code>), the underlying data
233	      structure typically does not. This means that operations such
234	      as erasing from a tree-based container all values whose keys
235	      are equivalent to a a given key can be super-linear in the
236	      size of the tree; this is also true also for several other
237	      operations that target a specific list.
238	    </p></li></ol></div><p>
239	  In this library, all associative containers map
240	  (or store) unique-key values. One can (1) map primary keys to
241	  secondary associative-containers (containers of
242	  secondary keys) or non-associative containers (2) map identical
243	  keys to a size-type representing the number of times they
244	  occur, or (3) any combination of (1) and (2). Instead of
245	  allowing multiple equivalent-key values, this library
246	  supplies associative containers based on underlying
247	  data structures that are suitable as secondary
248	  associative-containers.
249	</p><p>
250	  In the figure below, labels A and B show the equivalent
251	  underlying data structures in this library, as mapped to the
252	  first graphic above. Labels A and B, respectively. Each shaded
253	  box represents some size-type or secondary
254	  associative-container.
255	</p><div class="figure"><a id="id-1.3.5.8.4.3.3.3.23"></a><p class="title"><strong>Figure 21.10. Non-unique Mapping Containers</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_embedded_lists_3.png" align="middle" alt="Non-unique Mapping Containers" /></div></div></div><br class="figure-break" /><p>
256	  In the first example above, then, one would use an associative
257	  container mapping each user to an associative container which
258	  maps each application id to a start time (see
259	  <code class="filename">example/basic_multimap.cc</code>); in the second
260	  example, one would use an associative container mapping
261	  each <code class="classname">int</code> to some size-type indicating the
262	  number of times it logically occurs
263	  (see <code class="filename">example/basic_multiset.cc</code>.
264	</p><p>
265	  See the discussion in list-based container types for containers
266	  especially suited as secondary associative-containers.
267	</p></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.concepts.iterator_semantics"></a>Iterator Semantics</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="concepts.iterator_semantics.point_and_range"></a>Point and Range Iterators</h5></div></div></div><p>
268	  Iterator concepts are bifurcated in this design, and are
269	  comprised of point-type and range-type iteration.
270	</p><p>
271	  A point-type iterator is an iterator that refers to a specific
272	  element as returned through an
273	  associative-container's <code class="function">find</code> method.
274	</p><p>
275	  A range-type iterator is an iterator that is used to go over a
276	  sequence of elements, as returned by a container's
277	  <code class="function">find</code> method.
278	</p><p>
279	  A point-type method is a method that
280	  returns a point-type iterator; a range-type method is a method
281	  that returns a range-type iterator.
282	</p><p>For most containers, these types are synonymous; for
283	self-organizing containers, such as hash-based containers or
284	priority queues, these are inherently different (in any
285	implementation, including that of C++ standard library
286	components), but in this design, it is made explicit. They are
287	distinct types.
288	</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="concepts.iterator_semantics.both"></a>Distinguishing Point and Range Iterators</h5></div></div></div><p>When using this library, is necessary to differentiate
289	between two types of methods and iterators: point-type methods and
290	iterators, and range-type methods and iterators. Each associative
291	container's interface includes the methods:</p><pre class="programlisting">
292	  point_const_iterator
293	  find(const_key_reference r_key) const;
294
295	  point_iterator
296	  find(const_key_reference r_key);
297
298	  std::pair&lt;point_iterator,bool&gt;
299	  insert(const_reference r_val);
300	</pre><p>The relationship between these iterator types varies between
301	container types. The figure below
302	shows the most general invariant between point-type and
303	range-type iterators: In <span class="emphasis"><em>A</em></span> <code class="literal">iterator</code>, can
304	always be converted to <code class="literal">point_iterator</code>. In <span class="emphasis"><em>B</em></span>
305	shows invariants for order-preserving containers: point-type
306	iterators are synonymous with range-type iterators.
307	Orthogonally,  <span class="emphasis"><em>C</em></span>shows invariants for "set"
308	containers: iterators are synonymous with const iterators.</p><div class="figure"><a id="id-1.3.5.8.4.3.4.3.5"></a><p class="title"><strong>Figure 21.11. Point Iterator Hierarchy</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_point_iterator_hierarchy.png" align="middle" alt="Point Iterator Hierarchy" /></div></div></div><br class="figure-break" /><p>Note that point-type iterators in self-organizing containers
309	(hash-based associative containers) lack movement
310	operators, such as <code class="literal">operator++</code> - in fact, this
311	is the reason why this library differentiates from the standard C++ librarys
312	design on this point.</p><p>Typically, one can determine an iterator's movement
313	capabilities using
314	<code class="literal">std::iterator_traits&lt;It&gt;iterator_category</code>,
315	which is a <code class="literal">struct</code> indicating the iterator's
316	movement capabilities. Unfortunately, none of the standard predefined
317	categories reflect a pointer's <span class="emphasis"><em>not</em></span> having any
318	movement capabilities whatsoever. Consequently,
319	<code class="literal">pb_ds</code> adds a type
320	<code class="literal">trivial_iterator_tag</code> (whose name is taken from
321	a concept in C++ standardese, which is the category of iterators
322	with no movement capabilities.) All other standard C++ library
323	tags, such as <code class="literal">forward_iterator_tag</code> retain their
324	common use.</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="pbds.design.concepts.invalidation"></a>Invalidation Guarantees</h5></div></div></div><p>
325	  If one manipulates a container object, then iterators previously
326	  obtained from it can be invalidated. In some cases a
327	  previously-obtained iterator cannot be de-referenced; in other cases,
328	  the iterator's next or previous element might have changed
329	  unpredictably. This corresponds exactly to the question whether a
330	  point-type or range-type iterator (see previous concept) is valid or
331	  not. In this design, one can query a container (in compile time) about
332	  its invalidation guarantees.
333	</p><p>
334	  Given three different types of associative containers, a modifying
335	  operation (in that example, <code class="function">erase</code>) invalidated
336	  iterators in three different ways: the iterator of one container
337	  remained completely valid - it could be de-referenced and
338	  incremented; the iterator of a different container could not even be
339	  de-referenced; the iterator of the third container could be
340	  de-referenced, but its "next" iterator changed unpredictably.
341	</p><p>
342	  Distinguishing between find and range types allows fine-grained
343	  invalidation guarantees, because these questions correspond exactly
344	  to the question of whether point-type iterators and range-type
345	  iterators are valid. The graphic below shows tags corresponding to
346	  different types of invalidation guarantees.
347	</p><div class="figure"><a id="id-1.3.5.8.4.3.4.4.5"></a><p class="title"><strong>Figure 21.12. Invalidation Guarantee Tags Hierarchy</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_invalidation_tag_hierarchy.png" align="middle" alt="Invalidation Guarantee Tags Hierarchy" /></div></div></div><br class="figure-break" /><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
348	      <code class="classname">basic_invalidation_guarantee</code>
349	      corresponds to a basic guarantee that a point-type iterator,
350	      a found pointer, or a found reference, remains valid as long
351	      as the container object is not modified.
352	    </p></li><li class="listitem"><p>
353	      <code class="classname">point_invalidation_guarantee</code>
354	      corresponds to a guarantee that a point-type iterator, a
355	      found pointer, or a found reference, remains valid even if
356	      the container object is modified.
357	    </p></li><li class="listitem"><p>
358	      <code class="classname">range_invalidation_guarantee</code>
359	      corresponds to a guarantee that a range-type iterator remains
360	      valid even if the container object is modified.
361	    </p></li></ul></div><p>To find the invalidation guarantee of a
362	container, one can use</p><pre class="programlisting">
363	  typename container_traits&lt;Cntnr&gt;::invalidation_guarantee
364	</pre><p>Note that this hierarchy corresponds to the logic it
365	represents: if a container has range-invalidation guarantees,
366	then it must also have find invalidation guarantees;
367	correspondingly, its invalidation guarantee (in this case
368	<code class="classname">range_invalidation_guarantee</code>)
369	can be cast to its base class (in this case <code class="classname">point_invalidation_guarantee</code>).
370	This means that this this hierarchy can be used easily using
371	standard metaprogramming techniques, by specializing on the
372	type of <code class="literal">invalidation_guarantee</code>.</p><p>
373	  These types of problems were addressed, in a more general
374	  setting, in <a class="xref" href="policy_data_structures.html#biblio.meyers96more" title="More Effective C++: 35 New Ways to Improve Your Programs and Designs">[biblio.meyers96more]</a> - Item 2. In
375	  our opinion, an invalidation-guarantee hierarchy would solve
376	  these problems in all container types - not just associative
377	  containers.
378	</p></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.concepts.genericity"></a>Genericity</h4></div></div></div><p>
379	The design attempts to address the following problem of
380	data-structure genericity. When writing a function manipulating
381	a generic container object, what is the behavior of the object?
382	Suppose one writes
383      </p><pre class="programlisting">
384	template&lt;typename Cntnr&gt;
385	void
386	some_op_sequence(Cntnr &amp;r_container)
387	{
388	...
389	}
390      </pre><p>
391	then one needs to address the following questions in the body
392	of <code class="function">some_op_sequence</code>:
393      </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
394	    Which types and methods does <code class="literal">Cntnr</code> support?
395	    Containers based on hash tables can be queries for the
396	    hash-functor type and object; this is meaningless for tree-based
397	    containers. Containers based on trees can be split, joined, or
398	    can erase iterators and return the following iterator; this
399	    cannot be done by hash-based containers.
400	  </p></li><li class="listitem"><p>
401	    What are the exception and invalidation guarantees
402	    of <code class="literal">Cntnr</code>? A container based on a probing
403	    hash-table invalidates all iterators when it is modified; this
404	    is not the case for containers based on node-based
405	    trees. Containers based on a node-based tree can be split or
406	    joined without exceptions; this is not the case for containers
407	    based on vector-based trees.
408	  </p></li><li class="listitem"><p>
409	    How does the container maintain its elements? Tree-based and
410	    Trie-based containers store elements by key order; others,
411	    typically, do not. A container based on a splay trees or lists
412	    with update policies "cache" "frequently accessed" elements;
413	    containers based on most other underlying data structures do
414	    not.
415	  </p></li><li class="listitem"><p>
416	    How does one query a container about characteristics and
417	    capabilities? What is the relationship between two different
418	    data structures, if anything?
419	  </p></li></ul></div><p>The remainder of this section explains these issues in
420      detail.</p><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="concepts.genericity.tag"></a>Tag</h5></div></div></div><p>
421	  Tags are very useful for manipulating generic types. For example, if
422	  <code class="literal">It</code> is an iterator class, then <code class="literal">typename
423	  It::iterator_category</code> or <code class="literal">typename
424	  std::iterator_traits&lt;It&gt;::iterator_category</code> will
425	  yield its category, and <code class="literal">typename
426	  std::iterator_traits&lt;It&gt;::value_type</code> will yield its
427	  value type.
428	</p><p>
429	  This library contains a container tag hierarchy corresponding to the
430	  diagram below.
431	</p><div class="figure"><a id="id-1.3.5.8.4.3.5.7.4"></a><p class="title"><strong>Figure 21.13. Container Tag Hierarchy</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_container_tag_hierarchy.png" align="middle" alt="Container Tag Hierarchy" /></div></div></div><br class="figure-break" /><p>
432	  Given any container <span class="type">Cntnr</span>, the tag of
433	  the underlying data structure can be found via <code class="literal">typename
434	  Cntnr::container_category</code>.
435	</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="concepts.genericity.traits"></a>Traits</h5></div></div></div><p></p><p>Additionally, a traits mechanism can be used to query a
436	container type for its attributes. Given any container
437	<code class="literal">Cntnr</code>, then <code class="literal">&lt;Cntnr&gt;</code>
438	is a traits class identifying the properties of the
439	container.</p><p>To find if a container can throw when a key is erased (which
440	is true for vector-based trees, for example), one can
441	use
442	</p><pre class="programlisting">container_traits&lt;Cntnr&gt;::erase_can_throw</pre><p>
443	  Some of the definitions in <code class="classname">container_traits</code>
444	  are dependent on other
445	  definitions. If <code class="classname">container_traits&lt;Cntnr&gt;::order_preserving</code>
446	  is <code class="constant">true</code> (which is the case for containers
447	  based on trees and tries), then the container can be split or
448	  joined; in this
449	  case, <code class="classname">container_traits&lt;Cntnr&gt;::split_join_can_throw</code>
450	  indicates whether splits or joins can throw exceptions (which is
451	  true for vector-based trees);
452	  otherwise <code class="classname">container_traits&lt;Cntnr&gt;::split_join_can_throw</code>
453	  will yield a compilation error. (This is somewhat similar to a
454	  compile-time version of the COM model).
455	</p></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="pbds.design.container"></a>By Container</h3></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.container.hash"></a>hash</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.hash.interface"></a>Interface</h5></div></div></div><p>
456	  The collision-chaining hash-based container has the
457	following declaration.</p><pre class="programlisting">
458	  template&lt;
459	  typename Key,
460	  typename Mapped,
461	  typename Hash_Fn = std::hash&lt;Key&gt;,
462	  typename Eq_Fn = std::equal_to&lt;Key&gt;,
463	  typename Comb_Hash_Fn =  direct_mask_range_hashing&lt;&gt;
464	  typename Resize_Policy = default explained below.
465	  bool Store_Hash = false,
466	  typename Allocator = std::allocator&lt;char&gt; &gt;
467	  class cc_hash_table;
468	</pre><p>The parameters have the following meaning:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">Key</code> is the key type.</p></li><li class="listitem"><p><code class="classname">Mapped</code> is the mapped-policy.</p></li><li class="listitem"><p><code class="classname">Hash_Fn</code> is a key hashing functor.</p></li><li class="listitem"><p><code class="classname">Eq_Fn</code> is a key equivalence functor.</p></li><li class="listitem"><p><code class="classname">Comb_Hash_Fn</code> is a range-hashing_functor;
469	  it describes how to translate hash values into positions
470	  within the table. </p></li><li class="listitem"><p><code class="classname">Resize_Policy</code> describes how a container object
471	  should change its internal size. </p></li><li class="listitem"><p><code class="classname">Store_Hash</code> indicates whether the hash value
472	  should be stored with each entry. </p></li><li class="listitem"><p><code class="classname">Allocator</code> is an allocator
473	  type.</p></li></ol></div><p>The probing hash-based container has the following
474	declaration.</p><pre class="programlisting">
475	  template&lt;
476	  typename Key,
477	  typename Mapped,
478	  typename Hash_Fn = std::hash&lt;Key&gt;,
479	  typename Eq_Fn = std::equal_to&lt;Key&gt;,
480	  typename Comb_Probe_Fn = direct_mask_range_hashing&lt;&gt;
481	  typename Probe_Fn = default explained below.
482	  typename Resize_Policy = default explained below.
483	  bool Store_Hash = false,
484	  typename Allocator =  std::allocator&lt;char&gt; &gt;
485	  class gp_hash_table;
486	</pre><p>The parameters are identical to those of the
487	collision-chaining container, except for the following.</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">Comb_Probe_Fn</code> describes how to transform a probe
488	  sequence into a sequence of positions within the table.</p></li><li class="listitem"><p><code class="classname">Probe_Fn</code> describes a probe sequence policy.</p></li></ol></div><p>Some of the default template values depend on the values of
489	other parameters, and are explained below.</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.hash.details"></a>Details</h5></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.hash.details.hash_policies"></a>Hash Policies</h6></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="details.hash_policies.general"></a>General</h6></div></div></div><p>Following is an explanation of some functions which hashing
490	    involves. The graphic below illustrates the discussion.</p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.2.2.3"></a><p class="title"><strong>Figure 21.14. Hash functions, ranged-hash functions, and
491	      range-hashing functions</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_hash_ranged_hash_range_hashing_fns.png" align="middle" alt="Hash functions, ranged-hash functions, and range-hashing functions" /></div></div></div><br class="figure-break" /><p>Let U be a domain (e.g., the integers, or the
492	    strings of 3 characters). A hash-table algorithm needs to map
493	    elements of U "uniformly" into the range [0,..., m -
494	    1] (where m is a non-negative integral value, and
495	    is, in general, time varying). I.e., the algorithm needs
496	    a ranged-hash function</p><p>
497	      f : U × Z<sub>+</sub> → Z<sub>+</sub>
498	    </p><p>such that for any u in U ,</p><p>0 ≤ f(u, m) ≤ m - 1</p><p>and which has "good uniformity" properties (say
499	    <a class="xref" href="policy_data_structures.html#biblio.knuth98sorting" title="The Art of Computer Programming - Sorting and Searching">[biblio.knuth98sorting]</a>.)
500	    One
501	    common solution is to use the composition of the hash
502	    function</p><p>h : U → Z<sub>+</sub> ,</p><p>which maps elements of U into the non-negative
503	    integrals, and</p><p>g : Z<sub>+</sub> × Z<sub>+</sub> →
504	    Z<sub>+</sub>,</p><p>which maps a non-negative hash value, and a non-negative
505	    range upper-bound into a non-negative integral in the range
506	    between 0 (inclusive) and the range upper bound (exclusive),
507	    i.e., for any r in Z<sub>+</sub>,</p><p>0 ≤ g(r, m) ≤ m - 1</p><p>The resulting ranged-hash function, is</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.2.2.15"></a><p class="title"><strong>Equation 21.1. Ranged Hash Function</strong></p><div class="equation-contents"><span class="mathphrase">
508		f(u , m) = g(h(u), m)
509	      </span></div></div><br class="equation-break" /><p>From the above, it is obvious that given g and
510	    h, f can always be composed (however the converse
511	    is not true). The standard's hash-based containers allow specifying
512	    a hash function, and use a hard-wired range-hashing function;
513	    the ranged-hash function is implicitly composed.</p><p>The above describes the case where a key is to be mapped
514	    into a single position within a hash table, e.g.,
515	    in a collision-chaining table. In other cases, a key is to be
516	    mapped into a sequence of positions within a table,
517	    e.g., in a probing table. Similar terms apply in this
518	    case: the table requires a ranged probe function,
519	    mapping a key into a sequence of positions withing the table.
520	    This is typically achieved by composing a hash function
521	    mapping the key into a non-negative integral type, a
522	    probe function transforming the hash value into a
523	    sequence of hash values, and a range-hashing function
524	    transforming the sequence of hash values into a sequence of
525	    positions.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="details.hash_policies.range"></a>Range Hashing</h6></div></div></div><p>Some common choices for range-hashing functions are the
526	    division, multiplication, and middle-square methods (<a class="xref" href="policy_data_structures.html#biblio.knuth98sorting" title="The Art of Computer Programming - Sorting and Searching">[biblio.knuth98sorting]</a>), defined
527	    as</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.2.3.3"></a><p class="title"><strong>Equation 21.2. Range-Hashing, Division Method</strong></p><div class="equation-contents"><span class="mathphrase">
528		g(r, m) = r mod m
529	      </span></div></div><br class="equation-break" /><p>g(r, m) = ⌈ u/v ( a r mod v ) ⌉</p><p>and</p><p>g(r, m) = ⌈ u/v ( r<sup>2</sup> mod v ) ⌉</p><p>respectively, for some positive integrals u and
530	    v (typically powers of 2), and some a. Each of
531	    these range-hashing functions works best for some different
532	    setting.</p><p>The division method (see above) is a
533	    very common choice. However, even this single method can be
534	    implemented in two very different ways. It is possible to
535	    implement using the low
536	    level % (modulo) operation (for any m), or the
537	    low level &amp; (bit-mask) operation (for the case where
538	    m is a power of 2), i.e.,</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.2.3.9"></a><p class="title"><strong>Equation 21.3. Division via Prime Modulo</strong></p><div class="equation-contents"><span class="mathphrase">
539		g(r, m) = r % m
540	      </span></div></div><br class="equation-break" /><p>and</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.2.3.11"></a><p class="title"><strong>Equation 21.4. Division via Bit Mask</strong></p><div class="equation-contents"><span class="mathphrase">
541		g(r, m) = r &amp; m - 1, (with m =
542		2<sup>k</sup> for some k)
543	      </span></div></div><br class="equation-break" /><p>respectively.</p><p>The % (modulo) implementation has the advantage that for
544	    m a prime far from a power of 2, g(r, m) is
545	    affected by all the bits of r (minimizing the chance of
546	    collision). It has the disadvantage of using the costly modulo
547	    operation. This method is hard-wired into SGI's implementation
548	    .</p><p>The &amp; (bit-mask) implementation has the advantage of
549	    relying on the fast bit-wise and operation. It has the
550	    disadvantage that for g(r, m) is affected only by the
551	    low order bits of r. This method is hard-wired into
552	    Dinkumware's implementation.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="details.hash_policies.ranged"></a>Ranged Hash</h6></div></div></div><p>In cases it is beneficial to allow the
553	    client to directly specify a ranged-hash hash function. It is
554	    true, that the writer of the ranged-hash function cannot rely
555	    on the values of m having specific numerical properties
556	    suitable for hashing (in the sense used in <a class="xref" href="policy_data_structures.html#biblio.knuth98sorting" title="The Art of Computer Programming - Sorting and Searching">[biblio.knuth98sorting]</a>), since
557	    the values of m are determined by a resize policy with
558	    possibly orthogonal considerations.</p><p>There are two cases where a ranged-hash function can be
559	    superior. The firs is when using perfect hashing: the
560	    second is when the values of m can be used to estimate
561	    the "general" number of distinct values required. This is
562	    described in the following.</p><p>Let</p><p>
563	      s = [ s<sub>0</sub>,..., s<sub>t - 1</sub>]
564	    </p><p>be a string of t characters, each of which is from
565	    domain S. Consider the following ranged-hash
566	    function:</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.2.4.7"></a><p class="title"><strong>Equation 21.5. 
567		A Standard String Hash Function
568	      </strong></p><div class="equation-contents"><span class="mathphrase">
569		f<sub>1</sub>(s, m) = ∑ <sub>i =
570		0</sub><sup>t - 1</sup> s<sub>i</sub> a<sup>i</sup> mod m
571	      </span></div></div><br class="equation-break" /><p>where a is some non-negative integral value. This is
572	    the standard string-hashing function used in SGI's
573	    implementation (with a = 5). Its advantage is that
574	    it takes into account all of the characters of the string.</p><p>Now assume that s is the string representation of a
575	    of a long DNA sequence (and so S = {'A', 'C', 'G',
576	    'T'}). In this case, scanning the entire string might be
577	    prohibitively expensive. A possible alternative might be to use
578	    only the first k characters of the string, where</p><p>|S|<sup>k</sup> ≥ m ,</p><p>i.e., using the hash function</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.2.4.12"></a><p class="title"><strong>Equation 21.6. 
579		Only k String DNA Hash
580	      </strong></p><div class="equation-contents"><span class="mathphrase">
581		f<sub>2</sub>(s, m) = ∑ <sub>i
582		= 0</sub><sup>k - 1</sup> s<sub>i</sub> a<sup>i</sup> mod m
583	      </span></div></div><br class="equation-break" /><p>requiring scanning over only</p><p>k = log<sub>4</sub>( m )</p><p>characters.</p><p>Other more elaborate hash-functions might scan k
584	    characters starting at a random position (determined at each
585	    resize), or scanning k random positions (determined at
586	    each resize), i.e., using</p><p>f<sub>3</sub>(s, m) = ∑ <sub>i =
587	    r</sub>0<sup>r<sub>0</sub> + k - 1</sup> s<sub>i</sub>
588	    a<sup>i</sup> mod m ,</p><p>or</p><p>f<sub>4</sub>(s, m) = ∑ <sub>i = 0</sub><sup>k -
589	    1</sup> s<sub>r</sub>i a<sup>r<sub>i</sub></sup> mod
590	    m ,</p><p>respectively, for r<sub>0</sub>,..., r<sub>k-1</sub>
591	    each in the (inclusive) range [0,...,t-1].</p><p>It should be noted that the above functions cannot be
592	    decomposed as per a ranged hash composed of hash and range hashing.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="details.hash_policies.implementation"></a>Implementation</h6></div></div></div><p>This sub-subsection describes the implementation of
593	    the above in this library. It first explains range-hashing
594	    functions in collision-chaining tables, then ranged-hash
595	    functions in collision-chaining tables, then probing-based
596	    tables, and finally lists the relevant classes in this
597	    library.</p><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="hash_policies.implementation.collision-chaining"></a>
598		Range-Hashing and Ranged-Hashes in Collision-Chaining Tables
599	      </h6></div></div></div><p><code class="classname">cc_hash_table</code> is
600	      parametrized by <code class="classname">Hash_Fn</code> and <code class="classname">Comb_Hash_Fn</code>, a
601	      hash functor and a combining hash functor, respectively.</p><p>In general, <code class="classname">Comb_Hash_Fn</code> is considered a
602	      range-hashing functor. <code class="classname">cc_hash_table</code>
603	      synthesizes a ranged-hash function from <code class="classname">Hash_Fn</code> and
604	      <code class="classname">Comb_Hash_Fn</code>. The figure below shows an <code class="classname">insert</code> sequence
605	      diagram for this case. The user inserts an element (point A),
606	      the container transforms the key into a non-negative integral
607	      using the hash functor (points B and C), and transforms the
608	      result into a position using the combining functor (points D
609	      and E).</p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.2.5.3.4"></a><p class="title"><strong>Figure 21.15. Insert hash sequence diagram</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_hash_range_hashing_seq_diagram.png" align="middle" alt="Insert hash sequence diagram" /></div></div></div><br class="figure-break" /><p>If <code class="classname">cc_hash_table</code>'s
610	      hash-functor, <code class="classname">Hash_Fn</code> is instantiated by <code class="classname">null_type</code> , then <code class="classname">Comb_Hash_Fn</code> is taken to be
611	      a ranged-hash function. The graphic below shows an <code class="function">insert</code> sequence
612	      diagram. The user inserts an element (point A), the container
613	      transforms the key into a position using the combining functor
614	      (points B and C).</p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.2.5.3.6"></a><p class="title"><strong>Figure 21.16. Insert hash sequence diagram with a null policy</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_hash_range_hashing_seq_diagram2.png" align="middle" alt="Insert hash sequence diagram with a null policy" /></div></div></div><br class="figure-break" /></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="hash_policies.implementation.probe"></a>
615		Probing tables
616	      </h6></div></div></div><p><code class="classname">gp_hash_table</code> is parametrized by
617	      <code class="classname">Hash_Fn</code>, <code class="classname">Probe_Fn</code>,
618	      and <code class="classname">Comb_Probe_Fn</code>. As before, if
619	      <code class="classname">Hash_Fn</code> and <code class="classname">Probe_Fn</code>
620	      are both <code class="classname">null_type</code>, then
621	      <code class="classname">Comb_Probe_Fn</code> is a ranged-probe
622	      functor. Otherwise, <code class="classname">Hash_Fn</code> is a hash
623	      functor, <code class="classname">Probe_Fn</code> is a functor for offsets
624	      from a hash value, and <code class="classname">Comb_Probe_Fn</code>
625	      transforms a probe sequence into a sequence of positions within
626	      the table.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="hash_policies.implementation.predefined"></a>
627		Pre-Defined Policies
628	      </h6></div></div></div><p>This library contains some pre-defined classes
629	      implementing range-hashing and probing functions:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">direct_mask_range_hashing</code>
630		and <code class="classname">direct_mod_range_hashing</code>
631		are range-hashing functions based on a bit-mask and a modulo
632		operation, respectively.</p></li><li class="listitem"><p><code class="classname">linear_probe_fn</code>, and
633		<code class="classname">quadratic_probe_fn</code> are
634		a linear probe and a quadratic probe function,
635		respectively.</p></li></ol></div><p>
636		The graphic below shows the relationships.
637	      </p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.2.5.5.5"></a><p class="title"><strong>Figure 21.17. Hash policy class diagram</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_hash_policy_cd.png" align="middle" alt="Hash policy class diagram" /></div></div></div><br class="figure-break" /></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.hash.details.resize_policies"></a>Resize Policies</h6></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.general"></a>General</h6></div></div></div><p>Hash-tables, as opposed to trees, do not naturally grow or
638	    shrink. It is necessary to specify policies to determine how
639	    and when a hash table should change its size. Usually, resize
640	    policies can be decomposed into orthogonal policies:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>A size policy indicating how a hash table
641	      should grow (e.g., it should multiply by powers of
642	      2).</p></li><li class="listitem"><p>A trigger policy indicating when a hash
643	      table should grow (e.g., a load factor is
644	      exceeded).</p></li></ol></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.size"></a>Size Policies</h6></div></div></div><p>Size policies determine how a hash table changes size. These
645	    policies are simple, and there are relatively few sensible
646	    options. An exponential-size policy (with the initial size and
647	    growth factors both powers of 2) works well with a mask-based
648	    range-hashing function, and is the
649	    hard-wired policy used by Dinkumware. A
650	    prime-list based policy works well with a modulo-prime range
651	    hashing function and is the hard-wired policy used by SGI's
652	    implementation.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.trigger"></a>Trigger Policies</h6></div></div></div><p>Trigger policies determine when a hash table changes size.
653	    Following is a description of two policies: load-check
654	    policies, and collision-check policies.</p><p>Load-check policies are straightforward. The user specifies
655	    two factors, Α<sub>min</sub> and
656	    Α<sub>max</sub>, and the hash table maintains the
657	    invariant that</p><p>Α<sub>min</sub> ≤ (number of
658	    stored elements) / (hash-table size) ≤
659	    Α<sub>max</sub>
660
661            </p><p>Collision-check policies work in the opposite direction of
662	    load-check policies. They focus on keeping the number of
663	    collisions moderate and hoping that the size of the table will
664	    not grow very large, instead of keeping a moderate load-factor
665	    and hoping that the number of collisions will be small. A
666	    maximal collision-check policy resizes when the longest
667	    probe-sequence grows too large.</p><p>Consider the graphic below. Let the size of the hash table
668	    be denoted by m, the length of a probe sequence be denoted by k,
669	    and some load factor be denoted by Α. We would like to
670	    calculate the minimal length of k, such that if there were Α
671	    m elements in the hash table, a probe sequence of length k would
672	    be found with probability at most 1/m.</p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.3.4.7"></a><p class="title"><strong>Figure 21.18. Balls and bins</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_balls_and_bins.png" align="middle" alt="Balls and bins" /></div></div></div><br class="figure-break" /><p>Denote the probability that a probe sequence of length
673	    k appears in bin i by p<sub>i</sub>, the
674	    length of the probe sequence of bin i by
675	    l<sub>i</sub>, and assume uniform distribution. Then</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.3.4.9"></a><p class="title"><strong>Equation 21.7. 
676		Probability of Probe Sequence of Length k
677	      </strong></p><div class="equation-contents"><span class="mathphrase">
678		p<sub>1</sub> =
679	      </span></div></div><br class="equation-break" /><p>P(l<sub>1</sub> ≥ k) =</p><p>
680	      P(l<sub>1</sub> ≥ α ( 1 + k / α - 1) ≤ (a)
681	    </p><p>
682	      e ^ ( - ( α ( k / α - 1 )<sup>2</sup> ) /2)
683	    </p><p>where (a) follows from the Chernoff bound (<a class="xref" href="policy_data_structures.html#biblio.motwani95random" title="Randomized Algorithms">[biblio.motwani95random]</a>). To
684	    calculate the probability that some bin contains a probe
685	    sequence greater than k, we note that the
686	    l<sub>i</sub> are negatively-dependent
687	    (<a class="xref" href="policy_data_structures.html#biblio.dubhashi98neg" title="Balls and bins: A study in negative dependence">[biblio.dubhashi98neg]</a>)
688	    . Let
689	    I(.) denote the indicator function. Then</p><div class="equation"><a id="id-1.3.5.8.4.4.2.3.3.4.14"></a><p class="title"><strong>Equation 21.8. 
690		Probability Probe Sequence in Some Bin
691	      </strong></p><div class="equation-contents"><span class="mathphrase">
692		P( exists<sub>i</sub> l<sub>i</sub> ≥ k ) =
693	      </span></div></div><br class="equation-break" /><p>P ( ∑ <sub>i = 1</sub><sup>m</sup>
694	    I(l<sub>i</sub> ≥ k) ≥ 1 ) =</p><p>P ( ∑ <sub>i = 1</sub><sup>m</sup> I (
695	    l<sub>i</sub> ≥ k ) ≥ m p<sub>1</sub> ( 1 + 1 / (m
696	    p<sub>1</sub>) - 1 ) ) ≤ (a)</p><p>e ^ ( ( - m p<sub>1</sub> ( 1 / (m p<sub>1</sub>)
697	    - 1 ) <sup>2</sup> ) / 2 ) ,</p><p>where (a) follows from the fact that the Chernoff bound can
698	    be applied to negatively-dependent variables (<a class="xref" href="policy_data_structures.html#biblio.dubhashi98neg" title="Balls and bins: A study in negative dependence">[biblio.dubhashi98neg]</a>). Inserting the first probability
699	    equation into the second one, and equating with 1/m, we
700	    obtain</p><p>k ~ √ ( 2 α ln 2 m ln(m) )
701	    ) .</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.impl"></a>Implementation</h6></div></div></div><p>This sub-subsection describes the implementation of the
702	    above in this library. It first describes resize policies and
703	    their decomposition into trigger and size policies, then
704	    describes pre-defined classes, and finally discusses controlled
705	    access the policies' internals.</p><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.impl.decomposition"></a>Decomposition</h6></div></div></div><p>Each hash-based container is parametrized by a
706	      <code class="classname">Resize_Policy</code> parameter; the container derives
707	      <code class="classname">public</code>ly from <code class="classname">Resize_Policy</code>. For
708	      example:</p><pre class="programlisting">
709		cc_hash_table&lt;typename Key,
710		typename Mapped,
711		...
712		typename Resize_Policy
713		...&gt; : public Resize_Policy
714	      </pre><p>As a container object is modified, it continuously notifies
715	      its <code class="classname">Resize_Policy</code> base of internal changes
716	      (e.g., collisions encountered and elements being
717	      inserted). It queries its <code class="classname">Resize_Policy</code> base whether
718	      it needs to be resized, and if so, to what size.</p><p>The graphic below shows a (possible) sequence diagram
719	      of an insert operation. The user inserts an element; the hash
720	      table notifies its resize policy that a search has started
721	      (point A); in this case, a single collision is encountered -
722	      the table notifies its resize policy of this (point B); the
723	      container finally notifies its resize policy that the search
724	      has ended (point C); it then queries its resize policy whether
725	      a resize is needed, and if so, what is the new size (points D
726	      to G); following the resize, it notifies the policy that a
727	      resize has completed (point H); finally, the element is
728	      inserted, and the policy notified (point I).</p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.3.5.3.6"></a><p class="title"><strong>Figure 21.19. Insert resize sequence diagram</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_insert_resize_sequence_diagram1.png" align="middle" alt="Insert resize sequence diagram" /></div></div></div><br class="figure-break" /><p>In practice, a resize policy can be usually orthogonally
729	      decomposed to a size policy and a trigger policy. Consequently,
730	      the library contains a single class for instantiating a resize
731	      policy: <code class="classname">hash_standard_resize_policy</code>
732	      is parametrized by <code class="classname">Size_Policy</code> and
733	      <code class="classname">Trigger_Policy</code>, derives <code class="classname">public</code>ly from
734	      both, and acts as a standard delegate (<a class="xref" href="policy_data_structures.html#biblio.gof" title="Design Patterns - Elements of Reusable Object-Oriented Software">[biblio.gof]</a>)
735	      to these policies.</p><p>The two graphics immediately below show sequence diagrams
736	      illustrating the interaction between the standard resize policy
737	      and its trigger and size policies, respectively.</p><div class="figure"><a id="id-1.3.5.8.4.4.2.3.3.5.3.9"></a><p class="title"><strong>Figure 21.20. Standard resize policy trigger sequence
738		diagram</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_insert_resize_sequence_diagram2.png" align="middle" alt="Standard resize policy trigger sequence diagram" /></div></div></div><br class="figure-break" /><div class="figure"><a id="id-1.3.5.8.4.4.2.3.3.5.3.10"></a><p class="title"><strong>Figure 21.21. Standard resize policy size sequence
739		diagram</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_insert_resize_sequence_diagram3.png" align="middle" alt="Standard resize policy size sequence diagram" /></div></div></div><br class="figure-break" /></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.impl.predefined"></a>Predefined Policies</h6></div></div></div><p>The library includes the following
740	      instantiations of size and trigger policies:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">hash_load_check_resize_trigger</code>
741		implements a load check trigger policy.</p></li><li class="listitem"><p><code class="classname">cc_hash_max_collision_check_resize_trigger</code>
742		implements a collision check trigger policy.</p></li><li class="listitem"><p><code class="classname">hash_exponential_size_policy</code>
743		implements an exponential-size policy (which should be used
744		with mask range hashing).</p></li><li class="listitem"><p><code class="classname">hash_prime_size_policy</code>
745		implementing a size policy based on a sequence of primes
746		(which should
747		be used with mod range hashing</p></li></ol></div><p>The graphic below gives an overall picture of the resize-related
748	      classes. <code class="classname">basic_hash_table</code>
749	      is parametrized by <code class="classname">Resize_Policy</code>, which it subclasses
750	      publicly. This class is currently instantiated only by <code class="classname">hash_standard_resize_policy</code>.
751	      <code class="classname">hash_standard_resize_policy</code>
752	      itself is parametrized by <code class="classname">Trigger_Policy</code> and
753	      <code class="classname">Size_Policy</code>. Currently, <code class="classname">Trigger_Policy</code> is
754	      instantiated by <code class="classname">hash_load_check_resize_trigger</code>,
755	      or <code class="classname">cc_hash_max_collision_check_resize_trigger</code>;
756	      <code class="classname">Size_Policy</code> is instantiated by <code class="classname">hash_exponential_size_policy</code>,
757	      or <code class="classname">hash_prime_size_policy</code>.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="resize_policies.impl.internals"></a>Controling Access to Internals</h6></div></div></div><p>There are cases where (controlled) access to resize
758	      policies' internals is beneficial. E.g., it is sometimes
759	      useful to query a hash-table for the table's actual size (as
760	      opposed to its <code class="function">size()</code> - the number of values it
761	      currently holds); it is sometimes useful to set a table's
762	      initial size, externally resize it, or change load factors.</p><p>Clearly, supporting such methods both decreases the
763	      encapsulation of hash-based containers, and increases the
764	      diversity between different associative-containers' interfaces.
765	      Conversely, omitting such methods can decrease containers'
766	      flexibility.</p><p>In order to avoid, to the extent possible, the above
767	      conflict, the hash-based containers themselves do not address
768	      any of these questions; this is deferred to the resize policies,
769	      which are easier to change or replace. Thus, for example,
770	      neither <code class="classname">cc_hash_table</code> nor
771	      <code class="classname">gp_hash_table</code>
772	      contain methods for querying the actual size of the table; this
773	      is deferred to <code class="classname">hash_standard_resize_policy</code>.</p><p>Furthermore, the policies themselves are parametrized by
774	      template arguments that determine the methods they support
775	      (
776	      <a class="xref" href="policy_data_structures.html#biblio.alexandrescu01modern" title="Modern C++ Design: Generic Programming and Design Patterns Applied">[biblio.alexandrescu01modern]</a>
777	      shows techniques for doing so). <code class="classname">hash_standard_resize_policy</code>
778	      is parametrized by <code class="classname">External_Size_Access</code> that
779	      determines whether it supports methods for querying the actual
780	      size of the table or resizing it. <code class="classname">hash_load_check_resize_trigger</code>
781	      is parametrized by <code class="classname">External_Load_Access</code> that
782	      determines whether it supports methods for querying or
783	      modifying the loads. <code class="classname">cc_hash_max_collision_check_resize_trigger</code>
784	      is parametrized by <code class="classname">External_Load_Access</code> that
785	      determines whether it supports methods for querying the
786	      load.</p><p>Some operations, for example, resizing a container at
787	      run time, or changing the load factors of a load-check trigger
788	      policy, require the container itself to resize. As mentioned
789	      above, the hash-based containers themselves do not contain
790	      these types of methods, only their resize policies.
791	      Consequently, there must be some mechanism for a resize policy
792	      to manipulate the hash-based container. As the hash-based
793	      container is a subclass of the resize policy, this is done
794	      through virtual methods. Each hash-based container has a
795	      <code class="classname">private</code> <code class="classname">virtual</code> method:</p><pre class="programlisting">
796		virtual void
797		do_resize
798		(size_type new_size);
799	      </pre><p>which resizes the container. Implementations of
800	      <code class="classname">Resize_Policy</code> can export public methods for resizing
801	      the container externally; these methods internally call
802	      <code class="classname">do_resize</code> to resize the table.</p></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.hash.details.policy_interaction"></a>Policy Interactions</h6></div></div></div><p>
803	  </p><p>Hash-tables are unfortunately especially susceptible to
804	  choice of policies. One of the more complicated aspects of this
805	  is that poor combinations of good policies can form a poor
806	  container. Following are some considerations.</p><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="policy_interaction.probesizetrigger"></a>probe/size/trigger</h6></div></div></div><p>Some combinations do not work well for probing containers.
807	    For example, combining a quadratic probe policy with an
808	    exponential size policy can yield a poor container: when an
809	    element is inserted, a trigger policy might decide that there
810	    is no need to resize, as the table still contains unused
811	    entries; the probe sequence, however, might never reach any of
812	    the unused entries.</p><p>Unfortunately, this library cannot detect such problems at
813	    compilation (they are halting reducible). It therefore defines
814	    an exception class <code class="classname">insert_error</code> to throw an
815	    exception in this case.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="policy_interaction.hashtrigger"></a>hash/trigger</h6></div></div></div><p>Some trigger policies are especially susceptible to poor
816	    hash functions. Suppose, as an extreme case, that the hash
817	    function transforms each key to the same hash value. After some
818	    inserts, a collision detecting policy will always indicate that
819	    the container needs to grow.</p><p>The library, therefore, by design, limits each operation to
820	    one resize. For each <code class="classname">insert</code>, for example, it queries
821	    only once whether a resize is needed.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="policy_interaction.eqstorehash"></a>equivalence functors/storing hash values/hash</h6></div></div></div><p><code class="classname">cc_hash_table</code> and
822	    <code class="classname">gp_hash_table</code> are
823	    parametrized by an equivalence functor and by a
824	    <code class="classname">Store_Hash</code> parameter. If the latter parameter is
825	    <code class="classname">true</code>, then the container stores with each entry
826	    a hash value, and uses this value in case of collisions to
827	    determine whether to apply a hash value. This can lower the
828	    cost of collision for some types, but increase the cost of
829	    collisions for other types.</p><p>If a ranged-hash function or ranged probe function is
830	    directly supplied, however, then it makes no sense to store the
831	    hash value with each entry. This library's container will
832	    fail at compilation, by design, if this is attempted.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="policy_interaction.sizeloadtrigger"></a>size/load-check trigger</h6></div></div></div><p>Assume a size policy issues an increasing sequence of sizes
833	    a, a q, a q<sup>1</sup>, a q<sup>2</sup>, ... For
834	    example, an exponential size policy might issue the sequence of
835	    sizes 8, 16, 32, 64, ...</p><p>If a load-check trigger policy is used, with loads
836	    α<sub>min</sub> and α<sub>max</sub>,
837	    respectively, then it is a good idea to have:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>α<sub>max</sub> ~ 1 / q</p></li><li class="listitem"><p>α<sub>min</sub> &lt; 1 / (2 q)</p></li></ol></div><p>This will ensure that the amortized hash cost of each
838	    modifying operation is at most approximately 3.</p><p>α<sub>min</sub> ~ α<sub>max</sub> is, in
839	    any case, a bad choice, and α<sub>min</sub> &gt;
840	    α <sub>max</sub> is horrendous.</p></div></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.container.tree"></a>tree</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.tree.interface"></a>Interface</h5></div></div></div><p>The tree-based container has the following declaration:</p><pre class="programlisting">
841	  template&lt;
842	  typename Key,
843	  typename Mapped,
844	  typename Cmp_Fn = std::less&lt;Key&gt;,
845	  typename Tag = rb_tree_tag,
846	  template&lt;
847	  typename Const_Node_Iterator,
848	  typename Node_Iterator,
849	  typename Cmp_Fn_,
850	  typename Allocator_&gt;
851	  class Node_Update = null_node_update,
852	  typename Allocator = std::allocator&lt;char&gt; &gt;
853	  class tree;
854	</pre><p>The parameters have the following meaning:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">Key</code> is the key type.</p></li><li class="listitem"><p><code class="classname">Mapped</code> is the mapped-policy.</p></li><li class="listitem"><p><code class="classname">Cmp_Fn</code> is a key comparison functor</p></li><li class="listitem"><p><code class="classname">Tag</code> specifies which underlying data structure
855	  to use.</p></li><li class="listitem"><p><code class="classname">Node_Update</code> is a policy for updating node
856	  invariants.</p></li><li class="listitem"><p><code class="classname">Allocator</code> is an allocator
857	  type.</p></li></ol></div><p>The <code class="classname">Tag</code> parameter specifies which underlying
858	data structure to use. Instantiating it by <code class="classname">rb_tree_tag</code>, <code class="classname">splay_tree_tag</code>, or
859	<code class="classname">ov_tree_tag</code>,
860	specifies an underlying red-black tree, splay tree, or
861	ordered-vector tree, respectively; any other tag is illegal.
862	Note that containers based on the former two contain more types
863	and methods than the latter (e.g.,
864	<code class="classname">reverse_iterator</code> and <code class="classname">rbegin</code>), and different
865	exception and invalidation guarantees.</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.tree.details"></a>Details</h5></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.tree.node"></a>Node Invariants</h6></div></div></div><p>Consider the two trees in the graphic below, labels A and B. The first
866	  is a tree of floats; the second is a tree of pairs, each
867	  signifying a geometric line interval. Each element in a tree is referred to as a node of the tree. Of course, each of
868	  these trees can support the usual queries: the first can easily
869	  search for <code class="classname">0.4</code>; the second can easily search for
870	  <code class="classname">std::make_pair(10, 41)</code>.</p><p>Each of these trees can efficiently support other queries.
871	  The first can efficiently determine that the 2rd key in the
872	  tree is <code class="constant">0.3</code>; the second can efficiently determine
873	  whether any of its intervals overlaps
874	  </p><pre class="programlisting">std::make_pair(29,42)</pre><p> (useful in geometric
875	  applications or distributed file systems with leases, for
876	  example).  It should be noted that an <code class="classname">std::set</code> can
877	  only solve these types of problems with linear complexity.</p><p>In order to do so, each tree stores some metadata in
878	  each node, and maintains node invariants (see <a class="xref" href="policy_data_structures.html#biblio.clrs2001" title="Introduction to Algorithms, 2nd edition">[biblio.clrs2001]</a>.) The first stores in
879	  each node the size of the sub-tree rooted at the node; the
880	  second stores at each node the maximal endpoint of the
881	  intervals at the sub-tree rooted at the node.</p><div class="figure"><a id="id-1.3.5.8.4.4.3.3.2.5"></a><p class="title"><strong>Figure 21.22. Tree node invariants</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_tree_node_invariants.png" align="middle" alt="Tree node invariants" /></div></div></div><br class="figure-break" /><p>Supporting such trees is difficult for a number of
882	  reasons:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>There must be a way to specify what a node's metadata
883	    should be (if any).</p></li><li class="listitem"><p>Various operations can invalidate node
884	    invariants.  The graphic below shows how a right rotation,
885	    performed on A, results in B, with nodes x and y having
886	    corrupted invariants (the grayed nodes in C). The graphic shows
887	    how an insert, performed on D, results in E, with nodes x and y
888	    having corrupted invariants (the grayed nodes in F). It is not
889	    feasible to know outside the tree the effect of an operation on
890	    the nodes of the tree.</p></li><li class="listitem"><p>The search paths of standard associative containers are
891	    defined by comparisons between keys, and not through
892	    metadata.</p></li><li class="listitem"><p>It is not feasible to know in advance which methods trees
893	    can support. Besides the usual <code class="classname">find</code> method, the
894	    first tree can support a <code class="classname">find_by_order</code> method, while
895	    the second can support an <code class="classname">overlaps</code> method.</p></li></ol></div><div class="figure"><a id="id-1.3.5.8.4.4.3.3.2.8"></a><p class="title"><strong>Figure 21.23. Tree node invalidation</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_tree_node_invalidations.png" align="middle" alt="Tree node invalidation" /></div></div></div><br class="figure-break" /><p>These problems are solved by a combination of two means:
896	  node iterators, and template-template node updater
897	  parameters.</p><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.tree.node.iterators"></a>Node Iterators</h6></div></div></div><p>Each tree-based container defines two additional iterator
898	    types, <code class="classname">const_node_iterator</code>
899	    and <code class="classname">node_iterator</code>.
900	    These iterators allow descending from a node to one of its
901	    children. Node iterator allow search paths different than those
902	    determined by the comparison functor. The <code class="classname">tree</code>
903	    supports the methods:</p><pre class="programlisting">
904	      const_node_iterator
905	      node_begin() const;
906
907	      node_iterator
908	      node_begin();
909
910	      const_node_iterator
911	      node_end() const;
912
913	      node_iterator
914	      node_end();
915	    </pre><p>The first pairs return node iterators corresponding to the
916	    root node of the tree; the latter pair returns node iterators
917	    corresponding to a just-after-leaf node.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.tree.node.updator"></a>Node Updator</h6></div></div></div><p>The tree-based containers are parametrized by a
918	    <code class="classname">Node_Update</code> template-template parameter. A
919	    tree-based container instantiates
920	    <code class="classname">Node_Update</code> to some
921	    <code class="classname">node_update</code> class, and publicly subclasses
922	    <code class="classname">node_update</code>. The graphic below shows this
923	    scheme, as well as some predefined policies (which are explained
924	    below).</p><div class="figure"><a id="id-1.3.5.8.4.4.3.3.2.11.3"></a><p class="title"><strong>Figure 21.24. A tree and its update policy</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_tree_node_updator_policy_cd.png" align="middle" alt="A tree and its update policy" /></div></div></div><br class="figure-break" /><p><code class="classname">node_update</code> (an instantiation of
925	    <code class="classname">Node_Update</code>) must define <code class="classname">metadata_type</code> as
926	    the type of metadata it requires. For order statistics,
927	    e.g., <code class="classname">metadata_type</code> might be <code class="classname">size_t</code>.
928	    The tree defines within each node a <code class="classname">metadata_type</code>
929	    object.</p><p><code class="classname">node_update</code> must also define the following method
930	    for restoring node invariants:</p><pre class="programlisting">
931	      void
932	      operator()(node_iterator nd_it, const_node_iterator end_nd_it)
933	    </pre><p>In this method, <code class="varname">nd_it</code> is a
934	    <code class="classname">node_iterator</code> corresponding to a node whose
935	    A) all descendants have valid invariants, and B) its own
936	    invariants might be violated; <code class="classname">end_nd_it</code> is
937	    a <code class="classname">const_node_iterator</code> corresponding to a
938	    just-after-leaf node. This method should correct the node
939	    invariants of the node pointed to by
940	    <code class="classname">nd_it</code>. For example, say node x in the
941	    graphic below label A has an invalid invariant, but its' children,
942	    y and z have valid invariants. After the invocation, all three
943	    nodes should have valid invariants, as in label B.</p><div class="figure"><a id="id-1.3.5.8.4.4.3.3.2.11.8"></a><p class="title"><strong>Figure 21.25. Restoring node invariants</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_restoring_node_invariants.png" align="middle" alt="Restoring node invariants" /></div></div></div><br class="figure-break" /><p>When a tree operation might invalidate some node invariant,
944	    it invokes this method in its <code class="classname">node_update</code> base to
945	    restore the invariant. For example, the graphic below shows
946	    an <code class="function">insert</code> operation (point A); the tree performs some
947	    operations, and calls the update functor three times (points B,
948	    C, and D). (It is well known that any <code class="function">insert</code>,
949	    <code class="function">erase</code>, <code class="function">split</code> or <code class="function">join</code>, can restore
950	    all node invariants by a small number of node invariant updates (<a class="xref" href="policy_data_structures.html#biblio.clrs2001" title="Introduction to Algorithms, 2nd edition">[biblio.clrs2001]</a>)
951	    .</p><div class="figure"><a id="id-1.3.5.8.4.4.3.3.2.11.10"></a><p class="title"><strong>Figure 21.26. Insert update sequence</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_update_seq_diagram.png" align="middle" alt="Insert update sequence" /></div></div></div><br class="figure-break" /><p>To complete the description of the scheme, three questions
952	    need to be answered:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>How can a tree which supports order statistics define a
953	      method such as <code class="classname">find_by_order</code>?</p></li><li class="listitem"><p>How can the node updater base access methods of the
954	      tree?</p></li><li class="listitem"><p>How can the following cyclic dependency be resolved?
955	      <code class="classname">node_update</code> is a base class of the tree, yet it
956	      uses node iterators defined in the tree (its child).</p></li></ol></div><p>The first two questions are answered by the fact that
957	    <code class="classname">node_update</code> (an instantiation of
958	    <code class="classname">Node_Update</code>) is a <span class="emphasis"><em>public</em></span> base class
959	    of the tree. Consequently:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Any public methods of
960	      <code class="classname">node_update</code> are automatically methods of
961	      the tree (<a class="xref" href="policy_data_structures.html#biblio.alexandrescu01modern" title="Modern C++ Design: Generic Programming and Design Patterns Applied">[biblio.alexandrescu01modern]</a>).
962	      Thus an order-statistics node updater,
963	      <code class="classname">tree_order_statistics_node_update</code> defines
964	      the <code class="function">find_by_order</code> method; any tree
965	      instantiated by this policy consequently supports this method as
966	      well.</p></li><li class="listitem"><p>In C++, if a base class declares a method as
967	      <code class="literal">virtual</code>, it is
968	      <code class="literal">virtual</code> in its subclasses. If
969	      <code class="classname">node_update</code> needs to access one of the
970	      tree's methods, say the member function
971	      <code class="function">end</code>, it simply declares that method as
972	      <code class="literal">virtual</code> abstract.</p></li></ol></div><p>The cyclic dependency is solved through template-template
973	    parameters. <code class="classname">Node_Update</code> is parametrized by
974	    the tree's node iterators, its comparison functor, and its
975	    allocator type. Thus, instantiations of
976	    <code class="classname">Node_Update</code> have all information
977	    required.</p><p>This library assumes that constructing a metadata object and
978	    modifying it are exception free. Suppose that during some method,
979	    say <code class="classname">insert</code>, a metadata-related operation
980	    (e.g., changing the value of a metadata) throws an exception. Ack!
981	    Rolling back the method is unusually complex.</p><p>Previously, a distinction was made between redundant
982	    policies and null policies. Node invariants show a
983	    case where null policies are required.</p><p>Assume a regular tree is required, one which need not
984	    support order statistics or interval overlap queries.
985	    Seemingly, in this case a redundant policy - a policy which
986	    doesn't affect nodes' contents would suffice. This, would lead
987	    to the following drawbacks:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Each node would carry a useless metadata object, wasting
988	      space.</p></li><li class="listitem"><p>The tree cannot know if its
989	      <code class="classname">Node_Update</code> policy actually modifies a
990	      node's metadata (this is halting reducible). In the graphic
991	      below, assume the shaded node is inserted. The tree would have
992	      to traverse the useless path shown to the root, applying
993	      redundant updates all the way.</p></li></ol></div><div class="figure"><a id="id-1.3.5.8.4.4.3.3.2.11.20"></a><p class="title"><strong>Figure 21.27. Useless update path</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_rationale_null_node_updator.png" align="middle" alt="Useless update path" /></div></div></div><br class="figure-break" /><p>A null policy class, <code class="classname">null_node_update</code>
994	    solves both these problems. The tree detects that node
995	    invariants are irrelevant, and defines all accordingly.</p></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.tree.details.split"></a>Split and Join</h6></div></div></div><p>Tree-based containers support split and join methods.
996	  It is possible to split a tree so that it passes
997	  all nodes with keys larger than a given key to a different
998	  tree. These methods have the following advantages over the
999	  alternative of externally inserting to the destination
1000	  tree and erasing from the source tree:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>These methods are efficient - red-black trees are split
1001	    and joined in poly-logarithmic complexity; ordered-vector
1002	    trees are split and joined at linear complexity. The
1003	    alternatives have super-linear complexity.</p></li><li class="listitem"><p>Aside from orders of growth, these operations perform
1004	    few allocations and de-allocations. For red-black trees, allocations are not performed,
1005	    and the methods are exception-free. </p></li></ol></div></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.container.trie"></a>Trie</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.trie.interface"></a>Interface</h5></div></div></div><p>The trie-based container has the following declaration:</p><pre class="programlisting">
1006	  template&lt;typename Key,
1007	  typename Mapped,
1008	  typename Cmp_Fn = std::less&lt;Key&gt;,
1009	  typename Tag = pat_trie_tag,
1010	  template&lt;typename Const_Node_Iterator,
1011	  typename Node_Iterator,
1012	  typename E_Access_Traits_,
1013	  typename Allocator_&gt;
1014	  class Node_Update = null_node_update,
1015	  typename Allocator = std::allocator&lt;char&gt; &gt;
1016	  class trie;
1017	</pre><p>The parameters have the following meaning:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">Key</code> is the key type.</p></li><li class="listitem"><p><code class="classname">Mapped</code> is the mapped-policy.</p></li><li class="listitem"><p><code class="classname">E_Access_Traits</code> is described in below.</p></li><li class="listitem"><p><code class="classname">Tag</code> specifies which underlying data structure
1018	  to use, and is described shortly.</p></li><li class="listitem"><p><code class="classname">Node_Update</code> is a policy for updating node
1019	  invariants. This is described below.</p></li><li class="listitem"><p><code class="classname">Allocator</code> is an allocator
1020	  type.</p></li></ol></div><p>The <code class="classname">Tag</code> parameter specifies which underlying
1021	data structure to use. Instantiating it by <code class="classname">pat_trie_tag</code>, specifies an
1022	underlying PATRICIA trie (explained shortly); any other tag is
1023	currently illegal.</p><p>Following is a description of a (PATRICIA) trie
1024	(this implementation follows <a class="xref" href="policy_data_structures.html#biblio.okasaki98mereable" title="Fast mergeable integer maps">[biblio.okasaki98mereable]</a> and
1025	<a class="xref" href="policy_data_structures.html#biblio.filliatre2000ptset" title="Ptset: Sets of integers implemented as Patricia trees">[biblio.filliatre2000ptset]</a>).
1026	</p><p>A (PATRICIA) trie is similar to a tree, but with the
1027	following differences:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>It explicitly views keys as a sequence of elements.
1028	  E.g., a trie can view a string as a sequence of
1029	  characters; a trie can view a number as a sequence of
1030	  bits.</p></li><li class="listitem"><p>It is not (necessarily) binary. Each node has fan-out n
1031	  + 1, where n is the number of distinct
1032	  elements.</p></li><li class="listitem"><p>It stores values only at leaf nodes.</p></li><li class="listitem"><p>Internal nodes have the properties that A) each has at
1033	  least two children, and B) each shares the same prefix with
1034	  any of its descendant.</p></li></ol></div><p>A (PATRICIA) trie has some useful properties:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>It can be configured to use large node fan-out, giving it
1035	  very efficient find performance (albeit at insertion
1036	  complexity and size).</p></li><li class="listitem"><p>It works well for common-prefix keys.</p></li><li class="listitem"><p>It can support efficiently queries such as which
1037	  keys match a certain prefix. This is sometimes useful in file
1038	  systems and routers, and for "type-ahead" aka predictive text matching
1039	  on mobile devices.</p></li></ol></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.trie.details"></a>Details</h5></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.trie.details.etraits"></a>Element Access Traits</h6></div></div></div><p>A trie inherently views its keys as sequences of elements.
1040	  For example, a trie can view a string as a sequence of
1041	  characters. A trie needs to map each of n elements to a
1042	  number in {0, n - 1}. For example, a trie can map a
1043	  character <code class="varname">c</code> to
1044	  </p><pre class="programlisting">static_cast&lt;size_t&gt;(c)</pre><p>.</p><p>Seemingly, then, a trie can assume that its keys support
1045	  (const) iterators, and that the <code class="classname">value_type</code> of this
1046	  iterator can be cast to a <code class="classname">size_t</code>. There are several
1047	  reasons, though, to decouple the mechanism by which the trie
1048	  accesses its keys' elements from the trie:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>In some cases, the numerical value of an element is
1049	    inappropriate. Consider a trie storing DNA strings. It is
1050	    logical to use a trie with a fan-out of 5 = 1 + |{'A', 'C',
1051	    'G', 'T'}|. This requires mapping 'T' to 3, though.</p></li><li class="listitem"><p>In some cases the keys' iterators are different than what
1052	    is needed. For example, a trie can be used to search for
1053	    common suffixes, by using strings'
1054	    <code class="classname">reverse_iterator</code>. As another example, a trie mapping
1055	    UNICODE strings would have a huge fan-out if each node would
1056	    branch on a UNICODE character; instead, one can define an
1057	    iterator iterating over 8-bit (or less) groups.</p></li></ol></div><p>trie is,
1058	  consequently, parametrized by <code class="classname">E_Access_Traits</code> -
1059	  traits which instruct how to access sequences' elements.
1060	  <code class="classname">string_trie_e_access_traits</code>
1061	  is a traits class for strings. Each such traits define some
1062	  types, like:</p><pre class="programlisting">
1063	    typename E_Access_Traits::const_iterator
1064	  </pre><p>is a const iterator iterating over a key's elements. The
1065	  traits class must also define methods for obtaining an iterator
1066	  to the first and last element of a key.</p><p>The graphic below shows a
1067	  (PATRICIA) trie resulting from inserting the words: "I wish
1068	  that I could ever see a poem lovely as a trie" (which,
1069	  unfortunately, does not rhyme).</p><p>The leaf nodes contain values; each internal node contains
1070	  two <code class="classname">typename E_Access_Traits::const_iterator</code>
1071	  objects, indicating the maximal common prefix of all keys in
1072	  the sub-tree. For example, the shaded internal node roots a
1073	  sub-tree with leafs "a" and "as". The maximal common prefix is
1074	  "a". The internal node contains, consequently, to const
1075	  iterators, one pointing to <code class="varname">'a'</code>, and the other to
1076	  <code class="varname">'s'</code>.</p><div class="figure"><a id="id-1.3.5.8.4.4.4.3.2.10"></a><p class="title"><strong>Figure 21.28. A PATRICIA trie</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_pat_trie.png" align="middle" alt="A PATRICIA trie" /></div></div></div><br class="figure-break" /></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.trie.details.node"></a>Node Invariants</h6></div></div></div><p>Trie-based containers support node invariants, as do
1077	  tree-based containers. There are two minor
1078	  differences, though, which, unfortunately, thwart sharing them
1079	  sharing the same node-updating policies:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>A trie's <code class="classname">Node_Update</code> template-template
1080	      parameter is parametrized by <code class="classname">E_Access_Traits</code>, while
1081	      a tree's <code class="classname">Node_Update</code> template-template parameter is
1082	    parametrized by <code class="classname">Cmp_Fn</code>.</p></li><li class="listitem"><p>Tree-based containers store values in all nodes, while
1083	    trie-based containers (at least in this implementation) store
1084	    values in leafs.</p></li></ol></div><p>The graphic below shows the scheme, as well as some predefined
1085	  policies (which are explained below).</p><div class="figure"><a id="id-1.3.5.8.4.4.4.3.3.5"></a><p class="title"><strong>Figure 21.29. A trie and its update policy</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_trie_node_updator_policy_cd.png" align="middle" alt="A trie and its update policy" /></div></div></div><br class="figure-break" /><p>This library offers the following pre-defined trie node
1086	  updating policies:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
1087		<code class="classname">trie_order_statistics_node_update</code>
1088		supports order statistics.
1089	      </p></li><li class="listitem"><p><code class="classname">trie_prefix_search_node_update</code>
1090	    supports searching for ranges that match a given prefix.</p></li><li class="listitem"><p><code class="classname">null_node_update</code>
1091	    is the null node updater.</p></li></ol></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.trie.details.split"></a>Split and Join</h6></div></div></div><p>Trie-based containers support split and join methods; the
1092	  rationale is equal to that of tree-based containers supporting
1093	  these methods.</p></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.container.list"></a>List</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.list.interface"></a>Interface</h5></div></div></div><p>The list-based container has the following declaration:</p><pre class="programlisting">
1094	  template&lt;typename Key,
1095	  typename Mapped,
1096	  typename Eq_Fn = std::equal_to&lt;Key&gt;,
1097	  typename Update_Policy = move_to_front_lu_policy&lt;&gt;,
1098	  typename Allocator = std::allocator&lt;char&gt; &gt;
1099	  class list_update;
1100	</pre><p>The parameters have the following meaning:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
1101	      <code class="classname">Key</code> is the key type.
1102	    </p></li><li class="listitem"><p>
1103	      <code class="classname">Mapped</code> is the mapped-policy.
1104	    </p></li><li class="listitem"><p>
1105	      <code class="classname">Eq_Fn</code> is a key equivalence functor.
1106	    </p></li><li class="listitem"><p>
1107	      <code class="classname">Update_Policy</code> is a policy updating positions in
1108	      the list based on access patterns. It is described in the
1109	      following subsection.
1110	    </p></li><li class="listitem"><p>
1111	      <code class="classname">Allocator</code> is an allocator type.
1112	    </p></li></ol></div><p>A list-based associative container is a container that
1113	stores elements in a linked-list. It does not order the elements
1114	by any particular order related to the keys.  List-based
1115	containers are primarily useful for creating "multimaps". In fact,
1116	list-based containers are designed in this library expressly for
1117	this purpose.</p><p>List-based containers might also be useful for some rare
1118	cases, where a key is encapsulated to the extent that only
1119	key-equivalence can be tested. Hash-based containers need to know
1120	how to transform a key into a size type, and tree-based containers
1121	need to know if some key is larger than another.  List-based
1122	associative containers, conversely, only need to know if two keys
1123	are equivalent.</p><p>Since a list-based associative container does not order
1124	elements by keys, is it possible to order the list in some
1125	useful manner? Remarkably, many on-line competitive
1126	algorithms exist for reordering lists to reflect access
1127	prediction. (See <a class="xref" href="policy_data_structures.html#biblio.motwani95random" title="Randomized Algorithms">[biblio.motwani95random]</a> and <a class="xref" href="policy_data_structures.html#biblio.andrew04mtf" title="MTF, Bit, and COMB: A Guide to Deterministic and Randomized Algorithms for the List Update Problem">[biblio.andrew04mtf]</a>).
1128	</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.list.details"></a>Details</h5></div></div></div><p>
1129	</p><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.list.details.ds"></a>Underlying Data Structure</h6></div></div></div><p>The graphic below shows a
1130	  simple list of integer keys. If we search for the integer 6, we
1131	  are paying an overhead: the link with key 6 is only the fifth
1132	  link; if it were the first link, it could be accessed
1133	  faster.</p><div class="figure"><a id="id-1.3.5.8.4.4.5.3.3.3"></a><p class="title"><strong>Figure 21.30. A simple list</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_simple_list.png" align="middle" alt="A simple list" /></div></div></div><br class="figure-break" /><p>List-update algorithms reorder lists as elements are
1134	  accessed. They try to determine, by the access history, which
1135	  keys to move to the front of the list. Some of these algorithms
1136	  require adding some metadata alongside each entry.</p><p>For example, in the graphic below label A shows the counter
1137	  algorithm. Each node contains both a key and a count metadata
1138	  (shown in bold). When an element is accessed (e.g. 6) its count is
1139	  incremented, as shown in label B. If the count reaches some
1140	  predetermined value, say 10, as shown in label C, the count is set
1141	  to 0 and the node is moved to the front of the list, as in label
1142	  D.
1143	  </p><div class="figure"><a id="id-1.3.5.8.4.4.5.3.3.6"></a><p class="title"><strong>Figure 21.31. The counter algorithm</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_list_update.png" align="middle" alt="The counter algorithm" /></div></div></div><br class="figure-break" /></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.list.details.policies"></a>Policies</h6></div></div></div><p>this library allows instantiating lists with policies
1144	  implementing any algorithm moving nodes to the front of the
1145	  list (policies implementing algorithms interchanging nodes are
1146	  unsupported).</p><p>Associative containers based on lists are parametrized by a
1147	  <code class="classname">Update_Policy</code> parameter. This parameter defines the
1148	  type of metadata each node contains, how to create the
1149	  metadata, and how to decide, using this metadata, whether to
1150	  move a node to the front of the list. A list-based associative
1151	  container object derives (publicly) from its update policy.
1152	  </p><p>An instantiation of <code class="classname">Update_Policy</code> must define
1153	  internally <code class="classname">update_metadata</code> as the metadata it
1154	  requires. Internally, each node of the list contains, besides
1155	  the usual key and data, an instance of <code class="classname">typename
1156	  Update_Policy::update_metadata</code>.</p><p>An instantiation of <code class="classname">Update_Policy</code> must define
1157	  internally two operators:</p><pre class="programlisting">
1158	    update_metadata
1159	    operator()();
1160
1161	    bool
1162	    operator()(update_metadata &amp;);
1163	  </pre><p>The first is called by the container object, when creating a
1164	  new node, to create the node's metadata. The second is called
1165	  by the container object, when a node is accessed (
1166	  when a find operation's key is equivalent to the key of the
1167	  node), to determine whether to move the node to the front of
1168	  the list.
1169	  </p><p>The library contains two predefined implementations of
1170	  list-update policies. The first
1171	  is <code class="classname">lu_counter_policy</code>, which implements the
1172	  counter algorithm described above. The second is
1173	  <code class="classname">lu_move_to_front_policy</code>,
1174	  which unconditionally move an accessed element to the front of
1175	  the list. The latter type is very useful in this library,
1176	  since there is no need to associate metadata with each element.
1177	  (See <a class="xref" href="policy_data_structures.html#biblio.andrew04mtf" title="MTF, Bit, and COMB: A Guide to Deterministic and Randomized Algorithms for the List Update Problem">[biblio.andrew04mtf]</a>
1178	  </p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.list.details.mapped"></a>Use in Multimaps</h6></div></div></div><p>In this library, there are no equivalents for the standard's
1179	  multimaps and multisets; instead one uses an associative
1180	  container mapping primary keys to secondary keys.</p><p>List-based containers are especially useful as associative
1181	  containers for secondary keys. In fact, they are implemented
1182	  here expressly for this purpose.</p><p>To begin with, these containers use very little per-entry
1183	  structure memory overhead, since they can be implemented as
1184	  singly-linked lists. (Arrays use even lower per-entry memory
1185	  overhead, but they are less flexible in moving around entries,
1186	  and have weaker invalidation guarantees).</p><p>More importantly, though, list-based containers use very
1187	  little per-container memory overhead. The memory overhead of an
1188	  empty list-based container is practically that of a pointer.
1189	  This is important for when they are used as secondary
1190	  associative-containers in situations where the average ratio of
1191	  secondary keys to primary keys is low (or even 1).</p><p>In order to reduce the per-container memory overhead as much
1192	  as possible, they are implemented as closely as possible to
1193	  singly-linked lists.</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
1194		List-based containers do not store internally the number
1195		of values that they hold. This means that their <code class="function">size</code>
1196		method has linear complexity (just like <code class="classname">std::list</code>).
1197		Note that finding the number of equivalent-key values in a
1198		standard multimap also has linear complexity (because it must be
1199		done,  via <code class="function">std::distance</code> of the
1200		multimap's <code class="function">equal_range</code> method), but usually with
1201		higher constants.
1202	      </p></li><li class="listitem"><p>
1203		Most associative-container objects each hold a policy
1204		object (a hash-based container object holds a
1205		hash functor). List-based containers, conversely, only have
1206		class-wide policy objects.
1207	      </p></li></ol></div></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="pbds.design.container.priority_queue"></a>Priority Queue</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.priority_queue.interface"></a>Interface</h5></div></div></div><p>The priority queue container has the following
1208	declaration:
1209	</p><pre class="programlisting">
1210	  template&lt;typename  Value_Type,
1211	  typename  Cmp_Fn = std::less&lt;Value_Type&gt;,
1212	  typename  Tag = pairing_heap_tag,
1213	  typename  Allocator = std::allocator&lt;char &gt; &gt;
1214	  class priority_queue;
1215	</pre><p>The parameters have the following meaning:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><code class="classname">Value_Type</code> is the value type.</p></li><li class="listitem"><p><code class="classname">Cmp_Fn</code> is a value comparison functor</p></li><li class="listitem"><p><code class="classname">Tag</code> specifies which underlying data structure
1216	  to use.</p></li><li class="listitem"><p><code class="classname">Allocator</code> is an allocator
1217	  type.</p></li></ol></div><p>The <code class="classname">Tag</code> parameter specifies which underlying
1218	data structure to use. Instantiating it by<code class="classname">pairing_heap_tag</code>,<code class="classname">binary_heap_tag</code>,
1219	<code class="classname">binomial_heap_tag</code>,
1220	<code class="classname">rc_binomial_heap_tag</code>,
1221	or <code class="classname">thin_heap_tag</code>,
1222	specifies, respectively,
1223	an underlying pairing heap (<a class="xref" href="policy_data_structures.html#biblio.fredman86pairing" title="The pairing heap: a new form of self-adjusting heap">[biblio.fredman86pairing]</a>),
1224	binary heap (<a class="xref" href="policy_data_structures.html#biblio.clrs2001" title="Introduction to Algorithms, 2nd edition">[biblio.clrs2001]</a>),
1225	binomial heap (<a class="xref" href="policy_data_structures.html#biblio.clrs2001" title="Introduction to Algorithms, 2nd edition">[biblio.clrs2001]</a>),
1226	a binomial heap with a redundant binary counter (<a class="xref" href="policy_data_structures.html#biblio.maverick_lowerbounds" title="Deamortization - Part 2: Binomial Heaps">[biblio.maverick_lowerbounds]</a>),
1227	or a thin heap (<a class="xref" href="policy_data_structures.html#biblio.kt99fat_heaps" title="New Heap Data Structures">[biblio.kt99fat_heaps]</a>).
1228	</p><p>
1229	  As mentioned in the tutorial,
1230	  <code class="classname">__gnu_pbds::priority_queue</code> shares most of the
1231	  same interface with <code class="classname">std::priority_queue</code>.
1232	  E.g. if <code class="varname">q</code> is a priority queue of type
1233	  <code class="classname">Q</code>, then <code class="function">q.top()</code> will
1234	  return the "largest" value in the container (according to
1235	  <code class="classname">typename
1236	  Q::cmp_fn</code>). <code class="classname">__gnu_pbds::priority_queue</code>
1237	  has a larger (and very slightly different) interface than
1238	  <code class="classname">std::priority_queue</code>, however, since typically
1239	  <code class="classname">push</code> and <code class="classname">pop</code> are deemed
1240	insufficient for manipulating priority-queues. </p><p>Different settings require different priority-queue
1241	implementations which are described in later; see traits
1242	discusses ways to differentiate between the different traits of
1243	different implementations.</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="container.priority_queue.details"></a>Details</h5></div></div></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.priority_queue.details.iterators"></a>Iterators</h6></div></div></div><p>There are many different underlying-data structures for
1244	  implementing priority queues. Unfortunately, most such
1245	  structures are oriented towards making <code class="function">push</code> and
1246	  <code class="function">top</code> efficient, and consequently don't allow efficient
1247	  access of other elements: for instance, they cannot support an efficient
1248	  <code class="function">find</code> method. In the use case where it
1249	  is important to both access and "do something with" an
1250	  arbitrary value, one would be out of luck. For example, many graph algorithms require
1251	  modifying a value (typically increasing it in the sense of the
1252	  priority queue's comparison functor).</p><p>In order to access and manipulate an arbitrary value in a
1253	  priority queue, one needs to reference the internals of the
1254	  priority queue from some form of an associative container -
1255	  this is unavoidable. Of course, in order to maintain the
1256	  encapsulation of the priority queue, this needs to be done in a
1257	  way that minimizes exposure to implementation internals.</p><p>In this library the priority queue's <code class="function">insert</code>
1258	  method returns an iterator, which if valid can be used for subsequent <code class="function">modify</code> and
1259	  <code class="function">erase</code> operations. This both preserves the priority
1260	  queue's encapsulation, and allows accessing arbitrary values (since the
1261	  returned iterators from the <code class="function">push</code> operation can be
1262	  stored in some form of associative container).</p><p>Priority queues' iterators present a problem regarding their
1263	  invalidation guarantees. One assumes that calling
1264	  <code class="function">operator++</code> on an iterator will associate it
1265	  with the "next" value. Priority-queues are
1266	  self-organizing: each operation changes what the "next" value
1267	  means. Consequently, it does not make sense that <code class="function">push</code>
1268	  will return an iterator that can be incremented - this can have
1269	  no possible use. Also, as in the case of hash-based containers,
1270	  it is awkward to define if a subsequent <code class="function">push</code> operation
1271	  invalidates a prior returned iterator: it invalidates it in the
1272	  sense that its "next" value is not related to what it
1273	  previously considered to be its "next" value. However, it might not
1274	  invalidate it, in the sense that it can be
1275	  de-referenced and used for <code class="function">modify</code> and <code class="function">erase</code>
1276	  operations.</p><p>Similarly to the case of the other unordered associative
1277	  containers, this library uses a distinction between
1278	  point-type and range type iterators. A priority queue's <code class="classname">iterator</code> can always be
1279	  converted to a <code class="classname">point_iterator</code>, and a
1280	  <code class="classname">const_iterator</code> can always be converted to a
1281	  <code class="classname">point_const_iterator</code>.</p><p>The following snippet demonstrates manipulating an arbitrary
1282	  value:</p><pre class="programlisting">
1283	    // A priority queue of integers.
1284	    priority_queue&lt;int &gt; p;
1285
1286	    // Insert some values into the priority queue.
1287	    priority_queue&lt;int &gt;::point_iterator it = p.push(0);
1288
1289	    p.push(1);
1290	    p.push(2);
1291
1292	    // Now modify a value.
1293	    p.modify(it, 3);
1294
1295	    assert(p.top() == 3);
1296	  </pre><p>It should be noted that an alternative design could embed an
1297	  associative container in a priority queue. Could, but most
1298	  probably should not. To begin with, it should be noted that one
1299	  could always encapsulate a priority queue and an associative
1300	  container mapping values to priority queue iterators with no
1301	  performance loss. One cannot, however, "un-encapsulate" a priority
1302	  queue embedding an associative container, which might lead to
1303	  performance loss. Assume, that one needs to associate each value
1304	  with some data unrelated to priority queues. Then using
1305	  this library's design, one could use an
1306	  associative container mapping each value to a pair consisting of
1307	  this data and a priority queue's iterator. Using the embedded
1308	  method would need to use two associative containers. Similar
1309	  problems might arise in cases where a value can reside
1310	  simultaneously in many priority queues.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.priority_queue.details.d"></a>Underlying Data Structure</h6></div></div></div><p>There are three main implementations of priority queues: the
1311	  first employs a binary heap, typically one which uses a
1312	  sequence; the second uses a tree (or forest of trees), which is
1313	  typically less structured than an associative container's tree;
1314	  the third simply uses an associative container. These are
1315	  shown in the graphic below, in labels A1 and A2, label B, and label C.</p><div class="figure"><a id="id-1.3.5.8.4.4.6.3.3.3"></a><p class="title"><strong>Figure 21.32. Underlying Priority-Queue Data-Structures.</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_priority_queue_different_underlying_dss.png" align="middle" alt="Underlying Priority-Queue Data-Structures." /></div></div></div><br class="figure-break" /><p>Roughly speaking, any value that is both pushed and popped
1316	  from a priority queue must incur a logarithmic expense (in the
1317	  amortized sense). Any priority queue implementation that would
1318	  avoid this, would violate known bounds on comparison-based
1319	  sorting (see <a class="xref" href="policy_data_structures.html#biblio.clrs2001" title="Introduction to Algorithms, 2nd edition">[biblio.clrs2001]</a> and <a class="xref" href="policy_data_structures.html#biblio.brodal96priority" title="Worst-case efficient priority queues">[biblio.brodal96priority]</a>).
1320	  </p><p>Most implementations do
1321	  not differ in the asymptotic amortized complexity of
1322	  <code class="function">push</code> and <code class="function">pop</code> operations, but they differ in
1323	  the constants involved, in the complexity of other operations
1324	  (e.g., <code class="function">modify</code>), and in the worst-case
1325	  complexity of single operations. In general, the more
1326	  "structured" an implementation (i.e., the more internal
1327	  invariants it possesses) - the higher its amortized complexity
1328	  of <code class="function">push</code> and <code class="function">pop</code> operations.</p><p>This library implements different algorithms using a
1329	  single class: <code class="classname">priority_queue</code>.
1330	  Instantiating the <code class="classname">Tag</code> template parameter, "selects"
1331	  the implementation:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
1332	      Instantiating <code class="classname">Tag = binary_heap_tag</code> creates
1333	      a binary heap of the form in represented in the graphic with labels A1 or A2. The former is internally
1334	      selected by priority_queue
1335	      if <code class="classname">Value_Type</code> is instantiated by a primitive type
1336	      (e.g., an <span class="type">int</span>); the latter is
1337	      internally selected for all other types (e.g.,
1338	      <code class="classname">std::string</code>). This implementations is relatively
1339	      unstructured, and so has good <code class="classname">push</code> and <code class="classname">pop</code>
1340	      performance; it is the "best-in-kind" for primitive
1341	      types, e.g., <span class="type">int</span>s. Conversely, it has
1342	      high worst-case performance, and can support only linear-time
1343	    <code class="function">modify</code> and <code class="function">erase</code> operations.</p></li><li class="listitem"><p>Instantiating <code class="classname">Tag =
1344	    pairing_heap_tag</code> creates a pairing heap of the form
1345	    in represented by label B in the graphic above. This
1346	    implementations too is relatively unstructured, and so has good
1347	    <code class="function">push</code> and <code class="function">pop</code>
1348	    performance; it is the "best-in-kind" for non-primitive types,
1349	    e.g., <code class="classname">std:string</code>s. It also has very good
1350	    worst-case <code class="function">push</code> and
1351	    <code class="function">join</code> performance (O(1)), but has high
1352	    worst-case <code class="function">pop</code>
1353	    complexity.</p></li><li class="listitem"><p>Instantiating <code class="classname">Tag =
1354	    binomial_heap_tag</code> creates a binomial heap of the
1355	    form repsented by label B in the graphic above. This
1356	    implementations is more structured than a pairing heap, and so
1357	    has worse <code class="function">push</code> and <code class="function">pop</code>
1358	    performance. Conversely, it has sub-linear worst-case bounds for
1359	    <code class="function">pop</code>, e.g., and so it might be preferred in
1360	    cases where responsiveness is important.</p></li><li class="listitem"><p>Instantiating <code class="classname">Tag =
1361	    rc_binomial_heap_tag</code> creates a binomial heap of the
1362	    form represented in label B above, accompanied by a redundant
1363	    counter which governs the trees. This implementations is
1364	    therefore more structured than a binomial heap, and so has worse
1365	    <code class="function">push</code> and <code class="function">pop</code>
1366	    performance. Conversely, it guarantees O(1)
1367	    <code class="function">push</code> complexity, and so it might be
1368	    preferred in cases where the responsiveness of a binomial heap
1369	    is insufficient.</p></li><li class="listitem"><p>Instantiating <code class="classname">Tag =
1370	    thin_heap_tag</code> creates a thin heap of the form
1371	    represented by the label B in the graphic above. This
1372	    implementations too is more structured than a pairing heap, and
1373	    so has worse <code class="function">push</code> and
1374	    <code class="function">pop</code> performance. Conversely, it has better
1375	    worst-case and identical amortized complexities than a Fibonacci
1376	    heap, and so might be more appropriate for some graph
1377	    algorithms.</p></li></ol></div><p>Of course, one can use any order-preserving associative
1378	  container as a priority queue, as in the graphic above label C, possibly by creating an adapter class
1379	  over the associative container (much as
1380	  <code class="classname">std::priority_queue</code> can adapt <code class="classname">std::vector</code>).
1381	  This has the advantage that no cross-referencing is necessary
1382	  at all; the priority queue itself is an associative container.
1383	  Most associative containers are too structured to compete with
1384	  priority queues in terms of <code class="function">push</code> and <code class="function">pop</code>
1385	  performance.</p></div><div class="section"><div class="titlepage"><div><div><h6 class="title"><a id="container.priority_queue.details.traits"></a>Traits</h6></div></div></div><p>It would be nice if all priority queues could
1386	  share exactly the same behavior regardless of implementation. Sadly, this is not possible. Just one for instance is in join operations: joining
1387	  two binary heaps might throw an exception (not corrupt
1388	  any of the heaps on which it operates), but joining two pairing
1389	  heaps is exception free.</p><p>Tags and traits are very useful for manipulating generic
1390	  types. <code class="classname">__gnu_pbds::priority_queue</code>
1391	  publicly defines <code class="classname">container_category</code> as one of the tags. Given any
1392	  container <code class="classname">Cntnr</code>, the tag of the underlying
1393	  data structure can be found via <code class="classname">typename
1394	  Cntnr::container_category</code>; this is one of the possible tags shown in the graphic below.
1395	  </p><div class="figure"><a id="id-1.3.5.8.4.4.6.3.4.4"></a><p class="title"><strong>Figure 21.33. Priority-Queue Data-Structure Tags.</strong></p><div class="figure-contents"><div class="mediaobject" align="center"><img src="../images/pbds_priority_queue_tag_hierarchy.png" align="middle" alt="Priority-Queue Data-Structure Tags." /></div></div></div><br class="figure-break" /><p>Additionally, a traits mechanism can be used to query a
1396	  container type for its attributes. Given any container
1397	  <code class="classname">Cntnr</code>, then </p><pre class="programlisting">__gnu_pbds::container_traits&lt;Cntnr&gt;</pre><p>
1398	  is a traits class identifying the properties of the
1399	  container.</p><p>To find if a container might throw if two of its objects are
1400	  joined, one can use
1401	  </p><pre class="programlisting">
1402	    container_traits&lt;Cntnr&gt;::split_join_can_throw
1403	  </pre><p>
1404	  </p><p>
1405	    Different priority-queue implementations have different invalidation guarantees. This is
1406	    especially important, since there is no way to access an arbitrary
1407	    value of priority queues except for iterators. Similarly to
1408	    associative containers, one can use
1409	    </p><pre class="programlisting">
1410	      container_traits&lt;Cntnr&gt;::invalidation_guarantee
1411	    </pre><p>
1412	  to get the invalidation guarantee type of a priority queue.</p><p>It is easy to understand from the graphic above, what <code class="classname">container_traits&lt;Cntnr&gt;::invalidation_guarantee</code>
1413	  will be for different implementations. All implementations of
1414	  type represented by label B have <code class="classname">point_invalidation_guarantee</code>:
1415	  the container can freely internally reorganize the nodes -
1416	  range-type iterators are invalidated, but point-type iterators
1417	  are always valid. Implementations of type represented by labels A1 and A2 have <code class="classname">basic_invalidation_guarantee</code>:
1418	  the container can freely internally reallocate the array - both
1419	  point-type and range-type iterators might be invalidated.</p><p>
1420	    This has major implications, and constitutes a good reason to avoid
1421	    using binary heaps. A binary heap can perform <code class="function">modify</code>
1422	    or <code class="function">erase</code> efficiently given a valid point-type
1423	    iterator. However, in order to supply it with a valid point-type
1424	    iterator, one needs to iterate (linearly) over all
1425	    values, then supply the relevant iterator (recall that a
1426	    range-type iterator can always be converted to a point-type
1427	    iterator). This means that if the number of <code class="function">modify</code> or
1428	    <code class="function">erase</code> operations is non-negligible (say
1429	    super-logarithmic in the total sequence of operations) - binary
1430	    heaps will perform badly.
1431	  </p></div></div></div></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="policy_data_structures_using.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="policy_data_structures.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="policy_based_data_structures_test.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Using </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> Testing</td></tr></table></div></body></html>