xref: /netbsd-src/external/gpl3/gcc.old/dist/libsanitizer/tsan/tsan_interceptors.cc (revision 16dce51364ebe8aeafbae46bc5aa167b8115bc45)
1 //===-- tsan_interceptors.cc ----------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // FIXME: move as many interceptors as possible into
11 // sanitizer_common/sanitizer_common_interceptors.inc
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_libc.h"
16 #include "sanitizer_common/sanitizer_linux.h"
17 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
18 #include "sanitizer_common/sanitizer_placement_new.h"
19 #include "sanitizer_common/sanitizer_stacktrace.h"
20 #include "interception/interception.h"
21 #include "tsan_interface.h"
22 #include "tsan_platform.h"
23 #include "tsan_suppressions.h"
24 #include "tsan_rtl.h"
25 #include "tsan_mman.h"
26 #include "tsan_fd.h"
27 
28 using namespace __tsan;  // NOLINT
29 
30 #if SANITIZER_FREEBSD
31 #define __errno_location __error
32 #define __libc_malloc __malloc
33 #define __libc_realloc __realloc
34 #define __libc_calloc __calloc
35 #define __libc_free __free
36 #define stdout __stdoutp
37 #define stderr __stderrp
38 #endif
39 #if SANITIZER_NETBSD
40 #define	__errno_location __errno
41 #define	pthread_yield sched_yield
42 #define	fileno_unlocked fileno
43 #define	stdout __sF[1]
44 #define	stderr __sF[2]
45 #endif
46 
47 const int kSigCount = 65;
48 
49 struct my_siginfo_t {
50   // The size is determined by looking at sizeof of real siginfo_t on linux.
51   u64 opaque[128 / sizeof(u64)];
52 };
53 
54 struct ucontext_t {
55   // The size is determined by looking at sizeof of real ucontext_t on linux.
56   u64 opaque[936 / sizeof(u64) + 1];
57 };
58 
59 extern "C" int pthread_attr_init(void *attr);
60 extern "C" int pthread_attr_destroy(void *attr);
61 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
62 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
63 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
64 extern "C" int pthread_setspecific(unsigned key, const void *v);
65 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
66 extern "C" int pthread_yield();
67 extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set,
68                                __sanitizer_sigset_t *oldset);
69 // REAL(sigfillset) defined in common interceptors.
70 DECLARE_REAL(int, sigfillset, __sanitizer_sigset_t *set)
71 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
72 extern "C" void *pthread_self();
73 extern "C" void _exit(int status);
74 extern "C" int *__errno_location();
75 extern "C" int fileno_unlocked(void *stream);
76 extern "C" void *__libc_malloc(uptr size);
77 extern "C" void *__libc_calloc(uptr size, uptr n);
78 extern "C" void *__libc_realloc(void *ptr, uptr size);
79 extern "C" void __libc_free(void *ptr);
80 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
81 extern "C" int mallopt(int param, int value);
82 #endif
83 #if SANITIZER_NETBSD
84 extern __sanitizer_FILE **__sF;
85 #else
86 extern __sanitizer_FILE *stdout, *stderr;
87 #endif
88 const int PTHREAD_MUTEX_RECURSIVE = 1;
89 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
90 const int EINVAL = 22;
91 const int EBUSY = 16;
92 const int EOWNERDEAD = 130;
93 const int EPOLL_CTL_ADD = 1;
94 const int SIGILL = 4;
95 const int SIGABRT = 6;
96 const int SIGFPE = 8;
97 const int SIGSEGV = 11;
98 const int SIGPIPE = 13;
99 const int SIGTERM = 15;
100 const int SIGBUS = 7;
101 const int SIGSYS = 31;
102 void *const MAP_FAILED = (void*)-1;
103 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
104 const int MAP_FIXED = 0x10;
105 typedef long long_t;  // NOLINT
106 
107 // From /usr/include/unistd.h
108 # define F_ULOCK 0      /* Unlock a previously locked region.  */
109 # define F_LOCK  1      /* Lock a region for exclusive use.  */
110 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
111 # define F_TEST  3      /* Test a region for other processes locks.  */
112 
113 typedef void (*sighandler_t)(int sig);
114 
115 #define errno (*__errno_location())
116 
117 struct sigaction_t {
118   union {
119     sighandler_t sa_handler;
120     void (*sa_sigaction)(int sig, my_siginfo_t *siginfo, void *uctx);
121   };
122 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
123   int sa_flags;
124   __sanitizer_sigset_t sa_mask;
125 #else
126   __sanitizer_sigset_t sa_mask;
127   int sa_flags;
128   void (*sa_restorer)();
129 #endif
130 };
131 
132 const sighandler_t SIG_DFL = (sighandler_t)0;
133 const sighandler_t SIG_IGN = (sighandler_t)1;
134 const sighandler_t SIG_ERR = (sighandler_t)-1;
135 const int SA_SIGINFO = 4;
136 const int SIG_SETMASK = 2;
137 
138 namespace std {
139 struct nothrow_t {};
140 }  // namespace std
141 
142 static sigaction_t sigactions[kSigCount];
143 
144 namespace __tsan {
145 struct SignalDesc {
146   bool armed;
147   bool sigaction;
148   my_siginfo_t siginfo;
149   ucontext_t ctx;
150 };
151 
152 struct SignalContext {
153   int int_signal_send;
154   atomic_uintptr_t in_blocking_func;
155   atomic_uintptr_t have_pending_signals;
156   SignalDesc pending_signals[kSigCount];
157 };
158 
159 // The object is 64-byte aligned, because we want hot data to be located in
160 // a single cache line if possible (it's accessed in every interceptor).
161 static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
162 static LibIgnore *libignore() {
163   return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
164 }
165 
166 void InitializeLibIgnore() {
167   libignore()->Init(*SuppressionContext::Get());
168   libignore()->OnLibraryLoaded(0);
169 }
170 
171 }  // namespace __tsan
172 
173 static SignalContext *SigCtx(ThreadState *thr) {
174   SignalContext *ctx = (SignalContext*)thr->signal_ctx;
175   if (ctx == 0 && !thr->is_dead) {
176     ctx = (SignalContext*)MmapOrDie(sizeof(*ctx), "SignalContext");
177     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
178     thr->signal_ctx = ctx;
179   }
180   return ctx;
181 }
182 
183 static unsigned g_thread_finalize_key;
184 
185 class ScopedInterceptor {
186  public:
187   ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc);
188   ~ScopedInterceptor();
189  private:
190   ThreadState *const thr_;
191   const uptr pc_;
192   bool in_ignored_lib_;
193 };
194 
195 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
196                                      uptr pc)
197     : thr_(thr)
198     , pc_(pc)
199     , in_ignored_lib_(false) {
200   if (!thr_->ignore_interceptors) {
201     Initialize(thr);
202     FuncEntry(thr, pc);
203   }
204   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
205   if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
206     in_ignored_lib_ = true;
207     thr_->in_ignored_lib = true;
208     ThreadIgnoreBegin(thr_, pc_);
209   }
210 }
211 
212 ScopedInterceptor::~ScopedInterceptor() {
213   if (in_ignored_lib_) {
214     thr_->in_ignored_lib = false;
215     ThreadIgnoreEnd(thr_, pc_);
216   }
217   if (!thr_->ignore_interceptors) {
218     ProcessPendingSignals(thr_);
219     FuncExit(thr_);
220     CheckNoLocks(thr_);
221   }
222 }
223 
224 #define SCOPED_INTERCEPTOR_RAW(func, ...) \
225     ThreadState *thr = cur_thread(); \
226     const uptr caller_pc = GET_CALLER_PC(); \
227     ScopedInterceptor si(thr, #func, caller_pc); \
228     const uptr pc = StackTrace::GetCurrentPc(); \
229     (void)pc; \
230 /**/
231 
232 #define SCOPED_TSAN_INTERCEPTOR(func, ...) \
233     SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
234     if (REAL(func) == 0) { \
235       Report("FATAL: ThreadSanitizer: failed to intercept %s\n", #func); \
236       Die(); \
237     }                                                    \
238     if (thr->ignore_interceptors || thr->in_ignored_lib) \
239       return REAL(func)(__VA_ARGS__); \
240 /**/
241 
242 #define TSAN_INTERCEPTOR(ret, func, ...) INTERCEPTOR(ret, func, __VA_ARGS__)
243 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
244 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
245 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
246 #else
247 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
248 #endif
249 
250 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
251 
252 struct BlockingCall {
253   explicit BlockingCall(ThreadState *thr)
254       : thr(thr)
255       , ctx(SigCtx(thr)) {
256     for (;;) {
257       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
258       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
259         break;
260       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
261       ProcessPendingSignals(thr);
262     }
263     // When we are in a "blocking call", we process signals asynchronously
264     // (right when they arrive). In this context we do not expect to be
265     // executing any user/runtime code. The known interceptor sequence when
266     // this is not true is: pthread_join -> munmap(stack). It's fine
267     // to ignore munmap in this case -- we handle stack shadow separately.
268     thr->ignore_interceptors++;
269   }
270 
271   ~BlockingCall() {
272     thr->ignore_interceptors--;
273     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
274   }
275 
276   ThreadState *thr;
277   SignalContext *ctx;
278 };
279 
280 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
281   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
282   unsigned res = BLOCK_REAL(sleep)(sec);
283   AfterSleep(thr, pc);
284   return res;
285 }
286 
287 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
288   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
289   int res = BLOCK_REAL(usleep)(usec);
290   AfterSleep(thr, pc);
291   return res;
292 }
293 
294 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
295   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
296   int res = BLOCK_REAL(nanosleep)(req, rem);
297   AfterSleep(thr, pc);
298   return res;
299 }
300 
301 // The sole reason tsan wraps atexit callbacks is to establish synchronization
302 // between callback setup and callback execution.
303 struct AtExitCtx {
304   void (*f)();
305   void *arg;
306 };
307 
308 static void at_exit_wrapper(void *arg) {
309   ThreadState *thr = cur_thread();
310   uptr pc = 0;
311   Acquire(thr, pc, (uptr)arg);
312   AtExitCtx *ctx = (AtExitCtx*)arg;
313   ((void(*)(void *arg))ctx->f)(ctx->arg);
314   __libc_free(ctx);
315 }
316 
317 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
318       void *arg, void *dso);
319 
320 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
321   if (cur_thread()->in_symbolizer)
322     return 0;
323   // We want to setup the atexit callback even if we are in ignored lib
324   // or after fork.
325   SCOPED_INTERCEPTOR_RAW(atexit, f);
326   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
327 }
328 
329 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
330   if (cur_thread()->in_symbolizer)
331     return 0;
332   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
333   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
334 }
335 
336 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
337       void *arg, void *dso) {
338   AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
339   ctx->f = f;
340   ctx->arg = arg;
341   Release(thr, pc, (uptr)ctx);
342   // Memory allocation in __cxa_atexit will race with free during exit,
343   // because we do not see synchronization around atexit callback list.
344   ThreadIgnoreBegin(thr, pc);
345   int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
346   ThreadIgnoreEnd(thr, pc);
347   return res;
348 }
349 
350 static void on_exit_wrapper(int status, void *arg) {
351   ThreadState *thr = cur_thread();
352   uptr pc = 0;
353   Acquire(thr, pc, (uptr)arg);
354   AtExitCtx *ctx = (AtExitCtx*)arg;
355   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
356   __libc_free(ctx);
357 }
358 
359 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
360   if (cur_thread()->in_symbolizer)
361     return 0;
362   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
363   AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
364   ctx->f = (void(*)())f;
365   ctx->arg = arg;
366   Release(thr, pc, (uptr)ctx);
367   // Memory allocation in __cxa_atexit will race with free during exit,
368   // because we do not see synchronization around atexit callback list.
369   ThreadIgnoreBegin(thr, pc);
370   int res = REAL(on_exit)(on_exit_wrapper, ctx);
371   ThreadIgnoreEnd(thr, pc);
372   return res;
373 }
374 
375 // Cleanup old bufs.
376 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
377   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
378     JmpBuf *buf = &thr->jmp_bufs[i];
379     if (buf->sp <= sp) {
380       uptr sz = thr->jmp_bufs.Size();
381       thr->jmp_bufs[i] = thr->jmp_bufs[sz - 1];
382       thr->jmp_bufs.PopBack();
383       i--;
384     }
385   }
386 }
387 
388 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
389   if (thr->shadow_stack_pos == 0)  // called from libc guts during bootstrap
390     return;
391   // Cleanup old bufs.
392   JmpBufGarbageCollect(thr, sp);
393   // Remember the buf.
394   JmpBuf *buf = thr->jmp_bufs.PushBack();
395   buf->sp = sp;
396   buf->mangled_sp = mangled_sp;
397   buf->shadow_stack_pos = thr->shadow_stack_pos;
398   SignalContext *sctx = SigCtx(thr);
399   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
400   buf->in_blocking_func = sctx ?
401       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
402       false;
403   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
404       memory_order_relaxed);
405 }
406 
407 static void LongJmp(ThreadState *thr, uptr *env) {
408 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
409   uptr mangled_sp = env[2];
410 #else
411   uptr mangled_sp = env[6];
412 #endif  // SANITIZER_FREEBSD
413   // Find the saved buf by mangled_sp.
414   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
415     JmpBuf *buf = &thr->jmp_bufs[i];
416     if (buf->mangled_sp == mangled_sp) {
417       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
418       // Unwind the stack.
419       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
420         FuncExit(thr);
421       SignalContext *sctx = SigCtx(thr);
422       if (sctx) {
423         sctx->int_signal_send = buf->int_signal_send;
424         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
425             memory_order_relaxed);
426       }
427       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
428           memory_order_relaxed);
429       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
430       return;
431     }
432   }
433   Printf("ThreadSanitizer: can't find longjmp buf\n");
434   CHECK(0);
435 }
436 
437 // FIXME: put everything below into a common extern "C" block?
438 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
439   SetJmp(cur_thread(), sp, mangled_sp);
440 }
441 
442 // Not called.  Merely to satisfy TSAN_INTERCEPT().
443 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
444 int __interceptor_setjmp(void *env);
445 extern "C" int __interceptor_setjmp(void *env) {
446   CHECK(0);
447   return 0;
448 }
449 
450 // FIXME: any reason to have a separate declaration?
451 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
452 int __interceptor__setjmp(void *env);
453 extern "C" int __interceptor__setjmp(void *env) {
454   CHECK(0);
455   return 0;
456 }
457 
458 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
459 int __interceptor_sigsetjmp(void *env);
460 extern "C" int __interceptor_sigsetjmp(void *env) {
461   CHECK(0);
462   return 0;
463 }
464 
465 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
466 int __interceptor___sigsetjmp(void *env);
467 extern "C" int __interceptor___sigsetjmp(void *env) {
468   CHECK(0);
469   return 0;
470 }
471 
472 extern "C" int setjmp(void *env);
473 extern "C" int _setjmp(void *env);
474 extern "C" int sigsetjmp(void *env);
475 extern "C" int __sigsetjmp(void *env);
476 DEFINE_REAL(int, setjmp, void *env)
477 DEFINE_REAL(int, _setjmp, void *env)
478 DEFINE_REAL(int, sigsetjmp, void *env)
479 DEFINE_REAL(int, __sigsetjmp, void *env)
480 
481 TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
482   {
483     SCOPED_TSAN_INTERCEPTOR(longjmp, env, val);
484   }
485   LongJmp(cur_thread(), env);
486   REAL(longjmp)(env, val);
487 }
488 
489 TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
490   {
491     SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val);
492   }
493   LongJmp(cur_thread(), env);
494   REAL(siglongjmp)(env, val);
495 }
496 
497 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
498   if (cur_thread()->in_symbolizer)
499     return __libc_malloc(size);
500   void *p = 0;
501   {
502     SCOPED_INTERCEPTOR_RAW(malloc, size);
503     p = user_alloc(thr, pc, size);
504   }
505   invoke_malloc_hook(p, size);
506   return p;
507 }
508 
509 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
510   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
511   return user_alloc(thr, pc, sz, align);
512 }
513 
514 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
515   if (cur_thread()->in_symbolizer)
516     return __libc_calloc(size, n);
517   if (__sanitizer::CallocShouldReturnNullDueToOverflow(size, n))
518     return AllocatorReturnNull();
519   void *p = 0;
520   {
521     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
522     p = user_alloc(thr, pc, n * size);
523     if (p)
524       internal_memset(p, 0, n * size);
525   }
526   invoke_malloc_hook(p, n * size);
527   return p;
528 }
529 
530 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
531   if (cur_thread()->in_symbolizer)
532     return __libc_realloc(p, size);
533   if (p)
534     invoke_free_hook(p);
535   {
536     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
537     p = user_realloc(thr, pc, p, size);
538   }
539   invoke_malloc_hook(p, size);
540   return p;
541 }
542 
543 TSAN_INTERCEPTOR(void, free, void *p) {
544   if (p == 0)
545     return;
546   if (cur_thread()->in_symbolizer)
547     return __libc_free(p);
548   invoke_free_hook(p);
549   SCOPED_INTERCEPTOR_RAW(free, p);
550   user_free(thr, pc, p);
551 }
552 
553 TSAN_INTERCEPTOR(void, cfree, void *p) {
554   if (p == 0)
555     return;
556   if (cur_thread()->in_symbolizer)
557     return __libc_free(p);
558   invoke_free_hook(p);
559   SCOPED_INTERCEPTOR_RAW(cfree, p);
560   user_free(thr, pc, p);
561 }
562 
563 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
564   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
565   return user_alloc_usable_size(p);
566 }
567 
568 #define OPERATOR_NEW_BODY(mangled_name) \
569   if (cur_thread()->in_symbolizer) \
570     return __libc_malloc(size); \
571   void *p = 0; \
572   {  \
573     SCOPED_INTERCEPTOR_RAW(mangled_name, size); \
574     p = user_alloc(thr, pc, size); \
575   }  \
576   invoke_malloc_hook(p, size);  \
577   return p;
578 
579 SANITIZER_INTERFACE_ATTRIBUTE
580 void *operator new(__sanitizer::uptr size);
581 void *operator new(__sanitizer::uptr size) {
582   OPERATOR_NEW_BODY(_Znwm);
583 }
584 
585 SANITIZER_INTERFACE_ATTRIBUTE
586 void *operator new[](__sanitizer::uptr size);
587 void *operator new[](__sanitizer::uptr size) {
588   OPERATOR_NEW_BODY(_Znam);
589 }
590 
591 SANITIZER_INTERFACE_ATTRIBUTE
592 void *operator new(__sanitizer::uptr size, std::nothrow_t const&);
593 void *operator new(__sanitizer::uptr size, std::nothrow_t const&) {
594   OPERATOR_NEW_BODY(_ZnwmRKSt9nothrow_t);
595 }
596 
597 SANITIZER_INTERFACE_ATTRIBUTE
598 void *operator new[](__sanitizer::uptr size, std::nothrow_t const&);
599 void *operator new[](__sanitizer::uptr size, std::nothrow_t const&) {
600   OPERATOR_NEW_BODY(_ZnamRKSt9nothrow_t);
601 }
602 
603 #define OPERATOR_DELETE_BODY(mangled_name) \
604   if (ptr == 0) return;  \
605   if (cur_thread()->in_symbolizer) \
606     return __libc_free(ptr); \
607   invoke_free_hook(ptr);  \
608   SCOPED_INTERCEPTOR_RAW(mangled_name, ptr);  \
609   user_free(thr, pc, ptr);
610 
611 SANITIZER_INTERFACE_ATTRIBUTE
612 void operator delete(void *ptr) throw();
613 void operator delete(void *ptr) throw() {
614   OPERATOR_DELETE_BODY(_ZdlPv);
615 }
616 
617 SANITIZER_INTERFACE_ATTRIBUTE
618 void operator delete[](void *ptr) throw();
619 void operator delete[](void *ptr) throw() {
620   OPERATOR_DELETE_BODY(_ZdaPv);
621 }
622 
623 SANITIZER_INTERFACE_ATTRIBUTE
624 void operator delete(void *ptr, std::nothrow_t const&);
625 void operator delete(void *ptr, std::nothrow_t const&) {
626   OPERATOR_DELETE_BODY(_ZdlPvRKSt9nothrow_t);
627 }
628 
629 SANITIZER_INTERFACE_ATTRIBUTE
630 void operator delete[](void *ptr, std::nothrow_t const&);
631 void operator delete[](void *ptr, std::nothrow_t const&) {
632   OPERATOR_DELETE_BODY(_ZdaPvRKSt9nothrow_t);
633 }
634 
635 TSAN_INTERCEPTOR(uptr, strlen, const char *s) {
636   SCOPED_TSAN_INTERCEPTOR(strlen, s);
637   uptr len = internal_strlen(s);
638   MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
639   return len;
640 }
641 
642 TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
643   SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
644   MemoryAccessRange(thr, pc, (uptr)dst, size, true);
645   return internal_memset(dst, v, size);
646 }
647 
648 TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
649   SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
650   MemoryAccessRange(thr, pc, (uptr)dst, size, true);
651   MemoryAccessRange(thr, pc, (uptr)src, size, false);
652   return internal_memcpy(dst, src, size);
653 }
654 
655 TSAN_INTERCEPTOR(int, memcmp, const void *s1, const void *s2, uptr n) {
656   SCOPED_TSAN_INTERCEPTOR(memcmp, s1, s2, n);
657   int res = 0;
658   uptr len = 0;
659   for (; len < n; len++) {
660     if ((res = ((unsigned char*)s1)[len] - ((unsigned char*)s2)[len]))
661       break;
662   }
663   MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
664   MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
665   return res;
666 }
667 
668 TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
669   SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
670   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
671   MemoryAccessRange(thr, pc, (uptr)src, n, false);
672   return REAL(memmove)(dst, src, n);
673 }
674 
675 TSAN_INTERCEPTOR(char*, strchr, char *s, int c) {
676   SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
677   char *res = REAL(strchr)(s, c);
678   uptr len = res ? (char*)res - (char*)s + 1 : internal_strlen(s) + 1;
679   MemoryAccessRange(thr, pc, (uptr)s, len, false);
680   return res;
681 }
682 
683 TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) {
684   SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
685   char *res = REAL(strchrnul)(s, c);
686   uptr len = (char*)res - (char*)s + 1;
687   MemoryAccessRange(thr, pc, (uptr)s, len, false);
688   return res;
689 }
690 
691 TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) {
692   SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
693   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false);
694   return REAL(strrchr)(s, c);
695 }
696 
697 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
698   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
699   uptr srclen = internal_strlen(src);
700   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
701   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
702   return REAL(strcpy)(dst, src);  // NOLINT
703 }
704 
705 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
706   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
707   uptr srclen = internal_strnlen(src, n);
708   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
709   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
710   return REAL(strncpy)(dst, src, n);
711 }
712 
713 TSAN_INTERCEPTOR(const char*, strstr, const char *s1, const char *s2) {
714   SCOPED_TSAN_INTERCEPTOR(strstr, s1, s2);
715   const char *res = REAL(strstr)(s1, s2);
716   uptr len1 = internal_strlen(s1);
717   uptr len2 = internal_strlen(s2);
718   MemoryAccessRange(thr, pc, (uptr)s1, len1 + 1, false);
719   MemoryAccessRange(thr, pc, (uptr)s2, len2 + 1, false);
720   return res;
721 }
722 
723 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
724   SCOPED_TSAN_INTERCEPTOR(strdup, str);
725   // strdup will call malloc, so no instrumentation is required here.
726   return REAL(strdup)(str);
727 }
728 
729 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
730   if (*addr) {
731     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
732       if (flags & MAP_FIXED) {
733         errno = EINVAL;
734         return false;
735       } else {
736         *addr = 0;
737       }
738     }
739   }
740   return true;
741 }
742 
743 TSAN_INTERCEPTOR(void*, mmap, void *addr, long_t sz, int prot,
744                          int flags, int fd, unsigned off) {
745   SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
746   if (!fix_mmap_addr(&addr, sz, flags))
747     return MAP_FAILED;
748   void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
749   if (res != MAP_FAILED) {
750     if (fd > 0)
751       FdAccess(thr, pc, fd);
752     MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
753   }
754   return res;
755 }
756 
757 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
758 TSAN_INTERCEPTOR(void*, mmap64, void *addr, long_t sz, int prot,
759                            int flags, int fd, u64 off) {
760   SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
761   if (!fix_mmap_addr(&addr, sz, flags))
762     return MAP_FAILED;
763   void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
764   if (res != MAP_FAILED) {
765     if (fd > 0)
766       FdAccess(thr, pc, fd);
767     MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
768   }
769   return res;
770 }
771 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
772 #else
773 #define TSAN_MAYBE_INTERCEPT_MMAP64
774 #endif
775 
776 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
777   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
778   DontNeedShadowFor((uptr)addr, sz);
779   int res = REAL(munmap)(addr, sz);
780   return res;
781 }
782 
783 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
784 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
785   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
786   return user_alloc(thr, pc, sz, align);
787 }
788 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
789 #else
790 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
791 #endif
792 
793 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
794   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
795   return user_alloc(thr, pc, sz, align);
796 }
797 
798 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
799   SCOPED_INTERCEPTOR_RAW(valloc, sz);
800   return user_alloc(thr, pc, sz, GetPageSizeCached());
801 }
802 
803 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
804 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
805   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
806   sz = RoundUp(sz, GetPageSizeCached());
807   return user_alloc(thr, pc, sz, GetPageSizeCached());
808 }
809 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
810 #else
811 #define TSAN_MAYBE_INTERCEPT_PVALLOC
812 #endif
813 
814 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
815   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
816   *memptr = user_alloc(thr, pc, sz, align);
817   return 0;
818 }
819 
820 // Used in thread-safe function static initialization.
821 extern "C" int INTERFACE_ATTRIBUTE __cxa_guard_acquire(atomic_uint32_t *g) {
822   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
823   for (;;) {
824     u32 cmp = atomic_load(g, memory_order_acquire);
825     if (cmp == 0) {
826       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
827         return 1;
828     } else if (cmp == 1) {
829       Acquire(thr, pc, (uptr)g);
830       return 0;
831     } else {
832       internal_sched_yield();
833     }
834   }
835 }
836 
837 extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_release(atomic_uint32_t *g) {
838   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
839   Release(thr, pc, (uptr)g);
840   atomic_store(g, 1, memory_order_release);
841 }
842 
843 extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_abort(atomic_uint32_t *g) {
844   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
845   atomic_store(g, 0, memory_order_relaxed);
846 }
847 
848 static void thread_finalize(void *v) {
849   uptr iter = (uptr)v;
850   if (iter > 1) {
851     if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
852       Printf("ThreadSanitizer: failed to set thread key\n");
853       Die();
854     }
855     return;
856   }
857   {
858     ThreadState *thr = cur_thread();
859     ThreadFinish(thr);
860     SignalContext *sctx = thr->signal_ctx;
861     if (sctx) {
862       thr->signal_ctx = 0;
863       UnmapOrDie(sctx, sizeof(*sctx));
864     }
865   }
866 }
867 
868 
869 struct ThreadParam {
870   void* (*callback)(void *arg);
871   void *param;
872   atomic_uintptr_t tid;
873 };
874 
875 extern "C" void *__tsan_thread_start_func(void *arg) {
876   ThreadParam *p = (ThreadParam*)arg;
877   void* (*callback)(void *arg) = p->callback;
878   void *param = p->param;
879   int tid = 0;
880   {
881     ThreadState *thr = cur_thread();
882     // Thread-local state is not initialized yet.
883     ScopedIgnoreInterceptors ignore;
884     ThreadIgnoreBegin(thr, 0);
885     if (pthread_setspecific(g_thread_finalize_key,
886                             (void *)kPthreadDestructorIterations)) {
887       Printf("ThreadSanitizer: failed to set thread key\n");
888       Die();
889     }
890     ThreadIgnoreEnd(thr, 0);
891     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
892       pthread_yield();
893     atomic_store(&p->tid, 0, memory_order_release);
894     ThreadStart(thr, tid, GetTid());
895   }
896   void *res = callback(param);
897   // Prevent the callback from being tail called,
898   // it mixes up stack traces.
899   volatile int foo = 42;
900   foo++;
901   return res;
902 }
903 
904 TSAN_INTERCEPTOR(int, pthread_create,
905     void *th, void *attr, void *(*callback)(void*), void * param) {
906   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
907   if (ctx->after_multithreaded_fork) {
908     if (flags()->die_after_fork) {
909       Report("ThreadSanitizer: starting new threads after multi-threaded "
910           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
911       Die();
912     } else {
913       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
914           "fork is not supported (pid %d). Continuing because of "
915           "die_after_fork=0, but you are on your own\n", internal_getpid());
916     }
917   }
918   __sanitizer_pthread_attr_t myattr;
919   if (attr == 0) {
920     pthread_attr_init(&myattr);
921     attr = &myattr;
922   }
923   int detached = 0;
924   REAL(pthread_attr_getdetachstate)(attr, &detached);
925   AdjustStackSize(attr);
926 
927   ThreadParam p;
928   p.callback = callback;
929   p.param = param;
930   atomic_store(&p.tid, 0, memory_order_relaxed);
931   int res = -1;
932   {
933     // Otherwise we see false positives in pthread stack manipulation.
934     ScopedIgnoreInterceptors ignore;
935     ThreadIgnoreBegin(thr, pc);
936     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
937     ThreadIgnoreEnd(thr, pc);
938   }
939   if (res == 0) {
940     int tid = ThreadCreate(thr, pc, *(uptr*)th, detached);
941     CHECK_NE(tid, 0);
942     atomic_store(&p.tid, tid, memory_order_release);
943     while (atomic_load(&p.tid, memory_order_acquire) != 0)
944       pthread_yield();
945   }
946   if (attr == &myattr)
947     pthread_attr_destroy(&myattr);
948   return res;
949 }
950 
951 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
952   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
953   int tid = ThreadTid(thr, pc, (uptr)th);
954   ThreadIgnoreBegin(thr, pc);
955   int res = BLOCK_REAL(pthread_join)(th, ret);
956   ThreadIgnoreEnd(thr, pc);
957   if (res == 0) {
958     ThreadJoin(thr, pc, tid);
959   }
960   return res;
961 }
962 
963 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
964   SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
965   int tid = ThreadTid(thr, pc, (uptr)th);
966   int res = REAL(pthread_detach)(th);
967   if (res == 0) {
968     ThreadDetach(thr, pc, tid);
969   }
970   return res;
971 }
972 
973 // Problem:
974 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
975 // pthread_cond_t has different size in the different versions.
976 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
977 // after pthread_cond_t (old cond is smaller).
978 // If we call old REAL functions for new pthread_cond_t, we will lose  some
979 // functionality (e.g. old functions do not support waiting against
980 // CLOCK_REALTIME).
981 // Proper handling would require to have 2 versions of interceptors as well.
982 // But this is messy, in particular requires linker scripts when sanitizer
983 // runtime is linked into a shared library.
984 // Instead we assume we don't have dynamic libraries built against old
985 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
986 // that allows to work with old libraries (but this mode does not support
987 // some features, e.g. pthread_condattr_getpshared).
988 static void *init_cond(void *c, bool force = false) {
989   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
990   // So we allocate additional memory on the side large enough to hold
991   // any pthread_cond_t object. Always call new REAL functions, but pass
992   // the aux object to them.
993   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
994   // first word of pthread_cond_t to zero.
995   // It's all relevant only for linux.
996   if (!common_flags()->legacy_pthread_cond)
997     return c;
998   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
999   uptr cond = atomic_load(p, memory_order_acquire);
1000   if (!force && cond != 0)
1001     return (void*)cond;
1002   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1003   internal_memset(newcond, 0, pthread_cond_t_sz);
1004   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1005       memory_order_acq_rel))
1006     return newcond;
1007   WRAP(free)(newcond);
1008   return (void*)cond;
1009 }
1010 
1011 struct CondMutexUnlockCtx {
1012   ThreadState *thr;
1013   uptr pc;
1014   void *m;
1015 };
1016 
1017 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1018   MutexLock(arg->thr, arg->pc, (uptr)arg->m);
1019 }
1020 
1021 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1022   void *cond = init_cond(c, true);
1023   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1024   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1025   return REAL(pthread_cond_init)(cond, a);
1026 }
1027 
1028 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1029   void *cond = init_cond(c);
1030   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1031   MutexUnlock(thr, pc, (uptr)m);
1032   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1033   CondMutexUnlockCtx arg = {thr, pc, m};
1034   // This ensures that we handle mutex lock even in case of pthread_cancel.
1035   // See test/tsan/cond_cancel.cc.
1036   int res = call_pthread_cancel_with_cleanup(
1037       (int(*)(void *c, void *m, void *abstime))REAL(pthread_cond_wait),
1038       cond, m, 0, (void(*)(void *arg))cond_mutex_unlock, &arg);
1039   if (res == errno_EOWNERDEAD)
1040     MutexRepair(thr, pc, (uptr)m);
1041   MutexLock(thr, pc, (uptr)m);
1042   return res;
1043 }
1044 
1045 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1046   void *cond = init_cond(c);
1047   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1048   MutexUnlock(thr, pc, (uptr)m);
1049   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1050   CondMutexUnlockCtx arg = {thr, pc, m};
1051   // This ensures that we handle mutex lock even in case of pthread_cancel.
1052   // See test/tsan/cond_cancel.cc.
1053   int res = call_pthread_cancel_with_cleanup(
1054       REAL(pthread_cond_timedwait), cond, m, abstime,
1055       (void(*)(void *arg))cond_mutex_unlock, &arg);
1056   if (res == errno_EOWNERDEAD)
1057     MutexRepair(thr, pc, (uptr)m);
1058   MutexLock(thr, pc, (uptr)m);
1059   return res;
1060 }
1061 
1062 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1063   void *cond = init_cond(c);
1064   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1065   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1066   return REAL(pthread_cond_signal)(cond);
1067 }
1068 
1069 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1070   void *cond = init_cond(c);
1071   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1072   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1073   return REAL(pthread_cond_broadcast)(cond);
1074 }
1075 
1076 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1077   void *cond = init_cond(c);
1078   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1079   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1080   int res = REAL(pthread_cond_destroy)(cond);
1081   if (common_flags()->legacy_pthread_cond) {
1082     // Free our aux cond and zero the pointer to not leave dangling pointers.
1083     WRAP(free)(cond);
1084     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1085   }
1086   return res;
1087 }
1088 
1089 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1090   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1091   int res = REAL(pthread_mutex_init)(m, a);
1092   if (res == 0) {
1093     bool recursive = false;
1094     if (a) {
1095       int type = 0;
1096       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1097         recursive = (type == PTHREAD_MUTEX_RECURSIVE
1098             || type == PTHREAD_MUTEX_RECURSIVE_NP);
1099     }
1100     MutexCreate(thr, pc, (uptr)m, false, recursive, false);
1101   }
1102   return res;
1103 }
1104 
1105 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1106   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1107   int res = REAL(pthread_mutex_destroy)(m);
1108   if (res == 0 || res == EBUSY) {
1109     MutexDestroy(thr, pc, (uptr)m);
1110   }
1111   return res;
1112 }
1113 
1114 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1115   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1116   int res = REAL(pthread_mutex_trylock)(m);
1117   if (res == EOWNERDEAD)
1118     MutexRepair(thr, pc, (uptr)m);
1119   if (res == 0 || res == EOWNERDEAD)
1120     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1121   return res;
1122 }
1123 
1124 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1125   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1126   int res = REAL(pthread_mutex_timedlock)(m, abstime);
1127   if (res == 0) {
1128     MutexLock(thr, pc, (uptr)m);
1129   }
1130   return res;
1131 }
1132 
1133 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1134   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1135   int res = REAL(pthread_spin_init)(m, pshared);
1136   if (res == 0) {
1137     MutexCreate(thr, pc, (uptr)m, false, false, false);
1138   }
1139   return res;
1140 }
1141 
1142 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1143   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1144   int res = REAL(pthread_spin_destroy)(m);
1145   if (res == 0) {
1146     MutexDestroy(thr, pc, (uptr)m);
1147   }
1148   return res;
1149 }
1150 
1151 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1152   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1153   int res = REAL(pthread_spin_lock)(m);
1154   if (res == 0) {
1155     MutexLock(thr, pc, (uptr)m);
1156   }
1157   return res;
1158 }
1159 
1160 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1161   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1162   int res = REAL(pthread_spin_trylock)(m);
1163   if (res == 0) {
1164     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1165   }
1166   return res;
1167 }
1168 
1169 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1170   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1171   MutexUnlock(thr, pc, (uptr)m);
1172   int res = REAL(pthread_spin_unlock)(m);
1173   return res;
1174 }
1175 
1176 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1177   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1178   int res = REAL(pthread_rwlock_init)(m, a);
1179   if (res == 0) {
1180     MutexCreate(thr, pc, (uptr)m, true, false, false);
1181   }
1182   return res;
1183 }
1184 
1185 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1186   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1187   int res = REAL(pthread_rwlock_destroy)(m);
1188   if (res == 0) {
1189     MutexDestroy(thr, pc, (uptr)m);
1190   }
1191   return res;
1192 }
1193 
1194 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1195   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1196   int res = REAL(pthread_rwlock_rdlock)(m);
1197   if (res == 0) {
1198     MutexReadLock(thr, pc, (uptr)m);
1199   }
1200   return res;
1201 }
1202 
1203 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1204   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1205   int res = REAL(pthread_rwlock_tryrdlock)(m);
1206   if (res == 0) {
1207     MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
1208   }
1209   return res;
1210 }
1211 
1212 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1213   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1214   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1215   if (res == 0) {
1216     MutexReadLock(thr, pc, (uptr)m);
1217   }
1218   return res;
1219 }
1220 
1221 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1222   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1223   int res = REAL(pthread_rwlock_wrlock)(m);
1224   if (res == 0) {
1225     MutexLock(thr, pc, (uptr)m);
1226   }
1227   return res;
1228 }
1229 
1230 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1231   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1232   int res = REAL(pthread_rwlock_trywrlock)(m);
1233   if (res == 0) {
1234     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1235   }
1236   return res;
1237 }
1238 
1239 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1240   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1241   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1242   if (res == 0) {
1243     MutexLock(thr, pc, (uptr)m);
1244   }
1245   return res;
1246 }
1247 
1248 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1249   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1250   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1251   int res = REAL(pthread_rwlock_unlock)(m);
1252   return res;
1253 }
1254 
1255 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1256   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1257   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1258   int res = REAL(pthread_barrier_init)(b, a, count);
1259   return res;
1260 }
1261 
1262 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1263   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1264   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1265   int res = REAL(pthread_barrier_destroy)(b);
1266   return res;
1267 }
1268 
1269 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1270   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1271   Release(thr, pc, (uptr)b);
1272   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1273   int res = REAL(pthread_barrier_wait)(b);
1274   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1275   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1276     Acquire(thr, pc, (uptr)b);
1277   }
1278   return res;
1279 }
1280 
1281 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1282   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1283   if (o == 0 || f == 0)
1284     return EINVAL;
1285   atomic_uint32_t *a = static_cast<atomic_uint32_t*>(o);
1286   u32 v = atomic_load(a, memory_order_acquire);
1287   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1288                                                memory_order_relaxed)) {
1289     (*f)();
1290     if (!thr->in_ignored_lib)
1291       Release(thr, pc, (uptr)o);
1292     atomic_store(a, 2, memory_order_release);
1293   } else {
1294     while (v != 2) {
1295       pthread_yield();
1296       v = atomic_load(a, memory_order_acquire);
1297     }
1298     if (!thr->in_ignored_lib)
1299       Acquire(thr, pc, (uptr)o);
1300   }
1301   return 0;
1302 }
1303 
1304 TSAN_INTERCEPTOR(int, sem_init, void *s, int pshared, unsigned value) {
1305   SCOPED_TSAN_INTERCEPTOR(sem_init, s, pshared, value);
1306   int res = REAL(sem_init)(s, pshared, value);
1307   return res;
1308 }
1309 
1310 TSAN_INTERCEPTOR(int, sem_destroy, void *s) {
1311   SCOPED_TSAN_INTERCEPTOR(sem_destroy, s);
1312   int res = REAL(sem_destroy)(s);
1313   return res;
1314 }
1315 
1316 TSAN_INTERCEPTOR(int, sem_wait, void *s) {
1317   SCOPED_TSAN_INTERCEPTOR(sem_wait, s);
1318   int res = BLOCK_REAL(sem_wait)(s);
1319   if (res == 0) {
1320     Acquire(thr, pc, (uptr)s);
1321   }
1322   return res;
1323 }
1324 
1325 TSAN_INTERCEPTOR(int, sem_trywait, void *s) {
1326   SCOPED_TSAN_INTERCEPTOR(sem_trywait, s);
1327   int res = BLOCK_REAL(sem_trywait)(s);
1328   if (res == 0) {
1329     Acquire(thr, pc, (uptr)s);
1330   }
1331   return res;
1332 }
1333 
1334 TSAN_INTERCEPTOR(int, sem_timedwait, void *s, void *abstime) {
1335   SCOPED_TSAN_INTERCEPTOR(sem_timedwait, s, abstime);
1336   int res = BLOCK_REAL(sem_timedwait)(s, abstime);
1337   if (res == 0) {
1338     Acquire(thr, pc, (uptr)s);
1339   }
1340   return res;
1341 }
1342 
1343 TSAN_INTERCEPTOR(int, sem_post, void *s) {
1344   SCOPED_TSAN_INTERCEPTOR(sem_post, s);
1345   Release(thr, pc, (uptr)s);
1346   int res = REAL(sem_post)(s);
1347   return res;
1348 }
1349 
1350 TSAN_INTERCEPTOR(int, sem_getvalue, void *s, int *sval) {
1351   SCOPED_TSAN_INTERCEPTOR(sem_getvalue, s, sval);
1352   int res = REAL(sem_getvalue)(s, sval);
1353   if (res == 0) {
1354     Acquire(thr, pc, (uptr)s);
1355   }
1356   return res;
1357 }
1358 
1359 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1360 TSAN_INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) {
1361   SCOPED_TSAN_INTERCEPTOR(__xstat, version, path, buf);
1362   return REAL(__xstat)(version, path, buf);
1363 }
1364 #define TSAN_MAYBE_INTERCEPT___XSTAT TSAN_INTERCEPT(__xstat)
1365 #else
1366 #define TSAN_MAYBE_INTERCEPT___XSTAT
1367 #endif
1368 
1369 TSAN_INTERCEPTOR(int, stat, const char *path, void *buf) {
1370 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
1371   SCOPED_TSAN_INTERCEPTOR(stat, path, buf);
1372   return REAL(stat)(path, buf);
1373 #else
1374   SCOPED_TSAN_INTERCEPTOR(__xstat, 0, path, buf);
1375   return REAL(__xstat)(0, path, buf);
1376 #endif
1377 }
1378 
1379 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1380 TSAN_INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) {
1381   SCOPED_TSAN_INTERCEPTOR(__xstat64, version, path, buf);
1382   return REAL(__xstat64)(version, path, buf);
1383 }
1384 #define TSAN_MAYBE_INTERCEPT___XSTAT64 TSAN_INTERCEPT(__xstat64)
1385 #else
1386 #define TSAN_MAYBE_INTERCEPT___XSTAT64
1387 #endif
1388 
1389 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1390 TSAN_INTERCEPTOR(int, stat64, const char *path, void *buf) {
1391   SCOPED_TSAN_INTERCEPTOR(__xstat64, 0, path, buf);
1392   return REAL(__xstat64)(0, path, buf);
1393 }
1394 #define TSAN_MAYBE_INTERCEPT_STAT64 TSAN_INTERCEPT(stat64)
1395 #else
1396 #define TSAN_MAYBE_INTERCEPT_STAT64
1397 #endif
1398 
1399 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1400 TSAN_INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) {
1401   SCOPED_TSAN_INTERCEPTOR(__lxstat, version, path, buf);
1402   return REAL(__lxstat)(version, path, buf);
1403 }
1404 #define TSAN_MAYBE_INTERCEPT___LXSTAT TSAN_INTERCEPT(__lxstat)
1405 #else
1406 #define TSAN_MAYBE_INTERCEPT___LXSTAT
1407 #endif
1408 
1409 TSAN_INTERCEPTOR(int, lstat, const char *path, void *buf) {
1410 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
1411   SCOPED_TSAN_INTERCEPTOR(lstat, path, buf);
1412   return REAL(lstat)(path, buf);
1413 #else
1414   SCOPED_TSAN_INTERCEPTOR(__lxstat, 0, path, buf);
1415   return REAL(__lxstat)(0, path, buf);
1416 #endif
1417 }
1418 
1419 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1420 TSAN_INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) {
1421   SCOPED_TSAN_INTERCEPTOR(__lxstat64, version, path, buf);
1422   return REAL(__lxstat64)(version, path, buf);
1423 }
1424 #define TSAN_MAYBE_INTERCEPT___LXSTAT64 TSAN_INTERCEPT(__lxstat64)
1425 #else
1426 #define TSAN_MAYBE_INTERCEPT___LXSTAT64
1427 #endif
1428 
1429 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1430 TSAN_INTERCEPTOR(int, lstat64, const char *path, void *buf) {
1431   SCOPED_TSAN_INTERCEPTOR(__lxstat64, 0, path, buf);
1432   return REAL(__lxstat64)(0, path, buf);
1433 }
1434 #define TSAN_MAYBE_INTERCEPT_LSTAT64 TSAN_INTERCEPT(lstat64)
1435 #else
1436 #define TSAN_MAYBE_INTERCEPT_LSTAT64
1437 #endif
1438 
1439 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1440 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1441   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1442   if (fd > 0)
1443     FdAccess(thr, pc, fd);
1444   return REAL(__fxstat)(version, fd, buf);
1445 }
1446 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1447 #else
1448 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1449 #endif
1450 
1451 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1452 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
1453   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1454   if (fd > 0)
1455     FdAccess(thr, pc, fd);
1456   return REAL(fstat)(fd, buf);
1457 #else
1458   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1459   if (fd > 0)
1460     FdAccess(thr, pc, fd);
1461   return REAL(__fxstat)(0, fd, buf);
1462 #endif
1463 }
1464 
1465 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1466 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1467   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1468   if (fd > 0)
1469     FdAccess(thr, pc, fd);
1470   return REAL(__fxstat64)(version, fd, buf);
1471 }
1472 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1473 #else
1474 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1475 #endif
1476 
1477 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1478 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1479   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1480   if (fd > 0)
1481     FdAccess(thr, pc, fd);
1482   return REAL(__fxstat64)(0, fd, buf);
1483 }
1484 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1485 #else
1486 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1487 #endif
1488 
1489 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1490   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1491   int fd = REAL(open)(name, flags, mode);
1492   if (fd >= 0)
1493     FdFileCreate(thr, pc, fd);
1494   return fd;
1495 }
1496 
1497 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1498 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1499   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1500   int fd = REAL(open64)(name, flags, mode);
1501   if (fd >= 0)
1502     FdFileCreate(thr, pc, fd);
1503   return fd;
1504 }
1505 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1506 #else
1507 #define TSAN_MAYBE_INTERCEPT_OPEN64
1508 #endif
1509 
1510 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1511   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1512   int fd = REAL(creat)(name, mode);
1513   if (fd >= 0)
1514     FdFileCreate(thr, pc, fd);
1515   return fd;
1516 }
1517 
1518 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1519 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1520   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1521   int fd = REAL(creat64)(name, mode);
1522   if (fd >= 0)
1523     FdFileCreate(thr, pc, fd);
1524   return fd;
1525 }
1526 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1527 #else
1528 #define TSAN_MAYBE_INTERCEPT_CREAT64
1529 #endif
1530 
1531 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1532   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1533   int newfd = REAL(dup)(oldfd);
1534   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1535     FdDup(thr, pc, oldfd, newfd);
1536   return newfd;
1537 }
1538 
1539 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1540   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1541   int newfd2 = REAL(dup2)(oldfd, newfd);
1542   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1543     FdDup(thr, pc, oldfd, newfd2);
1544   return newfd2;
1545 }
1546 
1547 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1548   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1549   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1550   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1551     FdDup(thr, pc, oldfd, newfd2);
1552   return newfd2;
1553 }
1554 
1555 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1556 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1557   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1558   int fd = REAL(eventfd)(initval, flags);
1559   if (fd >= 0)
1560     FdEventCreate(thr, pc, fd);
1561   return fd;
1562 }
1563 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1564 #else
1565 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1566 #endif
1567 
1568 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1569 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1570   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1571   if (fd >= 0)
1572     FdClose(thr, pc, fd);
1573   fd = REAL(signalfd)(fd, mask, flags);
1574   if (fd >= 0)
1575     FdSignalCreate(thr, pc, fd);
1576   return fd;
1577 }
1578 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1579 #else
1580 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1581 #endif
1582 
1583 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1584 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1585   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1586   int fd = REAL(inotify_init)(fake);
1587   if (fd >= 0)
1588     FdInotifyCreate(thr, pc, fd);
1589   return fd;
1590 }
1591 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1592 #else
1593 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1594 #endif
1595 
1596 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1597 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1598   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1599   int fd = REAL(inotify_init1)(flags);
1600   if (fd >= 0)
1601     FdInotifyCreate(thr, pc, fd);
1602   return fd;
1603 }
1604 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1605 #else
1606 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1607 #endif
1608 
1609 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1610   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1611   int fd = REAL(socket)(domain, type, protocol);
1612   if (fd >= 0)
1613     FdSocketCreate(thr, pc, fd);
1614   return fd;
1615 }
1616 
1617 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1618   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1619   int res = REAL(socketpair)(domain, type, protocol, fd);
1620   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1621     FdPipeCreate(thr, pc, fd[0], fd[1]);
1622   return res;
1623 }
1624 
1625 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1626   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1627   FdSocketConnecting(thr, pc, fd);
1628   int res = REAL(connect)(fd, addr, addrlen);
1629   if (res == 0 && fd >= 0)
1630     FdSocketConnect(thr, pc, fd);
1631   return res;
1632 }
1633 
1634 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1635   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1636   int res = REAL(bind)(fd, addr, addrlen);
1637   if (fd > 0 && res == 0)
1638     FdAccess(thr, pc, fd);
1639   return res;
1640 }
1641 
1642 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1643   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1644   int res = REAL(listen)(fd, backlog);
1645   if (fd > 0 && res == 0)
1646     FdAccess(thr, pc, fd);
1647   return res;
1648 }
1649 
1650 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1651 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1652   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1653   int fd = REAL(epoll_create)(size);
1654   if (fd >= 0)
1655     FdPollCreate(thr, pc, fd);
1656   return fd;
1657 }
1658 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE TSAN_INTERCEPT(epoll_create)
1659 #else
1660 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE
1661 #endif
1662 
1663 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1664 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1665   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1666   int fd = REAL(epoll_create1)(flags);
1667   if (fd >= 0)
1668     FdPollCreate(thr, pc, fd);
1669   return fd;
1670 }
1671 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1 TSAN_INTERCEPT(epoll_create1)
1672 #else
1673 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1
1674 #endif
1675 
1676 TSAN_INTERCEPTOR(int, close, int fd) {
1677   SCOPED_TSAN_INTERCEPTOR(close, fd);
1678   if (fd >= 0)
1679     FdClose(thr, pc, fd);
1680   return REAL(close)(fd);
1681 }
1682 
1683 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1684 TSAN_INTERCEPTOR(int, __close, int fd) {
1685   SCOPED_TSAN_INTERCEPTOR(__close, fd);
1686   if (fd >= 0)
1687     FdClose(thr, pc, fd);
1688   return REAL(__close)(fd);
1689 }
1690 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1691 #else
1692 #define TSAN_MAYBE_INTERCEPT___CLOSE
1693 #endif
1694 
1695 // glibc guts
1696 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1697 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1698   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1699   int fds[64];
1700   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1701   for (int i = 0; i < cnt; i++) {
1702     if (fds[i] > 0)
1703       FdClose(thr, pc, fds[i]);
1704   }
1705   REAL(__res_iclose)(state, free_addr);
1706 }
1707 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1708 #else
1709 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1710 #endif
1711 
1712 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1713   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1714   int res = REAL(pipe)(pipefd);
1715   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1716     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1717   return res;
1718 }
1719 
1720 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1721   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1722   int res = REAL(pipe2)(pipefd, flags);
1723   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1724     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1725   return res;
1726 }
1727 
1728 TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
1729   SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
1730   if (fd >= 0) {
1731     FdAccess(thr, pc, fd);
1732     FdRelease(thr, pc, fd);
1733   }
1734   int res = REAL(send)(fd, buf, len, flags);
1735   return res;
1736 }
1737 
1738 TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
1739   SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
1740   if (fd >= 0) {
1741     FdAccess(thr, pc, fd);
1742     FdRelease(thr, pc, fd);
1743   }
1744   int res = REAL(sendmsg)(fd, msg, flags);
1745   return res;
1746 }
1747 
1748 TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
1749   SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
1750   if (fd >= 0)
1751     FdAccess(thr, pc, fd);
1752   int res = REAL(recv)(fd, buf, len, flags);
1753   if (res >= 0 && fd >= 0) {
1754     FdAcquire(thr, pc, fd);
1755   }
1756   return res;
1757 }
1758 
1759 TSAN_INTERCEPTOR(int, unlink, char *path) {
1760   SCOPED_TSAN_INTERCEPTOR(unlink, path);
1761   Release(thr, pc, File2addr(path));
1762   int res = REAL(unlink)(path);
1763   return res;
1764 }
1765 
1766 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1767   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1768   void *res = REAL(tmpfile)(fake);
1769   if (res) {
1770     int fd = fileno_unlocked(res);
1771     if (fd >= 0)
1772       FdFileCreate(thr, pc, fd);
1773   }
1774   return res;
1775 }
1776 
1777 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1778 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1779   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1780   void *res = REAL(tmpfile64)(fake);
1781   if (res) {
1782     int fd = fileno_unlocked(res);
1783     if (fd >= 0)
1784       FdFileCreate(thr, pc, fd);
1785   }
1786   return res;
1787 }
1788 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1789 #else
1790 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1791 #endif
1792 
1793 TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
1794   // libc file streams can call user-supplied functions, see fopencookie.
1795   {
1796     SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
1797     MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
1798   }
1799   return REAL(fread)(ptr, size, nmemb, f);
1800 }
1801 
1802 TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
1803   // libc file streams can call user-supplied functions, see fopencookie.
1804   {
1805     SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
1806     MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
1807   }
1808   return REAL(fwrite)(p, size, nmemb, f);
1809 }
1810 
1811 TSAN_INTERCEPTOR(void, abort, int fake) {
1812   SCOPED_TSAN_INTERCEPTOR(abort, fake);
1813   REAL(fflush)(0);
1814   REAL(abort)(fake);
1815 }
1816 
1817 TSAN_INTERCEPTOR(int, puts, const char *s) {
1818   SCOPED_TSAN_INTERCEPTOR(puts, s);
1819   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
1820   return REAL(puts)(s);
1821 }
1822 
1823 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1824   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1825   Release(thr, pc, Dir2addr(path));
1826   int res = REAL(rmdir)(path);
1827   return res;
1828 }
1829 
1830 TSAN_INTERCEPTOR(void*, opendir, char *path) {
1831   SCOPED_TSAN_INTERCEPTOR(opendir, path);
1832   void *res = REAL(opendir)(path);
1833   if (res != 0)
1834     Acquire(thr, pc, Dir2addr(path));
1835   return res;
1836 }
1837 
1838 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1839 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1840   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1841   if (epfd >= 0)
1842     FdAccess(thr, pc, epfd);
1843   if (epfd >= 0 && fd >= 0)
1844     FdAccess(thr, pc, fd);
1845   if (op == EPOLL_CTL_ADD && epfd >= 0)
1846     FdRelease(thr, pc, epfd);
1847   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1848   return res;
1849 }
1850 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL TSAN_INTERCEPT(epoll_ctl)
1851 #else
1852 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL
1853 #endif
1854 
1855 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
1856 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1857   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1858   if (epfd >= 0)
1859     FdAccess(thr, pc, epfd);
1860   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1861   if (res > 0 && epfd >= 0)
1862     FdAcquire(thr, pc, epfd);
1863   return res;
1864 }
1865 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT TSAN_INTERCEPT(epoll_wait)
1866 #else
1867 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT
1868 #endif
1869 
1870 namespace __tsan {
1871 
1872 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1873     bool sigact, int sig, my_siginfo_t *info, void *uctx) {
1874   if (acquire)
1875     Acquire(thr, 0, (uptr)&sigactions[sig]);
1876   // Ensure that the handler does not spoil errno.
1877   const int saved_errno = errno;
1878   errno = 99;
1879   // Need to remember pc before the call, because the handler can reset it.
1880   uptr pc = sigact ?
1881      (uptr)sigactions[sig].sa_sigaction :
1882      (uptr)sigactions[sig].sa_handler;
1883   pc += 1;  // return address is expected, OutputReport() will undo this
1884   if (sigact)
1885     sigactions[sig].sa_sigaction(sig, info, uctx);
1886   else
1887     sigactions[sig].sa_handler(sig);
1888   // We do not detect errno spoiling for SIGTERM,
1889   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1890   // tsan reports false positive in such case.
1891   // It's difficult to properly detect this situation (reraise),
1892   // because in async signal processing case (when handler is called directly
1893   // from rtl_generic_sighandler) we have not yet received the reraised
1894   // signal; and it looks too fragile to intercept all ways to reraise a signal.
1895   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1896     VarSizeStackTrace stack;
1897     ObtainCurrentStack(thr, pc, &stack);
1898     ThreadRegistryLock l(ctx->thread_registry);
1899     ScopedReport rep(ReportTypeErrnoInSignal);
1900     if (!IsFiredSuppression(ctx, rep, stack)) {
1901       rep.AddStack(stack, true);
1902       OutputReport(thr, rep);
1903     }
1904   }
1905   errno = saved_errno;
1906 }
1907 
1908 void ProcessPendingSignals(ThreadState *thr) {
1909   SignalContext *sctx = SigCtx(thr);
1910   if (sctx == 0 ||
1911       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1912     return;
1913   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1914   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1915   // These are too big for stack.
1916   static THREADLOCAL __sanitizer_sigset_t emptyset, oldset;
1917   REAL(sigfillset)(&emptyset);
1918   pthread_sigmask(SIG_SETMASK, &emptyset, &oldset);
1919   for (int sig = 0; sig < kSigCount; sig++) {
1920     SignalDesc *signal = &sctx->pending_signals[sig];
1921     if (signal->armed) {
1922       signal->armed = false;
1923       if (sigactions[sig].sa_handler != SIG_DFL
1924           && sigactions[sig].sa_handler != SIG_IGN) {
1925         CallUserSignalHandler(thr, false, true, signal->sigaction,
1926             sig, &signal->siginfo, &signal->ctx);
1927       }
1928     }
1929   }
1930   pthread_sigmask(SIG_SETMASK, &oldset, 0);
1931   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1932 }
1933 
1934 }  // namespace __tsan
1935 
1936 static bool is_sync_signal(SignalContext *sctx, int sig) {
1937   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1938       sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1939       // If we are sending signal to ourselves, we must process it now.
1940       (sctx && sig == sctx->int_signal_send);
1941 }
1942 
1943 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1944     my_siginfo_t *info, void *ctx) {
1945   ThreadState *thr = cur_thread();
1946   SignalContext *sctx = SigCtx(thr);
1947   if (sig < 0 || sig >= kSigCount) {
1948     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1949     return;
1950   }
1951   // Don't mess with synchronous signals.
1952   const bool sync = is_sync_signal(sctx, sig);
1953   if (sync ||
1954       // If we are in blocking function, we can safely process it now
1955       // (but check if we are in a recursive interceptor,
1956       // i.e. pthread_join()->munmap()).
1957       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1958     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1959     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1960       // We ignore interceptors in blocking functions,
1961       // temporary enbled them again while we are calling user function.
1962       int const i = thr->ignore_interceptors;
1963       thr->ignore_interceptors = 0;
1964       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1965       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1966       thr->ignore_interceptors = i;
1967       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1968     } else {
1969       // Be very conservative with when we do acquire in this case.
1970       // It's unsafe to do acquire in async handlers, because ThreadState
1971       // can be in inconsistent state.
1972       // SIGSYS looks relatively safe -- it's synchronous and can actually
1973       // need some global state.
1974       bool acq = (sig == SIGSYS);
1975       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
1976     }
1977     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1978     return;
1979   }
1980 
1981   if (sctx == 0)
1982     return;
1983   SignalDesc *signal = &sctx->pending_signals[sig];
1984   if (signal->armed == false) {
1985     signal->armed = true;
1986     signal->sigaction = sigact;
1987     if (info)
1988       internal_memcpy(&signal->siginfo, info, sizeof(*info));
1989     if (ctx)
1990       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
1991     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
1992   }
1993 }
1994 
1995 static void rtl_sighandler(int sig) {
1996   rtl_generic_sighandler(false, sig, 0, 0);
1997 }
1998 
1999 static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
2000   rtl_generic_sighandler(true, sig, info, ctx);
2001 }
2002 
2003 TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
2004   SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
2005   if (old)
2006     internal_memcpy(old, &sigactions[sig], sizeof(*old));
2007   if (act == 0)
2008     return 0;
2009   internal_memcpy(&sigactions[sig], act, sizeof(*act));
2010   sigaction_t newact;
2011   internal_memcpy(&newact, act, sizeof(newact));
2012   REAL(sigfillset)(&newact.sa_mask);
2013   if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
2014     if (newact.sa_flags & SA_SIGINFO)
2015       newact.sa_sigaction = rtl_sigaction;
2016     else
2017       newact.sa_handler = rtl_sighandler;
2018   }
2019   ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2020   int res = REAL(sigaction)(sig, &newact, 0);
2021   return res;
2022 }
2023 
2024 TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
2025   sigaction_t act;
2026   act.sa_handler = h;
2027   REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask));
2028   act.sa_flags = 0;
2029   sigaction_t old;
2030   int res = sigaction(sig, &act, &old);
2031   if (res)
2032     return SIG_ERR;
2033   return old.sa_handler;
2034 }
2035 
2036 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
2037   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
2038   return REAL(sigsuspend)(mask);
2039 }
2040 
2041 TSAN_INTERCEPTOR(int, raise, int sig) {
2042   SCOPED_TSAN_INTERCEPTOR(raise, sig);
2043   SignalContext *sctx = SigCtx(thr);
2044   CHECK_NE(sctx, 0);
2045   int prev = sctx->int_signal_send;
2046   sctx->int_signal_send = sig;
2047   int res = REAL(raise)(sig);
2048   CHECK_EQ(sctx->int_signal_send, sig);
2049   sctx->int_signal_send = prev;
2050   return res;
2051 }
2052 
2053 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2054   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2055   SignalContext *sctx = SigCtx(thr);
2056   CHECK_NE(sctx, 0);
2057   int prev = sctx->int_signal_send;
2058   if (pid == (int)internal_getpid()) {
2059     sctx->int_signal_send = sig;
2060   }
2061   int res = REAL(kill)(pid, sig);
2062   if (pid == (int)internal_getpid()) {
2063     CHECK_EQ(sctx->int_signal_send, sig);
2064     sctx->int_signal_send = prev;
2065   }
2066   return res;
2067 }
2068 
2069 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2070   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2071   SignalContext *sctx = SigCtx(thr);
2072   CHECK_NE(sctx, 0);
2073   int prev = sctx->int_signal_send;
2074   if (tid == pthread_self()) {
2075     sctx->int_signal_send = sig;
2076   }
2077   int res = REAL(pthread_kill)(tid, sig);
2078   if (tid == pthread_self()) {
2079     CHECK_EQ(sctx->int_signal_send, sig);
2080     sctx->int_signal_send = prev;
2081   }
2082   return res;
2083 }
2084 
2085 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2086   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2087   // It's intercepted merely to process pending signals.
2088   return REAL(gettimeofday)(tv, tz);
2089 }
2090 
2091 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2092     void *hints, void *rv) {
2093   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2094   // We miss atomic synchronization in getaddrinfo,
2095   // and can report false race between malloc and free
2096   // inside of getaddrinfo. So ignore memory accesses.
2097   ThreadIgnoreBegin(thr, pc);
2098   int res = REAL(getaddrinfo)(node, service, hints, rv);
2099   ThreadIgnoreEnd(thr, pc);
2100   return res;
2101 }
2102 
2103 TSAN_INTERCEPTOR(int, fork, int fake) {
2104   if (cur_thread()->in_symbolizer)
2105     return REAL(fork)(fake);
2106   SCOPED_INTERCEPTOR_RAW(fork, fake);
2107   ForkBefore(thr, pc);
2108   int pid = REAL(fork)(fake);
2109   if (pid == 0) {
2110     // child
2111     ForkChildAfter(thr, pc);
2112     FdOnFork(thr, pc);
2113   } else if (pid > 0) {
2114     // parent
2115     ForkParentAfter(thr, pc);
2116   } else {
2117     // error
2118     ForkParentAfter(thr, pc);
2119   }
2120   return pid;
2121 }
2122 
2123 TSAN_INTERCEPTOR(int, vfork, int fake) {
2124   // Some programs (e.g. openjdk) call close for all file descriptors
2125   // in the child process. Under tsan it leads to false positives, because
2126   // address space is shared, so the parent process also thinks that
2127   // the descriptors are closed (while they are actually not).
2128   // This leads to false positives due to missed synchronization.
2129   // Strictly saying this is undefined behavior, because vfork child is not
2130   // allowed to call any functions other than exec/exit. But this is what
2131   // openjdk does, so we want to handle it.
2132   // We could disable interceptors in the child process. But it's not possible
2133   // to simply intercept and wrap vfork, because vfork child is not allowed
2134   // to return from the function that calls vfork, and that's exactly what
2135   // we would do. So this would require some assembly trickery as well.
2136   // Instead we simply turn vfork into fork.
2137   return WRAP(fork)(fake);
2138 }
2139 
2140 static int OnExit(ThreadState *thr) {
2141   int status = Finalize(thr);
2142   REAL(fflush)(0);
2143   return status;
2144 }
2145 
2146 struct TsanInterceptorContext {
2147   ThreadState *thr;
2148   const uptr caller_pc;
2149   const uptr pc;
2150 };
2151 
2152 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2153     __sanitizer_msghdr *msg) {
2154   int fds[64];
2155   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2156   for (int i = 0; i < cnt; i++)
2157     FdEventCreate(thr, pc, fds[i]);
2158 }
2159 
2160 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2161 // Causes interceptor recursion (getaddrinfo() and fopen())
2162 #undef SANITIZER_INTERCEPT_GETADDRINFO
2163 // There interceptors do not seem to be strictly necessary for tsan.
2164 // But we see cases where the interceptors consume 70% of execution time.
2165 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2166 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2167 // function "writes to" the buffer. Then, the same memory is "written to"
2168 // twice, first as buf and then as pwbufp (both of them refer to the same
2169 // addresses).
2170 #undef SANITIZER_INTERCEPT_GETPWENT
2171 #undef SANITIZER_INTERCEPT_GETPWENT_R
2172 #undef SANITIZER_INTERCEPT_FGETPWENT
2173 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2174 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2175 
2176 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2177 
2178 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
2179   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
2180                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2181                     true)
2182 
2183 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
2184   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
2185                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2186                     false)
2187 
2188 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
2189   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
2190   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2191   ctx = (void *)&_ctx;                                \
2192   (void) ctx;
2193 
2194 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2195   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2196   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
2197   ctx = (void *)&_ctx;                                    \
2198   (void) ctx;
2199 
2200 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2201   Acquire(thr, pc, File2addr(path));                  \
2202   if (file) {                                         \
2203     int fd = fileno_unlocked(file);                   \
2204     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2205   }
2206 
2207 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2208   if (file) {                                    \
2209     int fd = fileno_unlocked(file);              \
2210     if (fd >= 0) FdClose(thr, pc, fd);           \
2211   }
2212 
2213 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, res)  \
2214   libignore()->OnLibraryLoaded(filename)
2215 
2216 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2217   libignore()->OnLibraryUnloaded()
2218 
2219 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2220   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2221 
2222 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2223   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2224 
2225 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2226   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2227 
2228 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2229   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2230 
2231 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2232   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2233 
2234 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2235   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2236 
2237 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2238 
2239 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2240   OnExit(((TsanInterceptorContext *) ctx)->thr)
2241 
2242 #define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
2243   MutexLock(((TsanInterceptorContext *)ctx)->thr, \
2244             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2245 
2246 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2247   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2248             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2249 
2250 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2251   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2252             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2253 
2254 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2255   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2256       ((TsanInterceptorContext *)ctx)->pc, msg)
2257 
2258 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2259 
2260 #define TSAN_SYSCALL() \
2261   ThreadState *thr = cur_thread(); \
2262   if (thr->ignore_interceptors) \
2263     return; \
2264   ScopedSyscall scoped_syscall(thr) \
2265 /**/
2266 
2267 struct ScopedSyscall {
2268   ThreadState *thr;
2269 
2270   explicit ScopedSyscall(ThreadState *thr)
2271       : thr(thr) {
2272     Initialize(thr);
2273   }
2274 
2275   ~ScopedSyscall() {
2276     ProcessPendingSignals(thr);
2277   }
2278 };
2279 
2280 #if !SANITIZER_NETBSD
2281 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2282   TSAN_SYSCALL();
2283   MemoryAccessRange(thr, pc, p, s, write);
2284 }
2285 
2286 static void syscall_acquire(uptr pc, uptr addr) {
2287   TSAN_SYSCALL();
2288   Acquire(thr, pc, addr);
2289   DPrintf("syscall_acquire(%p)\n", addr);
2290 }
2291 
2292 static void syscall_release(uptr pc, uptr addr) {
2293   TSAN_SYSCALL();
2294   DPrintf("syscall_release(%p)\n", addr);
2295   Release(thr, pc, addr);
2296 }
2297 
2298 static void syscall_fd_close(uptr pc, int fd) {
2299   TSAN_SYSCALL();
2300   FdClose(thr, pc, fd);
2301 }
2302 #endif
2303 
2304 static USED void syscall_fd_acquire(uptr pc, int fd) {
2305   TSAN_SYSCALL();
2306   FdAcquire(thr, pc, fd);
2307   DPrintf("syscall_fd_acquire(%p)\n", fd);
2308 }
2309 
2310 static USED void syscall_fd_release(uptr pc, int fd) {
2311   TSAN_SYSCALL();
2312   DPrintf("syscall_fd_release(%p)\n", fd);
2313   FdRelease(thr, pc, fd);
2314 }
2315 
2316 #if !SANITIZER_NETBSD
2317 static void syscall_pre_fork(uptr pc) {
2318   TSAN_SYSCALL();
2319   ForkBefore(thr, pc);
2320 }
2321 
2322 static void syscall_post_fork(uptr pc, int pid) {
2323   TSAN_SYSCALL();
2324   if (pid == 0) {
2325     // child
2326     ForkChildAfter(thr, pc);
2327     FdOnFork(thr, pc);
2328   } else if (pid > 0) {
2329     // parent
2330     ForkParentAfter(thr, pc);
2331   } else {
2332     // error
2333     ForkParentAfter(thr, pc);
2334   }
2335 }
2336 #endif
2337 
2338 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2339   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2340 
2341 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2342   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2343 
2344 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2345   do {                                       \
2346     (void)(p);                               \
2347     (void)(s);                               \
2348   } while (false)
2349 
2350 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2351   do {                                        \
2352     (void)(p);                                \
2353     (void)(s);                                \
2354   } while (false)
2355 
2356 #define COMMON_SYSCALL_ACQUIRE(addr) \
2357     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2358 
2359 #define COMMON_SYSCALL_RELEASE(addr) \
2360     syscall_release(GET_CALLER_PC(), (uptr)(addr))
2361 
2362 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2363 
2364 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2365 
2366 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2367 
2368 #define COMMON_SYSCALL_PRE_FORK() \
2369   syscall_pre_fork(GET_CALLER_PC())
2370 
2371 #define COMMON_SYSCALL_POST_FORK(res) \
2372   syscall_post_fork(GET_CALLER_PC(), res)
2373 
2374 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2375 
2376 namespace __tsan {
2377 
2378 static void finalize(void *arg) {
2379   ThreadState *thr = cur_thread();
2380   int status = Finalize(thr);
2381   // Make sure the output is not lost.
2382   // Flushing all the streams here may freeze the process if a child thread is
2383   // performing file stream operations at the same time.
2384   REAL(fflush)(stdout);
2385   REAL(fflush)(stderr);
2386   if (status)
2387     REAL(_exit)(status);
2388 }
2389 
2390 static void unreachable() {
2391   Report("FATAL: ThreadSanitizer: unreachable called\n");
2392   Die();
2393 }
2394 
2395 void InitializeInterceptors() {
2396   // We need to setup it early, because functions like dlsym() can call it.
2397   REAL(memset) = internal_memset;
2398   REAL(memcpy) = internal_memcpy;
2399   REAL(memcmp) = internal_memcmp;
2400 
2401   // Instruct libc malloc to consume less memory.
2402 #if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
2403   mallopt(1, 0);  // M_MXFAST
2404   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
2405 #endif
2406 
2407   InitializeCommonInterceptors();
2408 
2409   // We can not use TSAN_INTERCEPT to get setjmp addr,
2410   // because it does &setjmp and setjmp is not present in some versions of libc.
2411   using __interception::GetRealFunctionAddress;
2412   GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
2413   GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2414   GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
2415   GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2416 
2417   TSAN_INTERCEPT(longjmp);
2418   TSAN_INTERCEPT(siglongjmp);
2419 
2420   TSAN_INTERCEPT(malloc);
2421   TSAN_INTERCEPT(__libc_memalign);
2422   TSAN_INTERCEPT(calloc);
2423   TSAN_INTERCEPT(realloc);
2424   TSAN_INTERCEPT(free);
2425   TSAN_INTERCEPT(cfree);
2426   TSAN_INTERCEPT(mmap);
2427   TSAN_MAYBE_INTERCEPT_MMAP64;
2428   TSAN_INTERCEPT(munmap);
2429   TSAN_MAYBE_INTERCEPT_MEMALIGN;
2430   TSAN_INTERCEPT(valloc);
2431   TSAN_MAYBE_INTERCEPT_PVALLOC;
2432   TSAN_INTERCEPT(posix_memalign);
2433 
2434   TSAN_INTERCEPT(strlen);
2435   TSAN_INTERCEPT(memset);
2436   TSAN_INTERCEPT(memcpy);
2437   TSAN_INTERCEPT(memmove);
2438   TSAN_INTERCEPT(memcmp);
2439   TSAN_INTERCEPT(strchr);
2440   TSAN_INTERCEPT(strchrnul);
2441   TSAN_INTERCEPT(strrchr);
2442   TSAN_INTERCEPT(strcpy);  // NOLINT
2443   TSAN_INTERCEPT(strncpy);
2444   TSAN_INTERCEPT(strstr);
2445   TSAN_INTERCEPT(strdup);
2446 
2447   TSAN_INTERCEPT(pthread_create);
2448   TSAN_INTERCEPT(pthread_join);
2449   TSAN_INTERCEPT(pthread_detach);
2450 
2451   TSAN_INTERCEPT_VER(pthread_cond_init, "GLIBC_2.3.2");
2452   TSAN_INTERCEPT_VER(pthread_cond_signal, "GLIBC_2.3.2");
2453   TSAN_INTERCEPT_VER(pthread_cond_broadcast, "GLIBC_2.3.2");
2454   TSAN_INTERCEPT_VER(pthread_cond_wait, "GLIBC_2.3.2");
2455   TSAN_INTERCEPT_VER(pthread_cond_timedwait, "GLIBC_2.3.2");
2456   TSAN_INTERCEPT_VER(pthread_cond_destroy, "GLIBC_2.3.2");
2457 
2458   TSAN_INTERCEPT(pthread_mutex_init);
2459   TSAN_INTERCEPT(pthread_mutex_destroy);
2460   TSAN_INTERCEPT(pthread_mutex_trylock);
2461   TSAN_INTERCEPT(pthread_mutex_timedlock);
2462 
2463   TSAN_INTERCEPT(pthread_spin_init);
2464   TSAN_INTERCEPT(pthread_spin_destroy);
2465   TSAN_INTERCEPT(pthread_spin_lock);
2466   TSAN_INTERCEPT(pthread_spin_trylock);
2467   TSAN_INTERCEPT(pthread_spin_unlock);
2468 
2469   TSAN_INTERCEPT(pthread_rwlock_init);
2470   TSAN_INTERCEPT(pthread_rwlock_destroy);
2471   TSAN_INTERCEPT(pthread_rwlock_rdlock);
2472   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2473   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2474   TSAN_INTERCEPT(pthread_rwlock_wrlock);
2475   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2476   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2477   TSAN_INTERCEPT(pthread_rwlock_unlock);
2478 
2479   TSAN_INTERCEPT(pthread_barrier_init);
2480   TSAN_INTERCEPT(pthread_barrier_destroy);
2481   TSAN_INTERCEPT(pthread_barrier_wait);
2482 
2483   TSAN_INTERCEPT(pthread_once);
2484 
2485   TSAN_INTERCEPT(sem_init);
2486   TSAN_INTERCEPT(sem_destroy);
2487   TSAN_INTERCEPT(sem_wait);
2488   TSAN_INTERCEPT(sem_trywait);
2489   TSAN_INTERCEPT(sem_timedwait);
2490   TSAN_INTERCEPT(sem_post);
2491   TSAN_INTERCEPT(sem_getvalue);
2492 
2493   TSAN_INTERCEPT(stat);
2494   TSAN_MAYBE_INTERCEPT___XSTAT;
2495   TSAN_MAYBE_INTERCEPT_STAT64;
2496   TSAN_MAYBE_INTERCEPT___XSTAT64;
2497   TSAN_INTERCEPT(lstat);
2498   TSAN_MAYBE_INTERCEPT___LXSTAT;
2499   TSAN_MAYBE_INTERCEPT_LSTAT64;
2500   TSAN_MAYBE_INTERCEPT___LXSTAT64;
2501   TSAN_INTERCEPT(fstat);
2502   TSAN_MAYBE_INTERCEPT___FXSTAT;
2503   TSAN_MAYBE_INTERCEPT_FSTAT64;
2504   TSAN_MAYBE_INTERCEPT___FXSTAT64;
2505   TSAN_INTERCEPT(open);
2506   TSAN_MAYBE_INTERCEPT_OPEN64;
2507   TSAN_INTERCEPT(creat);
2508   TSAN_MAYBE_INTERCEPT_CREAT64;
2509   TSAN_INTERCEPT(dup);
2510   TSAN_INTERCEPT(dup2);
2511   TSAN_INTERCEPT(dup3);
2512   TSAN_MAYBE_INTERCEPT_EVENTFD;
2513   TSAN_MAYBE_INTERCEPT_SIGNALFD;
2514   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2515   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2516   TSAN_INTERCEPT(socket);
2517   TSAN_INTERCEPT(socketpair);
2518   TSAN_INTERCEPT(connect);
2519   TSAN_INTERCEPT(bind);
2520   TSAN_INTERCEPT(listen);
2521   TSAN_MAYBE_INTERCEPT_EPOLL_CREATE;
2522   TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1;
2523   TSAN_INTERCEPT(close);
2524   TSAN_MAYBE_INTERCEPT___CLOSE;
2525   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2526   TSAN_INTERCEPT(pipe);
2527   TSAN_INTERCEPT(pipe2);
2528 
2529   TSAN_INTERCEPT(send);
2530   TSAN_INTERCEPT(sendmsg);
2531   TSAN_INTERCEPT(recv);
2532 
2533   TSAN_INTERCEPT(unlink);
2534   TSAN_INTERCEPT(tmpfile);
2535   TSAN_MAYBE_INTERCEPT_TMPFILE64;
2536   TSAN_INTERCEPT(fread);
2537   TSAN_INTERCEPT(fwrite);
2538   TSAN_INTERCEPT(abort);
2539   TSAN_INTERCEPT(puts);
2540   TSAN_INTERCEPT(rmdir);
2541   TSAN_INTERCEPT(opendir);
2542 
2543   TSAN_MAYBE_INTERCEPT_EPOLL_CTL;
2544   TSAN_MAYBE_INTERCEPT_EPOLL_WAIT;
2545 
2546   TSAN_INTERCEPT(sigaction);
2547   TSAN_INTERCEPT(signal);
2548   TSAN_INTERCEPT(sigsuspend);
2549   TSAN_INTERCEPT(raise);
2550   TSAN_INTERCEPT(kill);
2551   TSAN_INTERCEPT(pthread_kill);
2552   TSAN_INTERCEPT(sleep);
2553   TSAN_INTERCEPT(usleep);
2554   TSAN_INTERCEPT(nanosleep);
2555   TSAN_INTERCEPT(gettimeofday);
2556   TSAN_INTERCEPT(getaddrinfo);
2557 
2558   TSAN_INTERCEPT(fork);
2559   TSAN_INTERCEPT(vfork);
2560   TSAN_INTERCEPT(on_exit);
2561   TSAN_INTERCEPT(__cxa_atexit);
2562   TSAN_INTERCEPT(_exit);
2563 
2564   // Need to setup it, because interceptors check that the function is resolved.
2565   // But atexit is emitted directly into the module, so can't be resolved.
2566   REAL(atexit) = (int(*)(void(*)()))unreachable;
2567   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2568     Printf("ThreadSanitizer: failed to setup atexit callback\n");
2569     Die();
2570   }
2571 
2572   if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
2573     Printf("ThreadSanitizer: failed to create thread key\n");
2574     Die();
2575   }
2576 
2577   FdInit();
2578 }
2579 
2580 void *internal_start_thread(void(*func)(void *arg), void *arg) {
2581   // Start the thread with signals blocked, otherwise it can steal user signals.
2582   __sanitizer_sigset_t set, old;
2583   internal_sigfillset(&set);
2584   internal_sigprocmask(SIG_SETMASK, &set, &old);
2585   void *th;
2586   REAL(pthread_create)(&th, 0, (void*(*)(void *arg))func, arg);
2587   internal_sigprocmask(SIG_SETMASK, &old, 0);
2588   return th;
2589 }
2590 
2591 void internal_join_thread(void *th) {
2592   REAL(pthread_join)(th, 0);
2593 }
2594 
2595 }  // namespace __tsan
2596