1 //===-- tsan_interceptors.cc ----------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // FIXME: move as many interceptors as possible into
11 // sanitizer_common/sanitizer_common_interceptors.inc
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_libc.h"
17 #include "sanitizer_common/sanitizer_linux.h"
18 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_posix.h"
22 #include "sanitizer_common/sanitizer_stacktrace.h"
23 #include "sanitizer_common/sanitizer_tls_get_addr.h"
24 #include "interception/interception.h"
25 #include "tsan_interceptors.h"
26 #include "tsan_interface.h"
27 #include "tsan_platform.h"
28 #include "tsan_suppressions.h"
29 #include "tsan_rtl.h"
30 #include "tsan_mman.h"
31 #include "tsan_fd.h"
32
33
34 using namespace __tsan; // NOLINT
35
36 #if SANITIZER_FREEBSD || SANITIZER_MAC
37 #define stdout __stdoutp
38 #define stderr __stderrp
39 #endif
40
41 #if SANITIZER_NETBSD
42 #define dirfd(dirp) (*(int *)(dirp))
43 #define fileno_unlocked(fp) \
44 (((__sanitizer_FILE *)fp)->_file == -1 \
45 ? -1 \
46 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
47
48 #define stdout ((__sanitizer_FILE*)&__sF[1])
49 #define stderr ((__sanitizer_FILE*)&__sF[2])
50
51 #define nanosleep __nanosleep50
52 #define vfork __vfork14
53 #endif
54
55 #if SANITIZER_ANDROID
56 #define mallopt(a, b)
57 #endif
58
59 #ifdef __mips__
60 const int kSigCount = 129;
61 #else
62 const int kSigCount = 65;
63 #endif
64
65 #ifdef __mips__
66 struct ucontext_t {
67 u64 opaque[768 / sizeof(u64) + 1];
68 };
69 #else
70 struct ucontext_t {
71 // The size is determined by looking at sizeof of real ucontext_t on linux.
72 u64 opaque[936 / sizeof(u64) + 1];
73 };
74 #endif
75
76 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
77 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
78 #elif defined(__aarch64__) || SANITIZER_PPC64V2
79 #define PTHREAD_ABI_BASE "GLIBC_2.17"
80 #endif
81
82 extern "C" int pthread_attr_init(void *attr);
83 extern "C" int pthread_attr_destroy(void *attr);
84 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
85 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
86 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
87 extern "C" int pthread_setspecific(unsigned key, const void *v);
88 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
89 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
90 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
91 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
92 extern "C" void *pthread_self();
93 extern "C" void _exit(int status);
94 #if !SANITIZER_NETBSD
95 extern "C" int fileno_unlocked(void *stream);
96 extern "C" int dirfd(void *dirp);
97 #endif
98 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
99 extern "C" int mallopt(int param, int value);
100 #endif
101 #if SANITIZER_NETBSD
102 extern __sanitizer_FILE __sF[];
103 #else
104 extern __sanitizer_FILE *stdout, *stderr;
105 #endif
106 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
107 const int PTHREAD_MUTEX_RECURSIVE = 1;
108 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
109 #else
110 const int PTHREAD_MUTEX_RECURSIVE = 2;
111 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
112 #endif
113 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
114 const int EPOLL_CTL_ADD = 1;
115 #endif
116 const int SIGILL = 4;
117 const int SIGABRT = 6;
118 const int SIGFPE = 8;
119 const int SIGSEGV = 11;
120 const int SIGPIPE = 13;
121 const int SIGTERM = 15;
122 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
123 const int SIGBUS = 10;
124 const int SIGSYS = 12;
125 #else
126 const int SIGBUS = 7;
127 const int SIGSYS = 31;
128 #endif
129 void *const MAP_FAILED = (void*)-1;
130 #if SANITIZER_NETBSD
131 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
132 #elif !SANITIZER_MAC
133 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
134 #endif
135 const int MAP_FIXED = 0x10;
136 typedef long long_t; // NOLINT
137
138 // From /usr/include/unistd.h
139 # define F_ULOCK 0 /* Unlock a previously locked region. */
140 # define F_LOCK 1 /* Lock a region for exclusive use. */
141 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
142 # define F_TEST 3 /* Test a region for other processes locks. */
143
144 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
145 const int SA_SIGINFO = 0x40;
146 const int SIG_SETMASK = 3;
147 #elif defined(__mips__)
148 const int SA_SIGINFO = 8;
149 const int SIG_SETMASK = 3;
150 #else
151 const int SA_SIGINFO = 4;
152 const int SIG_SETMASK = 2;
153 #endif
154
155 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
156 (!cur_thread()->is_inited)
157
158 namespace __tsan {
159 struct SignalDesc {
160 bool armed;
161 bool sigaction;
162 __sanitizer_siginfo siginfo;
163 ucontext_t ctx;
164 };
165
166 struct ThreadSignalContext {
167 int int_signal_send;
168 atomic_uintptr_t in_blocking_func;
169 atomic_uintptr_t have_pending_signals;
170 SignalDesc pending_signals[kSigCount];
171 // emptyset and oldset are too big for stack.
172 __sanitizer_sigset_t emptyset;
173 __sanitizer_sigset_t oldset;
174 };
175
176 // The sole reason tsan wraps atexit callbacks is to establish synchronization
177 // between callback setup and callback execution.
178 struct AtExitCtx {
179 void (*f)();
180 void *arg;
181 };
182
183 // InterceptorContext holds all global data required for interceptors.
184 // It's explicitly constructed in InitializeInterceptors with placement new
185 // and is never destroyed. This allows usage of members with non-trivial
186 // constructors and destructors.
187 struct InterceptorContext {
188 // The object is 64-byte aligned, because we want hot data to be located
189 // in a single cache line if possible (it's accessed in every interceptor).
190 ALIGNED(64) LibIgnore libignore;
191 __sanitizer_sigaction sigactions[kSigCount];
192 #if !SANITIZER_MAC && !SANITIZER_NETBSD
193 unsigned finalize_key;
194 #endif
195
196 BlockingMutex atexit_mu;
197 Vector<struct AtExitCtx *> AtExitStack;
198
InterceptorContext__tsan::InterceptorContext199 InterceptorContext()
200 : libignore(LINKER_INITIALIZED), AtExitStack() {
201 }
202 };
203
204 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
interceptor_ctx()205 InterceptorContext *interceptor_ctx() {
206 return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
207 }
208
libignore()209 LibIgnore *libignore() {
210 return &interceptor_ctx()->libignore;
211 }
212
InitializeLibIgnore()213 void InitializeLibIgnore() {
214 const SuppressionContext &supp = *Suppressions();
215 const uptr n = supp.SuppressionCount();
216 for (uptr i = 0; i < n; i++) {
217 const Suppression *s = supp.SuppressionAt(i);
218 if (0 == internal_strcmp(s->type, kSuppressionLib))
219 libignore()->AddIgnoredLibrary(s->templ);
220 }
221 if (flags()->ignore_noninstrumented_modules)
222 libignore()->IgnoreNoninstrumentedModules(true);
223 libignore()->OnLibraryLoaded(0);
224 }
225
226 } // namespace __tsan
227
SigCtx(ThreadState * thr)228 static ThreadSignalContext *SigCtx(ThreadState *thr) {
229 ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
230 if (ctx == 0 && !thr->is_dead) {
231 ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
232 MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
233 thr->signal_ctx = ctx;
234 }
235 return ctx;
236 }
237
ScopedInterceptor(ThreadState * thr,const char * fname,uptr pc)238 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
239 uptr pc)
240 : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
241 Initialize(thr);
242 if (!thr_->is_inited) return;
243 if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
244 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
245 ignoring_ =
246 !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
247 libignore()->IsIgnored(pc, &in_ignored_lib_));
248 EnableIgnores();
249 }
250
~ScopedInterceptor()251 ScopedInterceptor::~ScopedInterceptor() {
252 if (!thr_->is_inited) return;
253 DisableIgnores();
254 if (!thr_->ignore_interceptors) {
255 ProcessPendingSignals(thr_);
256 FuncExit(thr_);
257 CheckNoLocks(thr_);
258 }
259 }
260
EnableIgnores()261 void ScopedInterceptor::EnableIgnores() {
262 if (ignoring_) {
263 ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
264 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
265 if (in_ignored_lib_) {
266 DCHECK(!thr_->in_ignored_lib);
267 thr_->in_ignored_lib = true;
268 }
269 }
270 }
271
DisableIgnores()272 void ScopedInterceptor::DisableIgnores() {
273 if (ignoring_) {
274 ThreadIgnoreEnd(thr_, pc_);
275 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
276 if (in_ignored_lib_) {
277 DCHECK(thr_->in_ignored_lib);
278 thr_->in_ignored_lib = false;
279 }
280 }
281 }
282
283 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
284 #if SANITIZER_FREEBSD
285 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
286 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
287 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
288 #elif SANITIZER_NETBSD
289 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
290 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
291 INTERCEPT_FUNCTION(__libc_##func)
292 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
293 INTERCEPT_FUNCTION(__libc_thr_##func)
294 #else
295 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
296 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
297 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
298 #endif
299
300 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
301 MemoryAccessRange((thr), (pc), (uptr)(s), \
302 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
303
304 #define READ_STRING(thr, pc, s, n) \
305 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
306
307 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
308
309 struct BlockingCall {
BlockingCallBlockingCall310 explicit BlockingCall(ThreadState *thr)
311 : thr(thr)
312 , ctx(SigCtx(thr)) {
313 for (;;) {
314 atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
315 if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
316 break;
317 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
318 ProcessPendingSignals(thr);
319 }
320 // When we are in a "blocking call", we process signals asynchronously
321 // (right when they arrive). In this context we do not expect to be
322 // executing any user/runtime code. The known interceptor sequence when
323 // this is not true is: pthread_join -> munmap(stack). It's fine
324 // to ignore munmap in this case -- we handle stack shadow separately.
325 thr->ignore_interceptors++;
326 }
327
~BlockingCallBlockingCall328 ~BlockingCall() {
329 thr->ignore_interceptors--;
330 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
331 }
332
333 ThreadState *thr;
334 ThreadSignalContext *ctx;
335 };
336
TSAN_INTERCEPTOR(unsigned,sleep,unsigned sec)337 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
338 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
339 unsigned res = BLOCK_REAL(sleep)(sec);
340 AfterSleep(thr, pc);
341 return res;
342 }
343
TSAN_INTERCEPTOR(int,usleep,long_t usec)344 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
345 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
346 int res = BLOCK_REAL(usleep)(usec);
347 AfterSleep(thr, pc);
348 return res;
349 }
350
TSAN_INTERCEPTOR(int,nanosleep,void * req,void * rem)351 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
352 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
353 int res = BLOCK_REAL(nanosleep)(req, rem);
354 AfterSleep(thr, pc);
355 return res;
356 }
357
TSAN_INTERCEPTOR(int,pause,int fake)358 TSAN_INTERCEPTOR(int, pause, int fake) {
359 SCOPED_TSAN_INTERCEPTOR(pause, fake);
360 return BLOCK_REAL(pause)(fake);
361 }
362
at_exit_wrapper()363 static void at_exit_wrapper() {
364 AtExitCtx *ctx;
365 {
366 // Ensure thread-safety.
367 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
368
369 // Pop AtExitCtx from the top of the stack of callback functions
370 uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
371 ctx = interceptor_ctx()->AtExitStack[element];
372 interceptor_ctx()->AtExitStack.PopBack();
373 }
374
375 Acquire(cur_thread(), (uptr)0, (uptr)ctx);
376 ((void(*)())ctx->f)();
377 InternalFree(ctx);
378 }
379
cxa_at_exit_wrapper(void * arg)380 static void cxa_at_exit_wrapper(void *arg) {
381 Acquire(cur_thread(), 0, (uptr)arg);
382 AtExitCtx *ctx = (AtExitCtx*)arg;
383 ((void(*)(void *arg))ctx->f)(ctx->arg);
384 InternalFree(ctx);
385 }
386
387 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
388 void *arg, void *dso);
389
390 #if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,atexit,void (* f)())391 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
392 if (UNLIKELY(cur_thread()->in_symbolizer))
393 return 0;
394 // We want to setup the atexit callback even if we are in ignored lib
395 // or after fork.
396 SCOPED_INTERCEPTOR_RAW(atexit, f);
397 return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
398 }
399 #endif
400
TSAN_INTERCEPTOR(int,__cxa_atexit,void (* f)(void * a),void * arg,void * dso)401 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
402 if (UNLIKELY(cur_thread()->in_symbolizer))
403 return 0;
404 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
405 return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
406 }
407
setup_at_exit_wrapper(ThreadState * thr,uptr pc,void (* f)(),void * arg,void * dso)408 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
409 void *arg, void *dso) {
410 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
411 ctx->f = f;
412 ctx->arg = arg;
413 Release(thr, pc, (uptr)ctx);
414 // Memory allocation in __cxa_atexit will race with free during exit,
415 // because we do not see synchronization around atexit callback list.
416 ThreadIgnoreBegin(thr, pc);
417 int res;
418 if (!dso) {
419 // NetBSD does not preserve the 2nd argument if dso is equal to 0
420 // Store ctx in a local stack-like structure
421
422 // Ensure thread-safety.
423 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
424
425 res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
426 // Push AtExitCtx on the top of the stack of callback functions
427 if (!res) {
428 interceptor_ctx()->AtExitStack.PushBack(ctx);
429 }
430 } else {
431 res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
432 }
433 ThreadIgnoreEnd(thr, pc);
434 return res;
435 }
436
437 #if !SANITIZER_MAC && !SANITIZER_NETBSD
on_exit_wrapper(int status,void * arg)438 static void on_exit_wrapper(int status, void *arg) {
439 ThreadState *thr = cur_thread();
440 uptr pc = 0;
441 Acquire(thr, pc, (uptr)arg);
442 AtExitCtx *ctx = (AtExitCtx*)arg;
443 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
444 InternalFree(ctx);
445 }
446
TSAN_INTERCEPTOR(int,on_exit,void (* f)(int,void *),void * arg)447 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
448 if (UNLIKELY(cur_thread()->in_symbolizer))
449 return 0;
450 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
451 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
452 ctx->f = (void(*)())f;
453 ctx->arg = arg;
454 Release(thr, pc, (uptr)ctx);
455 // Memory allocation in __cxa_atexit will race with free during exit,
456 // because we do not see synchronization around atexit callback list.
457 ThreadIgnoreBegin(thr, pc);
458 int res = REAL(on_exit)(on_exit_wrapper, ctx);
459 ThreadIgnoreEnd(thr, pc);
460 return res;
461 }
462 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
463 #else
464 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
465 #endif
466
467 // Cleanup old bufs.
JmpBufGarbageCollect(ThreadState * thr,uptr sp)468 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
469 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
470 JmpBuf *buf = &thr->jmp_bufs[i];
471 if (buf->sp <= sp) {
472 uptr sz = thr->jmp_bufs.Size();
473 internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
474 thr->jmp_bufs.PopBack();
475 i--;
476 }
477 }
478 }
479
SetJmp(ThreadState * thr,uptr sp,uptr mangled_sp)480 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
481 if (!thr->is_inited) // called from libc guts during bootstrap
482 return;
483 // Cleanup old bufs.
484 JmpBufGarbageCollect(thr, sp);
485 // Remember the buf.
486 JmpBuf *buf = thr->jmp_bufs.PushBack();
487 buf->sp = sp;
488 buf->mangled_sp = mangled_sp;
489 buf->shadow_stack_pos = thr->shadow_stack_pos;
490 ThreadSignalContext *sctx = SigCtx(thr);
491 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
492 buf->in_blocking_func = sctx ?
493 atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
494 false;
495 buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
496 memory_order_relaxed);
497 }
498
LongJmp(ThreadState * thr,uptr * env)499 static void LongJmp(ThreadState *thr, uptr *env) {
500 #if SANITIZER_NETBSD
501 # ifdef __x86_64__
502 uptr mangled_sp = env[6];
503 # else
504 # error Unsupported
505 # endif
506 #elif defined(__powerpc__)
507 uptr mangled_sp = env[0];
508 #elif SANITIZER_FREEBSD
509 uptr mangled_sp = env[2];
510 #elif SANITIZER_MAC
511 # ifdef __aarch64__
512 uptr mangled_sp =
513 (GetMacosVersion() >= MACOS_VERSION_MOJAVE) ? env[12] : env[13];
514 # else
515 uptr mangled_sp = env[2];
516 # endif
517 #elif SANITIZER_LINUX
518 # ifdef __aarch64__
519 uptr mangled_sp = env[13];
520 # elif defined(__mips64)
521 uptr mangled_sp = env[1];
522 # else
523 uptr mangled_sp = env[6];
524 # endif
525 #endif
526 // Find the saved buf by mangled_sp.
527 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
528 JmpBuf *buf = &thr->jmp_bufs[i];
529 if (buf->mangled_sp == mangled_sp) {
530 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
531 // Unwind the stack.
532 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
533 FuncExit(thr);
534 ThreadSignalContext *sctx = SigCtx(thr);
535 if (sctx) {
536 sctx->int_signal_send = buf->int_signal_send;
537 atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
538 memory_order_relaxed);
539 }
540 atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
541 memory_order_relaxed);
542 JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
543 return;
544 }
545 }
546 Printf("ThreadSanitizer: can't find longjmp buf\n");
547 CHECK(0);
548 }
549
550 // FIXME: put everything below into a common extern "C" block?
__tsan_setjmp(uptr sp,uptr mangled_sp)551 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
552 SetJmp(cur_thread(), sp, mangled_sp);
553 }
554
555 #if SANITIZER_MAC
556 TSAN_INTERCEPTOR(int, setjmp, void *env);
557 TSAN_INTERCEPTOR(int, _setjmp, void *env);
558 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
559 #else // SANITIZER_MAC
560
561 #if SANITIZER_NETBSD
562 #define setjmp_symname __setjmp14
563 #define sigsetjmp_symname __sigsetjmp14
564 #else
565 #define setjmp_symname setjmp
566 #define sigsetjmp_symname sigsetjmp
567 #endif
568
569 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
570 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
571 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
572 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
573
574 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
575 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
576
577 // Not called. Merely to satisfy TSAN_INTERCEPT().
578 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
579 int TSAN_INTERCEPTOR_SETJMP(void *env);
TSAN_INTERCEPTOR_SETJMP(void * env)580 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
581 CHECK(0);
582 return 0;
583 }
584
585 // FIXME: any reason to have a separate declaration?
586 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
587 int __interceptor__setjmp(void *env);
__interceptor__setjmp(void * env)588 extern "C" int __interceptor__setjmp(void *env) {
589 CHECK(0);
590 return 0;
591 }
592
593 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
594 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
TSAN_INTERCEPTOR_SIGSETJMP(void * env)595 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
596 CHECK(0);
597 return 0;
598 }
599
600 #if !SANITIZER_NETBSD
601 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
602 int __interceptor___sigsetjmp(void *env);
__interceptor___sigsetjmp(void * env)603 extern "C" int __interceptor___sigsetjmp(void *env) {
604 CHECK(0);
605 return 0;
606 }
607 #endif
608
609 extern "C" int setjmp_symname(void *env);
610 extern "C" int _setjmp(void *env);
611 extern "C" int sigsetjmp_symname(void *env);
612 #if !SANITIZER_NETBSD
613 extern "C" int __sigsetjmp(void *env);
614 #endif
DEFINE_REAL(int,setjmp_symname,void * env)615 DEFINE_REAL(int, setjmp_symname, void *env)
616 DEFINE_REAL(int, _setjmp, void *env)
617 DEFINE_REAL(int, sigsetjmp_symname, void *env)
618 #if !SANITIZER_NETBSD
619 DEFINE_REAL(int, __sigsetjmp, void *env)
620 #endif
621 #endif // SANITIZER_MAC
622
623 #if SANITIZER_NETBSD
624 #define longjmp_symname __longjmp14
625 #define siglongjmp_symname __siglongjmp14
626 #else
627 #define longjmp_symname longjmp
628 #define siglongjmp_symname siglongjmp
629 #endif
630
631 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
632 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
633 // bad things will happen. We will jump over ScopedInterceptor dtor and can
634 // leave thr->in_ignored_lib set.
635 {
636 SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
637 }
638 LongJmp(cur_thread(), env);
639 REAL(longjmp_symname)(env, val);
640 }
641
TSAN_INTERCEPTOR(void,siglongjmp_symname,uptr * env,int val)642 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
643 {
644 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
645 }
646 LongJmp(cur_thread(), env);
647 REAL(siglongjmp_symname)(env, val);
648 }
649
650 #if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void,_longjmp,uptr * env,int val)651 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
652 {
653 SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
654 }
655 LongJmp(cur_thread(), env);
656 REAL(_longjmp)(env, val);
657 }
658 #endif
659
660 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,malloc,uptr size)661 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
662 if (UNLIKELY(cur_thread()->in_symbolizer))
663 return InternalAlloc(size);
664 void *p = 0;
665 {
666 SCOPED_INTERCEPTOR_RAW(malloc, size);
667 p = user_alloc(thr, pc, size);
668 }
669 invoke_malloc_hook(p, size);
670 return p;
671 }
672
TSAN_INTERCEPTOR(void *,__libc_memalign,uptr align,uptr sz)673 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
674 SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
675 return user_memalign(thr, pc, align, sz);
676 }
677
TSAN_INTERCEPTOR(void *,calloc,uptr size,uptr n)678 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
679 if (UNLIKELY(cur_thread()->in_symbolizer))
680 return InternalCalloc(size, n);
681 void *p = 0;
682 {
683 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
684 p = user_calloc(thr, pc, size, n);
685 }
686 invoke_malloc_hook(p, n * size);
687 return p;
688 }
689
TSAN_INTERCEPTOR(void *,realloc,void * p,uptr size)690 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
691 if (UNLIKELY(cur_thread()->in_symbolizer))
692 return InternalRealloc(p, size);
693 if (p)
694 invoke_free_hook(p);
695 {
696 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
697 p = user_realloc(thr, pc, p, size);
698 }
699 invoke_malloc_hook(p, size);
700 return p;
701 }
702
TSAN_INTERCEPTOR(void,free,void * p)703 TSAN_INTERCEPTOR(void, free, void *p) {
704 if (p == 0)
705 return;
706 if (UNLIKELY(cur_thread()->in_symbolizer))
707 return InternalFree(p);
708 invoke_free_hook(p);
709 SCOPED_INTERCEPTOR_RAW(free, p);
710 user_free(thr, pc, p);
711 }
712
TSAN_INTERCEPTOR(void,cfree,void * p)713 TSAN_INTERCEPTOR(void, cfree, void *p) {
714 if (p == 0)
715 return;
716 if (UNLIKELY(cur_thread()->in_symbolizer))
717 return InternalFree(p);
718 invoke_free_hook(p);
719 SCOPED_INTERCEPTOR_RAW(cfree, p);
720 user_free(thr, pc, p);
721 }
722
TSAN_INTERCEPTOR(uptr,malloc_usable_size,void * p)723 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
724 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
725 return user_alloc_usable_size(p);
726 }
727 #endif
728
TSAN_INTERCEPTOR(char *,strcpy,char * dst,const char * src)729 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT
730 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
731 uptr srclen = internal_strlen(src);
732 MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
733 MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
734 return REAL(strcpy)(dst, src); // NOLINT
735 }
736
TSAN_INTERCEPTOR(char *,strncpy,char * dst,char * src,uptr n)737 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
738 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
739 uptr srclen = internal_strnlen(src, n);
740 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
741 MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
742 return REAL(strncpy)(dst, src, n);
743 }
744
TSAN_INTERCEPTOR(char *,strdup,const char * str)745 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
746 SCOPED_TSAN_INTERCEPTOR(strdup, str);
747 // strdup will call malloc, so no instrumentation is required here.
748 return REAL(strdup)(str);
749 }
750
fix_mmap_addr(void ** addr,long_t sz,int flags)751 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
752 if (*addr) {
753 if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
754 if (flags & MAP_FIXED) {
755 errno = errno_EINVAL;
756 return false;
757 } else {
758 *addr = 0;
759 }
760 }
761 }
762 return true;
763 }
764
765 template <class Mmap>
mmap_interceptor(ThreadState * thr,uptr pc,Mmap real_mmap,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF64_T off)766 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
767 void *addr, SIZE_T sz, int prot, int flags,
768 int fd, OFF64_T off) {
769 if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
770 void *res = real_mmap(addr, sz, prot, flags, fd, off);
771 if (res != MAP_FAILED) {
772 if (fd > 0) FdAccess(thr, pc, fd);
773 if (thr->ignore_reads_and_writes == 0)
774 MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
775 else
776 MemoryResetRange(thr, pc, (uptr)res, sz);
777 }
778 return res;
779 }
780
TSAN_INTERCEPTOR(int,munmap,void * addr,long_t sz)781 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
782 SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
783 if (sz != 0) {
784 // If sz == 0, munmap will return EINVAL and don't unmap any memory.
785 DontNeedShadowFor((uptr)addr, sz);
786 ScopedGlobalProcessor sgp;
787 ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
788 }
789 int res = REAL(munmap)(addr, sz);
790 return res;
791 }
792
793 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,memalign,uptr align,uptr sz)794 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
795 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
796 return user_memalign(thr, pc, align, sz);
797 }
798 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
799 #else
800 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
801 #endif
802
803 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,aligned_alloc,uptr align,uptr sz)804 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
805 if (UNLIKELY(cur_thread()->in_symbolizer))
806 return InternalAlloc(sz, nullptr, align);
807 SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
808 return user_aligned_alloc(thr, pc, align, sz);
809 }
810
TSAN_INTERCEPTOR(void *,valloc,uptr sz)811 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
812 if (UNLIKELY(cur_thread()->in_symbolizer))
813 return InternalAlloc(sz, nullptr, GetPageSizeCached());
814 SCOPED_INTERCEPTOR_RAW(valloc, sz);
815 return user_valloc(thr, pc, sz);
816 }
817 #endif
818
819 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,pvalloc,uptr sz)820 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
821 if (UNLIKELY(cur_thread()->in_symbolizer)) {
822 uptr PageSize = GetPageSizeCached();
823 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
824 return InternalAlloc(sz, nullptr, PageSize);
825 }
826 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
827 return user_pvalloc(thr, pc, sz);
828 }
829 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
830 #else
831 #define TSAN_MAYBE_INTERCEPT_PVALLOC
832 #endif
833
834 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,posix_memalign,void ** memptr,uptr align,uptr sz)835 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
836 if (UNLIKELY(cur_thread()->in_symbolizer)) {
837 void *p = InternalAlloc(sz, nullptr, align);
838 if (!p)
839 return errno_ENOMEM;
840 *memptr = p;
841 return 0;
842 }
843 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
844 return user_posix_memalign(thr, pc, memptr, align, sz);
845 }
846 #endif
847
848 // __cxa_guard_acquire and friends need to be intercepted in a special way -
849 // regular interceptors will break statically-linked libstdc++. Linux
850 // interceptors are especially defined as weak functions (so that they don't
851 // cause link errors when user defines them as well). So they silently
852 // auto-disable themselves when such symbol is already present in the binary. If
853 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
854 // will silently replace our interceptor. That's why on Linux we simply export
855 // these interceptors with INTERFACE_ATTRIBUTE.
856 // On OS X, we don't support statically linking, so we just use a regular
857 // interceptor.
858 #if SANITIZER_MAC
859 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
860 #else
861 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
862 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
863 #endif
864
865 // Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int,__cxa_guard_acquire,atomic_uint32_t * g)866 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
867 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
868 for (;;) {
869 u32 cmp = atomic_load(g, memory_order_acquire);
870 if (cmp == 0) {
871 if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
872 return 1;
873 } else if (cmp == 1) {
874 Acquire(thr, pc, (uptr)g);
875 return 0;
876 } else {
877 internal_sched_yield();
878 }
879 }
880 }
881
STDCXX_INTERCEPTOR(void,__cxa_guard_release,atomic_uint32_t * g)882 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
883 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
884 Release(thr, pc, (uptr)g);
885 atomic_store(g, 1, memory_order_release);
886 }
887
STDCXX_INTERCEPTOR(void,__cxa_guard_abort,atomic_uint32_t * g)888 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
889 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
890 atomic_store(g, 0, memory_order_relaxed);
891 }
892
893 namespace __tsan {
DestroyThreadState()894 void DestroyThreadState() {
895 ThreadState *thr = cur_thread();
896 Processor *proc = thr->proc();
897 ThreadFinish(thr);
898 ProcUnwire(proc, thr);
899 ProcDestroy(proc);
900 ThreadSignalContext *sctx = thr->signal_ctx;
901 if (sctx) {
902 thr->signal_ctx = 0;
903 UnmapOrDie(sctx, sizeof(*sctx));
904 }
905 DTLS_Destroy();
906 cur_thread_finalize();
907 }
908 } // namespace __tsan
909
910 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
thread_finalize(void * v)911 static void thread_finalize(void *v) {
912 uptr iter = (uptr)v;
913 if (iter > 1) {
914 if (pthread_setspecific(interceptor_ctx()->finalize_key,
915 (void*)(iter - 1))) {
916 Printf("ThreadSanitizer: failed to set thread key\n");
917 Die();
918 }
919 return;
920 }
921 DestroyThreadState();
922 }
923 #endif
924
925
926 struct ThreadParam {
927 void* (*callback)(void *arg);
928 void *param;
929 atomic_uintptr_t tid;
930 };
931
__tsan_thread_start_func(void * arg)932 extern "C" void *__tsan_thread_start_func(void *arg) {
933 ThreadParam *p = (ThreadParam*)arg;
934 void* (*callback)(void *arg) = p->callback;
935 void *param = p->param;
936 int tid = 0;
937 {
938 ThreadState *thr = cur_thread();
939 // Thread-local state is not initialized yet.
940 ScopedIgnoreInterceptors ignore;
941 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
942 ThreadIgnoreBegin(thr, 0);
943 if (pthread_setspecific(interceptor_ctx()->finalize_key,
944 (void *)GetPthreadDestructorIterations())) {
945 Printf("ThreadSanitizer: failed to set thread key\n");
946 Die();
947 }
948 ThreadIgnoreEnd(thr, 0);
949 #endif
950 while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
951 internal_sched_yield();
952 Processor *proc = ProcCreate();
953 ProcWire(proc, thr);
954 ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
955 atomic_store(&p->tid, 0, memory_order_release);
956 }
957 void *res = callback(param);
958 // Prevent the callback from being tail called,
959 // it mixes up stack traces.
960 volatile int foo = 42;
961 foo++;
962 return res;
963 }
964
TSAN_INTERCEPTOR(int,pthread_create,void * th,void * attr,void * (* callback)(void *),void * param)965 TSAN_INTERCEPTOR(int, pthread_create,
966 void *th, void *attr, void *(*callback)(void*), void * param) {
967 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
968
969 MaybeSpawnBackgroundThread();
970
971 if (ctx->after_multithreaded_fork) {
972 if (flags()->die_after_fork) {
973 Report("ThreadSanitizer: starting new threads after multi-threaded "
974 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
975 Die();
976 } else {
977 VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
978 "fork is not supported (pid %d). Continuing because of "
979 "die_after_fork=0, but you are on your own\n", internal_getpid());
980 }
981 }
982 __sanitizer_pthread_attr_t myattr;
983 if (attr == 0) {
984 pthread_attr_init(&myattr);
985 attr = &myattr;
986 }
987 int detached = 0;
988 REAL(pthread_attr_getdetachstate)(attr, &detached);
989 AdjustStackSize(attr);
990
991 ThreadParam p;
992 p.callback = callback;
993 p.param = param;
994 atomic_store(&p.tid, 0, memory_order_relaxed);
995 int res = -1;
996 {
997 // Otherwise we see false positives in pthread stack manipulation.
998 ScopedIgnoreInterceptors ignore;
999 ThreadIgnoreBegin(thr, pc);
1000 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1001 ThreadIgnoreEnd(thr, pc);
1002 }
1003 if (res == 0) {
1004 int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
1005 CHECK_NE(tid, 0);
1006 // Synchronization on p.tid serves two purposes:
1007 // 1. ThreadCreate must finish before the new thread starts.
1008 // Otherwise the new thread can call pthread_detach, but the pthread_t
1009 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1010 // 2. ThreadStart must finish before this thread continues.
1011 // Otherwise, this thread can call pthread_detach and reset thr->sync
1012 // before the new thread got a chance to acquire from it in ThreadStart.
1013 atomic_store(&p.tid, tid, memory_order_release);
1014 while (atomic_load(&p.tid, memory_order_acquire) != 0)
1015 internal_sched_yield();
1016 }
1017 if (attr == &myattr)
1018 pthread_attr_destroy(&myattr);
1019 return res;
1020 }
1021
TSAN_INTERCEPTOR(int,pthread_join,void * th,void ** ret)1022 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1023 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1024 int tid = ThreadTid(thr, pc, (uptr)th);
1025 ThreadIgnoreBegin(thr, pc);
1026 int res = BLOCK_REAL(pthread_join)(th, ret);
1027 ThreadIgnoreEnd(thr, pc);
1028 if (res == 0) {
1029 ThreadJoin(thr, pc, tid);
1030 }
1031 return res;
1032 }
1033
1034 DEFINE_REAL_PTHREAD_FUNCTIONS
1035
TSAN_INTERCEPTOR(int,pthread_detach,void * th)1036 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1037 SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
1038 int tid = ThreadTid(thr, pc, (uptr)th);
1039 int res = REAL(pthread_detach)(th);
1040 if (res == 0) {
1041 ThreadDetach(thr, pc, tid);
1042 }
1043 return res;
1044 }
1045
1046 // Problem:
1047 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1048 // pthread_cond_t has different size in the different versions.
1049 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1050 // after pthread_cond_t (old cond is smaller).
1051 // If we call old REAL functions for new pthread_cond_t, we will lose some
1052 // functionality (e.g. old functions do not support waiting against
1053 // CLOCK_REALTIME).
1054 // Proper handling would require to have 2 versions of interceptors as well.
1055 // But this is messy, in particular requires linker scripts when sanitizer
1056 // runtime is linked into a shared library.
1057 // Instead we assume we don't have dynamic libraries built against old
1058 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1059 // that allows to work with old libraries (but this mode does not support
1060 // some features, e.g. pthread_condattr_getpshared).
init_cond(void * c,bool force=false)1061 static void *init_cond(void *c, bool force = false) {
1062 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1063 // So we allocate additional memory on the side large enough to hold
1064 // any pthread_cond_t object. Always call new REAL functions, but pass
1065 // the aux object to them.
1066 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1067 // first word of pthread_cond_t to zero.
1068 // It's all relevant only for linux.
1069 if (!common_flags()->legacy_pthread_cond)
1070 return c;
1071 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1072 uptr cond = atomic_load(p, memory_order_acquire);
1073 if (!force && cond != 0)
1074 return (void*)cond;
1075 void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1076 internal_memset(newcond, 0, pthread_cond_t_sz);
1077 if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1078 memory_order_acq_rel))
1079 return newcond;
1080 WRAP(free)(newcond);
1081 return (void*)cond;
1082 }
1083
1084 struct CondMutexUnlockCtx {
1085 ScopedInterceptor *si;
1086 ThreadState *thr;
1087 uptr pc;
1088 void *m;
1089 };
1090
cond_mutex_unlock(CondMutexUnlockCtx * arg)1091 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1092 // pthread_cond_wait interceptor has enabled async signal delivery
1093 // (see BlockingCall below). Disable async signals since we are running
1094 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1095 // since the thread is cancelled, so we have to manually execute them
1096 // (the thread still can run some user code due to pthread_cleanup_push).
1097 ThreadSignalContext *ctx = SigCtx(arg->thr);
1098 CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1099 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1100 MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1101 // Undo BlockingCall ctor effects.
1102 arg->thr->ignore_interceptors--;
1103 arg->si->~ScopedInterceptor();
1104 }
1105
INTERCEPTOR(int,pthread_cond_init,void * c,void * a)1106 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1107 void *cond = init_cond(c, true);
1108 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1109 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1110 return REAL(pthread_cond_init)(cond, a);
1111 }
1112
cond_wait(ThreadState * thr,uptr pc,ScopedInterceptor * si,int (* fn)(void * c,void * m,void * abstime),void * c,void * m,void * t)1113 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1114 int (*fn)(void *c, void *m, void *abstime), void *c,
1115 void *m, void *t) {
1116 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1117 MutexUnlock(thr, pc, (uptr)m);
1118 CondMutexUnlockCtx arg = {si, thr, pc, m};
1119 int res = 0;
1120 // This ensures that we handle mutex lock even in case of pthread_cancel.
1121 // See test/tsan/cond_cancel.cc.
1122 {
1123 // Enable signal delivery while the thread is blocked.
1124 BlockingCall bc(thr);
1125 res = call_pthread_cancel_with_cleanup(
1126 fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1127 }
1128 if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1129 MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1130 return res;
1131 }
1132
INTERCEPTOR(int,pthread_cond_wait,void * c,void * m)1133 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1134 void *cond = init_cond(c);
1135 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1136 return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1137 pthread_cond_wait),
1138 cond, m, 0);
1139 }
1140
INTERCEPTOR(int,pthread_cond_timedwait,void * c,void * m,void * abstime)1141 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1142 void *cond = init_cond(c);
1143 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1144 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1145 abstime);
1146 }
1147
1148 #if SANITIZER_MAC
INTERCEPTOR(int,pthread_cond_timedwait_relative_np,void * c,void * m,void * reltime)1149 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1150 void *reltime) {
1151 void *cond = init_cond(c);
1152 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1153 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1154 m, reltime);
1155 }
1156 #endif
1157
INTERCEPTOR(int,pthread_cond_signal,void * c)1158 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1159 void *cond = init_cond(c);
1160 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1161 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1162 return REAL(pthread_cond_signal)(cond);
1163 }
1164
INTERCEPTOR(int,pthread_cond_broadcast,void * c)1165 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1166 void *cond = init_cond(c);
1167 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1168 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1169 return REAL(pthread_cond_broadcast)(cond);
1170 }
1171
INTERCEPTOR(int,pthread_cond_destroy,void * c)1172 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1173 void *cond = init_cond(c);
1174 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1175 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1176 int res = REAL(pthread_cond_destroy)(cond);
1177 if (common_flags()->legacy_pthread_cond) {
1178 // Free our aux cond and zero the pointer to not leave dangling pointers.
1179 WRAP(free)(cond);
1180 atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1181 }
1182 return res;
1183 }
1184
TSAN_INTERCEPTOR(int,pthread_mutex_init,void * m,void * a)1185 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1186 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1187 int res = REAL(pthread_mutex_init)(m, a);
1188 if (res == 0) {
1189 u32 flagz = 0;
1190 if (a) {
1191 int type = 0;
1192 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1193 if (type == PTHREAD_MUTEX_RECURSIVE ||
1194 type == PTHREAD_MUTEX_RECURSIVE_NP)
1195 flagz |= MutexFlagWriteReentrant;
1196 }
1197 MutexCreate(thr, pc, (uptr)m, flagz);
1198 }
1199 return res;
1200 }
1201
TSAN_INTERCEPTOR(int,pthread_mutex_destroy,void * m)1202 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1203 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1204 int res = REAL(pthread_mutex_destroy)(m);
1205 if (res == 0 || res == errno_EBUSY) {
1206 MutexDestroy(thr, pc, (uptr)m);
1207 }
1208 return res;
1209 }
1210
TSAN_INTERCEPTOR(int,pthread_mutex_trylock,void * m)1211 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1212 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1213 int res = REAL(pthread_mutex_trylock)(m);
1214 if (res == errno_EOWNERDEAD)
1215 MutexRepair(thr, pc, (uptr)m);
1216 if (res == 0 || res == errno_EOWNERDEAD)
1217 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1218 return res;
1219 }
1220
1221 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_mutex_timedlock,void * m,void * abstime)1222 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1223 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1224 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1225 if (res == 0) {
1226 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1227 }
1228 return res;
1229 }
1230 #endif
1231
1232 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_spin_init,void * m,int pshared)1233 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1234 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1235 int res = REAL(pthread_spin_init)(m, pshared);
1236 if (res == 0) {
1237 MutexCreate(thr, pc, (uptr)m);
1238 }
1239 return res;
1240 }
1241
TSAN_INTERCEPTOR(int,pthread_spin_destroy,void * m)1242 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1243 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1244 int res = REAL(pthread_spin_destroy)(m);
1245 if (res == 0) {
1246 MutexDestroy(thr, pc, (uptr)m);
1247 }
1248 return res;
1249 }
1250
TSAN_INTERCEPTOR(int,pthread_spin_lock,void * m)1251 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1252 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1253 MutexPreLock(thr, pc, (uptr)m);
1254 int res = REAL(pthread_spin_lock)(m);
1255 if (res == 0) {
1256 MutexPostLock(thr, pc, (uptr)m);
1257 }
1258 return res;
1259 }
1260
TSAN_INTERCEPTOR(int,pthread_spin_trylock,void * m)1261 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1262 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1263 int res = REAL(pthread_spin_trylock)(m);
1264 if (res == 0) {
1265 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1266 }
1267 return res;
1268 }
1269
TSAN_INTERCEPTOR(int,pthread_spin_unlock,void * m)1270 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1271 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1272 MutexUnlock(thr, pc, (uptr)m);
1273 int res = REAL(pthread_spin_unlock)(m);
1274 return res;
1275 }
1276 #endif
1277
TSAN_INTERCEPTOR(int,pthread_rwlock_init,void * m,void * a)1278 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1279 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1280 int res = REAL(pthread_rwlock_init)(m, a);
1281 if (res == 0) {
1282 MutexCreate(thr, pc, (uptr)m);
1283 }
1284 return res;
1285 }
1286
TSAN_INTERCEPTOR(int,pthread_rwlock_destroy,void * m)1287 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1288 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1289 int res = REAL(pthread_rwlock_destroy)(m);
1290 if (res == 0) {
1291 MutexDestroy(thr, pc, (uptr)m);
1292 }
1293 return res;
1294 }
1295
TSAN_INTERCEPTOR(int,pthread_rwlock_rdlock,void * m)1296 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1297 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1298 MutexPreReadLock(thr, pc, (uptr)m);
1299 int res = REAL(pthread_rwlock_rdlock)(m);
1300 if (res == 0) {
1301 MutexPostReadLock(thr, pc, (uptr)m);
1302 }
1303 return res;
1304 }
1305
TSAN_INTERCEPTOR(int,pthread_rwlock_tryrdlock,void * m)1306 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1307 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1308 int res = REAL(pthread_rwlock_tryrdlock)(m);
1309 if (res == 0) {
1310 MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1311 }
1312 return res;
1313 }
1314
1315 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedrdlock,void * m,void * abstime)1316 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1317 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1318 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1319 if (res == 0) {
1320 MutexPostReadLock(thr, pc, (uptr)m);
1321 }
1322 return res;
1323 }
1324 #endif
1325
TSAN_INTERCEPTOR(int,pthread_rwlock_wrlock,void * m)1326 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1327 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1328 MutexPreLock(thr, pc, (uptr)m);
1329 int res = REAL(pthread_rwlock_wrlock)(m);
1330 if (res == 0) {
1331 MutexPostLock(thr, pc, (uptr)m);
1332 }
1333 return res;
1334 }
1335
TSAN_INTERCEPTOR(int,pthread_rwlock_trywrlock,void * m)1336 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1337 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1338 int res = REAL(pthread_rwlock_trywrlock)(m);
1339 if (res == 0) {
1340 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1341 }
1342 return res;
1343 }
1344
1345 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedwrlock,void * m,void * abstime)1346 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1347 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1348 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1349 if (res == 0) {
1350 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1351 }
1352 return res;
1353 }
1354 #endif
1355
TSAN_INTERCEPTOR(int,pthread_rwlock_unlock,void * m)1356 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1357 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1358 MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1359 int res = REAL(pthread_rwlock_unlock)(m);
1360 return res;
1361 }
1362
1363 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_barrier_init,void * b,void * a,unsigned count)1364 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1365 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1366 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1367 int res = REAL(pthread_barrier_init)(b, a, count);
1368 return res;
1369 }
1370
TSAN_INTERCEPTOR(int,pthread_barrier_destroy,void * b)1371 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1372 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1373 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1374 int res = REAL(pthread_barrier_destroy)(b);
1375 return res;
1376 }
1377
TSAN_INTERCEPTOR(int,pthread_barrier_wait,void * b)1378 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1379 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1380 Release(thr, pc, (uptr)b);
1381 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1382 int res = REAL(pthread_barrier_wait)(b);
1383 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1384 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1385 Acquire(thr, pc, (uptr)b);
1386 }
1387 return res;
1388 }
1389 #endif
1390
TSAN_INTERCEPTOR(int,pthread_once,void * o,void (* f)())1391 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1392 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1393 if (o == 0 || f == 0)
1394 return errno_EINVAL;
1395 atomic_uint32_t *a;
1396
1397 if (SANITIZER_MAC)
1398 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1399 else if (SANITIZER_NETBSD)
1400 a = static_cast<atomic_uint32_t*>
1401 ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1402 else
1403 a = static_cast<atomic_uint32_t*>(o);
1404
1405 u32 v = atomic_load(a, memory_order_acquire);
1406 if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1407 memory_order_relaxed)) {
1408 (*f)();
1409 if (!thr->in_ignored_lib)
1410 Release(thr, pc, (uptr)o);
1411 atomic_store(a, 2, memory_order_release);
1412 } else {
1413 while (v != 2) {
1414 internal_sched_yield();
1415 v = atomic_load(a, memory_order_acquire);
1416 }
1417 if (!thr->in_ignored_lib)
1418 Acquire(thr, pc, (uptr)o);
1419 }
1420 return 0;
1421 }
1422
1423 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat,int version,int fd,void * buf)1424 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1425 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1426 if (fd > 0)
1427 FdAccess(thr, pc, fd);
1428 return REAL(__fxstat)(version, fd, buf);
1429 }
1430 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1431 #else
1432 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1433 #endif
1434
TSAN_INTERCEPTOR(int,fstat,int fd,void * buf)1435 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1436 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1437 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1438 if (fd > 0)
1439 FdAccess(thr, pc, fd);
1440 return REAL(fstat)(fd, buf);
1441 #else
1442 SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1443 if (fd > 0)
1444 FdAccess(thr, pc, fd);
1445 return REAL(__fxstat)(0, fd, buf);
1446 #endif
1447 }
1448
1449 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat64,int version,int fd,void * buf)1450 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1451 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1452 if (fd > 0)
1453 FdAccess(thr, pc, fd);
1454 return REAL(__fxstat64)(version, fd, buf);
1455 }
1456 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1457 #else
1458 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1459 #endif
1460
1461 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,fstat64,int fd,void * buf)1462 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1463 SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1464 if (fd > 0)
1465 FdAccess(thr, pc, fd);
1466 return REAL(__fxstat64)(0, fd, buf);
1467 }
1468 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1469 #else
1470 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1471 #endif
1472
TSAN_INTERCEPTOR(int,open,const char * name,int flags,int mode)1473 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1474 SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1475 READ_STRING(thr, pc, name, 0);
1476 int fd = REAL(open)(name, flags, mode);
1477 if (fd >= 0)
1478 FdFileCreate(thr, pc, fd);
1479 return fd;
1480 }
1481
1482 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,open64,const char * name,int flags,int mode)1483 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1484 SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1485 READ_STRING(thr, pc, name, 0);
1486 int fd = REAL(open64)(name, flags, mode);
1487 if (fd >= 0)
1488 FdFileCreate(thr, pc, fd);
1489 return fd;
1490 }
1491 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1492 #else
1493 #define TSAN_MAYBE_INTERCEPT_OPEN64
1494 #endif
1495
TSAN_INTERCEPTOR(int,creat,const char * name,int mode)1496 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1497 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1498 READ_STRING(thr, pc, name, 0);
1499 int fd = REAL(creat)(name, mode);
1500 if (fd >= 0)
1501 FdFileCreate(thr, pc, fd);
1502 return fd;
1503 }
1504
1505 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,creat64,const char * name,int mode)1506 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1507 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1508 READ_STRING(thr, pc, name, 0);
1509 int fd = REAL(creat64)(name, mode);
1510 if (fd >= 0)
1511 FdFileCreate(thr, pc, fd);
1512 return fd;
1513 }
1514 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1515 #else
1516 #define TSAN_MAYBE_INTERCEPT_CREAT64
1517 #endif
1518
TSAN_INTERCEPTOR(int,dup,int oldfd)1519 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1520 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1521 int newfd = REAL(dup)(oldfd);
1522 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1523 FdDup(thr, pc, oldfd, newfd, true);
1524 return newfd;
1525 }
1526
TSAN_INTERCEPTOR(int,dup2,int oldfd,int newfd)1527 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1528 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1529 int newfd2 = REAL(dup2)(oldfd, newfd);
1530 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1531 FdDup(thr, pc, oldfd, newfd2, false);
1532 return newfd2;
1533 }
1534
1535 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,dup3,int oldfd,int newfd,int flags)1536 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1537 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1538 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1539 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1540 FdDup(thr, pc, oldfd, newfd2, false);
1541 return newfd2;
1542 }
1543 #endif
1544
1545 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,eventfd,unsigned initval,int flags)1546 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1547 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1548 int fd = REAL(eventfd)(initval, flags);
1549 if (fd >= 0)
1550 FdEventCreate(thr, pc, fd);
1551 return fd;
1552 }
1553 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1554 #else
1555 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1556 #endif
1557
1558 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,signalfd,int fd,void * mask,int flags)1559 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1560 SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1561 if (fd >= 0)
1562 FdClose(thr, pc, fd);
1563 fd = REAL(signalfd)(fd, mask, flags);
1564 if (fd >= 0)
1565 FdSignalCreate(thr, pc, fd);
1566 return fd;
1567 }
1568 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1569 #else
1570 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1571 #endif
1572
1573 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init,int fake)1574 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1575 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1576 int fd = REAL(inotify_init)(fake);
1577 if (fd >= 0)
1578 FdInotifyCreate(thr, pc, fd);
1579 return fd;
1580 }
1581 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1582 #else
1583 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1584 #endif
1585
1586 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init1,int flags)1587 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1588 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1589 int fd = REAL(inotify_init1)(flags);
1590 if (fd >= 0)
1591 FdInotifyCreate(thr, pc, fd);
1592 return fd;
1593 }
1594 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1595 #else
1596 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1597 #endif
1598
TSAN_INTERCEPTOR(int,socket,int domain,int type,int protocol)1599 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1600 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1601 int fd = REAL(socket)(domain, type, protocol);
1602 if (fd >= 0)
1603 FdSocketCreate(thr, pc, fd);
1604 return fd;
1605 }
1606
TSAN_INTERCEPTOR(int,socketpair,int domain,int type,int protocol,int * fd)1607 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1608 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1609 int res = REAL(socketpair)(domain, type, protocol, fd);
1610 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1611 FdPipeCreate(thr, pc, fd[0], fd[1]);
1612 return res;
1613 }
1614
TSAN_INTERCEPTOR(int,connect,int fd,void * addr,unsigned addrlen)1615 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1616 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1617 FdSocketConnecting(thr, pc, fd);
1618 int res = REAL(connect)(fd, addr, addrlen);
1619 if (res == 0 && fd >= 0)
1620 FdSocketConnect(thr, pc, fd);
1621 return res;
1622 }
1623
TSAN_INTERCEPTOR(int,bind,int fd,void * addr,unsigned addrlen)1624 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1625 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1626 int res = REAL(bind)(fd, addr, addrlen);
1627 if (fd > 0 && res == 0)
1628 FdAccess(thr, pc, fd);
1629 return res;
1630 }
1631
TSAN_INTERCEPTOR(int,listen,int fd,int backlog)1632 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1633 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1634 int res = REAL(listen)(fd, backlog);
1635 if (fd > 0 && res == 0)
1636 FdAccess(thr, pc, fd);
1637 return res;
1638 }
1639
TSAN_INTERCEPTOR(int,close,int fd)1640 TSAN_INTERCEPTOR(int, close, int fd) {
1641 SCOPED_TSAN_INTERCEPTOR(close, fd);
1642 if (fd >= 0)
1643 FdClose(thr, pc, fd);
1644 return REAL(close)(fd);
1645 }
1646
1647 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,__close,int fd)1648 TSAN_INTERCEPTOR(int, __close, int fd) {
1649 SCOPED_TSAN_INTERCEPTOR(__close, fd);
1650 if (fd >= 0)
1651 FdClose(thr, pc, fd);
1652 return REAL(__close)(fd);
1653 }
1654 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1655 #else
1656 #define TSAN_MAYBE_INTERCEPT___CLOSE
1657 #endif
1658
1659 // glibc guts
1660 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void,__res_iclose,void * state,bool free_addr)1661 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1662 SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1663 int fds[64];
1664 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1665 for (int i = 0; i < cnt; i++) {
1666 if (fds[i] > 0)
1667 FdClose(thr, pc, fds[i]);
1668 }
1669 REAL(__res_iclose)(state, free_addr);
1670 }
1671 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1672 #else
1673 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1674 #endif
1675
TSAN_INTERCEPTOR(int,pipe,int * pipefd)1676 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1677 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1678 int res = REAL(pipe)(pipefd);
1679 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1680 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1681 return res;
1682 }
1683
1684 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pipe2,int * pipefd,int flags)1685 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1686 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1687 int res = REAL(pipe2)(pipefd, flags);
1688 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1689 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1690 return res;
1691 }
1692 #endif
1693
TSAN_INTERCEPTOR(int,unlink,char * path)1694 TSAN_INTERCEPTOR(int, unlink, char *path) {
1695 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1696 Release(thr, pc, File2addr(path));
1697 int res = REAL(unlink)(path);
1698 return res;
1699 }
1700
TSAN_INTERCEPTOR(void *,tmpfile,int fake)1701 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1702 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1703 void *res = REAL(tmpfile)(fake);
1704 if (res) {
1705 int fd = fileno_unlocked(res);
1706 if (fd >= 0)
1707 FdFileCreate(thr, pc, fd);
1708 }
1709 return res;
1710 }
1711
1712 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,tmpfile64,int fake)1713 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1714 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1715 void *res = REAL(tmpfile64)(fake);
1716 if (res) {
1717 int fd = fileno_unlocked(res);
1718 if (fd >= 0)
1719 FdFileCreate(thr, pc, fd);
1720 }
1721 return res;
1722 }
1723 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1724 #else
1725 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1726 #endif
1727
FlushStreams()1728 static void FlushStreams() {
1729 // Flushing all the streams here may freeze the process if a child thread is
1730 // performing file stream operations at the same time.
1731 REAL(fflush)(stdout);
1732 REAL(fflush)(stderr);
1733 }
1734
TSAN_INTERCEPTOR(void,abort,int fake)1735 TSAN_INTERCEPTOR(void, abort, int fake) {
1736 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1737 FlushStreams();
1738 REAL(abort)(fake);
1739 }
1740
TSAN_INTERCEPTOR(int,rmdir,char * path)1741 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1742 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1743 Release(thr, pc, Dir2addr(path));
1744 int res = REAL(rmdir)(path);
1745 return res;
1746 }
1747
TSAN_INTERCEPTOR(int,closedir,void * dirp)1748 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1749 SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1750 if (dirp) {
1751 int fd = dirfd(dirp);
1752 FdClose(thr, pc, fd);
1753 }
1754 return REAL(closedir)(dirp);
1755 }
1756
1757 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create,int size)1758 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1759 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1760 int fd = REAL(epoll_create)(size);
1761 if (fd >= 0)
1762 FdPollCreate(thr, pc, fd);
1763 return fd;
1764 }
1765
TSAN_INTERCEPTOR(int,epoll_create1,int flags)1766 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1767 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1768 int fd = REAL(epoll_create1)(flags);
1769 if (fd >= 0)
1770 FdPollCreate(thr, pc, fd);
1771 return fd;
1772 }
1773
TSAN_INTERCEPTOR(int,epoll_ctl,int epfd,int op,int fd,void * ev)1774 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1775 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1776 if (epfd >= 0)
1777 FdAccess(thr, pc, epfd);
1778 if (epfd >= 0 && fd >= 0)
1779 FdAccess(thr, pc, fd);
1780 if (op == EPOLL_CTL_ADD && epfd >= 0)
1781 FdRelease(thr, pc, epfd);
1782 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1783 return res;
1784 }
1785
TSAN_INTERCEPTOR(int,epoll_wait,int epfd,void * ev,int cnt,int timeout)1786 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1787 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1788 if (epfd >= 0)
1789 FdAccess(thr, pc, epfd);
1790 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1791 if (res > 0 && epfd >= 0)
1792 FdAcquire(thr, pc, epfd);
1793 return res;
1794 }
1795
TSAN_INTERCEPTOR(int,epoll_pwait,int epfd,void * ev,int cnt,int timeout,void * sigmask)1796 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1797 void *sigmask) {
1798 SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1799 if (epfd >= 0)
1800 FdAccess(thr, pc, epfd);
1801 int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1802 if (res > 0 && epfd >= 0)
1803 FdAcquire(thr, pc, epfd);
1804 return res;
1805 }
1806
1807 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1808 TSAN_INTERCEPT(epoll_create); \
1809 TSAN_INTERCEPT(epoll_create1); \
1810 TSAN_INTERCEPT(epoll_ctl); \
1811 TSAN_INTERCEPT(epoll_wait); \
1812 TSAN_INTERCEPT(epoll_pwait)
1813 #else
1814 #define TSAN_MAYBE_INTERCEPT_EPOLL
1815 #endif
1816
1817 // The following functions are intercepted merely to process pending signals.
1818 // If program blocks signal X, we must deliver the signal before the function
1819 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1820 // it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int,sigsuspend,const __sanitizer_sigset_t * mask)1821 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1822 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1823 return REAL(sigsuspend)(mask);
1824 }
1825
TSAN_INTERCEPTOR(int,sigblock,int mask)1826 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1827 SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1828 return REAL(sigblock)(mask);
1829 }
1830
TSAN_INTERCEPTOR(int,sigsetmask,int mask)1831 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1832 SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1833 return REAL(sigsetmask)(mask);
1834 }
1835
TSAN_INTERCEPTOR(int,pthread_sigmask,int how,const __sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)1836 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1837 __sanitizer_sigset_t *oldset) {
1838 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1839 return REAL(pthread_sigmask)(how, set, oldset);
1840 }
1841
1842 namespace __tsan {
1843
CallUserSignalHandler(ThreadState * thr,bool sync,bool acquire,bool sigact,int sig,__sanitizer_siginfo * info,void * uctx)1844 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1845 bool sigact, int sig,
1846 __sanitizer_siginfo *info, void *uctx) {
1847 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1848 if (acquire)
1849 Acquire(thr, 0, (uptr)&sigactions[sig]);
1850 // Signals are generally asynchronous, so if we receive a signals when
1851 // ignores are enabled we should disable ignores. This is critical for sync
1852 // and interceptors, because otherwise we can miss syncronization and report
1853 // false races.
1854 int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1855 int ignore_interceptors = thr->ignore_interceptors;
1856 int ignore_sync = thr->ignore_sync;
1857 if (!ctx->after_multithreaded_fork) {
1858 thr->ignore_reads_and_writes = 0;
1859 thr->fast_state.ClearIgnoreBit();
1860 thr->ignore_interceptors = 0;
1861 thr->ignore_sync = 0;
1862 }
1863 // Ensure that the handler does not spoil errno.
1864 const int saved_errno = errno;
1865 errno = 99;
1866 // This code races with sigaction. Be careful to not read sa_sigaction twice.
1867 // Also need to remember pc for reporting before the call,
1868 // because the handler can reset it.
1869 volatile uptr pc =
1870 sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
1871 if (pc != sig_dfl && pc != sig_ign) {
1872 if (sigact)
1873 ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
1874 else
1875 ((__sanitizer_sighandler_ptr)pc)(sig);
1876 }
1877 if (!ctx->after_multithreaded_fork) {
1878 thr->ignore_reads_and_writes = ignore_reads_and_writes;
1879 if (ignore_reads_and_writes)
1880 thr->fast_state.SetIgnoreBit();
1881 thr->ignore_interceptors = ignore_interceptors;
1882 thr->ignore_sync = ignore_sync;
1883 }
1884 // We do not detect errno spoiling for SIGTERM,
1885 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1886 // tsan reports false positive in such case.
1887 // It's difficult to properly detect this situation (reraise),
1888 // because in async signal processing case (when handler is called directly
1889 // from rtl_generic_sighandler) we have not yet received the reraised
1890 // signal; and it looks too fragile to intercept all ways to reraise a signal.
1891 if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1892 VarSizeStackTrace stack;
1893 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1894 // expected, OutputReport() will undo this.
1895 ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1896 ThreadRegistryLock l(ctx->thread_registry);
1897 ScopedReport rep(ReportTypeErrnoInSignal);
1898 if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1899 rep.AddStack(stack, true);
1900 OutputReport(thr, rep);
1901 }
1902 }
1903 errno = saved_errno;
1904 }
1905
ProcessPendingSignals(ThreadState * thr)1906 void ProcessPendingSignals(ThreadState *thr) {
1907 ThreadSignalContext *sctx = SigCtx(thr);
1908 if (sctx == 0 ||
1909 atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1910 return;
1911 atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1912 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1913 internal_sigfillset(&sctx->emptyset);
1914 int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1915 CHECK_EQ(res, 0);
1916 for (int sig = 0; sig < kSigCount; sig++) {
1917 SignalDesc *signal = &sctx->pending_signals[sig];
1918 if (signal->armed) {
1919 signal->armed = false;
1920 CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1921 &signal->siginfo, &signal->ctx);
1922 }
1923 }
1924 res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1925 CHECK_EQ(res, 0);
1926 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1927 }
1928
1929 } // namespace __tsan
1930
is_sync_signal(ThreadSignalContext * sctx,int sig)1931 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1932 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1933 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1934 // If we are sending signal to ourselves, we must process it now.
1935 (sctx && sig == sctx->int_signal_send);
1936 }
1937
rtl_generic_sighandler(bool sigact,int sig,__sanitizer_siginfo * info,void * ctx)1938 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1939 __sanitizer_siginfo *info,
1940 void *ctx) {
1941 ThreadState *thr = cur_thread();
1942 ThreadSignalContext *sctx = SigCtx(thr);
1943 if (sig < 0 || sig >= kSigCount) {
1944 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1945 return;
1946 }
1947 // Don't mess with synchronous signals.
1948 const bool sync = is_sync_signal(sctx, sig);
1949 if (sync ||
1950 // If we are in blocking function, we can safely process it now
1951 // (but check if we are in a recursive interceptor,
1952 // i.e. pthread_join()->munmap()).
1953 (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1954 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1955 if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1956 atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1957 CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1958 atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1959 } else {
1960 // Be very conservative with when we do acquire in this case.
1961 // It's unsafe to do acquire in async handlers, because ThreadState
1962 // can be in inconsistent state.
1963 // SIGSYS looks relatively safe -- it's synchronous and can actually
1964 // need some global state.
1965 bool acq = (sig == SIGSYS);
1966 CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
1967 }
1968 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1969 return;
1970 }
1971
1972 if (sctx == 0)
1973 return;
1974 SignalDesc *signal = &sctx->pending_signals[sig];
1975 if (signal->armed == false) {
1976 signal->armed = true;
1977 signal->sigaction = sigact;
1978 if (info)
1979 internal_memcpy(&signal->siginfo, info, sizeof(*info));
1980 if (ctx)
1981 internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
1982 atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
1983 }
1984 }
1985
rtl_sighandler(int sig)1986 static void rtl_sighandler(int sig) {
1987 rtl_generic_sighandler(false, sig, 0, 0);
1988 }
1989
rtl_sigaction(int sig,__sanitizer_siginfo * info,void * ctx)1990 static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
1991 rtl_generic_sighandler(true, sig, info, ctx);
1992 }
1993
TSAN_INTERCEPTOR(int,raise,int sig)1994 TSAN_INTERCEPTOR(int, raise, int sig) {
1995 SCOPED_TSAN_INTERCEPTOR(raise, sig);
1996 ThreadSignalContext *sctx = SigCtx(thr);
1997 CHECK_NE(sctx, 0);
1998 int prev = sctx->int_signal_send;
1999 sctx->int_signal_send = sig;
2000 int res = REAL(raise)(sig);
2001 CHECK_EQ(sctx->int_signal_send, sig);
2002 sctx->int_signal_send = prev;
2003 return res;
2004 }
2005
TSAN_INTERCEPTOR(int,kill,int pid,int sig)2006 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2007 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2008 ThreadSignalContext *sctx = SigCtx(thr);
2009 CHECK_NE(sctx, 0);
2010 int prev = sctx->int_signal_send;
2011 if (pid == (int)internal_getpid()) {
2012 sctx->int_signal_send = sig;
2013 }
2014 int res = REAL(kill)(pid, sig);
2015 if (pid == (int)internal_getpid()) {
2016 CHECK_EQ(sctx->int_signal_send, sig);
2017 sctx->int_signal_send = prev;
2018 }
2019 return res;
2020 }
2021
TSAN_INTERCEPTOR(int,pthread_kill,void * tid,int sig)2022 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2023 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2024 ThreadSignalContext *sctx = SigCtx(thr);
2025 CHECK_NE(sctx, 0);
2026 int prev = sctx->int_signal_send;
2027 if (tid == pthread_self()) {
2028 sctx->int_signal_send = sig;
2029 }
2030 int res = REAL(pthread_kill)(tid, sig);
2031 if (tid == pthread_self()) {
2032 CHECK_EQ(sctx->int_signal_send, sig);
2033 sctx->int_signal_send = prev;
2034 }
2035 return res;
2036 }
2037
TSAN_INTERCEPTOR(int,gettimeofday,void * tv,void * tz)2038 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2039 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2040 // It's intercepted merely to process pending signals.
2041 return REAL(gettimeofday)(tv, tz);
2042 }
2043
TSAN_INTERCEPTOR(int,getaddrinfo,void * node,void * service,void * hints,void * rv)2044 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2045 void *hints, void *rv) {
2046 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2047 // We miss atomic synchronization in getaddrinfo,
2048 // and can report false race between malloc and free
2049 // inside of getaddrinfo. So ignore memory accesses.
2050 ThreadIgnoreBegin(thr, pc);
2051 int res = REAL(getaddrinfo)(node, service, hints, rv);
2052 ThreadIgnoreEnd(thr, pc);
2053 return res;
2054 }
2055
TSAN_INTERCEPTOR(int,fork,int fake)2056 TSAN_INTERCEPTOR(int, fork, int fake) {
2057 if (UNLIKELY(cur_thread()->in_symbolizer))
2058 return REAL(fork)(fake);
2059 SCOPED_INTERCEPTOR_RAW(fork, fake);
2060 ForkBefore(thr, pc);
2061 int pid;
2062 {
2063 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2064 // we'll assert in CheckNoLocks() unless we ignore interceptors.
2065 ScopedIgnoreInterceptors ignore;
2066 pid = REAL(fork)(fake);
2067 }
2068 if (pid == 0) {
2069 // child
2070 ForkChildAfter(thr, pc);
2071 FdOnFork(thr, pc);
2072 } else if (pid > 0) {
2073 // parent
2074 ForkParentAfter(thr, pc);
2075 } else {
2076 // error
2077 ForkParentAfter(thr, pc);
2078 }
2079 return pid;
2080 }
2081
TSAN_INTERCEPTOR(int,vfork,int fake)2082 TSAN_INTERCEPTOR(int, vfork, int fake) {
2083 // Some programs (e.g. openjdk) call close for all file descriptors
2084 // in the child process. Under tsan it leads to false positives, because
2085 // address space is shared, so the parent process also thinks that
2086 // the descriptors are closed (while they are actually not).
2087 // This leads to false positives due to missed synchronization.
2088 // Strictly saying this is undefined behavior, because vfork child is not
2089 // allowed to call any functions other than exec/exit. But this is what
2090 // openjdk does, so we want to handle it.
2091 // We could disable interceptors in the child process. But it's not possible
2092 // to simply intercept and wrap vfork, because vfork child is not allowed
2093 // to return from the function that calls vfork, and that's exactly what
2094 // we would do. So this would require some assembly trickery as well.
2095 // Instead we simply turn vfork into fork.
2096 return WRAP(fork)(fake);
2097 }
2098
2099 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2100 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2101 void *data);
2102 struct dl_iterate_phdr_data {
2103 ThreadState *thr;
2104 uptr pc;
2105 dl_iterate_phdr_cb_t cb;
2106 void *data;
2107 };
2108
IsAppNotRodata(uptr addr)2109 static bool IsAppNotRodata(uptr addr) {
2110 return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2111 }
2112
dl_iterate_phdr_cb(__sanitizer_dl_phdr_info * info,SIZE_T size,void * data)2113 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2114 void *data) {
2115 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2116 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2117 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2118 // inside of dynamic linker, so we "unpoison" it here in order to not
2119 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2120 // because some libc functions call __libc_dlopen.
2121 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2122 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2123 internal_strlen(info->dlpi_name));
2124 int res = cbdata->cb(info, size, cbdata->data);
2125 // Perform the check one more time in case info->dlpi_name was overwritten
2126 // by user callback.
2127 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2128 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2129 internal_strlen(info->dlpi_name));
2130 return res;
2131 }
2132
TSAN_INTERCEPTOR(int,dl_iterate_phdr,dl_iterate_phdr_cb_t cb,void * data)2133 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2134 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2135 dl_iterate_phdr_data cbdata;
2136 cbdata.thr = thr;
2137 cbdata.pc = pc;
2138 cbdata.cb = cb;
2139 cbdata.data = data;
2140 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2141 return res;
2142 }
2143 #endif
2144
OnExit(ThreadState * thr)2145 static int OnExit(ThreadState *thr) {
2146 int status = Finalize(thr);
2147 FlushStreams();
2148 return status;
2149 }
2150
2151 struct TsanInterceptorContext {
2152 ThreadState *thr;
2153 const uptr caller_pc;
2154 const uptr pc;
2155 };
2156
2157 #if !SANITIZER_MAC
HandleRecvmsg(ThreadState * thr,uptr pc,__sanitizer_msghdr * msg)2158 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2159 __sanitizer_msghdr *msg) {
2160 int fds[64];
2161 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2162 for (int i = 0; i < cnt; i++)
2163 FdEventCreate(thr, pc, fds[i]);
2164 }
2165 #endif
2166
2167 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2168 // Causes interceptor recursion (getaddrinfo() and fopen())
2169 #undef SANITIZER_INTERCEPT_GETADDRINFO
2170 // There interceptors do not seem to be strictly necessary for tsan.
2171 // But we see cases where the interceptors consume 70% of execution time.
2172 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2173 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2174 // function "writes to" the buffer. Then, the same memory is "written to"
2175 // twice, first as buf and then as pwbufp (both of them refer to the same
2176 // addresses).
2177 #undef SANITIZER_INTERCEPT_GETPWENT
2178 #undef SANITIZER_INTERCEPT_GETPWENT_R
2179 #undef SANITIZER_INTERCEPT_FGETPWENT
2180 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2181 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2182 // We define our own.
2183 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2184 #define NEED_TLS_GET_ADDR
2185 #endif
2186 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2187 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2188
2189 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2190 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2191 INTERCEPT_FUNCTION_VER(name, ver)
2192
2193 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2194 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2195 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2196 true)
2197
2198 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2199 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2200 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2201 false)
2202
2203 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2204 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2205 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2206 ctx = (void *)&_ctx; \
2207 (void) ctx;
2208
2209 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2210 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2211 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2212 ctx = (void *)&_ctx; \
2213 (void) ctx;
2214
2215 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2216 Acquire(thr, pc, File2addr(path)); \
2217 if (file) { \
2218 int fd = fileno_unlocked(file); \
2219 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2220 }
2221
2222 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2223 if (file) { \
2224 int fd = fileno_unlocked(file); \
2225 if (fd >= 0) FdClose(thr, pc, fd); \
2226 }
2227
2228 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2229 libignore()->OnLibraryLoaded(filename)
2230
2231 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2232 libignore()->OnLibraryUnloaded()
2233
2234 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2235 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2236
2237 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2238 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2239
2240 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2241 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2242
2243 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2244 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2245
2246 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2247 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2248
2249 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2250 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2251
2252 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2253 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2254
2255 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2256 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2257
2258 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2259 __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2260
2261 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2262
2263 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2264 OnExit(((TsanInterceptorContext *) ctx)->thr)
2265
2266 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2267 MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2268 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2269
2270 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2271 MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2272 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2273
2274 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2275 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2276 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2277
2278 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2279 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2280 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2281
2282 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2283 MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2284 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2285
2286 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2287 off) \
2288 do { \
2289 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2290 off); \
2291 } while (false)
2292
2293 #if !SANITIZER_MAC
2294 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2295 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2296 ((TsanInterceptorContext *)ctx)->pc, msg)
2297 #endif
2298
2299 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2300 if (TsanThread *t = GetCurrentThread()) { \
2301 *begin = t->tls_begin(); \
2302 *end = t->tls_end(); \
2303 } else { \
2304 *begin = *end = 0; \
2305 }
2306
2307 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2308 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2309
2310 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2311 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2312
2313 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2314
2315 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2316 __sanitizer_sigaction *old);
2317 static __sanitizer_sighandler_ptr signal_impl(int sig,
2318 __sanitizer_sighandler_ptr h);
2319
2320 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2321 { return sigaction_impl(signo, act, oldact); }
2322
2323 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2324 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2325
2326 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2327
sigaction_impl(int sig,const __sanitizer_sigaction * act,__sanitizer_sigaction * old)2328 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2329 __sanitizer_sigaction *old) {
2330 // Note: if we call REAL(sigaction) directly for any reason without proxying
2331 // the signal handler through rtl_sigaction, very bad things will happen.
2332 // The handler will run synchronously and corrupt tsan per-thread state.
2333 SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2334 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2335 __sanitizer_sigaction old_stored;
2336 if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2337 __sanitizer_sigaction newact;
2338 if (act) {
2339 // Copy act into sigactions[sig].
2340 // Can't use struct copy, because compiler can emit call to memcpy.
2341 // Can't use internal_memcpy, because it copies byte-by-byte,
2342 // and signal handler reads the handler concurrently. It it can read
2343 // some bytes from old value and some bytes from new value.
2344 // Use volatile to prevent insertion of memcpy.
2345 sigactions[sig].handler =
2346 *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2347 sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2348 internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2349 sizeof(sigactions[sig].sa_mask));
2350 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2351 sigactions[sig].sa_restorer = act->sa_restorer;
2352 #endif
2353 internal_memcpy(&newact, act, sizeof(newact));
2354 internal_sigfillset(&newact.sa_mask);
2355 if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
2356 if (newact.sa_flags & SA_SIGINFO)
2357 newact.sigaction = rtl_sigaction;
2358 else
2359 newact.handler = rtl_sighandler;
2360 }
2361 ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2362 act = &newact;
2363 }
2364 int res = REAL(sigaction)(sig, act, old);
2365 if (res == 0 && old) {
2366 uptr cb = (uptr)old->sigaction;
2367 if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
2368 internal_memcpy(old, &old_stored, sizeof(*old));
2369 }
2370 }
2371 return res;
2372 }
2373
signal_impl(int sig,__sanitizer_sighandler_ptr h)2374 static __sanitizer_sighandler_ptr signal_impl(int sig,
2375 __sanitizer_sighandler_ptr h) {
2376 __sanitizer_sigaction act;
2377 act.handler = h;
2378 internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2379 act.sa_flags = 0;
2380 __sanitizer_sigaction old;
2381 int res = sigaction_symname(sig, &act, &old);
2382 if (res) return (__sanitizer_sighandler_ptr)sig_err;
2383 return old.handler;
2384 }
2385
2386 #define TSAN_SYSCALL() \
2387 ThreadState *thr = cur_thread(); \
2388 if (thr->ignore_interceptors) \
2389 return; \
2390 ScopedSyscall scoped_syscall(thr) \
2391 /**/
2392
2393 struct ScopedSyscall {
2394 ThreadState *thr;
2395
ScopedSyscallScopedSyscall2396 explicit ScopedSyscall(ThreadState *thr)
2397 : thr(thr) {
2398 Initialize(thr);
2399 }
2400
~ScopedSyscallScopedSyscall2401 ~ScopedSyscall() {
2402 ProcessPendingSignals(thr);
2403 }
2404 };
2405
2406 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
syscall_access_range(uptr pc,uptr p,uptr s,bool write)2407 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2408 TSAN_SYSCALL();
2409 MemoryAccessRange(thr, pc, p, s, write);
2410 }
2411
syscall_acquire(uptr pc,uptr addr)2412 static void syscall_acquire(uptr pc, uptr addr) {
2413 TSAN_SYSCALL();
2414 Acquire(thr, pc, addr);
2415 DPrintf("syscall_acquire(%p)\n", addr);
2416 }
2417
syscall_release(uptr pc,uptr addr)2418 static void syscall_release(uptr pc, uptr addr) {
2419 TSAN_SYSCALL();
2420 DPrintf("syscall_release(%p)\n", addr);
2421 Release(thr, pc, addr);
2422 }
2423
syscall_fd_close(uptr pc,int fd)2424 static void syscall_fd_close(uptr pc, int fd) {
2425 TSAN_SYSCALL();
2426 FdClose(thr, pc, fd);
2427 }
2428
syscall_fd_acquire(uptr pc,int fd)2429 static USED void syscall_fd_acquire(uptr pc, int fd) {
2430 TSAN_SYSCALL();
2431 FdAcquire(thr, pc, fd);
2432 DPrintf("syscall_fd_acquire(%p)\n", fd);
2433 }
2434
syscall_fd_release(uptr pc,int fd)2435 static USED void syscall_fd_release(uptr pc, int fd) {
2436 TSAN_SYSCALL();
2437 DPrintf("syscall_fd_release(%p)\n", fd);
2438 FdRelease(thr, pc, fd);
2439 }
2440
syscall_pre_fork(uptr pc)2441 static void syscall_pre_fork(uptr pc) {
2442 TSAN_SYSCALL();
2443 ForkBefore(thr, pc);
2444 }
2445
syscall_post_fork(uptr pc,int pid)2446 static void syscall_post_fork(uptr pc, int pid) {
2447 TSAN_SYSCALL();
2448 if (pid == 0) {
2449 // child
2450 ForkChildAfter(thr, pc);
2451 FdOnFork(thr, pc);
2452 } else if (pid > 0) {
2453 // parent
2454 ForkParentAfter(thr, pc);
2455 } else {
2456 // error
2457 ForkParentAfter(thr, pc);
2458 }
2459 }
2460 #endif
2461
2462 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2463 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2464
2465 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2466 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2467
2468 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2469 do { \
2470 (void)(p); \
2471 (void)(s); \
2472 } while (false)
2473
2474 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2475 do { \
2476 (void)(p); \
2477 (void)(s); \
2478 } while (false)
2479
2480 #define COMMON_SYSCALL_ACQUIRE(addr) \
2481 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2482
2483 #define COMMON_SYSCALL_RELEASE(addr) \
2484 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2485
2486 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2487
2488 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2489
2490 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2491
2492 #define COMMON_SYSCALL_PRE_FORK() \
2493 syscall_pre_fork(GET_CALLER_PC())
2494
2495 #define COMMON_SYSCALL_POST_FORK(res) \
2496 syscall_post_fork(GET_CALLER_PC(), res)
2497
2498 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2499 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2500
2501 #ifdef NEED_TLS_GET_ADDR
2502 // Define own interceptor instead of sanitizer_common's for three reasons:
2503 // 1. It must not process pending signals.
2504 // Signal handlers may contain MOVDQA instruction (see below).
2505 // 2. It must be as simple as possible to not contain MOVDQA.
2506 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2507 // is empty for tsan (meant only for msan).
2508 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2509 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2510 // So the interceptor must work with mis-aligned stack, in particular, does not
2511 // execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *,__tls_get_addr,void * arg)2512 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2513 void *res = REAL(__tls_get_addr)(arg);
2514 ThreadState *thr = cur_thread();
2515 if (!thr)
2516 return res;
2517 DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2518 thr->tls_addr + thr->tls_size);
2519 if (!dtv)
2520 return res;
2521 // New DTLS block has been allocated.
2522 MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2523 return res;
2524 }
2525 #endif
2526
2527 #if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void,_lwp_exit)2528 TSAN_INTERCEPTOR(void, _lwp_exit) {
2529 SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2530 DestroyThreadState();
2531 REAL(_lwp_exit)();
2532 }
2533 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2534 #else
2535 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2536 #endif
2537
2538 #if SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void,thr_exit,tid_t * state)2539 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2540 SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2541 DestroyThreadState();
2542 REAL(thr_exit(state));
2543 }
2544 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2545 #else
2546 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2547 #endif
2548
2549 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2550 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2551 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2552 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2553 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2554 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2555 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2556 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2557 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2558 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2559 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2560 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2561 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2562 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2563 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2564 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2565
2566 namespace __tsan {
2567
finalize(void * arg)2568 static void finalize(void *arg) {
2569 ThreadState *thr = cur_thread();
2570 int status = Finalize(thr);
2571 // Make sure the output is not lost.
2572 FlushStreams();
2573 if (status)
2574 Die();
2575 }
2576
2577 #if !SANITIZER_MAC && !SANITIZER_ANDROID
unreachable()2578 static void unreachable() {
2579 Report("FATAL: ThreadSanitizer: unreachable called\n");
2580 Die();
2581 }
2582 #endif
2583
InitializeInterceptors()2584 void InitializeInterceptors() {
2585 #if !SANITIZER_MAC
2586 // We need to setup it early, because functions like dlsym() can call it.
2587 REAL(memset) = internal_memset;
2588 REAL(memcpy) = internal_memcpy;
2589 #endif
2590
2591 // Instruct libc malloc to consume less memory.
2592 #if SANITIZER_LINUX
2593 mallopt(1, 0); // M_MXFAST
2594 mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
2595 #endif
2596
2597 new(interceptor_ctx()) InterceptorContext();
2598
2599 InitializeCommonInterceptors();
2600 InitializeSignalInterceptors();
2601
2602 #if !SANITIZER_MAC
2603 // We can not use TSAN_INTERCEPT to get setjmp addr,
2604 // because it does &setjmp and setjmp is not present in some versions of libc.
2605 using __interception::GetRealFunctionAddress;
2606 GetRealFunctionAddress(TSAN_STRING_SETJMP,
2607 (uptr*)&REAL(setjmp_symname), 0, 0);
2608 GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2609 GetRealFunctionAddress(TSAN_STRING_SIGSETJMP,
2610 (uptr*)&REAL(sigsetjmp_symname), 0, 0);
2611 #if !SANITIZER_NETBSD
2612 GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2613 #endif
2614 #endif
2615
2616 TSAN_INTERCEPT(longjmp_symname);
2617 TSAN_INTERCEPT(siglongjmp_symname);
2618 #if SANITIZER_NETBSD
2619 TSAN_INTERCEPT(_longjmp);
2620 #endif
2621
2622 TSAN_INTERCEPT(malloc);
2623 TSAN_INTERCEPT(__libc_memalign);
2624 TSAN_INTERCEPT(calloc);
2625 TSAN_INTERCEPT(realloc);
2626 TSAN_INTERCEPT(free);
2627 TSAN_INTERCEPT(cfree);
2628 TSAN_INTERCEPT(munmap);
2629 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2630 TSAN_INTERCEPT(valloc);
2631 TSAN_MAYBE_INTERCEPT_PVALLOC;
2632 TSAN_INTERCEPT(posix_memalign);
2633
2634 TSAN_INTERCEPT(strcpy); // NOLINT
2635 TSAN_INTERCEPT(strncpy);
2636 TSAN_INTERCEPT(strdup);
2637
2638 TSAN_INTERCEPT(pthread_create);
2639 TSAN_INTERCEPT(pthread_join);
2640 TSAN_INTERCEPT(pthread_detach);
2641
2642 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2643 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2644 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2645 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2646 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2647 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2648
2649 TSAN_INTERCEPT(pthread_mutex_init);
2650 TSAN_INTERCEPT(pthread_mutex_destroy);
2651 TSAN_INTERCEPT(pthread_mutex_trylock);
2652 TSAN_INTERCEPT(pthread_mutex_timedlock);
2653
2654 TSAN_INTERCEPT(pthread_spin_init);
2655 TSAN_INTERCEPT(pthread_spin_destroy);
2656 TSAN_INTERCEPT(pthread_spin_lock);
2657 TSAN_INTERCEPT(pthread_spin_trylock);
2658 TSAN_INTERCEPT(pthread_spin_unlock);
2659
2660 TSAN_INTERCEPT(pthread_rwlock_init);
2661 TSAN_INTERCEPT(pthread_rwlock_destroy);
2662 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2663 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2664 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2665 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2666 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2667 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2668 TSAN_INTERCEPT(pthread_rwlock_unlock);
2669
2670 TSAN_INTERCEPT(pthread_barrier_init);
2671 TSAN_INTERCEPT(pthread_barrier_destroy);
2672 TSAN_INTERCEPT(pthread_barrier_wait);
2673
2674 TSAN_INTERCEPT(pthread_once);
2675
2676 TSAN_INTERCEPT(fstat);
2677 TSAN_MAYBE_INTERCEPT___FXSTAT;
2678 TSAN_MAYBE_INTERCEPT_FSTAT64;
2679 TSAN_MAYBE_INTERCEPT___FXSTAT64;
2680 TSAN_INTERCEPT(open);
2681 TSAN_MAYBE_INTERCEPT_OPEN64;
2682 TSAN_INTERCEPT(creat);
2683 TSAN_MAYBE_INTERCEPT_CREAT64;
2684 TSAN_INTERCEPT(dup);
2685 TSAN_INTERCEPT(dup2);
2686 TSAN_INTERCEPT(dup3);
2687 TSAN_MAYBE_INTERCEPT_EVENTFD;
2688 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2689 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2690 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2691 TSAN_INTERCEPT(socket);
2692 TSAN_INTERCEPT(socketpair);
2693 TSAN_INTERCEPT(connect);
2694 TSAN_INTERCEPT(bind);
2695 TSAN_INTERCEPT(listen);
2696 TSAN_MAYBE_INTERCEPT_EPOLL;
2697 TSAN_INTERCEPT(close);
2698 TSAN_MAYBE_INTERCEPT___CLOSE;
2699 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2700 TSAN_INTERCEPT(pipe);
2701 TSAN_INTERCEPT(pipe2);
2702
2703 TSAN_INTERCEPT(unlink);
2704 TSAN_INTERCEPT(tmpfile);
2705 TSAN_MAYBE_INTERCEPT_TMPFILE64;
2706 TSAN_INTERCEPT(abort);
2707 TSAN_INTERCEPT(rmdir);
2708 TSAN_INTERCEPT(closedir);
2709
2710 TSAN_INTERCEPT(sigsuspend);
2711 TSAN_INTERCEPT(sigblock);
2712 TSAN_INTERCEPT(sigsetmask);
2713 TSAN_INTERCEPT(pthread_sigmask);
2714 TSAN_INTERCEPT(raise);
2715 TSAN_INTERCEPT(kill);
2716 TSAN_INTERCEPT(pthread_kill);
2717 TSAN_INTERCEPT(sleep);
2718 TSAN_INTERCEPT(usleep);
2719 TSAN_INTERCEPT(nanosleep);
2720 TSAN_INTERCEPT(pause);
2721 TSAN_INTERCEPT(gettimeofday);
2722 TSAN_INTERCEPT(getaddrinfo);
2723
2724 TSAN_INTERCEPT(fork);
2725 TSAN_INTERCEPT(vfork);
2726 #if !SANITIZER_ANDROID
2727 TSAN_INTERCEPT(dl_iterate_phdr);
2728 #endif
2729 TSAN_MAYBE_INTERCEPT_ON_EXIT;
2730 TSAN_INTERCEPT(__cxa_atexit);
2731 TSAN_INTERCEPT(_exit);
2732
2733 #ifdef NEED_TLS_GET_ADDR
2734 TSAN_INTERCEPT(__tls_get_addr);
2735 #endif
2736
2737 TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2738 TSAN_MAYBE_INTERCEPT_THR_EXIT;
2739
2740 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2741 // Need to setup it, because interceptors check that the function is resolved.
2742 // But atexit is emitted directly into the module, so can't be resolved.
2743 REAL(atexit) = (int(*)(void(*)()))unreachable;
2744 #endif
2745
2746 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2747 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2748 Die();
2749 }
2750
2751 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2752 if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2753 Printf("ThreadSanitizer: failed to create thread key\n");
2754 Die();
2755 }
2756 #endif
2757
2758 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2759 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2760 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2761 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2762 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2763 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2764 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2765 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2766 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2767 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
2768 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
2769 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
2770 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
2771 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
2772 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
2773 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
2774
2775 FdInit();
2776 }
2777
2778 } // namespace __tsan
2779
2780 // Invisible barrier for tests.
2781 // There were several unsuccessful iterations for this functionality:
2782 // 1. Initially it was implemented in user code using
2783 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2784 // MacOS. Futexes are linux-specific for this matter.
2785 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2786 // "as-if synchronized via sleep" messages in reports which failed some
2787 // output tests.
2788 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2789 // visible events, which lead to "failed to restore stack trace" failures.
2790 // Note that no_sanitize_thread attribute does not turn off atomic interception
2791 // so attaching it to the function defined in user code does not help.
2792 // That's why we now have what we have.
2793 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_init(u64 * barrier,u32 count)2794 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2795 if (count >= (1 << 8)) {
2796 Printf("barrier_init: count is too large (%d)\n", count);
2797 Die();
2798 }
2799 // 8 lsb is thread count, the remaining are count of entered threads.
2800 *barrier = count;
2801 }
2802
2803 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_wait(u64 * barrier)2804 void __tsan_testonly_barrier_wait(u64 *barrier) {
2805 unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2806 unsigned old_epoch = (old >> 8) / (old & 0xff);
2807 for (;;) {
2808 unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2809 unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2810 if (cur_epoch != old_epoch)
2811 return;
2812 internal_sched_yield();
2813 }
2814 }
2815