xref: /netbsd-src/external/gpl3/gcc.old/dist/libsanitizer/sanitizer_common/sanitizer_fuchsia.cc (revision 73d56d5b0be8704e4f0a7e8221a2c7309572c9a1)
1 //===-- sanitizer_fuchsia.cc ---------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===---------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and other sanitizer
9 // run-time libraries and implements Fuchsia-specific functions from
10 // sanitizer_common.h.
11 //===---------------------------------------------------------------------===//
12 
13 #include "sanitizer_fuchsia.h"
14 #if SANITIZER_FUCHSIA
15 
16 #include "sanitizer_common.h"
17 #include "sanitizer_libc.h"
18 #include "sanitizer_mutex.h"
19 #include "sanitizer_stacktrace.h"
20 
21 #include <limits.h>
22 #include <pthread.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <unwind.h>
26 #include <zircon/errors.h>
27 #include <zircon/process.h>
28 #include <zircon/syscalls.h>
29 
30 namespace __sanitizer {
31 
32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
33 
34 uptr internal_sched_yield() {
35   zx_status_t status = _zx_nanosleep(0);
36   CHECK_EQ(status, ZX_OK);
37   return 0;  // Why doesn't this return void?
38 }
39 
40 static void internal_nanosleep(zx_time_t ns) {
41   zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
42   CHECK_EQ(status, ZX_OK);
43 }
44 
45 unsigned int internal_sleep(unsigned int seconds) {
46   internal_nanosleep(ZX_SEC(seconds));
47   return 0;
48 }
49 
50 u64 NanoTime() { return _zx_time_get(ZX_CLOCK_UTC); }
51 
52 uptr internal_getpid() {
53   zx_info_handle_basic_t info;
54   zx_status_t status =
55       _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
56                           sizeof(info), NULL, NULL);
57   CHECK_EQ(status, ZX_OK);
58   uptr pid = static_cast<uptr>(info.koid);
59   CHECK_EQ(pid, info.koid);
60   return pid;
61 }
62 
63 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
64 
65 uptr GetTid() { return GetThreadSelf(); }
66 
67 void Abort() { abort(); }
68 
69 int Atexit(void (*function)(void)) { return atexit(function); }
70 
71 void SleepForSeconds(int seconds) { internal_sleep(seconds); }
72 
73 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
74 
75 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
76   pthread_attr_t attr;
77   CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
78   void *base;
79   size_t size;
80   CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
81   CHECK_EQ(pthread_attr_destroy(&attr), 0);
82 
83   *stack_bottom = reinterpret_cast<uptr>(base);
84   *stack_top = *stack_bottom + size;
85 }
86 
87 void MaybeReexec() {}
88 void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
89 void DisableCoreDumperIfNecessary() {}
90 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
91 void StartReportDeadlySignal() {}
92 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
93                         UnwindSignalStackCallbackType unwind,
94                         const void *unwind_context) {}
95 void SetAlternateSignalStack() {}
96 void UnsetAlternateSignalStack() {}
97 void InitTlsSize() {}
98 
99 void PrintModuleMap() {}
100 
101 bool SignalContext::IsStackOverflow() const { return false; }
102 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
103 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
104 
105 struct UnwindTraceArg {
106   BufferedStackTrace *stack;
107   u32 max_depth;
108 };
109 
110 _Unwind_Reason_Code Unwind_Trace(struct _Unwind_Context *ctx, void *param) {
111   UnwindTraceArg *arg = static_cast<UnwindTraceArg *>(param);
112   CHECK_LT(arg->stack->size, arg->max_depth);
113   uptr pc = _Unwind_GetIP(ctx);
114   if (pc < PAGE_SIZE) return _URC_NORMAL_STOP;
115   arg->stack->trace_buffer[arg->stack->size++] = pc;
116   return (arg->stack->size == arg->max_depth ? _URC_NORMAL_STOP
117                                              : _URC_NO_REASON);
118 }
119 
120 void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) {
121   CHECK_GE(max_depth, 2);
122   size = 0;
123   UnwindTraceArg arg = {this, Min(max_depth + 1, kStackTraceMax)};
124   _Unwind_Backtrace(Unwind_Trace, &arg);
125   CHECK_GT(size, 0);
126   // We need to pop a few frames so that pc is on top.
127   uptr to_pop = LocatePcInTrace(pc);
128   // trace_buffer[0] belongs to the current function so we always pop it,
129   // unless there is only 1 frame in the stack trace (1 frame is always better
130   // than 0!).
131   PopStackFrames(Min(to_pop, static_cast<uptr>(1)));
132   trace_buffer[0] = pc;
133 }
134 
135 void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context,
136                                                     u32 max_depth) {
137   CHECK_NE(context, nullptr);
138   UNREACHABLE("signal context doesn't exist");
139 }
140 
141 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
142 
143 BlockingMutex::BlockingMutex() {
144   // NOTE!  It's important that this use internal_memset, because plain
145   // memset might be intercepted (e.g., actually be __asan_memset).
146   // Defining this so the compiler initializes each field, e.g.:
147   //   BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
148   // might result in the compiler generating a call to memset, which would
149   // have the same problem.
150   internal_memset(this, 0, sizeof(*this));
151 }
152 
153 void BlockingMutex::Lock() {
154   CHECK_EQ(owner_, 0);
155   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
156   if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
157     return;
158   while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
159     zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m),
160                                         MtxSleeping, ZX_TIME_INFINITE);
161     if (status != ZX_ERR_BAD_STATE)  // Normal race.
162       CHECK_EQ(status, ZX_OK);
163   }
164 }
165 
166 void BlockingMutex::Unlock() {
167   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
168   u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
169   CHECK_NE(v, MtxUnlocked);
170   if (v == MtxSleeping) {
171     zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
172     CHECK_EQ(status, ZX_OK);
173   }
174 }
175 
176 void BlockingMutex::CheckLocked() {
177   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
178   CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
179 }
180 
181 uptr GetPageSize() { return PAGE_SIZE; }
182 
183 uptr GetMmapGranularity() { return PAGE_SIZE; }
184 
185 sanitizer_shadow_bounds_t ShadowBounds;
186 
187 uptr GetMaxVirtualAddress() {
188   ShadowBounds = __sanitizer_shadow_bounds();
189   return ShadowBounds.memory_limit - 1;
190 }
191 
192 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
193                                   bool raw_report, bool die_for_nomem) {
194   size = RoundUpTo(size, PAGE_SIZE);
195 
196   zx_handle_t vmo;
197   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
198   if (status != ZX_OK) {
199     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
200       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
201                               raw_report);
202     return nullptr;
203   }
204   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
205                           internal_strlen(mem_type));
206 
207   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
208   uintptr_t addr;
209   status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, size,
210                         ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &addr);
211   _zx_handle_close(vmo);
212 
213   if (status != ZX_OK) {
214     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
215       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
216                               raw_report);
217     return nullptr;
218   }
219 
220   IncreaseTotalMmap(size);
221 
222   return reinterpret_cast<void *>(addr);
223 }
224 
225 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
226   return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
227 }
228 
229 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
230   return MmapOrDie(size, mem_type);
231 }
232 
233 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
234   return DoAnonymousMmapOrDie(size, mem_type, false, false);
235 }
236 
237 // MmapNoAccess and MmapFixedOrDie are used only by sanitizer_allocator.
238 // Instead of doing exactly what they say, we make MmapNoAccess actually
239 // just allocate a VMAR to reserve the address space.  Then MmapFixedOrDie
240 // uses that VMAR instead of the root.
241 
242 zx_handle_t allocator_vmar = ZX_HANDLE_INVALID;
243 uintptr_t allocator_vmar_base;
244 size_t allocator_vmar_size;
245 
246 void *MmapNoAccess(uptr size) {
247   size = RoundUpTo(size, PAGE_SIZE);
248   CHECK_EQ(allocator_vmar, ZX_HANDLE_INVALID);
249   uintptr_t base;
250   zx_status_t status =
251       _zx_vmar_allocate(_zx_vmar_root_self(), 0, size,
252                         ZX_VM_FLAG_CAN_MAP_READ | ZX_VM_FLAG_CAN_MAP_WRITE |
253                             ZX_VM_FLAG_CAN_MAP_SPECIFIC,
254                         &allocator_vmar, &base);
255   if (status != ZX_OK)
256     ReportMmapFailureAndDie(size, "sanitizer allocator address space",
257                             "zx_vmar_allocate", status);
258 
259   allocator_vmar_base = base;
260   allocator_vmar_size = size;
261   return reinterpret_cast<void *>(base);
262 }
263 
264 constexpr const char kAllocatorVmoName[] = "sanitizer_allocator";
265 
266 static void *DoMmapFixedOrDie(uptr fixed_addr, uptr size, bool die_for_nomem) {
267   size = RoundUpTo(size, PAGE_SIZE);
268 
269   zx_handle_t vmo;
270   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
271   if (status != ZX_OK) {
272     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
273       ReportMmapFailureAndDie(size, kAllocatorVmoName, "zx_vmo_create", status);
274     return nullptr;
275   }
276   _zx_object_set_property(vmo, ZX_PROP_NAME, kAllocatorVmoName,
277                           sizeof(kAllocatorVmoName) - 1);
278 
279   DCHECK_GE(fixed_addr, allocator_vmar_base);
280   uintptr_t offset = fixed_addr - allocator_vmar_base;
281   DCHECK_LE(size, allocator_vmar_size);
282   DCHECK_GE(allocator_vmar_size - offset, size);
283 
284   uintptr_t addr;
285   status = _zx_vmar_map(
286       allocator_vmar, offset, vmo, 0, size,
287       ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_SPECIFIC,
288       &addr);
289   _zx_handle_close(vmo);
290   if (status != ZX_OK) {
291     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
292       ReportMmapFailureAndDie(size, kAllocatorVmoName, "zx_vmar_map", status);
293     return nullptr;
294   }
295 
296   IncreaseTotalMmap(size);
297 
298   return reinterpret_cast<void *>(addr);
299 }
300 
301 void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
302   return DoMmapFixedOrDie(fixed_addr, size, true);
303 }
304 
305 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
306   return DoMmapFixedOrDie(fixed_addr, size, false);
307 }
308 
309 // This should never be called.
310 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
311   UNIMPLEMENTED();
312 }
313 
314 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
315                                    const char *mem_type) {
316   CHECK_GE(size, PAGE_SIZE);
317   CHECK(IsPowerOfTwo(size));
318   CHECK(IsPowerOfTwo(alignment));
319 
320   zx_handle_t vmo;
321   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
322   if (status != ZX_OK) {
323     if (status != ZX_ERR_NO_MEMORY)
324       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
325     return nullptr;
326   }
327   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
328                           internal_strlen(mem_type));
329 
330   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
331 
332   // Map a larger size to get a chunk of address space big enough that
333   // it surely contains an aligned region of the requested size.  Then
334   // overwrite the aligned middle portion with a mapping from the
335   // beginning of the VMO, and unmap the excess before and after.
336   size_t map_size = size + alignment;
337   uintptr_t addr;
338   status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, map_size,
339                         ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &addr);
340   if (status == ZX_OK) {
341     uintptr_t map_addr = addr;
342     uintptr_t map_end = map_addr + map_size;
343     addr = RoundUpTo(map_addr, alignment);
344     uintptr_t end = addr + size;
345     if (addr != map_addr) {
346       zx_info_vmar_t info;
347       status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
348                                    sizeof(info), NULL, NULL);
349       if (status == ZX_OK) {
350         uintptr_t new_addr;
351         status =
352             _zx_vmar_map(_zx_vmar_root_self(), addr - info.base, vmo, 0, size,
353                          ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE |
354                              ZX_VM_FLAG_SPECIFIC_OVERWRITE,
355                          &new_addr);
356         if (status == ZX_OK) CHECK_EQ(new_addr, addr);
357       }
358     }
359     if (status == ZX_OK && addr != map_addr)
360       status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
361     if (status == ZX_OK && end != map_end)
362       status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
363   }
364   _zx_handle_close(vmo);
365 
366   if (status != ZX_OK) {
367     if (status != ZX_ERR_NO_MEMORY)
368       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
369     return nullptr;
370   }
371 
372   IncreaseTotalMmap(size);
373 
374   return reinterpret_cast<void *>(addr);
375 }
376 
377 void UnmapOrDie(void *addr, uptr size) {
378   if (!addr || !size) return;
379   size = RoundUpTo(size, PAGE_SIZE);
380 
381   zx_status_t status = _zx_vmar_unmap(_zx_vmar_root_self(),
382                                       reinterpret_cast<uintptr_t>(addr), size);
383   if (status != ZX_OK) {
384     Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
385            SanitizerToolName, size, size, addr);
386     CHECK("unable to unmap" && 0);
387   }
388 
389   DecreaseTotalMmap(size);
390 }
391 
392 // This is used on the shadow mapping, which cannot be changed.
393 // Zircon doesn't have anything like MADV_DONTNEED.
394 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
395 
396 void DumpProcessMap() {
397   UNIMPLEMENTED();  // TODO(mcgrathr): write it
398 }
399 
400 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
401   // TODO(mcgrathr): Figure out a better way.
402   zx_handle_t vmo;
403   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
404   if (status == ZX_OK) {
405     while (size > 0) {
406       size_t wrote;
407       status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size,
408                              &wrote);
409       if (status != ZX_OK) break;
410       CHECK_GT(wrote, 0);
411       CHECK_LE(wrote, size);
412       beg += wrote;
413       size -= wrote;
414     }
415     _zx_handle_close(vmo);
416   }
417   return status == ZX_OK;
418 }
419 
420 // FIXME implement on this platform.
421 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
422 
423 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
424                       uptr *read_len, uptr max_len, error_t *errno_p) {
425   zx_handle_t vmo;
426   zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
427   if (status == ZX_OK) {
428     uint64_t vmo_size;
429     status = _zx_vmo_get_size(vmo, &vmo_size);
430     if (status == ZX_OK) {
431       if (vmo_size < max_len) max_len = vmo_size;
432       size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
433       uintptr_t addr;
434       status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, map_size,
435                             ZX_VM_FLAG_PERM_READ, &addr);
436       if (status == ZX_OK) {
437         *buff = reinterpret_cast<char *>(addr);
438         *buff_size = map_size;
439         *read_len = max_len;
440       }
441     }
442     _zx_handle_close(vmo);
443   }
444   if (status != ZX_OK && errno_p) *errno_p = status;
445   return status == ZX_OK;
446 }
447 
448 void RawWrite(const char *buffer) {
449   __sanitizer_log_write(buffer, internal_strlen(buffer));
450 }
451 
452 void CatastrophicErrorWrite(const char *buffer, uptr length) {
453   __sanitizer_log_write(buffer, length);
454 }
455 
456 char **StoredArgv;
457 char **StoredEnviron;
458 
459 char **GetArgv() { return StoredArgv; }
460 
461 const char *GetEnv(const char *name) {
462   if (StoredEnviron) {
463     uptr NameLen = internal_strlen(name);
464     for (char **Env = StoredEnviron; *Env != 0; Env++) {
465       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
466         return (*Env) + NameLen + 1;
467     }
468   }
469   return nullptr;
470 }
471 
472 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
473   const char *argv0 = StoredArgv[0];
474   if (!argv0) argv0 = "<UNKNOWN>";
475   internal_strncpy(buf, argv0, buf_len);
476   return internal_strlen(buf);
477 }
478 
479 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
480   return ReadBinaryName(buf, buf_len);
481 }
482 
483 uptr MainThreadStackBase, MainThreadStackSize;
484 
485 bool GetRandom(void *buffer, uptr length, bool blocking) {
486   CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
487   size_t size;
488   CHECK_EQ(_zx_cprng_draw(buffer, length, &size), ZX_OK);
489   CHECK_EQ(size, length);
490   return true;
491 }
492 
493 }  // namespace __sanitizer
494 
495 using namespace __sanitizer;  // NOLINT
496 
497 extern "C" {
498 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
499                               void *stack_base, size_t stack_size) {
500   __sanitizer::StoredArgv = argv;
501   __sanitizer::StoredEnviron = envp;
502   __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
503   __sanitizer::MainThreadStackSize = stack_size;
504 }
505 
506 void __sanitizer_set_report_path(const char *path) {
507   // Handle the initialization code in each sanitizer, but no other calls.
508   // This setting is never consulted on Fuchsia.
509   DCHECK_EQ(path, common_flags()->log_path);
510 }
511 
512 void __sanitizer_set_report_fd(void *fd) {
513   UNREACHABLE("not available on Fuchsia");
514 }
515 }  // extern "C"
516 
517 #endif  // SANITIZER_FUCHSIA
518