xref: /netbsd-src/external/gpl3/gcc.old/dist/libsanitizer/sanitizer_common/sanitizer_fuchsia.cc (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 //===-- sanitizer_fuchsia.cc ----------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and other sanitizer
9 // run-time libraries and implements Fuchsia-specific functions from
10 // sanitizer_common.h.
11 //===----------------------------------------------------------------------===//
12 
13 #include "sanitizer_fuchsia.h"
14 #if SANITIZER_FUCHSIA
15 
16 #include "sanitizer_common.h"
17 #include "sanitizer_libc.h"
18 #include "sanitizer_mutex.h"
19 
20 #include <limits.h>
21 #include <pthread.h>
22 #include <stdlib.h>
23 #include <unistd.h>
24 #include <zircon/errors.h>
25 #include <zircon/process.h>
26 #include <zircon/syscalls.h>
27 
28 namespace __sanitizer {
29 
internal__exit(int exitcode)30 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
31 
internal_sched_yield()32 uptr internal_sched_yield() {
33   zx_status_t status = _zx_nanosleep(0);
34   CHECK_EQ(status, ZX_OK);
35   return 0;  // Why doesn't this return void?
36 }
37 
internal_nanosleep(zx_time_t ns)38 static void internal_nanosleep(zx_time_t ns) {
39   zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
40   CHECK_EQ(status, ZX_OK);
41 }
42 
internal_sleep(unsigned int seconds)43 unsigned int internal_sleep(unsigned int seconds) {
44   internal_nanosleep(ZX_SEC(seconds));
45   return 0;
46 }
47 
NanoTime()48 u64 NanoTime() { return _zx_clock_get(ZX_CLOCK_UTC); }
49 
MonotonicNanoTime()50 u64 MonotonicNanoTime() { return _zx_clock_get(ZX_CLOCK_MONOTONIC); }
51 
internal_getpid()52 uptr internal_getpid() {
53   zx_info_handle_basic_t info;
54   zx_status_t status =
55       _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
56                           sizeof(info), NULL, NULL);
57   CHECK_EQ(status, ZX_OK);
58   uptr pid = static_cast<uptr>(info.koid);
59   CHECK_EQ(pid, info.koid);
60   return pid;
61 }
62 
internal_dlinfo(void * handle,int request,void * p)63 int internal_dlinfo(void *handle, int request, void *p) {
64   UNIMPLEMENTED();
65 }
66 
GetThreadSelf()67 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
68 
GetTid()69 tid_t GetTid() { return GetThreadSelf(); }
70 
Abort()71 void Abort() { abort(); }
72 
Atexit(void (* function)(void))73 int Atexit(void (*function)(void)) { return atexit(function); }
74 
SleepForSeconds(int seconds)75 void SleepForSeconds(int seconds) { internal_sleep(seconds); }
76 
SleepForMillis(int millis)77 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
78 
GetThreadStackTopAndBottom(bool,uptr * stack_top,uptr * stack_bottom)79 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
80   pthread_attr_t attr;
81   CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
82   void *base;
83   size_t size;
84   CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
85   CHECK_EQ(pthread_attr_destroy(&attr), 0);
86 
87   *stack_bottom = reinterpret_cast<uptr>(base);
88   *stack_top = *stack_bottom + size;
89 }
90 
MaybeReexec()91 void MaybeReexec() {}
CheckASLR()92 void CheckASLR() {}
PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments * args)93 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
DisableCoreDumperIfNecessary()94 void DisableCoreDumperIfNecessary() {}
InstallDeadlySignalHandlers(SignalHandlerType handler)95 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
SetAlternateSignalStack()96 void SetAlternateSignalStack() {}
UnsetAlternateSignalStack()97 void UnsetAlternateSignalStack() {}
InitTlsSize()98 void InitTlsSize() {}
99 
PrintModuleMap()100 void PrintModuleMap() {}
101 
IsStackOverflow() const102 bool SignalContext::IsStackOverflow() const { return false; }
DumpAllRegisters(void * context)103 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
Describe() const104 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
105 
106 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
107 
BlockingMutex()108 BlockingMutex::BlockingMutex() {
109   // NOTE!  It's important that this use internal_memset, because plain
110   // memset might be intercepted (e.g., actually be __asan_memset).
111   // Defining this so the compiler initializes each field, e.g.:
112   //   BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
113   // might result in the compiler generating a call to memset, which would
114   // have the same problem.
115   internal_memset(this, 0, sizeof(*this));
116 }
117 
Lock()118 void BlockingMutex::Lock() {
119   CHECK_EQ(owner_, 0);
120   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
121   if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
122     return;
123   while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
124     zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m),
125                                         MtxSleeping, ZX_TIME_INFINITE);
126     if (status != ZX_ERR_BAD_STATE)  // Normal race.
127       CHECK_EQ(status, ZX_OK);
128   }
129 }
130 
Unlock()131 void BlockingMutex::Unlock() {
132   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
133   u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
134   CHECK_NE(v, MtxUnlocked);
135   if (v == MtxSleeping) {
136     zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
137     CHECK_EQ(status, ZX_OK);
138   }
139 }
140 
CheckLocked()141 void BlockingMutex::CheckLocked() {
142   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
143   CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
144 }
145 
GetPageSize()146 uptr GetPageSize() { return PAGE_SIZE; }
147 
GetMmapGranularity()148 uptr GetMmapGranularity() { return PAGE_SIZE; }
149 
150 sanitizer_shadow_bounds_t ShadowBounds;
151 
GetMaxUserVirtualAddress()152 uptr GetMaxUserVirtualAddress() {
153   ShadowBounds = __sanitizer_shadow_bounds();
154   return ShadowBounds.memory_limit - 1;
155 }
156 
GetMaxVirtualAddress()157 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
158 
DoAnonymousMmapOrDie(uptr size,const char * mem_type,bool raw_report,bool die_for_nomem)159 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
160                                   bool raw_report, bool die_for_nomem) {
161   size = RoundUpTo(size, PAGE_SIZE);
162 
163   zx_handle_t vmo;
164   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
165   if (status != ZX_OK) {
166     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
167       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
168                               raw_report);
169     return nullptr;
170   }
171   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
172                           internal_strlen(mem_type));
173 
174   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
175   uintptr_t addr;
176   status =
177       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
178                    vmo, 0, size, &addr);
179   _zx_handle_close(vmo);
180 
181   if (status != ZX_OK) {
182     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
183       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
184                               raw_report);
185     return nullptr;
186   }
187 
188   IncreaseTotalMmap(size);
189 
190   return reinterpret_cast<void *>(addr);
191 }
192 
MmapOrDie(uptr size,const char * mem_type,bool raw_report)193 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
194   return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
195 }
196 
MmapNoReserveOrDie(uptr size,const char * mem_type)197 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
198   return MmapOrDie(size, mem_type);
199 }
200 
MmapOrDieOnFatalError(uptr size,const char * mem_type)201 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
202   return DoAnonymousMmapOrDie(size, mem_type, false, false);
203 }
204 
Init(uptr init_size,const char * name,uptr fixed_addr)205 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
206                                 uptr fixed_addr) {
207   init_size = RoundUpTo(init_size, PAGE_SIZE);
208   DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
209   uintptr_t base;
210   zx_handle_t vmar;
211   zx_status_t status =
212       _zx_vmar_allocate_old(_zx_vmar_root_self(), 0, init_size,
213                             ZX_VM_FLAG_CAN_MAP_READ | ZX_VM_FLAG_CAN_MAP_WRITE |
214                                 ZX_VM_FLAG_CAN_MAP_SPECIFIC,
215                             &vmar, &base);
216   if (status != ZX_OK)
217     ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
218   base_ = reinterpret_cast<void *>(base);
219   size_ = init_size;
220   name_ = name;
221   os_handle_ = vmar;
222 
223   return reinterpret_cast<uptr>(base_);
224 }
225 
DoMmapFixedOrDie(zx_handle_t vmar,uptr fixed_addr,uptr map_size,void * base,const char * name,bool die_for_nomem)226 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
227                              void *base, const char *name, bool die_for_nomem) {
228   uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
229   map_size = RoundUpTo(map_size, PAGE_SIZE);
230   zx_handle_t vmo;
231   zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
232   if (status != ZX_OK) {
233     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
234       ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
235     return 0;
236   }
237   _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
238   DCHECK_GE(base + size_, map_size + offset);
239   uintptr_t addr;
240 
241   status =
242       _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
243                    offset, vmo, 0, map_size, &addr);
244   _zx_handle_close(vmo);
245   if (status != ZX_OK) {
246     if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
247       ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
248     }
249     return 0;
250   }
251   IncreaseTotalMmap(map_size);
252   return addr;
253 }
254 
Map(uptr fixed_addr,uptr map_size)255 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size) {
256   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
257                           name_, false);
258 }
259 
MapOrDie(uptr fixed_addr,uptr map_size)260 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size) {
261   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
262                           name_, true);
263 }
264 
UnmapOrDieVmar(void * addr,uptr size,zx_handle_t target_vmar)265 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
266   if (!addr || !size) return;
267   size = RoundUpTo(size, PAGE_SIZE);
268 
269   zx_status_t status =
270       _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
271   if (status != ZX_OK) {
272     Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
273            SanitizerToolName, size, size, addr);
274     CHECK("unable to unmap" && 0);
275   }
276 
277   DecreaseTotalMmap(size);
278 }
279 
Unmap(uptr addr,uptr size)280 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
281   CHECK_LE(size, size_);
282   const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
283   if (addr == reinterpret_cast<uptr>(base_)) {
284     if (size == size_) {
285       // Destroying the vmar effectively unmaps the whole mapping.
286       _zx_vmar_destroy(vmar);
287       _zx_handle_close(vmar);
288       os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
289       DecreaseTotalMmap(size);
290       return;
291     }
292   } else {
293     CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
294   }
295   // Partial unmapping does not affect the fact that the initial range is still
296   // reserved, and the resulting unmapped memory can't be reused.
297   UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
298 }
299 
300 // This should never be called.
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)301 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
302   UNIMPLEMENTED();
303 }
304 
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)305 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
306                                    const char *mem_type) {
307   CHECK_GE(size, PAGE_SIZE);
308   CHECK(IsPowerOfTwo(size));
309   CHECK(IsPowerOfTwo(alignment));
310 
311   zx_handle_t vmo;
312   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
313   if (status != ZX_OK) {
314     if (status != ZX_ERR_NO_MEMORY)
315       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
316     return nullptr;
317   }
318   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
319                           internal_strlen(mem_type));
320 
321   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
322 
323   // Map a larger size to get a chunk of address space big enough that
324   // it surely contains an aligned region of the requested size.  Then
325   // overwrite the aligned middle portion with a mapping from the
326   // beginning of the VMO, and unmap the excess before and after.
327   size_t map_size = size + alignment;
328   uintptr_t addr;
329   status =
330       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
331                    vmo, 0, map_size, &addr);
332   if (status == ZX_OK) {
333     uintptr_t map_addr = addr;
334     uintptr_t map_end = map_addr + map_size;
335     addr = RoundUpTo(map_addr, alignment);
336     uintptr_t end = addr + size;
337     if (addr != map_addr) {
338       zx_info_vmar_t info;
339       status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
340                                    sizeof(info), NULL, NULL);
341       if (status == ZX_OK) {
342         uintptr_t new_addr;
343         status = _zx_vmar_map(
344             _zx_vmar_root_self(),
345             ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
346             addr - info.base, vmo, 0, size, &new_addr);
347         if (status == ZX_OK) CHECK_EQ(new_addr, addr);
348       }
349     }
350     if (status == ZX_OK && addr != map_addr)
351       status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
352     if (status == ZX_OK && end != map_end)
353       status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
354   }
355   _zx_handle_close(vmo);
356 
357   if (status != ZX_OK) {
358     if (status != ZX_ERR_NO_MEMORY)
359       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
360     return nullptr;
361   }
362 
363   IncreaseTotalMmap(size);
364 
365   return reinterpret_cast<void *>(addr);
366 }
367 
UnmapOrDie(void * addr,uptr size)368 void UnmapOrDie(void *addr, uptr size) {
369   UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
370 }
371 
372 // This is used on the shadow mapping, which cannot be changed.
373 // Zircon doesn't have anything like MADV_DONTNEED.
ReleaseMemoryPagesToOS(uptr beg,uptr end)374 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
375 
DumpProcessMap()376 void DumpProcessMap() {
377   // TODO(mcgrathr): write it
378   return;
379 }
380 
IsAccessibleMemoryRange(uptr beg,uptr size)381 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
382   // TODO(mcgrathr): Figure out a better way.
383   zx_handle_t vmo;
384   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
385   if (status == ZX_OK) {
386     status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
387     _zx_handle_close(vmo);
388   }
389   return status == ZX_OK;
390 }
391 
392 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats,uptr stats_size)393 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
394 
ReadFileToBuffer(const char * file_name,char ** buff,uptr * buff_size,uptr * read_len,uptr max_len,error_t * errno_p)395 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
396                       uptr *read_len, uptr max_len, error_t *errno_p) {
397   zx_handle_t vmo;
398   zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
399   if (status == ZX_OK) {
400     uint64_t vmo_size;
401     status = _zx_vmo_get_size(vmo, &vmo_size);
402     if (status == ZX_OK) {
403       if (vmo_size < max_len) max_len = vmo_size;
404       size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
405       uintptr_t addr;
406       status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
407                             map_size, &addr);
408       if (status == ZX_OK) {
409         *buff = reinterpret_cast<char *>(addr);
410         *buff_size = map_size;
411         *read_len = max_len;
412       }
413     }
414     _zx_handle_close(vmo);
415   }
416   if (status != ZX_OK && errno_p) *errno_p = status;
417   return status == ZX_OK;
418 }
419 
RawWrite(const char * buffer)420 void RawWrite(const char *buffer) {
421   constexpr size_t size = 128;
422   static _Thread_local char line[size];
423   static _Thread_local size_t lastLineEnd = 0;
424   static _Thread_local size_t cur = 0;
425 
426   while (*buffer) {
427     if (cur >= size) {
428       if (lastLineEnd == 0)
429         lastLineEnd = size;
430       __sanitizer_log_write(line, lastLineEnd);
431       internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
432       cur = cur - lastLineEnd;
433       lastLineEnd = 0;
434     }
435     if (*buffer == '\n')
436       lastLineEnd = cur + 1;
437     line[cur++] = *buffer++;
438   }
439   // Flush all complete lines before returning.
440   if (lastLineEnd != 0) {
441     __sanitizer_log_write(line, lastLineEnd);
442     internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
443     cur = cur - lastLineEnd;
444     lastLineEnd = 0;
445   }
446 }
447 
CatastrophicErrorWrite(const char * buffer,uptr length)448 void CatastrophicErrorWrite(const char *buffer, uptr length) {
449   __sanitizer_log_write(buffer, length);
450 }
451 
452 char **StoredArgv;
453 char **StoredEnviron;
454 
GetArgv()455 char **GetArgv() { return StoredArgv; }
456 
GetEnv(const char * name)457 const char *GetEnv(const char *name) {
458   if (StoredEnviron) {
459     uptr NameLen = internal_strlen(name);
460     for (char **Env = StoredEnviron; *Env != 0; Env++) {
461       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
462         return (*Env) + NameLen + 1;
463     }
464   }
465   return nullptr;
466 }
467 
ReadBinaryName(char * buf,uptr buf_len)468 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
469   const char *argv0 = "<UNKNOWN>";
470   if (StoredArgv && StoredArgv[0]) {
471     argv0 = StoredArgv[0];
472   }
473   internal_strncpy(buf, argv0, buf_len);
474   return internal_strlen(buf);
475 }
476 
ReadLongProcessName(char * buf,uptr buf_len)477 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
478   return ReadBinaryName(buf, buf_len);
479 }
480 
481 uptr MainThreadStackBase, MainThreadStackSize;
482 
GetRandom(void * buffer,uptr length,bool blocking)483 bool GetRandom(void *buffer, uptr length, bool blocking) {
484   CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
485   _zx_cprng_draw(buffer, length);
486   return true;
487 }
488 
GetNumberOfCPUs()489 u32 GetNumberOfCPUs() {
490   return zx_system_get_num_cpus();
491 }
492 
GetRSS()493 uptr GetRSS() { UNIMPLEMENTED(); }
494 
495 }  // namespace __sanitizer
496 
497 using namespace __sanitizer;  // NOLINT
498 
499 extern "C" {
__sanitizer_startup_hook(int argc,char ** argv,char ** envp,void * stack_base,size_t stack_size)500 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
501                               void *stack_base, size_t stack_size) {
502   __sanitizer::StoredArgv = argv;
503   __sanitizer::StoredEnviron = envp;
504   __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
505   __sanitizer::MainThreadStackSize = stack_size;
506 }
507 
__sanitizer_set_report_path(const char * path)508 void __sanitizer_set_report_path(const char *path) {
509   // Handle the initialization code in each sanitizer, but no other calls.
510   // This setting is never consulted on Fuchsia.
511   DCHECK_EQ(path, common_flags()->log_path);
512 }
513 
__sanitizer_set_report_fd(void * fd)514 void __sanitizer_set_report_fd(void *fd) {
515   UNREACHABLE("not available on Fuchsia");
516 }
517 }  // extern "C"
518 
519 #endif  // SANITIZER_FUCHSIA
520