1 //===-- sanitizer_fuchsia.cc ----------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and other sanitizer
9 // run-time libraries and implements Fuchsia-specific functions from
10 // sanitizer_common.h.
11 //===----------------------------------------------------------------------===//
12
13 #include "sanitizer_fuchsia.h"
14 #if SANITIZER_FUCHSIA
15
16 #include "sanitizer_common.h"
17 #include "sanitizer_libc.h"
18 #include "sanitizer_mutex.h"
19
20 #include <limits.h>
21 #include <pthread.h>
22 #include <stdlib.h>
23 #include <unistd.h>
24 #include <zircon/errors.h>
25 #include <zircon/process.h>
26 #include <zircon/syscalls.h>
27
28 namespace __sanitizer {
29
internal__exit(int exitcode)30 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
31
internal_sched_yield()32 uptr internal_sched_yield() {
33 zx_status_t status = _zx_nanosleep(0);
34 CHECK_EQ(status, ZX_OK);
35 return 0; // Why doesn't this return void?
36 }
37
internal_nanosleep(zx_time_t ns)38 static void internal_nanosleep(zx_time_t ns) {
39 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
40 CHECK_EQ(status, ZX_OK);
41 }
42
internal_sleep(unsigned int seconds)43 unsigned int internal_sleep(unsigned int seconds) {
44 internal_nanosleep(ZX_SEC(seconds));
45 return 0;
46 }
47
NanoTime()48 u64 NanoTime() { return _zx_clock_get(ZX_CLOCK_UTC); }
49
MonotonicNanoTime()50 u64 MonotonicNanoTime() { return _zx_clock_get(ZX_CLOCK_MONOTONIC); }
51
internal_getpid()52 uptr internal_getpid() {
53 zx_info_handle_basic_t info;
54 zx_status_t status =
55 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
56 sizeof(info), NULL, NULL);
57 CHECK_EQ(status, ZX_OK);
58 uptr pid = static_cast<uptr>(info.koid);
59 CHECK_EQ(pid, info.koid);
60 return pid;
61 }
62
internal_dlinfo(void * handle,int request,void * p)63 int internal_dlinfo(void *handle, int request, void *p) {
64 UNIMPLEMENTED();
65 }
66
GetThreadSelf()67 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
68
GetTid()69 tid_t GetTid() { return GetThreadSelf(); }
70
Abort()71 void Abort() { abort(); }
72
Atexit(void (* function)(void))73 int Atexit(void (*function)(void)) { return atexit(function); }
74
SleepForSeconds(int seconds)75 void SleepForSeconds(int seconds) { internal_sleep(seconds); }
76
SleepForMillis(int millis)77 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
78
GetThreadStackTopAndBottom(bool,uptr * stack_top,uptr * stack_bottom)79 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
80 pthread_attr_t attr;
81 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
82 void *base;
83 size_t size;
84 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
85 CHECK_EQ(pthread_attr_destroy(&attr), 0);
86
87 *stack_bottom = reinterpret_cast<uptr>(base);
88 *stack_top = *stack_bottom + size;
89 }
90
MaybeReexec()91 void MaybeReexec() {}
CheckASLR()92 void CheckASLR() {}
PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments * args)93 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
DisableCoreDumperIfNecessary()94 void DisableCoreDumperIfNecessary() {}
InstallDeadlySignalHandlers(SignalHandlerType handler)95 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
SetAlternateSignalStack()96 void SetAlternateSignalStack() {}
UnsetAlternateSignalStack()97 void UnsetAlternateSignalStack() {}
InitTlsSize()98 void InitTlsSize() {}
99
PrintModuleMap()100 void PrintModuleMap() {}
101
IsStackOverflow() const102 bool SignalContext::IsStackOverflow() const { return false; }
DumpAllRegisters(void * context)103 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
Describe() const104 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
105
106 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
107
BlockingMutex()108 BlockingMutex::BlockingMutex() {
109 // NOTE! It's important that this use internal_memset, because plain
110 // memset might be intercepted (e.g., actually be __asan_memset).
111 // Defining this so the compiler initializes each field, e.g.:
112 // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
113 // might result in the compiler generating a call to memset, which would
114 // have the same problem.
115 internal_memset(this, 0, sizeof(*this));
116 }
117
Lock()118 void BlockingMutex::Lock() {
119 CHECK_EQ(owner_, 0);
120 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
121 if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
122 return;
123 while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
124 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m),
125 MtxSleeping, ZX_TIME_INFINITE);
126 if (status != ZX_ERR_BAD_STATE) // Normal race.
127 CHECK_EQ(status, ZX_OK);
128 }
129 }
130
Unlock()131 void BlockingMutex::Unlock() {
132 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
133 u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
134 CHECK_NE(v, MtxUnlocked);
135 if (v == MtxSleeping) {
136 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
137 CHECK_EQ(status, ZX_OK);
138 }
139 }
140
CheckLocked()141 void BlockingMutex::CheckLocked() {
142 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
143 CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
144 }
145
GetPageSize()146 uptr GetPageSize() { return PAGE_SIZE; }
147
GetMmapGranularity()148 uptr GetMmapGranularity() { return PAGE_SIZE; }
149
150 sanitizer_shadow_bounds_t ShadowBounds;
151
GetMaxUserVirtualAddress()152 uptr GetMaxUserVirtualAddress() {
153 ShadowBounds = __sanitizer_shadow_bounds();
154 return ShadowBounds.memory_limit - 1;
155 }
156
GetMaxVirtualAddress()157 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
158
DoAnonymousMmapOrDie(uptr size,const char * mem_type,bool raw_report,bool die_for_nomem)159 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
160 bool raw_report, bool die_for_nomem) {
161 size = RoundUpTo(size, PAGE_SIZE);
162
163 zx_handle_t vmo;
164 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
165 if (status != ZX_OK) {
166 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
167 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
168 raw_report);
169 return nullptr;
170 }
171 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
172 internal_strlen(mem_type));
173
174 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
175 uintptr_t addr;
176 status =
177 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
178 vmo, 0, size, &addr);
179 _zx_handle_close(vmo);
180
181 if (status != ZX_OK) {
182 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
183 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
184 raw_report);
185 return nullptr;
186 }
187
188 IncreaseTotalMmap(size);
189
190 return reinterpret_cast<void *>(addr);
191 }
192
MmapOrDie(uptr size,const char * mem_type,bool raw_report)193 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
194 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
195 }
196
MmapNoReserveOrDie(uptr size,const char * mem_type)197 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
198 return MmapOrDie(size, mem_type);
199 }
200
MmapOrDieOnFatalError(uptr size,const char * mem_type)201 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
202 return DoAnonymousMmapOrDie(size, mem_type, false, false);
203 }
204
Init(uptr init_size,const char * name,uptr fixed_addr)205 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
206 uptr fixed_addr) {
207 init_size = RoundUpTo(init_size, PAGE_SIZE);
208 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
209 uintptr_t base;
210 zx_handle_t vmar;
211 zx_status_t status =
212 _zx_vmar_allocate_old(_zx_vmar_root_self(), 0, init_size,
213 ZX_VM_FLAG_CAN_MAP_READ | ZX_VM_FLAG_CAN_MAP_WRITE |
214 ZX_VM_FLAG_CAN_MAP_SPECIFIC,
215 &vmar, &base);
216 if (status != ZX_OK)
217 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
218 base_ = reinterpret_cast<void *>(base);
219 size_ = init_size;
220 name_ = name;
221 os_handle_ = vmar;
222
223 return reinterpret_cast<uptr>(base_);
224 }
225
DoMmapFixedOrDie(zx_handle_t vmar,uptr fixed_addr,uptr map_size,void * base,const char * name,bool die_for_nomem)226 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
227 void *base, const char *name, bool die_for_nomem) {
228 uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
229 map_size = RoundUpTo(map_size, PAGE_SIZE);
230 zx_handle_t vmo;
231 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
232 if (status != ZX_OK) {
233 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
234 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
235 return 0;
236 }
237 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
238 DCHECK_GE(base + size_, map_size + offset);
239 uintptr_t addr;
240
241 status =
242 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
243 offset, vmo, 0, map_size, &addr);
244 _zx_handle_close(vmo);
245 if (status != ZX_OK) {
246 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
247 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
248 }
249 return 0;
250 }
251 IncreaseTotalMmap(map_size);
252 return addr;
253 }
254
Map(uptr fixed_addr,uptr map_size)255 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size) {
256 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
257 name_, false);
258 }
259
MapOrDie(uptr fixed_addr,uptr map_size)260 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size) {
261 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
262 name_, true);
263 }
264
UnmapOrDieVmar(void * addr,uptr size,zx_handle_t target_vmar)265 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
266 if (!addr || !size) return;
267 size = RoundUpTo(size, PAGE_SIZE);
268
269 zx_status_t status =
270 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
271 if (status != ZX_OK) {
272 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
273 SanitizerToolName, size, size, addr);
274 CHECK("unable to unmap" && 0);
275 }
276
277 DecreaseTotalMmap(size);
278 }
279
Unmap(uptr addr,uptr size)280 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
281 CHECK_LE(size, size_);
282 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
283 if (addr == reinterpret_cast<uptr>(base_)) {
284 if (size == size_) {
285 // Destroying the vmar effectively unmaps the whole mapping.
286 _zx_vmar_destroy(vmar);
287 _zx_handle_close(vmar);
288 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
289 DecreaseTotalMmap(size);
290 return;
291 }
292 } else {
293 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
294 }
295 // Partial unmapping does not affect the fact that the initial range is still
296 // reserved, and the resulting unmapped memory can't be reused.
297 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
298 }
299
300 // This should never be called.
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)301 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
302 UNIMPLEMENTED();
303 }
304
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)305 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
306 const char *mem_type) {
307 CHECK_GE(size, PAGE_SIZE);
308 CHECK(IsPowerOfTwo(size));
309 CHECK(IsPowerOfTwo(alignment));
310
311 zx_handle_t vmo;
312 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
313 if (status != ZX_OK) {
314 if (status != ZX_ERR_NO_MEMORY)
315 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
316 return nullptr;
317 }
318 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
319 internal_strlen(mem_type));
320
321 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
322
323 // Map a larger size to get a chunk of address space big enough that
324 // it surely contains an aligned region of the requested size. Then
325 // overwrite the aligned middle portion with a mapping from the
326 // beginning of the VMO, and unmap the excess before and after.
327 size_t map_size = size + alignment;
328 uintptr_t addr;
329 status =
330 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
331 vmo, 0, map_size, &addr);
332 if (status == ZX_OK) {
333 uintptr_t map_addr = addr;
334 uintptr_t map_end = map_addr + map_size;
335 addr = RoundUpTo(map_addr, alignment);
336 uintptr_t end = addr + size;
337 if (addr != map_addr) {
338 zx_info_vmar_t info;
339 status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
340 sizeof(info), NULL, NULL);
341 if (status == ZX_OK) {
342 uintptr_t new_addr;
343 status = _zx_vmar_map(
344 _zx_vmar_root_self(),
345 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
346 addr - info.base, vmo, 0, size, &new_addr);
347 if (status == ZX_OK) CHECK_EQ(new_addr, addr);
348 }
349 }
350 if (status == ZX_OK && addr != map_addr)
351 status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
352 if (status == ZX_OK && end != map_end)
353 status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
354 }
355 _zx_handle_close(vmo);
356
357 if (status != ZX_OK) {
358 if (status != ZX_ERR_NO_MEMORY)
359 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
360 return nullptr;
361 }
362
363 IncreaseTotalMmap(size);
364
365 return reinterpret_cast<void *>(addr);
366 }
367
UnmapOrDie(void * addr,uptr size)368 void UnmapOrDie(void *addr, uptr size) {
369 UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
370 }
371
372 // This is used on the shadow mapping, which cannot be changed.
373 // Zircon doesn't have anything like MADV_DONTNEED.
ReleaseMemoryPagesToOS(uptr beg,uptr end)374 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
375
DumpProcessMap()376 void DumpProcessMap() {
377 // TODO(mcgrathr): write it
378 return;
379 }
380
IsAccessibleMemoryRange(uptr beg,uptr size)381 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
382 // TODO(mcgrathr): Figure out a better way.
383 zx_handle_t vmo;
384 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
385 if (status == ZX_OK) {
386 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
387 _zx_handle_close(vmo);
388 }
389 return status == ZX_OK;
390 }
391
392 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats,uptr stats_size)393 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
394
ReadFileToBuffer(const char * file_name,char ** buff,uptr * buff_size,uptr * read_len,uptr max_len,error_t * errno_p)395 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
396 uptr *read_len, uptr max_len, error_t *errno_p) {
397 zx_handle_t vmo;
398 zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
399 if (status == ZX_OK) {
400 uint64_t vmo_size;
401 status = _zx_vmo_get_size(vmo, &vmo_size);
402 if (status == ZX_OK) {
403 if (vmo_size < max_len) max_len = vmo_size;
404 size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
405 uintptr_t addr;
406 status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
407 map_size, &addr);
408 if (status == ZX_OK) {
409 *buff = reinterpret_cast<char *>(addr);
410 *buff_size = map_size;
411 *read_len = max_len;
412 }
413 }
414 _zx_handle_close(vmo);
415 }
416 if (status != ZX_OK && errno_p) *errno_p = status;
417 return status == ZX_OK;
418 }
419
RawWrite(const char * buffer)420 void RawWrite(const char *buffer) {
421 constexpr size_t size = 128;
422 static _Thread_local char line[size];
423 static _Thread_local size_t lastLineEnd = 0;
424 static _Thread_local size_t cur = 0;
425
426 while (*buffer) {
427 if (cur >= size) {
428 if (lastLineEnd == 0)
429 lastLineEnd = size;
430 __sanitizer_log_write(line, lastLineEnd);
431 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
432 cur = cur - lastLineEnd;
433 lastLineEnd = 0;
434 }
435 if (*buffer == '\n')
436 lastLineEnd = cur + 1;
437 line[cur++] = *buffer++;
438 }
439 // Flush all complete lines before returning.
440 if (lastLineEnd != 0) {
441 __sanitizer_log_write(line, lastLineEnd);
442 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
443 cur = cur - lastLineEnd;
444 lastLineEnd = 0;
445 }
446 }
447
CatastrophicErrorWrite(const char * buffer,uptr length)448 void CatastrophicErrorWrite(const char *buffer, uptr length) {
449 __sanitizer_log_write(buffer, length);
450 }
451
452 char **StoredArgv;
453 char **StoredEnviron;
454
GetArgv()455 char **GetArgv() { return StoredArgv; }
456
GetEnv(const char * name)457 const char *GetEnv(const char *name) {
458 if (StoredEnviron) {
459 uptr NameLen = internal_strlen(name);
460 for (char **Env = StoredEnviron; *Env != 0; Env++) {
461 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
462 return (*Env) + NameLen + 1;
463 }
464 }
465 return nullptr;
466 }
467
ReadBinaryName(char * buf,uptr buf_len)468 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
469 const char *argv0 = "<UNKNOWN>";
470 if (StoredArgv && StoredArgv[0]) {
471 argv0 = StoredArgv[0];
472 }
473 internal_strncpy(buf, argv0, buf_len);
474 return internal_strlen(buf);
475 }
476
ReadLongProcessName(char * buf,uptr buf_len)477 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
478 return ReadBinaryName(buf, buf_len);
479 }
480
481 uptr MainThreadStackBase, MainThreadStackSize;
482
GetRandom(void * buffer,uptr length,bool blocking)483 bool GetRandom(void *buffer, uptr length, bool blocking) {
484 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
485 _zx_cprng_draw(buffer, length);
486 return true;
487 }
488
GetNumberOfCPUs()489 u32 GetNumberOfCPUs() {
490 return zx_system_get_num_cpus();
491 }
492
GetRSS()493 uptr GetRSS() { UNIMPLEMENTED(); }
494
495 } // namespace __sanitizer
496
497 using namespace __sanitizer; // NOLINT
498
499 extern "C" {
__sanitizer_startup_hook(int argc,char ** argv,char ** envp,void * stack_base,size_t stack_size)500 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
501 void *stack_base, size_t stack_size) {
502 __sanitizer::StoredArgv = argv;
503 __sanitizer::StoredEnviron = envp;
504 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
505 __sanitizer::MainThreadStackSize = stack_size;
506 }
507
__sanitizer_set_report_path(const char * path)508 void __sanitizer_set_report_path(const char *path) {
509 // Handle the initialization code in each sanitizer, but no other calls.
510 // This setting is never consulted on Fuchsia.
511 DCHECK_EQ(path, common_flags()->log_path);
512 }
513
__sanitizer_set_report_fd(void * fd)514 void __sanitizer_set_report_fd(void *fd) {
515 UNREACHABLE("not available on Fuchsia");
516 }
517 } // extern "C"
518
519 #endif // SANITIZER_FUCHSIA
520