xref: /netbsd-src/external/gpl3/gcc.old/dist/libsanitizer/interception/interception_win.cc (revision c0a68be459da21030695f60d10265c2fc49758f8)
1 //===-- interception_linux.cc -----------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of AddressSanitizer, an address sanity checker.
9 //
10 // Windows-specific interception methods.
11 //
12 // This file is implementing several hooking techniques to intercept calls
13 // to functions. The hooks are dynamically installed by modifying the assembly
14 // code.
15 //
16 // The hooking techniques are making assumptions on the way the code is
17 // generated and are safe under these assumptions.
18 //
19 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
20 // arbitrary branching on the whole memory space, the notion of trampoline
21 // region is used. A trampoline region is a memory space withing 2G boundary
22 // where it is safe to add custom assembly code to build 64-bit jumps.
23 //
24 // Hooking techniques
25 // ==================
26 //
27 // 1) Detour
28 //
29 //    The Detour hooking technique is assuming the presence of an header with
30 //    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
31 //    nop instruction can safely be replaced by a 2-bytes jump without any need
32 //    to save the instruction. A jump to the target is encoded in the function
33 //    header and the nop instruction is replaced by a short jump to the header.
34 //
35 //        head:  5 x nop                 head:  jmp <hook>
36 //        func:  mov edi, edi    -->     func:  jmp short <head>
37 //               [...]                   real:  [...]
38 //
39 //    This technique is only implemented on 32-bit architecture.
40 //    Most of the time, Windows API are hookable with the detour technique.
41 //
42 // 2) Redirect Jump
43 //
44 //    The redirect jump is applicable when the first instruction is a direct
45 //    jump. The instruction is replaced by jump to the hook.
46 //
47 //        func:  jmp <label>     -->     func:  jmp <hook>
48 //
49 //    On an 64-bit architecture, a trampoline is inserted.
50 //
51 //        func:  jmp <label>     -->     func:  jmp <tramp>
52 //                                              [...]
53 //
54 //                                   [trampoline]
55 //                                      tramp:  jmp QWORD [addr]
56 //                                       addr:  .bytes <hook>
57 //
58 //    Note: <real> is equilavent to <label>.
59 //
60 // 3) HotPatch
61 //
62 //    The HotPatch hooking is assuming the presence of an header with padding
63 //    and a first instruction with at least 2-bytes.
64 //
65 //    The reason to enforce the 2-bytes limitation is to provide the minimal
66 //    space to encode a short jump. HotPatch technique is only rewriting one
67 //    instruction to avoid breaking a sequence of instructions containing a
68 //    branching target.
69 //
70 //    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
71 //      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
72 //    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
73 //
74 //        head:   5 x nop                head:  jmp <hook>
75 //        func:   <instr>        -->     func:  jmp short <head>
76 //                [...]                  body:  [...]
77 //
78 //                                   [trampoline]
79 //                                       real:  <instr>
80 //                                              jmp <body>
81 //
82 //    On an 64-bit architecture:
83 //
84 //        head:   6 x nop                head:  jmp QWORD [addr1]
85 //        func:   <instr>        -->     func:  jmp short <head>
86 //                [...]                  body:  [...]
87 //
88 //                                   [trampoline]
89 //                                      addr1:  .bytes <hook>
90 //                                       real:  <instr>
91 //                                              jmp QWORD [addr2]
92 //                                      addr2:  .bytes <body>
93 //
94 // 4) Trampoline
95 //
96 //    The Trampoline hooking technique is the most aggressive one. It is
97 //    assuming that there is a sequence of instructions that can be safely
98 //    replaced by a jump (enough room and no incoming branches).
99 //
100 //    Unfortunately, these assumptions can't be safely presumed and code may
101 //    be broken after hooking.
102 //
103 //        func:   <instr>        -->     func:  jmp <hook>
104 //                <instr>
105 //                [...]                  body:  [...]
106 //
107 //                                   [trampoline]
108 //                                       real:  <instr>
109 //                                              <instr>
110 //                                              jmp <body>
111 //
112 //    On an 64-bit architecture:
113 //
114 //        func:   <instr>        -->     func:  jmp QWORD [addr1]
115 //                <instr>
116 //                [...]                  body:  [...]
117 //
118 //                                   [trampoline]
119 //                                      addr1:  .bytes <hook>
120 //                                       real:  <instr>
121 //                                              <instr>
122 //                                              jmp QWORD [addr2]
123 //                                      addr2:  .bytes <body>
124 //===----------------------------------------------------------------------===//
125 
126 #include "interception.h"
127 
128 #if SANITIZER_WINDOWS
129 #include "sanitizer_common/sanitizer_platform.h"
130 #define WIN32_LEAN_AND_MEAN
131 #include <windows.h>
132 
133 namespace __interception {
134 
135 static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
136 static const int kJumpInstructionLength = 5;
137 static const int kShortJumpInstructionLength = 2;
138 static const int kIndirectJumpInstructionLength = 6;
139 static const int kBranchLength =
140     FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
141 static const int kDirectBranchLength = kBranchLength + kAddressLength;
142 
InterceptionFailed()143 static void InterceptionFailed() {
144   // Do we have a good way to abort with an error message here?
145   __debugbreak();
146 }
147 
DistanceIsWithin2Gig(uptr from,uptr target)148 static bool DistanceIsWithin2Gig(uptr from, uptr target) {
149 #if SANITIZER_WINDOWS64
150   if (from < target)
151     return target - from <= (uptr)0x7FFFFFFFU;
152   else
153     return from - target <= (uptr)0x80000000U;
154 #else
155   // In a 32-bit address space, the address calculation will wrap, so this check
156   // is unnecessary.
157   return true;
158 #endif
159 }
160 
GetMmapGranularity()161 static uptr GetMmapGranularity() {
162   SYSTEM_INFO si;
163   GetSystemInfo(&si);
164   return si.dwAllocationGranularity;
165 }
166 
RoundUpTo(uptr size,uptr boundary)167 static uptr RoundUpTo(uptr size, uptr boundary) {
168   return (size + boundary - 1) & ~(boundary - 1);
169 }
170 
171 // FIXME: internal_str* and internal_mem* functions should be moved from the
172 // ASan sources into interception/.
173 
_strlen(const char * str)174 static size_t _strlen(const char *str) {
175   const char* p = str;
176   while (*p != '\0') ++p;
177   return p - str;
178 }
179 
_strchr(char * str,char c)180 static char* _strchr(char* str, char c) {
181   while (*str) {
182     if (*str == c)
183       return str;
184     ++str;
185   }
186   return nullptr;
187 }
188 
_memset(void * p,int value,size_t sz)189 static void _memset(void *p, int value, size_t sz) {
190   for (size_t i = 0; i < sz; ++i)
191     ((char*)p)[i] = (char)value;
192 }
193 
_memcpy(void * dst,void * src,size_t sz)194 static void _memcpy(void *dst, void *src, size_t sz) {
195   char *dst_c = (char*)dst,
196        *src_c = (char*)src;
197   for (size_t i = 0; i < sz; ++i)
198     dst_c[i] = src_c[i];
199 }
200 
ChangeMemoryProtection(uptr address,uptr size,DWORD * old_protection)201 static bool ChangeMemoryProtection(
202     uptr address, uptr size, DWORD *old_protection) {
203   return ::VirtualProtect((void*)address, size,
204                           PAGE_EXECUTE_READWRITE,
205                           old_protection) != FALSE;
206 }
207 
RestoreMemoryProtection(uptr address,uptr size,DWORD old_protection)208 static bool RestoreMemoryProtection(
209     uptr address, uptr size, DWORD old_protection) {
210   DWORD unused;
211   return ::VirtualProtect((void*)address, size,
212                           old_protection,
213                           &unused) != FALSE;
214 }
215 
IsMemoryPadding(uptr address,uptr size)216 static bool IsMemoryPadding(uptr address, uptr size) {
217   u8* function = (u8*)address;
218   for (size_t i = 0; i < size; ++i)
219     if (function[i] != 0x90 && function[i] != 0xCC)
220       return false;
221   return true;
222 }
223 
224 static const u8 kHintNop8Bytes[] = {
225   0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
226 };
227 
228 template<class T>
FunctionHasPrefix(uptr address,const T & pattern)229 static bool FunctionHasPrefix(uptr address, const T &pattern) {
230   u8* function = (u8*)address - sizeof(pattern);
231   for (size_t i = 0; i < sizeof(pattern); ++i)
232     if (function[i] != pattern[i])
233       return false;
234   return true;
235 }
236 
FunctionHasPadding(uptr address,uptr size)237 static bool FunctionHasPadding(uptr address, uptr size) {
238   if (IsMemoryPadding(address - size, size))
239     return true;
240   if (size <= sizeof(kHintNop8Bytes) &&
241       FunctionHasPrefix(address, kHintNop8Bytes))
242     return true;
243   return false;
244 }
245 
WritePadding(uptr from,uptr size)246 static void WritePadding(uptr from, uptr size) {
247   _memset((void*)from, 0xCC, (size_t)size);
248 }
249 
WriteJumpInstruction(uptr from,uptr target)250 static void WriteJumpInstruction(uptr from, uptr target) {
251   if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
252     InterceptionFailed();
253   ptrdiff_t offset = target - from - kJumpInstructionLength;
254   *(u8*)from = 0xE9;
255   *(u32*)(from + 1) = offset;
256 }
257 
WriteShortJumpInstruction(uptr from,uptr target)258 static void WriteShortJumpInstruction(uptr from, uptr target) {
259   sptr offset = target - from - kShortJumpInstructionLength;
260   if (offset < -128 || offset > 127)
261     InterceptionFailed();
262   *(u8*)from = 0xEB;
263   *(u8*)(from + 1) = (u8)offset;
264 }
265 
266 #if SANITIZER_WINDOWS64
WriteIndirectJumpInstruction(uptr from,uptr indirect_target)267 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
268   // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
269   // offset.
270   // The offset is the distance from then end of the jump instruction to the
271   // memory location containing the targeted address. The displacement is still
272   // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
273   int offset = indirect_target - from - kIndirectJumpInstructionLength;
274   if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
275                             indirect_target)) {
276     InterceptionFailed();
277   }
278   *(u16*)from = 0x25FF;
279   *(u32*)(from + 2) = offset;
280 }
281 #endif
282 
WriteBranch(uptr from,uptr indirect_target,uptr target)283 static void WriteBranch(
284     uptr from, uptr indirect_target, uptr target) {
285 #if SANITIZER_WINDOWS64
286   WriteIndirectJumpInstruction(from, indirect_target);
287   *(u64*)indirect_target = target;
288 #else
289   (void)indirect_target;
290   WriteJumpInstruction(from, target);
291 #endif
292 }
293 
WriteDirectBranch(uptr from,uptr target)294 static void WriteDirectBranch(uptr from, uptr target) {
295 #if SANITIZER_WINDOWS64
296   // Emit an indirect jump through immediately following bytes:
297   //   jmp [rip + kBranchLength]
298   //   .quad <target>
299   WriteBranch(from, from + kBranchLength, target);
300 #else
301   WriteJumpInstruction(from, target);
302 #endif
303 }
304 
305 struct TrampolineMemoryRegion {
306   uptr content;
307   uptr allocated_size;
308   uptr max_size;
309 };
310 
311 static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
312 static const int kMaxTrampolineRegion = 1024;
313 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
314 
AllocateTrampolineRegion(uptr image_address,size_t granularity)315 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
316 #if SANITIZER_WINDOWS64
317   uptr address = image_address;
318   uptr scanned = 0;
319   while (scanned < kTrampolineScanLimitRange) {
320     MEMORY_BASIC_INFORMATION info;
321     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
322       return nullptr;
323 
324     // Check whether a region can be allocated at |address|.
325     if (info.State == MEM_FREE && info.RegionSize >= granularity) {
326       void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
327                                   granularity,
328                                   MEM_RESERVE | MEM_COMMIT,
329                                   PAGE_EXECUTE_READWRITE);
330       return page;
331     }
332 
333     // Move to the next region.
334     address = (uptr)info.BaseAddress + info.RegionSize;
335     scanned += info.RegionSize;
336   }
337   return nullptr;
338 #else
339   return ::VirtualAlloc(nullptr,
340                         granularity,
341                         MEM_RESERVE | MEM_COMMIT,
342                         PAGE_EXECUTE_READWRITE);
343 #endif
344 }
345 
346 // Used by unittests to release mapped memory space.
TestOnlyReleaseTrampolineRegions()347 void TestOnlyReleaseTrampolineRegions() {
348   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
349     TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
350     if (current->content == 0)
351       return;
352     ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
353     current->content = 0;
354   }
355 }
356 
AllocateMemoryForTrampoline(uptr image_address,size_t size)357 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
358   // Find a region within 2G with enough space to allocate |size| bytes.
359   TrampolineMemoryRegion *region = nullptr;
360   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
361     TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
362     if (current->content == 0) {
363       // No valid region found, allocate a new region.
364       size_t bucket_size = GetMmapGranularity();
365       void *content = AllocateTrampolineRegion(image_address, bucket_size);
366       if (content == nullptr)
367         return 0U;
368 
369       current->content = (uptr)content;
370       current->allocated_size = 0;
371       current->max_size = bucket_size;
372       region = current;
373       break;
374     } else if (current->max_size - current->allocated_size > size) {
375 #if SANITIZER_WINDOWS64
376         // In 64-bits, the memory space must be allocated within 2G boundary.
377         uptr next_address = current->content + current->allocated_size;
378         if (next_address < image_address ||
379             next_address - image_address >= 0x7FFF0000)
380           continue;
381 #endif
382       // The space can be allocated in the current region.
383       region = current;
384       break;
385     }
386   }
387 
388   // Failed to find a region.
389   if (region == nullptr)
390     return 0U;
391 
392   // Allocate the space in the current region.
393   uptr allocated_space = region->content + region->allocated_size;
394   region->allocated_size += size;
395   WritePadding(allocated_space, size);
396 
397   return allocated_space;
398 }
399 
400 // Returns 0 on error.
GetInstructionSize(uptr address,size_t * rel_offset=nullptr)401 static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
402   switch (*(u64*)address) {
403     case 0x90909090909006EB:  // stub: jmp over 6 x nop.
404       return 8;
405   }
406 
407   switch (*(u8*)address) {
408     case 0x90:  // 90 : nop
409       return 1;
410 
411     case 0x50:  // push eax / rax
412     case 0x51:  // push ecx / rcx
413     case 0x52:  // push edx / rdx
414     case 0x53:  // push ebx / rbx
415     case 0x54:  // push esp / rsp
416     case 0x55:  // push ebp / rbp
417     case 0x56:  // push esi / rsi
418     case 0x57:  // push edi / rdi
419     case 0x5D:  // pop ebp / rbp
420       return 1;
421 
422     case 0x6A:  // 6A XX = push XX
423       return 2;
424 
425     case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
426     case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
427       return 5;
428 
429     // Cannot overwrite control-instruction. Return 0 to indicate failure.
430     case 0xE9:  // E9 XX XX XX XX : jmp <label>
431     case 0xE8:  // E8 XX XX XX XX : call <func>
432     case 0xC3:  // C3 : ret
433     case 0xEB:  // EB XX : jmp XX (short jump)
434     case 0x70:  // 7Y YY : jy XX (short conditional jump)
435     case 0x71:
436     case 0x72:
437     case 0x73:
438     case 0x74:
439     case 0x75:
440     case 0x76:
441     case 0x77:
442     case 0x78:
443     case 0x79:
444     case 0x7A:
445     case 0x7B:
446     case 0x7C:
447     case 0x7D:
448     case 0x7E:
449     case 0x7F:
450       return 0;
451   }
452 
453   switch (*(u16*)(address)) {
454     case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
455     case 0xFF8B:  // 8B FF : mov edi, edi
456     case 0xEC8B:  // 8B EC : mov ebp, esp
457     case 0xc889:  // 89 C8 : mov eax, ecx
458     case 0xC18B:  // 8B C1 : mov eax, ecx
459     case 0xC033:  // 33 C0 : xor eax, eax
460     case 0xC933:  // 33 C9 : xor ecx, ecx
461     case 0xD233:  // 33 D2 : xor edx, edx
462       return 2;
463 
464     // Cannot overwrite control-instruction. Return 0 to indicate failure.
465     case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
466       return 0;
467   }
468 
469   switch (0x00FFFFFF & *(u32*)address) {
470     case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
471       return 7;
472   }
473 
474 #if SANITIZER_WINDOWS64
475   switch (*(u8*)address) {
476     case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
477                 //   movabs eax, dword ptr ds:[XXXXXXXX]
478       return 9;
479   }
480 
481   switch (*(u16*)address) {
482     case 0x5040:  // push rax
483     case 0x5140:  // push rcx
484     case 0x5240:  // push rdx
485     case 0x5340:  // push rbx
486     case 0x5440:  // push rsp
487     case 0x5540:  // push rbp
488     case 0x5640:  // push rsi
489     case 0x5740:  // push rdi
490     case 0x5441:  // push r12
491     case 0x5541:  // push r13
492     case 0x5641:  // push r14
493     case 0x5741:  // push r15
494     case 0x9066:  // Two-byte NOP
495       return 2;
496 
497     case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
498       if (rel_offset)
499         *rel_offset = 2;
500       return 6;
501   }
502 
503   switch (0x00FFFFFF & *(u32*)address) {
504     case 0xe58948:    // 48 8b c4 : mov rbp, rsp
505     case 0xc18b48:    // 48 8b c1 : mov rax, rcx
506     case 0xc48b48:    // 48 8b c4 : mov rax, rsp
507     case 0xd9f748:    // 48 f7 d9 : neg rcx
508     case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
509     case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
510     case 0xc98548:    // 48 85 C9 : test rcx, rcx
511     case 0xc0854d:    // 4d 85 c0 : test r8, r8
512     case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
513     case 0xc03345:    // 45 33 c0 : xor r8d, r8d
514     case 0xdb3345:    // 45 33 DB : xor r11d, r11d
515     case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
516     case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
517     case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
518     case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
519     case 0xca2b48:    // 48 2b ca : sub rcx, rdx
520     case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
521     case 0xc00b4d:    // 3d 0b c0 : or r8, r8
522     case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
523     case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
524     case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
525       return 3;
526 
527     case 0xec8348:    // 48 83 ec XX : sub rsp, XX
528     case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
529     case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
530       return 4;
531 
532     case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
533       return 7;
534 
535     case 0x058b48:    // 48 8b 05 XX XX XX XX :
536                       //   mov rax, QWORD PTR [rip + XXXXXXXX]
537     case 0x25ff48:    // 48 ff 25 XX XX XX XX :
538                       //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
539 
540       // Instructions having offset relative to 'rip' need offset adjustment.
541       if (rel_offset)
542         *rel_offset = 3;
543       return 7;
544 
545     case 0x2444c7:    // C7 44 24 XX YY YY YY YY
546                       //   mov dword ptr [rsp + XX], YYYYYYYY
547       return 8;
548   }
549 
550   switch (*(u32*)(address)) {
551     case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
552     case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
553     case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
554     case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
555     case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
556       return 5;
557     case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
558       return 6;
559   }
560 
561 #else
562 
563   switch (*(u8*)address) {
564     case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
565       return 5;
566   }
567   switch (*(u16*)address) {
568     case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
569     case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
570     case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
571     case 0xEC83:  // 83 EC XX : sub esp, XX
572     case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
573       return 3;
574     case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
575     case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
576       return 6;
577     case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
578       return 7;
579     case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
580       return 4;
581   }
582 
583   switch (0x00FFFFFF & *(u32*)address) {
584     case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
585     case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
586     case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
587     case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
588     case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
589     case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
590       return 4;
591   }
592 
593   switch (*(u32*)address) {
594     case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
595       return 5;
596   }
597 #endif
598 
599   // Unknown instruction!
600   // FIXME: Unknown instruction failures might happen when we add a new
601   // interceptor or a new compiler version. In either case, they should result
602   // in visible and readable error messages. However, merely calling abort()
603   // leads to an infinite recursion in CheckFailed.
604   InterceptionFailed();
605   return 0;
606 }
607 
608 // Returns 0 on error.
RoundUpToInstrBoundary(size_t size,uptr address)609 static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
610   size_t cursor = 0;
611   while (cursor < size) {
612     size_t instruction_size = GetInstructionSize(address + cursor);
613     if (!instruction_size)
614       return 0;
615     cursor += instruction_size;
616   }
617   return cursor;
618 }
619 
CopyInstructions(uptr to,uptr from,size_t size)620 static bool CopyInstructions(uptr to, uptr from, size_t size) {
621   size_t cursor = 0;
622   while (cursor != size) {
623     size_t rel_offset = 0;
624     size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
625     _memcpy((void*)(to + cursor), (void*)(from + cursor),
626             (size_t)instruction_size);
627     if (rel_offset) {
628       uptr delta = to - from;
629       uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta;
630 #if SANITIZER_WINDOWS64
631       if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU)
632         return false;
633 #endif
634       *(u32*)(to + cursor + rel_offset) = relocated_offset;
635     }
636     cursor += instruction_size;
637   }
638   return true;
639 }
640 
641 
642 #if !SANITIZER_WINDOWS64
OverrideFunctionWithDetour(uptr old_func,uptr new_func,uptr * orig_old_func)643 bool OverrideFunctionWithDetour(
644     uptr old_func, uptr new_func, uptr *orig_old_func) {
645   const int kDetourHeaderLen = 5;
646   const u16 kDetourInstruction = 0xFF8B;
647 
648   uptr header = (uptr)old_func - kDetourHeaderLen;
649   uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
650 
651   // Validate that the function is hookable.
652   if (*(u16*)old_func != kDetourInstruction ||
653       !IsMemoryPadding(header, kDetourHeaderLen))
654     return false;
655 
656   // Change memory protection to writable.
657   DWORD protection = 0;
658   if (!ChangeMemoryProtection(header, patch_length, &protection))
659     return false;
660 
661   // Write a relative jump to the redirected function.
662   WriteJumpInstruction(header, new_func);
663 
664   // Write the short jump to the function prefix.
665   WriteShortJumpInstruction(old_func, header);
666 
667   // Restore previous memory protection.
668   if (!RestoreMemoryProtection(header, patch_length, protection))
669     return false;
670 
671   if (orig_old_func)
672     *orig_old_func = old_func + kShortJumpInstructionLength;
673 
674   return true;
675 }
676 #endif
677 
OverrideFunctionWithRedirectJump(uptr old_func,uptr new_func,uptr * orig_old_func)678 bool OverrideFunctionWithRedirectJump(
679     uptr old_func, uptr new_func, uptr *orig_old_func) {
680   // Check whether the first instruction is a relative jump.
681   if (*(u8*)old_func != 0xE9)
682     return false;
683 
684   if (orig_old_func) {
685     uptr relative_offset = *(u32*)(old_func + 1);
686     uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
687     *orig_old_func = absolute_target;
688   }
689 
690 #if SANITIZER_WINDOWS64
691   // If needed, get memory space for a trampoline jump.
692   uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
693   if (!trampoline)
694     return false;
695   WriteDirectBranch(trampoline, new_func);
696 #endif
697 
698   // Change memory protection to writable.
699   DWORD protection = 0;
700   if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
701     return false;
702 
703   // Write a relative jump to the redirected function.
704   WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
705 
706   // Restore previous memory protection.
707   if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
708     return false;
709 
710   return true;
711 }
712 
OverrideFunctionWithHotPatch(uptr old_func,uptr new_func,uptr * orig_old_func)713 bool OverrideFunctionWithHotPatch(
714     uptr old_func, uptr new_func, uptr *orig_old_func) {
715   const int kHotPatchHeaderLen = kBranchLength;
716 
717   uptr header = (uptr)old_func - kHotPatchHeaderLen;
718   uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
719 
720   // Validate that the function is hot patchable.
721   size_t instruction_size = GetInstructionSize(old_func);
722   if (instruction_size < kShortJumpInstructionLength ||
723       !FunctionHasPadding(old_func, kHotPatchHeaderLen))
724     return false;
725 
726   if (orig_old_func) {
727     // Put the needed instructions into the trampoline bytes.
728     uptr trampoline_length = instruction_size + kDirectBranchLength;
729     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
730     if (!trampoline)
731       return false;
732     if (!CopyInstructions(trampoline, old_func, instruction_size))
733       return false;
734     WriteDirectBranch(trampoline + instruction_size,
735                       old_func + instruction_size);
736     *orig_old_func = trampoline;
737   }
738 
739   // If needed, get memory space for indirect address.
740   uptr indirect_address = 0;
741 #if SANITIZER_WINDOWS64
742   indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
743   if (!indirect_address)
744     return false;
745 #endif
746 
747   // Change memory protection to writable.
748   DWORD protection = 0;
749   if (!ChangeMemoryProtection(header, patch_length, &protection))
750     return false;
751 
752   // Write jumps to the redirected function.
753   WriteBranch(header, indirect_address, new_func);
754   WriteShortJumpInstruction(old_func, header);
755 
756   // Restore previous memory protection.
757   if (!RestoreMemoryProtection(header, patch_length, protection))
758     return false;
759 
760   return true;
761 }
762 
OverrideFunctionWithTrampoline(uptr old_func,uptr new_func,uptr * orig_old_func)763 bool OverrideFunctionWithTrampoline(
764     uptr old_func, uptr new_func, uptr *orig_old_func) {
765 
766   size_t instructions_length = kBranchLength;
767   size_t padding_length = 0;
768   uptr indirect_address = 0;
769 
770   if (orig_old_func) {
771     // Find out the number of bytes of the instructions we need to copy
772     // to the trampoline.
773     instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
774     if (!instructions_length)
775       return false;
776 
777     // Put the needed instructions into the trampoline bytes.
778     uptr trampoline_length = instructions_length + kDirectBranchLength;
779     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
780     if (!trampoline)
781       return false;
782     if (!CopyInstructions(trampoline, old_func, instructions_length))
783       return false;
784     WriteDirectBranch(trampoline + instructions_length,
785                       old_func + instructions_length);
786     *orig_old_func = trampoline;
787   }
788 
789 #if SANITIZER_WINDOWS64
790   // Check if the targeted address can be encoded in the function padding.
791   // Otherwise, allocate it in the trampoline region.
792   if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
793     indirect_address = old_func - kAddressLength;
794     padding_length = kAddressLength;
795   } else {
796     indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
797     if (!indirect_address)
798       return false;
799   }
800 #endif
801 
802   // Change memory protection to writable.
803   uptr patch_address = old_func - padding_length;
804   uptr patch_length = instructions_length + padding_length;
805   DWORD protection = 0;
806   if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
807     return false;
808 
809   // Patch the original function.
810   WriteBranch(old_func, indirect_address, new_func);
811 
812   // Restore previous memory protection.
813   if (!RestoreMemoryProtection(patch_address, patch_length, protection))
814     return false;
815 
816   return true;
817 }
818 
OverrideFunction(uptr old_func,uptr new_func,uptr * orig_old_func)819 bool OverrideFunction(
820     uptr old_func, uptr new_func, uptr *orig_old_func) {
821 #if !SANITIZER_WINDOWS64
822   if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
823     return true;
824 #endif
825   if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
826     return true;
827   if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
828     return true;
829   if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
830     return true;
831   return false;
832 }
833 
InterestingDLLsAvailable()834 static void **InterestingDLLsAvailable() {
835   static const char *InterestingDLLs[] = {
836       "kernel32.dll",
837       "msvcr100.dll",      // VS2010
838       "msvcr110.dll",      // VS2012
839       "msvcr120.dll",      // VS2013
840       "vcruntime140.dll",  // VS2015
841       "ucrtbase.dll",      // Universal CRT
842       // NTDLL should go last as it exports some functions that we should
843       // override in the CRT [presumably only used internally].
844       "ntdll.dll", NULL};
845   static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
846   if (!result[0]) {
847     for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
848       if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
849         result[j++] = (void *)h;
850     }
851   }
852   return &result[0];
853 }
854 
855 namespace {
856 // Utility for reading loaded PE images.
857 template <typename T> class RVAPtr {
858  public:
RVAPtr(void * module,uptr rva)859   RVAPtr(void *module, uptr rva)
860       : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
operator T*()861   operator T *() { return ptr_; }
operator ->()862   T *operator->() { return ptr_; }
operator ++()863   T *operator++() { return ++ptr_; }
864 
865  private:
866   T *ptr_;
867 };
868 } // namespace
869 
870 // Internal implementation of GetProcAddress. At least since Windows 8,
871 // GetProcAddress appears to initialize DLLs before returning function pointers
872 // into them. This is problematic for the sanitizers, because they typically
873 // want to intercept malloc *before* MSVCRT initializes. Our internal
874 // implementation walks the export list manually without doing initialization.
InternalGetProcAddress(void * module,const char * func_name)875 uptr InternalGetProcAddress(void *module, const char *func_name) {
876   // Check that the module header is full and present.
877   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
878   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
879   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
880       headers->Signature != IMAGE_NT_SIGNATURE ||           // "PE\0\0"
881       headers->FileHeader.SizeOfOptionalHeader <
882           sizeof(IMAGE_OPTIONAL_HEADER)) {
883     return 0;
884   }
885 
886   IMAGE_DATA_DIRECTORY *export_directory =
887       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
888   if (export_directory->Size == 0)
889     return 0;
890   RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
891                                          export_directory->VirtualAddress);
892   RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
893   RVAPtr<DWORD> names(module, exports->AddressOfNames);
894   RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
895 
896   for (DWORD i = 0; i < exports->NumberOfNames; i++) {
897     RVAPtr<char> name(module, names[i]);
898     if (!strcmp(func_name, name)) {
899       DWORD index = ordinals[i];
900       RVAPtr<char> func(module, functions[index]);
901 
902       // Handle forwarded functions.
903       DWORD offset = functions[index];
904       if (offset >= export_directory->VirtualAddress &&
905           offset < export_directory->VirtualAddress + export_directory->Size) {
906         // An entry for a forwarded function is a string with the following
907         // format: "<module> . <function_name>" that is stored into the
908         // exported directory.
909         char function_name[256];
910         size_t funtion_name_length = _strlen(func);
911         if (funtion_name_length >= sizeof(function_name) - 1)
912           InterceptionFailed();
913 
914         _memcpy(function_name, func, funtion_name_length);
915         function_name[funtion_name_length] = '\0';
916         char* separator = _strchr(function_name, '.');
917         if (!separator)
918           InterceptionFailed();
919         *separator = '\0';
920 
921         void* redirected_module = GetModuleHandleA(function_name);
922         if (!redirected_module)
923           InterceptionFailed();
924         return InternalGetProcAddress(redirected_module, separator + 1);
925       }
926 
927       return (uptr)(char *)func;
928     }
929   }
930 
931   return 0;
932 }
933 
OverrideFunction(const char * func_name,uptr new_func,uptr * orig_old_func)934 bool OverrideFunction(
935     const char *func_name, uptr new_func, uptr *orig_old_func) {
936   bool hooked = false;
937   void **DLLs = InterestingDLLsAvailable();
938   for (size_t i = 0; DLLs[i]; ++i) {
939     uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
940     if (func_addr &&
941         OverrideFunction(func_addr, new_func, orig_old_func)) {
942       hooked = true;
943     }
944   }
945   return hooked;
946 }
947 
OverrideImportedFunction(const char * module_to_patch,const char * imported_module,const char * function_name,uptr new_function,uptr * orig_old_func)948 bool OverrideImportedFunction(const char *module_to_patch,
949                               const char *imported_module,
950                               const char *function_name, uptr new_function,
951                               uptr *orig_old_func) {
952   HMODULE module = GetModuleHandleA(module_to_patch);
953   if (!module)
954     return false;
955 
956   // Check that the module header is full and present.
957   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
958   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
959   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
960       headers->Signature != IMAGE_NT_SIGNATURE ||            // "PE\0\0"
961       headers->FileHeader.SizeOfOptionalHeader <
962           sizeof(IMAGE_OPTIONAL_HEADER)) {
963     return false;
964   }
965 
966   IMAGE_DATA_DIRECTORY *import_directory =
967       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
968 
969   // Iterate the list of imported DLLs. FirstThunk will be null for the last
970   // entry.
971   RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
972                                           import_directory->VirtualAddress);
973   for (; imports->FirstThunk != 0; ++imports) {
974     RVAPtr<const char> modname(module, imports->Name);
975     if (_stricmp(&*modname, imported_module) == 0)
976       break;
977   }
978   if (imports->FirstThunk == 0)
979     return false;
980 
981   // We have two parallel arrays: the import address table (IAT) and the table
982   // of names. They start out containing the same data, but the loader rewrites
983   // the IAT to hold imported addresses and leaves the name table in
984   // OriginalFirstThunk alone.
985   RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
986   RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
987   for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
988     if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
989       RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
990           module, name_table->u1.ForwarderString);
991       const char *funcname = &import_by_name->Name[0];
992       if (strcmp(funcname, function_name) == 0)
993         break;
994     }
995   }
996   if (name_table->u1.Ordinal == 0)
997     return false;
998 
999   // Now we have the correct IAT entry. Do the swap. We have to make the page
1000   // read/write first.
1001   if (orig_old_func)
1002     *orig_old_func = iat->u1.AddressOfData;
1003   DWORD old_prot, unused_prot;
1004   if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1005                       &old_prot))
1006     return false;
1007   iat->u1.AddressOfData = new_function;
1008   if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1009     return false;  // Not clear if this failure bothers us.
1010   return true;
1011 }
1012 
1013 }  // namespace __interception
1014 
1015 #endif  // SANITIZER_MAC
1016