xref: /netbsd-src/external/gpl3/gcc.old/dist/libgcc/config/tilepro/atomic.h (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Macros for atomic functionality for tile.
2    Copyright (C) 2011-2020 Free Software Foundation, Inc.
3    Contributed by Walter Lee (walt@tilera.com)
4 
5    This file is free software; you can redistribute it and/or modify it
6    under the terms of the GNU General Public License as published by the
7    Free Software Foundation; either version 3, or (at your option) any
8    later version.
9 
10    This file is distributed in the hope that it will be useful, but
11    WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    General Public License for more details.
14 
15    Under Section 7 of GPL version 3, you are granted additional
16    permissions described in the GCC Runtime Library Exception, version
17    3.1, as published by the Free Software Foundation.
18 
19    You should have received a copy of the GNU General Public License and
20    a copy of the GCC Runtime Library Exception along with this program;
21    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22    <http://www.gnu.org/licenses/>.  */
23 
24 
25 /* Provides macros for common atomic functionality.  */
26 
27 #ifndef _ATOMIC_H_
28 #define _ATOMIC_H_
29 
30 #ifdef __tilegx__
31 /* Atomic instruction macros
32 
33    The macros provided by atomic.h simplify access to the TILE-Gx
34    architecture's atomic instructions.  The architecture provides a
35    variety of atomic instructions, including "exchange", "compare and
36    exchange", "fetch and ADD", "fetch and AND", "fetch and OR", and
37    "fetch and ADD if greater than or equal to zero".
38 
39    No barrier or fence semantics are implied by any of the atomic
40    instructions for manipulating memory; you must specify the barriers
41    that you wish explicitly, using the provided macros.
42 
43    Any integral 32- or 64-bit value can be used as the argument
44    to these macros, such as "int", "long long", "unsigned long", etc.
45    The pointers must be aligned to 4 or 8 bytes for 32- or 64-bit data.
46    The "exchange" and "compare and exchange" macros may also take
47    pointer values.  We use the pseudo-type "VAL" in the documentation
48    to indicate the use of an appropriate type.  */
49 #else
50 /* Atomic instruction macros
51 
52    The macros provided by atomic.h simplify access to the Tile
53    architecture's atomic instructions.  Since the architecture
54    supports test-and-set as its only in-silicon atomic operation, many
55    of the operations provided by this header are implemented as
56    fast-path calls to Linux emulation routines.
57 
58    Using the kernel for atomic operations allows userspace to take
59    advantage of the kernel's existing atomic-integer support (managed
60    by a distributed array of locks).  The kernel provides proper
61    ordering among simultaneous atomic operations on different cores,
62    and guarantees a process cannot be context-switched part way
63    through an atomic operation.  By virtue of sharing the kernel
64    atomic implementation, the userspace atomic operations
65    are compatible with the atomic methods provided by the kernel's
66    futex() syscall API.  Note that these operations never cause Linux
67    kernel scheduling, and are in fact invisible to the kernel; they
68    simply act as regular function calls but with an elevated privilege
69    level.  Note that the kernel's distributed lock array is hashed by
70    using only VA bits from the atomic value's address (to avoid the
71    performance hit of page table locking and multiple page-table
72    lookups to get the PA) and only the VA bits that are below page
73    granularity (to properly lock simultaneous accesses to the same
74    page mapped at different VAs).  As a result, simultaneous atomic
75    operations on values whose addresses are at the same offset on a
76    page will contend in the kernel for the same lock array element.
77 
78    No barrier or fence semantics are implied by any of the atomic
79    instructions for manipulating memory; you must specify the barriers
80    that you wish explicitly, using the provided macros.
81 
82    Any integral 32- or 64-bit value can be used as the argument
83    to these macros, such as "int", "long long", "unsigned long", etc.
84    The pointers must be aligned to 4 or 8 bytes for 32- or 64-bit data.
85    The "exchange" and "compare and exchange" macros may also take
86    pointer values.  We use the pseudo-type "VAL" in the documentation
87    to indicate the use of an appropriate type.
88 
89    The 32-bit routines are implemented using a single kernel fast
90    syscall, as is the 64-bit compare-and-exchange.  The other 64-bit
91    routines are implemented by looping over the 64-bit
92    compare-and-exchange routine, so may be potentially less efficient.  */
93 #endif
94 
95 #ifdef __tilegx__
96 #define SPR_CMPEXCH_VALUE 0x2780
97 #else
98 #define __NR_FAST_cmpxchg	-1
99 #define __NR_FAST_atomic_update	-2
100 #define __NR_FAST_cmpxchg64	-3
101 #endif
102 
103 
104 /* 32-bit integer compare-and-exchange.  */
105 static __inline __attribute__ ((always_inline))
arch_atomic_val_compare_and_exchange_4(volatile int * mem,int oldval,int newval)106      int arch_atomic_val_compare_and_exchange_4 (volatile int *mem,
107 						 int oldval, int newval)
108 {
109 #ifdef __tilegx__
110   __insn_mtspr (SPR_CMPEXCH_VALUE, oldval);
111   return __insn_cmpexch4 (mem, newval);
112 #else
113   int result;
114   __asm__ __volatile__ ("swint1":"=R00" (result),
115 			"=m" (*mem):"R10" (__NR_FAST_cmpxchg), "R00" (mem),
116 			"R01" (oldval), "R02" (newval), "m" (*mem):"r20",
117 			"r21", "r22", "r23", "r24", "r25", "r26", "r27",
118 			"r28", "r29", "memory");
119   return result;
120 #endif
121 }
122 
123 /* 64-bit integer compare-and-exchange.  */
124 static __inline __attribute__ ((always_inline))
arch_atomic_val_compare_and_exchange_8(volatile long long * mem,long long oldval,long long newval)125      long long arch_atomic_val_compare_and_exchange_8 (volatile long long
126 						       *mem, long long oldval,
127 						       long long newval)
128 {
129 #ifdef __tilegx__
130   __insn_mtspr (SPR_CMPEXCH_VALUE, oldval);
131   return __insn_cmpexch (mem, newval);
132 #else
133   unsigned int result_lo, result_hi;
134   unsigned int oldval_lo = oldval & 0xffffffffu, oldval_hi = oldval >> 32;
135   unsigned int newval_lo = newval & 0xffffffffu, newval_hi = newval >> 32;
136   __asm__ __volatile__ ("swint1":"=R00" (result_lo), "=R01" (result_hi),
137 			"=m" (*mem):"R10" (__NR_FAST_cmpxchg64), "R00" (mem),
138 			"R02" (oldval_lo), "R03" (oldval_hi),
139 			"R04" (newval_lo), "R05" (newval_hi),
140 			"m" (*mem):"r20", "r21", "r22", "r23", "r24", "r25",
141 			"r26", "r27", "r28", "r29", "memory");
142   return ((long long) result_hi) << 32 | result_lo;
143 #endif
144 }
145 
146 /* This non-existent symbol is called for sizes other than "4" and "8",
147    indicating a bug in the caller.  */
148 extern int __arch_atomic_error_bad_argument_size (void)
149   __attribute__ ((warning ("sizeof atomic argument not 4 or 8")));
150 
151 
152 #define arch_atomic_val_compare_and_exchange(mem, o, n)                 \
153   __extension__ ({                                                      \
154     (__typeof(*(mem)))(__typeof(*(mem)-*(mem)))                         \
155       ((sizeof(*(mem)) == 8) ?                                          \
156        arch_atomic_val_compare_and_exchange_8(                          \
157          (volatile long long*)(mem), (__typeof((o)-(o)))(o),            \
158          (__typeof((n)-(n)))(n)) :                                      \
159        (sizeof(*(mem)) == 4) ?                                          \
160        arch_atomic_val_compare_and_exchange_4(                          \
161          (volatile int*)(mem), (__typeof((o)-(o)))(o),                  \
162          (__typeof((n)-(n)))(n)) :                                      \
163        __arch_atomic_error_bad_argument_size());                        \
164   })
165 
166 #define arch_atomic_bool_compare_and_exchange(mem, o, n)                \
167   __extension__ ({                                                      \
168     __typeof(o) __o = (o);                                              \
169     __builtin_expect(                                                   \
170       __o == arch_atomic_val_compare_and_exchange((mem), __o, (n)), 1); \
171   })
172 
173 
174 /* Loop with compare_and_exchange until we guess the correct value.
175    Normally "expr" will be an expression using __old and __value.  */
176 #define __arch_atomic_update_cmpxchg(mem, value, expr)                  \
177   __extension__ ({                                                      \
178     __typeof(value) __value = (value);                                  \
179     __typeof(*(mem)) *__mem = (mem), __old = *__mem, __guess;           \
180     do {                                                                \
181       __guess = __old;                                                  \
182       __old = arch_atomic_val_compare_and_exchange(__mem, __old, (expr));    \
183     } while (__builtin_expect(__old != __guess, 0));                    \
184     __old;                                                              \
185   })
186 
187 #ifdef __tilegx__
188 
189 /* Generic atomic op with 8- or 4-byte variant.
190    The _mask, _addend, and _expr arguments are ignored on tilegx.  */
191 #define __arch_atomic_update(mem, value, op, _mask, _addend, _expr)     \
192   __extension__ ({                                                      \
193     ((__typeof(*(mem)))                                                 \
194      ((sizeof(*(mem)) == 8) ? (__typeof(*(mem)-*(mem)))__insn_##op(     \
195         (volatile void *)(mem),                                         \
196         (long long)(__typeof((value)-(value)))(value)) :                \
197       (sizeof(*(mem)) == 4) ? (int)__insn_##op##4(                      \
198         (volatile void *)(mem),                                         \
199         (int)(__typeof((value)-(value)))(value)) :                      \
200       __arch_atomic_error_bad_argument_size()));                        \
201   })
202 
203 #else
204 
205 /* This uses TILEPro's fast syscall support to atomically compute:
206 
207    int old = *ptr;
208    *ptr = (old & mask) + addend;
209    return old;
210 
211    This primitive can be used for atomic exchange, add, or, and.
212    Only 32-bit support is provided.  */
213 static __inline __attribute__ ((always_inline))
214      int
__arch_atomic_update_4(volatile int * mem,int mask,int addend)215      __arch_atomic_update_4 (volatile int *mem, int mask, int addend)
216 {
217   int result;
218   __asm__ __volatile__ ("swint1":"=R00" (result),
219 			"=m" (*mem):"R10" (__NR_FAST_atomic_update),
220 			"R00" (mem), "R01" (mask), "R02" (addend),
221 			"m" (*mem):"r20", "r21", "r22", "r23", "r24", "r25",
222 			"r26", "r27", "r28", "r29", "memory");
223   return result;
224 }
225 
226 /* Generic atomic op with 8- or 4-byte variant.
227    The _op argument is ignored on tilepro.  */
228 #define __arch_atomic_update(mem, value, _op, mask, addend, expr)       \
229   __extension__ ({                                                      \
230     (__typeof(*(mem)))(__typeof(*(mem)-*(mem)))                         \
231       ((sizeof(*(mem)) == 8) ?                                          \
232        __arch_atomic_update_cmpxchg((mem), (value), (expr)) :           \
233        (sizeof(*(mem)) == 4) ?                                          \
234        __arch_atomic_update_4((volatile int*)(mem),                     \
235                               (__typeof((mask)-(mask)))(mask),          \
236                               (__typeof((addend)-(addend)))(addend)) :  \
237        __arch_atomic_error_bad_argument_size());                        \
238   })
239 
240 #endif /* __tilegx__ */
241 
242 
243 #define arch_atomic_exchange(mem, newvalue) \
244   __arch_atomic_update(mem, newvalue, exch, 0, newvalue, __value)
245 
246 #define arch_atomic_add(mem, value) \
247   __arch_atomic_update(mem, value, fetchadd, -1, value, __old + __value)
248 
249 #define arch_atomic_sub(mem, value) arch_atomic_add((mem), -(value))
250 
251 #define arch_atomic_increment(mem) arch_atomic_add((mem), 1)
252 
253 #define arch_atomic_decrement(mem) arch_atomic_add((mem), -1)
254 
255 #define arch_atomic_and(mem, mask) \
256   __arch_atomic_update(mem, mask, fetchand, mask, 0, __old & __value)
257 
258 #define arch_atomic_or(mem, mask) \
259   __arch_atomic_update(mem, mask, fetchor, ~mask, mask, __old | __value)
260 
261 #define arch_atomic_xor(mem, mask) \
262   __arch_atomic_update_cmpxchg(mem, mask, __old ^ __value)
263 
264 #define arch_atomic_nand(mem, mask) \
265   __arch_atomic_update_cmpxchg(mem, mask, ~(__old & __value))
266 
267 #define arch_atomic_bit_set(mem, bit)                                   \
268   __extension__ ({                                                      \
269     __typeof(*(mem)) __mask = (__typeof(*(mem)))1 << (bit);             \
270     __mask & arch_atomic_or((mem), __mask);                             \
271   })
272 
273 #define arch_atomic_bit_clear(mem, bit)                                 \
274   __extension__ ({                                                      \
275     __typeof(*(mem)) __mask = (__typeof(*(mem)))1 << (bit);             \
276     __mask & arch_atomic_and((mem), ~__mask);                           \
277   })
278 
279 #ifdef __tilegx__
280 /* Atomically store a new value to memory.
281    Note that you can freely use types of any size here, unlike the
282    other atomic routines, which require 32- or 64-bit types.
283    This accessor is provided for compatibility with TILEPro, which
284    required an explicit atomic operation for stores that needed
285    to be atomic with respect to other atomic methods in this header.  */
286 #define arch_atomic_write(mem, value) ((void) (*(mem) = (value)))
287 #else
288 #define arch_atomic_write(mem, value)                                   \
289   do {                                                                  \
290     __typeof(mem) __aw_mem = (mem);                                     \
291     __typeof(value) __aw_val = (value);                                 \
292     unsigned int *__aw_mem32, __aw_intval, __aw_val32, __aw_off, __aw_mask; \
293     __aw_intval = (__typeof((value) - (value)))__aw_val;                \
294     switch (sizeof(*__aw_mem)) {                                        \
295     case 8:                                                             \
296       __arch_atomic_update_cmpxchg(__aw_mem, __aw_val, __value);        \
297       break;                                                            \
298     case 4:                                                             \
299       __arch_atomic_update_4((int *)__aw_mem, 0, __aw_intval);          \
300       break;                                                            \
301     case 2:                                                             \
302       __aw_off = 8 * ((long)__aw_mem & 0x2);                            \
303       __aw_mask = 0xffffU << __aw_off;                                  \
304       __aw_mem32 = (unsigned int *)((long)__aw_mem & ~0x2);             \
305       __aw_val32 = (__aw_intval << __aw_off) & __aw_mask;               \
306       __arch_atomic_update_cmpxchg(__aw_mem32, __aw_val32,              \
307                                    (__old & ~__aw_mask) | __value);     \
308       break;                                                            \
309     case 1:                                                             \
310       __aw_off = 8 * ((long)__aw_mem & 0x3);                            \
311       __aw_mask = 0xffU << __aw_off;                                    \
312       __aw_mem32 = (unsigned int *)((long)__aw_mem & ~0x3);             \
313       __aw_val32 = (__aw_intval << __aw_off) & __aw_mask;               \
314       __arch_atomic_update_cmpxchg(__aw_mem32, __aw_val32,              \
315                                    (__old & ~__aw_mask) | __value);     \
316       break;                                                            \
317     }                                                                   \
318   } while (0)
319 #endif
320 
321 /* Compiler barrier.
322 
323    This macro prevents loads or stores from being moved by the compiler
324    across the macro.  Any loaded value that was loaded before this
325    macro must then be reloaded by the compiler.  */
326 #define arch_atomic_compiler_barrier() __asm__ __volatile__("" ::: "memory")
327 
328 /* Full memory barrier.
329 
330    This macro has the semantics of arch_atomic_compiler_barrer(), but also
331    ensures that previous stores are visible to other cores, and that
332    all previous loaded values have been placed into their target
333    register on this core.  */
334 #define arch_atomic_full_barrier() __insn_mf()
335 
336 /* Read memory barrier.
337 
338    Ensure that all reads by this processor that occurred prior to the
339    read memory barrier have completed, and that no reads that occur
340    after the read memory barrier on this processor are initiated
341    before the barrier.
342 
343    On current TILE chips a read barrier is implemented as a full barrier,
344    but this may not be true in later versions of the architecture.
345 
346    See also arch_atomic_acquire_barrier() for the appropriate idiom to use
347    to ensure no reads are lifted above an atomic lock instruction.  */
348 #define arch_atomic_read_barrier() arch_atomic_full_barrier()
349 
350 /* Write memory barrier.
351 
352    Ensure that all writes by this processor that occurred prior to the
353    write memory barrier have completed, and that no writes that occur
354    after the write memory barrier on this processor are initiated
355    before the barrier.
356 
357    On current TILE chips a write barrier is implemented as a full barrier,
358    but this may not be true in later versions of the architecture.
359 
360    See also arch_atomic_release_barrier() for the appropriate idiom to use
361    to ensure all writes are complete prior to an atomic unlock instruction.  */
362 #define arch_atomic_write_barrier() arch_atomic_full_barrier()
363 
364 /* Lock acquisition barrier.
365 
366    Ensure that no load operations that follow this macro in the
367    program can issue prior to the barrier.  Without such a barrier,
368    the compiler can reorder them to issue earlier, or the hardware can
369    issue them speculatively.  The latter is not currently done in the
370    Tile microarchitecture, but using this operation improves
371    portability to future implementations.
372 
373    This operation is intended to be used as part of the "acquire"
374    path for locking, that is, when entering a critical section.
375    This should be done after the atomic operation that actually
376    acquires the lock, and in conjunction with a "control dependency"
377    that checks the atomic operation result to see if the lock was
378    in fact acquired.  See the arch_atomic_read_barrier() macro
379    for a heavier-weight barrier to use in certain unusual constructs,
380    or arch_atomic_acquire_barrier_value() if no control dependency exists.  */
381 #define arch_atomic_acquire_barrier() arch_atomic_compiler_barrier()
382 
383 /* Lock release barrier.
384 
385    Ensure that no store operations that precede this macro in the
386    program complete subsequent to the barrier.  Without such a
387    barrier, the compiler can reorder stores to issue later, or stores
388    can be still outstanding in the memory network.
389 
390    This operation is intended to be used as part of the "release" path
391    for locking, that is, when leaving a critical section.  This should
392    be done before the operation (such as a store of zero) that
393    actually releases the lock.  */
394 #define arch_atomic_release_barrier() arch_atomic_write_barrier()
395 
396 /* Barrier until the read of a particular value is complete.
397 
398    This is occasionally useful when constructing certain locking
399    scenarios.  For example, you might write a routine that issues an
400    atomic instruction to enter a critical section, then reads one or
401    more values within the critical section without checking to see if
402    the critical section was in fact acquired, and only later checks
403    the atomic instruction result to see if the lock was acquired.  If
404    so the routine could properly release the lock and know that the
405    values that were read were valid.
406 
407    In this scenario, it is required to wait for the result of the
408    atomic instruction, even if the value itself is not checked.  This
409    guarantees that if the atomic instruction succeeded in taking the lock,
410    the lock was held before any reads in the critical section issued.  */
411 #define arch_atomic_acquire_barrier_value(val) \
412   __asm__ __volatile__("move %0, %0" :: "r"(val))
413 
414 /* Access the given variable in memory exactly once.
415 
416    In some contexts, an algorithm may need to force access to memory,
417    since otherwise the compiler may think it can optimize away a
418    memory load or store; for example, in a loop when polling memory to
419    see if another cpu has updated it yet.  Generally this is only
420    required for certain very carefully hand-tuned algorithms; using it
421    unnecessarily may result in performance losses.
422 
423    A related use of this macro is to ensure that the compiler does not
424    rematerialize the value of "x" by reloading it from memory
425    unexpectedly; the "volatile" marking will prevent the compiler from
426    being able to rematerialize.  This is helpful if an algorithm needs
427    to read a variable without locking, but needs it to have the same
428    value if it ends up being used several times within the algorithm.
429 
430    Note that multiple uses of this macro are guaranteed to be ordered,
431    i.e. the compiler will not reorder stores or loads that are wrapped
432    in arch_atomic_access_once().  */
433 #define arch_atomic_access_once(x) (*(volatile __typeof(x) *)&(x))
434 
435 
436 
437 #endif /* !_ATOMIC_H_ */
438