1 /* Vectorizer 2 Copyright (C) 2003-2019 Free Software Foundation, Inc. 3 Contributed by Dorit Naishlos <dorit@il.ibm.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #ifndef GCC_TREE_VECTORIZER_H 22 #define GCC_TREE_VECTORIZER_H 23 24 typedef struct _stmt_vec_info *stmt_vec_info; 25 26 #include "tree-data-ref.h" 27 #include "tree-hash-traits.h" 28 #include "target.h" 29 30 /* Used for naming of new temporaries. */ 31 enum vect_var_kind { 32 vect_simple_var, 33 vect_pointer_var, 34 vect_scalar_var, 35 vect_mask_var 36 }; 37 38 /* Defines type of operation. */ 39 enum operation_type { 40 unary_op = 1, 41 binary_op, 42 ternary_op 43 }; 44 45 /* Define type of available alignment support. */ 46 enum dr_alignment_support { 47 dr_unaligned_unsupported, 48 dr_unaligned_supported, 49 dr_explicit_realign, 50 dr_explicit_realign_optimized, 51 dr_aligned 52 }; 53 54 /* Define type of def-use cross-iteration cycle. */ 55 enum vect_def_type { 56 vect_uninitialized_def = 0, 57 vect_constant_def = 1, 58 vect_external_def, 59 vect_internal_def, 60 vect_induction_def, 61 vect_reduction_def, 62 vect_double_reduction_def, 63 vect_nested_cycle, 64 vect_unknown_def_type 65 }; 66 67 /* Define type of reduction. */ 68 enum vect_reduction_type { 69 TREE_CODE_REDUCTION, 70 COND_REDUCTION, 71 INTEGER_INDUC_COND_REDUCTION, 72 CONST_COND_REDUCTION, 73 74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop 75 to implement: 76 77 for (int i = 0; i < VF; ++i) 78 res = cond[i] ? val[i] : res; */ 79 EXTRACT_LAST_REDUCTION, 80 81 /* Use a folding reduction within the loop to implement: 82 83 for (int i = 0; i < VF; ++i) 84 res = res OP val[i]; 85 86 (with no reassocation). */ 87 FOLD_LEFT_REDUCTION 88 }; 89 90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \ 91 || ((D) == vect_double_reduction_def) \ 92 || ((D) == vect_nested_cycle)) 93 94 /* Structure to encapsulate information about a group of like 95 instructions to be presented to the target cost model. */ 96 struct stmt_info_for_cost { 97 int count; 98 enum vect_cost_for_stmt kind; 99 enum vect_cost_model_location where; 100 stmt_vec_info stmt_info; 101 int misalign; 102 }; 103 104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost; 105 106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum 107 known alignment for that base. */ 108 typedef hash_map<tree_operand_hash, 109 innermost_loop_behavior *> vec_base_alignments; 110 111 /************************************************************************ 112 SLP 113 ************************************************************************/ 114 typedef struct _slp_tree *slp_tree; 115 116 /* A computation tree of an SLP instance. Each node corresponds to a group of 117 stmts to be packed in a SIMD stmt. */ 118 struct _slp_tree { 119 /* Nodes that contain def-stmts of this node statements operands. */ 120 vec<slp_tree> children; 121 /* A group of scalar stmts to be vectorized together. */ 122 vec<stmt_vec_info> stmts; 123 /* Load permutation relative to the stores, NULL if there is no 124 permutation. */ 125 vec<unsigned> load_permutation; 126 /* Vectorized stmt/s. */ 127 vec<stmt_vec_info> vec_stmts; 128 /* Number of vector stmts that are created to replace the group of scalar 129 stmts. It is calculated during the transformation phase as the number of 130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF 131 divided by vector size. */ 132 unsigned int vec_stmts_size; 133 /* Reference count in the SLP graph. */ 134 unsigned int refcnt; 135 /* The maximum number of vector elements for the subtree rooted 136 at this node. */ 137 poly_uint64 max_nunits; 138 /* Whether the scalar computations use two different operators. */ 139 bool two_operators; 140 /* The DEF type of this node. */ 141 enum vect_def_type def_type; 142 }; 143 144 145 /* SLP instance is a sequence of stmts in a loop that can be packed into 146 SIMD stmts. */ 147 typedef struct _slp_instance { 148 /* The root of SLP tree. */ 149 slp_tree root; 150 151 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */ 152 unsigned int group_size; 153 154 /* The unrolling factor required to vectorized this SLP instance. */ 155 poly_uint64 unrolling_factor; 156 157 /* The group of nodes that contain loads of this SLP instance. */ 158 vec<slp_tree> loads; 159 160 /* The SLP node containing the reduction PHIs. */ 161 slp_tree reduc_phis; 162 } *slp_instance; 163 164 165 /* Access Functions. */ 166 #define SLP_INSTANCE_TREE(S) (S)->root 167 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size 168 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor 169 #define SLP_INSTANCE_LOADS(S) (S)->loads 170 171 #define SLP_TREE_CHILDREN(S) (S)->children 172 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts 173 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts 174 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size 175 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation 176 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators 177 #define SLP_TREE_DEF_TYPE(S) (S)->def_type 178 179 180 181 /* Describes two objects whose addresses must be unequal for the vectorized 182 loop to be valid. */ 183 typedef std::pair<tree, tree> vec_object_pair; 184 185 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE. 186 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */ 187 struct vec_lower_bound { 188 vec_lower_bound () {} 189 vec_lower_bound (tree e, bool u, poly_uint64 m) 190 : expr (e), unsigned_p (u), min_value (m) {} 191 192 tree expr; 193 bool unsigned_p; 194 poly_uint64 min_value; 195 }; 196 197 /* Vectorizer state shared between different analyses like vector sizes 198 of the same CFG region. */ 199 struct vec_info_shared { 200 vec_info_shared(); 201 ~vec_info_shared(); 202 203 void save_datarefs(); 204 void check_datarefs(); 205 206 /* All data references. Freed by free_data_refs, so not an auto_vec. */ 207 vec<data_reference_p> datarefs; 208 vec<data_reference> datarefs_copy; 209 210 /* The loop nest in which the data dependences are computed. */ 211 auto_vec<loop_p> loop_nest; 212 213 /* All data dependences. Freed by free_dependence_relations, so not 214 an auto_vec. */ 215 vec<ddr_p> ddrs; 216 }; 217 218 /* Vectorizer state common between loop and basic-block vectorization. */ 219 struct vec_info { 220 enum vec_kind { bb, loop }; 221 222 vec_info (vec_kind, void *, vec_info_shared *); 223 ~vec_info (); 224 225 stmt_vec_info add_stmt (gimple *); 226 stmt_vec_info lookup_stmt (gimple *); 227 stmt_vec_info lookup_def (tree); 228 stmt_vec_info lookup_single_use (tree); 229 struct dr_vec_info *lookup_dr (data_reference *); 230 void move_dr (stmt_vec_info, stmt_vec_info); 231 void remove_stmt (stmt_vec_info); 232 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *); 233 234 /* The type of vectorization. */ 235 vec_kind kind; 236 237 /* Shared vectorizer state. */ 238 vec_info_shared *shared; 239 240 /* The mapping of GIMPLE UID to stmt_vec_info. */ 241 vec<stmt_vec_info> stmt_vec_infos; 242 243 /* All SLP instances. */ 244 auto_vec<slp_instance> slp_instances; 245 246 /* Maps base addresses to an innermost_loop_behavior that gives the maximum 247 known alignment for that base. */ 248 vec_base_alignments base_alignments; 249 250 /* All interleaving chains of stores, represented by the first 251 stmt in the chain. */ 252 auto_vec<stmt_vec_info> grouped_stores; 253 254 /* Cost data used by the target cost model. */ 255 void *target_cost_data; 256 257 private: 258 stmt_vec_info new_stmt_vec_info (gimple *stmt); 259 void set_vinfo_for_stmt (gimple *, stmt_vec_info); 260 void free_stmt_vec_infos (); 261 void free_stmt_vec_info (stmt_vec_info); 262 }; 263 264 struct _loop_vec_info; 265 struct _bb_vec_info; 266 267 template<> 268 template<> 269 inline bool 270 is_a_helper <_loop_vec_info *>::test (vec_info *i) 271 { 272 return i->kind == vec_info::loop; 273 } 274 275 template<> 276 template<> 277 inline bool 278 is_a_helper <_bb_vec_info *>::test (vec_info *i) 279 { 280 return i->kind == vec_info::bb; 281 } 282 283 284 /* In general, we can divide the vector statements in a vectorized loop 285 into related groups ("rgroups") and say that for each rgroup there is 286 some nS such that the rgroup operates on nS values from one scalar 287 iteration followed by nS values from the next. That is, if VF is the 288 vectorization factor of the loop, the rgroup operates on a sequence: 289 290 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS) 291 292 where (i,j) represents a scalar value with index j in a scalar 293 iteration with index i. 294 295 [ We use the term "rgroup" to emphasise that this grouping isn't 296 necessarily the same as the grouping of statements used elsewhere. 297 For example, if we implement a group of scalar loads using gather 298 loads, we'll use a separate gather load for each scalar load, and 299 thus each gather load will belong to its own rgroup. ] 300 301 In general this sequence will occupy nV vectors concatenated 302 together. If these vectors have nL lanes each, the total number 303 of scalar values N is given by: 304 305 N = nS * VF = nV * nL 306 307 None of nS, VF, nV and nL are required to be a power of 2. nS and nV 308 are compile-time constants but VF and nL can be variable (if the target 309 supports variable-length vectors). 310 311 In classical vectorization, each iteration of the vector loop would 312 handle exactly VF iterations of the original scalar loop. However, 313 in a fully-masked loop, a particular iteration of the vector loop 314 might handle fewer than VF iterations of the scalar loop. The vector 315 lanes that correspond to iterations of the scalar loop are said to be 316 "active" and the other lanes are said to be "inactive". 317 318 In a fully-masked loop, many rgroups need to be masked to ensure that 319 they have no effect for the inactive lanes. Each such rgroup needs a 320 sequence of booleans in the same order as above, but with each (i,j) 321 replaced by a boolean that indicates whether iteration i is active. 322 This sequence occupies nV vector masks that again have nL lanes each. 323 Thus the mask sequence as a whole consists of VF independent booleans 324 that are each repeated nS times. 325 326 We make the simplifying assumption that if a sequence of nV masks is 327 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by 328 VIEW_CONVERTing it. This holds for all current targets that support 329 fully-masked loops. For example, suppose the scalar loop is: 330 331 float *f; 332 double *d; 333 for (int i = 0; i < n; ++i) 334 { 335 f[i * 2 + 0] += 1.0f; 336 f[i * 2 + 1] += 2.0f; 337 d[i] += 3.0; 338 } 339 340 and suppose that vectors have 256 bits. The vectorized f accesses 341 will belong to one rgroup and the vectorized d access to another: 342 343 f rgroup: nS = 2, nV = 1, nL = 8 344 d rgroup: nS = 1, nV = 1, nL = 4 345 VF = 4 346 347 [ In this simple example the rgroups do correspond to the normal 348 SLP grouping scheme. ] 349 350 If only the first three lanes are active, the masks we need are: 351 352 f rgroup: 1 1 | 1 1 | 1 1 | 0 0 353 d rgroup: 1 | 1 | 1 | 0 354 355 Here we can use a mask calculated for f's rgroup for d's, but not 356 vice versa. 357 358 Thus for each value of nV, it is enough to provide nV masks, with the 359 mask being calculated based on the highest nL (or, equivalently, based 360 on the highest nS) required by any rgroup with that nV. We therefore 361 represent the entire collection of masks as a two-level table, with the 362 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and 363 the second being indexed by the mask index 0 <= i < nV. */ 364 365 /* The masks needed by rgroups with nV vectors, according to the 366 description above. */ 367 struct rgroup_masks { 368 /* The largest nS for all rgroups that use these masks. */ 369 unsigned int max_nscalars_per_iter; 370 371 /* The type of mask to use, based on the highest nS recorded above. */ 372 tree mask_type; 373 374 /* A vector of nV masks, in iteration order. */ 375 vec<tree> masks; 376 }; 377 378 typedef auto_vec<rgroup_masks> vec_loop_masks; 379 380 /*-----------------------------------------------------------------*/ 381 /* Info on vectorized loops. */ 382 /*-----------------------------------------------------------------*/ 383 typedef struct _loop_vec_info : public vec_info { 384 _loop_vec_info (struct loop *, vec_info_shared *); 385 ~_loop_vec_info (); 386 387 /* The loop to which this info struct refers to. */ 388 struct loop *loop; 389 390 /* The loop basic blocks. */ 391 basic_block *bbs; 392 393 /* Number of latch executions. */ 394 tree num_itersm1; 395 /* Number of iterations. */ 396 tree num_iters; 397 /* Number of iterations of the original loop. */ 398 tree num_iters_unchanged; 399 /* Condition under which this loop is analyzed and versioned. */ 400 tree num_iters_assumptions; 401 402 /* Threshold of number of iterations below which vectorzation will not be 403 performed. It is calculated from MIN_PROFITABLE_ITERS and 404 PARAM_MIN_VECT_LOOP_BOUND. */ 405 unsigned int th; 406 407 /* When applying loop versioning, the vector form should only be used 408 if the number of scalar iterations is >= this value, on top of all 409 the other requirements. Ignored when loop versioning is not being 410 used. */ 411 poly_uint64 versioning_threshold; 412 413 /* Unrolling factor */ 414 poly_uint64 vectorization_factor; 415 416 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR 417 if there is no particular limit. */ 418 unsigned HOST_WIDE_INT max_vectorization_factor; 419 420 /* The masks that a fully-masked loop should use to avoid operating 421 on inactive scalars. */ 422 vec_loop_masks masks; 423 424 /* If we are using a loop mask to align memory addresses, this variable 425 contains the number of vector elements that we should skip in the 426 first iteration of the vector loop (i.e. the number of leading 427 elements that should be false in the first mask). */ 428 tree mask_skip_niters; 429 430 /* Type of the variables to use in the WHILE_ULT call for fully-masked 431 loops. */ 432 tree mask_compare_type; 433 434 /* For #pragma omp simd if (x) loops the x expression. If constant 0, 435 the loop should not be vectorized, if constant non-zero, simd_if_cond 436 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop 437 should be versioned on that condition, using scalar loop if the condition 438 is false and vectorized loop otherwise. */ 439 tree simd_if_cond; 440 441 /* Unknown DRs according to which loop was peeled. */ 442 struct dr_vec_info *unaligned_dr; 443 444 /* peeling_for_alignment indicates whether peeling for alignment will take 445 place, and what the peeling factor should be: 446 peeling_for_alignment = X means: 447 If X=0: Peeling for alignment will not be applied. 448 If X>0: Peel first X iterations. 449 If X=-1: Generate a runtime test to calculate the number of iterations 450 to be peeled, using the dataref recorded in the field 451 unaligned_dr. */ 452 int peeling_for_alignment; 453 454 /* The mask used to check the alignment of pointers or arrays. */ 455 int ptr_mask; 456 457 /* Data Dependence Relations defining address ranges that are candidates 458 for a run-time aliasing check. */ 459 auto_vec<ddr_p> may_alias_ddrs; 460 461 /* Data Dependence Relations defining address ranges together with segment 462 lengths from which the run-time aliasing check is built. */ 463 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs; 464 465 /* Check that the addresses of each pair of objects is unequal. */ 466 auto_vec<vec_object_pair> check_unequal_addrs; 467 468 /* List of values that are required to be nonzero. This is used to check 469 whether things like "x[i * n] += 1;" are safe and eventually gets added 470 to the checks for lower bounds below. */ 471 auto_vec<tree> check_nonzero; 472 473 /* List of values that need to be checked for a minimum value. */ 474 auto_vec<vec_lower_bound> lower_bounds; 475 476 /* Statements in the loop that have data references that are candidates for a 477 runtime (loop versioning) misalignment check. */ 478 auto_vec<stmt_vec_info> may_misalign_stmts; 479 480 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */ 481 auto_vec<stmt_vec_info> reductions; 482 483 /* All reduction chains in the loop, represented by the first 484 stmt in the chain. */ 485 auto_vec<stmt_vec_info> reduction_chains; 486 487 /* Cost vector for a single scalar iteration. */ 488 auto_vec<stmt_info_for_cost> scalar_cost_vec; 489 490 /* Map of IV base/step expressions to inserted name in the preheader. */ 491 hash_map<tree_operand_hash, tree> *ivexpr_map; 492 493 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is 494 applied to the loop, i.e., no unrolling is needed, this is 1. */ 495 poly_uint64 slp_unrolling_factor; 496 497 /* Cost of a single scalar iteration. */ 498 int single_scalar_iteration_cost; 499 500 /* Is the loop vectorizable? */ 501 bool vectorizable; 502 503 /* Records whether we still have the option of using a fully-masked loop. */ 504 bool can_fully_mask_p; 505 506 /* True if have decided to use a fully-masked loop. */ 507 bool fully_masked_p; 508 509 /* When we have grouped data accesses with gaps, we may introduce invalid 510 memory accesses. We peel the last iteration of the loop to prevent 511 this. */ 512 bool peeling_for_gaps; 513 514 /* When the number of iterations is not a multiple of the vector size 515 we need to peel off iterations at the end to form an epilogue loop. */ 516 bool peeling_for_niter; 517 518 /* Reductions are canonicalized so that the last operand is the reduction 519 operand. If this places a constant into RHS1, this decanonicalizes 520 GIMPLE for other phases, so we must track when this has occurred and 521 fix it up. */ 522 bool operands_swapped; 523 524 /* True if there are no loop carried data dependencies in the loop. 525 If loop->safelen <= 1, then this is always true, either the loop 526 didn't have any loop carried data dependencies, or the loop is being 527 vectorized guarded with some runtime alias checks, or couldn't 528 be vectorized at all, but then this field shouldn't be used. 529 For loop->safelen >= 2, the user has asserted that there are no 530 backward dependencies, but there still could be loop carried forward 531 dependencies in such loops. This flag will be false if normal 532 vectorizer data dependency analysis would fail or require versioning 533 for alias, but because of loop->safelen >= 2 it has been vectorized 534 even without versioning for alias. E.g. in: 535 #pragma omp simd 536 for (int i = 0; i < m; i++) 537 a[i] = a[i + k] * c; 538 (or #pragma simd or #pragma ivdep) we can vectorize this and it will 539 DTRT even for k > 0 && k < m, but without safelen we would not 540 vectorize this, so this field would be false. */ 541 bool no_data_dependencies; 542 543 /* Mark loops having masked stores. */ 544 bool has_mask_store; 545 546 /* If if-conversion versioned this loop before conversion, this is the 547 loop version without if-conversion. */ 548 struct loop *scalar_loop; 549 550 /* For loops being epilogues of already vectorized loops 551 this points to the original vectorized loop. Otherwise NULL. */ 552 _loop_vec_info *orig_loop_info; 553 554 } *loop_vec_info; 555 556 /* Access Functions. */ 557 #define LOOP_VINFO_LOOP(L) (L)->loop 558 #define LOOP_VINFO_BBS(L) (L)->bbs 559 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1 560 #define LOOP_VINFO_NITERS(L) (L)->num_iters 561 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after 562 prologue peeling retain total unchanged scalar loop iterations for 563 cost model. */ 564 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged 565 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions 566 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th 567 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold 568 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable 569 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p 570 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p 571 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor 572 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor 573 #define LOOP_VINFO_MASKS(L) (L)->masks 574 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters 575 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type 576 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask 577 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest 578 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs 579 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs 580 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters)) 581 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment 582 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr 583 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts 584 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs 585 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs 586 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs 587 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero 588 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds 589 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores 590 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances 591 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor 592 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions 593 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains 594 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data 595 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps 596 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped 597 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter 598 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies 599 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop 600 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store 601 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec 602 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost 603 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info 604 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond 605 606 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \ 607 ((L)->may_misalign_stmts.length () > 0) 608 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \ 609 ((L)->comp_alias_ddrs.length () > 0 \ 610 || (L)->check_unequal_addrs.length () > 0 \ 611 || (L)->lower_bounds.length () > 0) 612 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \ 613 (LOOP_VINFO_NITERS_ASSUMPTIONS (L)) 614 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \ 615 (LOOP_VINFO_SIMD_IF_COND (L)) 616 #define LOOP_REQUIRES_VERSIONING(L) \ 617 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \ 618 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \ 619 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \ 620 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L)) 621 622 #define LOOP_VINFO_NITERS_KNOWN_P(L) \ 623 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0) 624 625 #define LOOP_VINFO_EPILOGUE_P(L) \ 626 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL) 627 628 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \ 629 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L))) 630 631 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL 632 value signifies success, and a NULL value signifies failure, supporting 633 propagating an opt_problem * describing the failure back up the call 634 stack. */ 635 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info; 636 637 static inline loop_vec_info 638 loop_vec_info_for_loop (struct loop *loop) 639 { 640 return (loop_vec_info) loop->aux; 641 } 642 643 typedef struct _bb_vec_info : public vec_info 644 { 645 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *); 646 ~_bb_vec_info (); 647 648 basic_block bb; 649 gimple_stmt_iterator region_begin; 650 gimple_stmt_iterator region_end; 651 } *bb_vec_info; 652 653 #define BB_VINFO_BB(B) (B)->bb 654 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores 655 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances 656 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs 657 #define BB_VINFO_DDRS(B) (B)->shared->ddrs 658 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data 659 660 static inline bb_vec_info 661 vec_info_for_bb (basic_block bb) 662 { 663 return (bb_vec_info) bb->aux; 664 } 665 666 /*-----------------------------------------------------------------*/ 667 /* Info on vectorized defs. */ 668 /*-----------------------------------------------------------------*/ 669 enum stmt_vec_info_type { 670 undef_vec_info_type = 0, 671 load_vec_info_type, 672 store_vec_info_type, 673 shift_vec_info_type, 674 op_vec_info_type, 675 call_vec_info_type, 676 call_simd_clone_vec_info_type, 677 assignment_vec_info_type, 678 condition_vec_info_type, 679 comparison_vec_info_type, 680 reduc_vec_info_type, 681 induc_vec_info_type, 682 type_promotion_vec_info_type, 683 type_demotion_vec_info_type, 684 type_conversion_vec_info_type, 685 loop_exit_ctrl_vec_info_type 686 }; 687 688 /* Indicates whether/how a variable is used in the scope of loop/basic 689 block. */ 690 enum vect_relevant { 691 vect_unused_in_scope = 0, 692 693 /* The def is only used outside the loop. */ 694 vect_used_only_live, 695 /* The def is in the inner loop, and the use is in the outer loop, and the 696 use is a reduction stmt. */ 697 vect_used_in_outer_by_reduction, 698 /* The def is in the inner loop, and the use is in the outer loop (and is 699 not part of reduction). */ 700 vect_used_in_outer, 701 702 /* defs that feed computations that end up (only) in a reduction. These 703 defs may be used by non-reduction stmts, but eventually, any 704 computations/values that are affected by these defs are used to compute 705 a reduction (i.e. don't get stored to memory, for example). We use this 706 to identify computations that we can change the order in which they are 707 computed. */ 708 vect_used_by_reduction, 709 710 vect_used_in_scope 711 }; 712 713 /* The type of vectorization that can be applied to the stmt: regular loop-based 714 vectorization; pure SLP - the stmt is a part of SLP instances and does not 715 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is 716 a part of SLP instance and also must be loop-based vectorized, since it has 717 uses outside SLP sequences. 718 719 In the loop context the meanings of pure and hybrid SLP are slightly 720 different. By saying that pure SLP is applied to the loop, we mean that we 721 exploit only intra-iteration parallelism in the loop; i.e., the loop can be 722 vectorized without doing any conceptual unrolling, cause we don't pack 723 together stmts from different iterations, only within a single iteration. 724 Loop hybrid SLP means that we exploit both intra-iteration and 725 inter-iteration parallelism (e.g., number of elements in the vector is 4 726 and the slp-group-size is 2, in which case we don't have enough parallelism 727 within an iteration, so we obtain the rest of the parallelism from subsequent 728 iterations by unrolling the loop by 2). */ 729 enum slp_vect_type { 730 loop_vect = 0, 731 pure_slp, 732 hybrid 733 }; 734 735 /* Says whether a statement is a load, a store of a vectorized statement 736 result, or a store of an invariant value. */ 737 enum vec_load_store_type { 738 VLS_LOAD, 739 VLS_STORE, 740 VLS_STORE_INVARIANT 741 }; 742 743 /* Describes how we're going to vectorize an individual load or store, 744 or a group of loads or stores. */ 745 enum vect_memory_access_type { 746 /* An access to an invariant address. This is used only for loads. */ 747 VMAT_INVARIANT, 748 749 /* A simple contiguous access. */ 750 VMAT_CONTIGUOUS, 751 752 /* A contiguous access that goes down in memory rather than up, 753 with no additional permutation. This is used only for stores 754 of invariants. */ 755 VMAT_CONTIGUOUS_DOWN, 756 757 /* A simple contiguous access in which the elements need to be permuted 758 after loading or before storing. Only used for loop vectorization; 759 SLP uses separate permutes. */ 760 VMAT_CONTIGUOUS_PERMUTE, 761 762 /* A simple contiguous access in which the elements need to be reversed 763 after loading or before storing. */ 764 VMAT_CONTIGUOUS_REVERSE, 765 766 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */ 767 VMAT_LOAD_STORE_LANES, 768 769 /* An access in which each scalar element is loaded or stored 770 individually. */ 771 VMAT_ELEMENTWISE, 772 773 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped 774 SLP accesses. Each unrolled iteration uses a contiguous load 775 or store for the whole group, but the groups from separate iterations 776 are combined in the same way as for VMAT_ELEMENTWISE. */ 777 VMAT_STRIDED_SLP, 778 779 /* The access uses gather loads or scatter stores. */ 780 VMAT_GATHER_SCATTER 781 }; 782 783 struct dr_vec_info { 784 /* The data reference itself. */ 785 data_reference *dr; 786 /* The statement that contains the data reference. */ 787 stmt_vec_info stmt; 788 /* The misalignment in bytes of the reference, or -1 if not known. */ 789 int misalignment; 790 /* The byte alignment that we'd ideally like the reference to have, 791 and the value that misalignment is measured against. */ 792 poly_uint64 target_alignment; 793 /* If true the alignment of base_decl needs to be increased. */ 794 bool base_misaligned; 795 tree base_decl; 796 }; 797 798 typedef struct data_reference *dr_p; 799 800 struct _stmt_vec_info { 801 802 enum stmt_vec_info_type type; 803 804 /* Indicates whether this stmts is part of a computation whose result is 805 used outside the loop. */ 806 bool live; 807 808 /* Stmt is part of some pattern (computation idiom) */ 809 bool in_pattern_p; 810 811 /* True if the statement was created during pattern recognition as 812 part of the replacement for RELATED_STMT. This implies that the 813 statement isn't part of any basic block, although for convenience 814 its gimple_bb is the same as for RELATED_STMT. */ 815 bool pattern_stmt_p; 816 817 /* Is this statement vectorizable or should it be skipped in (partial) 818 vectorization. */ 819 bool vectorizable; 820 821 /* The stmt to which this info struct refers to. */ 822 gimple *stmt; 823 824 /* The vec_info with respect to which STMT is vectorized. */ 825 vec_info *vinfo; 826 827 /* The vector type to be used for the LHS of this statement. */ 828 tree vectype; 829 830 /* The vectorized version of the stmt. */ 831 stmt_vec_info vectorized_stmt; 832 833 834 /* The following is relevant only for stmts that contain a non-scalar 835 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have 836 at most one such data-ref. */ 837 838 dr_vec_info dr_aux; 839 840 /* Information about the data-ref relative to this loop 841 nest (the loop that is being considered for vectorization). */ 842 innermost_loop_behavior dr_wrt_vec_loop; 843 844 /* For loop PHI nodes, the base and evolution part of it. This makes sure 845 this information is still available in vect_update_ivs_after_vectorizer 846 where we may not be able to re-analyze the PHI nodes evolution as 847 peeling for the prologue loop can make it unanalyzable. The evolution 848 part is still correct after peeling, but the base may have changed from 849 the version here. */ 850 tree loop_phi_evolution_base_unchanged; 851 tree loop_phi_evolution_part; 852 853 /* Used for various bookkeeping purposes, generally holding a pointer to 854 some other stmt S that is in some way "related" to this stmt. 855 Current use of this field is: 856 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is 857 true): S is the "pattern stmt" that represents (and replaces) the 858 sequence of stmts that constitutes the pattern. Similarly, the 859 related_stmt of the "pattern stmt" points back to this stmt (which is 860 the last stmt in the original sequence of stmts that constitutes the 861 pattern). */ 862 stmt_vec_info related_stmt; 863 864 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. 865 The sequence is attached to the original statement rather than the 866 pattern statement. */ 867 gimple_seq pattern_def_seq; 868 869 /* List of datarefs that are known to have the same alignment as the dataref 870 of this stmt. */ 871 vec<dr_p> same_align_refs; 872 873 /* Selected SIMD clone's function info. First vector element 874 is SIMD clone's function decl, followed by a pair of trees (base + step) 875 for linear arguments (pair of NULLs for other arguments). */ 876 vec<tree> simd_clone_info; 877 878 /* Classify the def of this stmt. */ 879 enum vect_def_type def_type; 880 881 /* Whether the stmt is SLPed, loop-based vectorized, or both. */ 882 enum slp_vect_type slp_type; 883 884 /* Interleaving and reduction chains info. */ 885 /* First element in the group. */ 886 stmt_vec_info first_element; 887 /* Pointer to the next element in the group. */ 888 stmt_vec_info next_element; 889 /* The size of the group. */ 890 unsigned int size; 891 /* For stores, number of stores from this group seen. We vectorize the last 892 one. */ 893 unsigned int store_count; 894 /* For loads only, the gap from the previous load. For consecutive loads, GAP 895 is 1. */ 896 unsigned int gap; 897 898 /* The minimum negative dependence distance this stmt participates in 899 or zero if none. */ 900 unsigned int min_neg_dist; 901 902 /* Not all stmts in the loop need to be vectorized. e.g, the increment 903 of the loop induction variable and computation of array indexes. relevant 904 indicates whether the stmt needs to be vectorized. */ 905 enum vect_relevant relevant; 906 907 /* For loads if this is a gather, for stores if this is a scatter. */ 908 bool gather_scatter_p; 909 910 /* True if this is an access with loop-invariant stride. */ 911 bool strided_p; 912 913 /* For both loads and stores. */ 914 bool simd_lane_access_p; 915 916 /* Classifies how the load or store is going to be implemented 917 for loop vectorization. */ 918 vect_memory_access_type memory_access_type; 919 920 /* For reduction loops, this is the type of reduction. */ 921 enum vect_reduction_type v_reduc_type; 922 923 /* For CONST_COND_REDUCTION, record the reduc code. */ 924 enum tree_code const_cond_reduc_code; 925 926 /* On a reduction PHI the reduction type as detected by 927 vect_force_simple_reduction. */ 928 enum vect_reduction_type reduc_type; 929 930 /* On a reduction PHI the def returned by vect_force_simple_reduction. 931 On the def returned by vect_force_simple_reduction the 932 corresponding PHI. */ 933 stmt_vec_info reduc_def; 934 935 /* The number of scalar stmt references from active SLP instances. */ 936 unsigned int num_slp_uses; 937 938 /* If nonzero, the lhs of the statement could be truncated to this 939 many bits without affecting any users of the result. */ 940 unsigned int min_output_precision; 941 942 /* If nonzero, all non-boolean input operands have the same precision, 943 and they could each be truncated to this many bits without changing 944 the result. */ 945 unsigned int min_input_precision; 946 947 /* If OPERATION_BITS is nonzero, the statement could be performed on 948 an integer with the sign and number of bits given by OPERATION_SIGN 949 and OPERATION_BITS without changing the result. */ 950 unsigned int operation_precision; 951 signop operation_sign; 952 }; 953 954 /* Information about a gather/scatter call. */ 955 struct gather_scatter_info { 956 /* The internal function to use for the gather/scatter operation, 957 or IFN_LAST if a built-in function should be used instead. */ 958 internal_fn ifn; 959 960 /* The FUNCTION_DECL for the built-in gather/scatter function, 961 or null if an internal function should be used instead. */ 962 tree decl; 963 964 /* The loop-invariant base value. */ 965 tree base; 966 967 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */ 968 tree offset; 969 970 /* Each offset element should be multiplied by this amount before 971 being added to the base. */ 972 int scale; 973 974 /* The definition type for the vectorized offset. */ 975 enum vect_def_type offset_dt; 976 977 /* The type of the vectorized offset. */ 978 tree offset_vectype; 979 980 /* The type of the scalar elements after loading or before storing. */ 981 tree element_type; 982 983 /* The type of the scalar elements being loaded or stored. */ 984 tree memory_type; 985 }; 986 987 /* Access Functions. */ 988 #define STMT_VINFO_TYPE(S) (S)->type 989 #define STMT_VINFO_STMT(S) (S)->stmt 990 inline loop_vec_info 991 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo) 992 { 993 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo)) 994 return loop_vinfo; 995 return NULL; 996 } 997 inline bb_vec_info 998 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo) 999 { 1000 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo)) 1001 return bb_vinfo; 1002 return NULL; 1003 } 1004 #define STMT_VINFO_RELEVANT(S) (S)->relevant 1005 #define STMT_VINFO_LIVE_P(S) (S)->live 1006 #define STMT_VINFO_VECTYPE(S) (S)->vectype 1007 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt 1008 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable 1009 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0) 1010 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p 1011 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p 1012 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type 1013 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p 1014 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type 1015 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code 1016 1017 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop 1018 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address 1019 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init 1020 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset 1021 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step 1022 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment 1023 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \ 1024 (S)->dr_wrt_vec_loop.base_misalignment 1025 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \ 1026 (S)->dr_wrt_vec_loop.offset_alignment 1027 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \ 1028 (S)->dr_wrt_vec_loop.step_alignment 1029 1030 #define STMT_VINFO_DR_INFO(S) \ 1031 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux) 1032 1033 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p 1034 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt 1035 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq 1036 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs 1037 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info 1038 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type 1039 #define STMT_VINFO_GROUPED_ACCESS(S) \ 1040 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S)) 1041 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged 1042 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part 1043 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist 1044 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses 1045 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type 1046 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def 1047 1048 #define DR_GROUP_FIRST_ELEMENT(S) \ 1049 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element) 1050 #define DR_GROUP_NEXT_ELEMENT(S) \ 1051 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element) 1052 #define DR_GROUP_SIZE(S) \ 1053 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size) 1054 #define DR_GROUP_STORE_COUNT(S) \ 1055 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count) 1056 #define DR_GROUP_GAP(S) \ 1057 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap) 1058 1059 #define REDUC_GROUP_FIRST_ELEMENT(S) \ 1060 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element) 1061 #define REDUC_GROUP_NEXT_ELEMENT(S) \ 1062 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element) 1063 #define REDUC_GROUP_SIZE(S) \ 1064 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size) 1065 1066 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope) 1067 1068 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid) 1069 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp) 1070 #define STMT_SLP_TYPE(S) (S)->slp_type 1071 1072 #define VECT_MAX_COST 1000 1073 1074 /* The maximum number of intermediate steps required in multi-step type 1075 conversion. */ 1076 #define MAX_INTERM_CVT_STEPS 3 1077 1078 #define MAX_VECTORIZATION_FACTOR INT_MAX 1079 1080 /* Nonzero if TYPE represents a (scalar) boolean type or type 1081 in the middle-end compatible with it (unsigned precision 1 integral 1082 types). Used to determine which types should be vectorized as 1083 VECTOR_BOOLEAN_TYPE_P. */ 1084 1085 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \ 1086 (TREE_CODE (TYPE) == BOOLEAN_TYPE \ 1087 || ((TREE_CODE (TYPE) == INTEGER_TYPE \ 1088 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \ 1089 && TYPE_PRECISION (TYPE) == 1 \ 1090 && TYPE_UNSIGNED (TYPE))) 1091 1092 static inline bool 1093 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info) 1094 { 1095 return (loop->inner 1096 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father)); 1097 } 1098 1099 /* Return TRUE if a statement represented by STMT_INFO is a part of a 1100 pattern. */ 1101 1102 static inline bool 1103 is_pattern_stmt_p (stmt_vec_info stmt_info) 1104 { 1105 return stmt_info->pattern_stmt_p; 1106 } 1107 1108 /* If STMT_INFO is a pattern statement, return the statement that it 1109 replaces, otherwise return STMT_INFO itself. */ 1110 1111 inline stmt_vec_info 1112 vect_orig_stmt (stmt_vec_info stmt_info) 1113 { 1114 if (is_pattern_stmt_p (stmt_info)) 1115 return STMT_VINFO_RELATED_STMT (stmt_info); 1116 return stmt_info; 1117 } 1118 1119 /* Return the later statement between STMT1_INFO and STMT2_INFO. */ 1120 1121 static inline stmt_vec_info 1122 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info) 1123 { 1124 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt) 1125 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt)) 1126 return stmt1_info; 1127 else 1128 return stmt2_info; 1129 } 1130 1131 /* If STMT_INFO has been replaced by a pattern statement, return the 1132 replacement statement, otherwise return STMT_INFO itself. */ 1133 1134 inline stmt_vec_info 1135 vect_stmt_to_vectorize (stmt_vec_info stmt_info) 1136 { 1137 if (STMT_VINFO_IN_PATTERN_P (stmt_info)) 1138 return STMT_VINFO_RELATED_STMT (stmt_info); 1139 return stmt_info; 1140 } 1141 1142 /* Return true if BB is a loop header. */ 1143 1144 static inline bool 1145 is_loop_header_bb_p (basic_block bb) 1146 { 1147 if (bb == (bb->loop_father)->header) 1148 return true; 1149 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1); 1150 return false; 1151 } 1152 1153 /* Return pow2 (X). */ 1154 1155 static inline int 1156 vect_pow2 (int x) 1157 { 1158 int i, res = 1; 1159 1160 for (i = 0; i < x; i++) 1161 res *= 2; 1162 1163 return res; 1164 } 1165 1166 /* Alias targetm.vectorize.builtin_vectorization_cost. */ 1167 1168 static inline int 1169 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, 1170 tree vectype, int misalign) 1171 { 1172 return targetm.vectorize.builtin_vectorization_cost (type_of_cost, 1173 vectype, misalign); 1174 } 1175 1176 /* Get cost by calling cost target builtin. */ 1177 1178 static inline 1179 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost) 1180 { 1181 return builtin_vectorization_cost (type_of_cost, NULL, 0); 1182 } 1183 1184 /* Alias targetm.vectorize.init_cost. */ 1185 1186 static inline void * 1187 init_cost (struct loop *loop_info) 1188 { 1189 return targetm.vectorize.init_cost (loop_info); 1190 } 1191 1192 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt, 1193 stmt_vec_info, int, unsigned, 1194 enum vect_cost_model_location); 1195 1196 /* Alias targetm.vectorize.add_stmt_cost. */ 1197 1198 static inline unsigned 1199 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind, 1200 stmt_vec_info stmt_info, int misalign, 1201 enum vect_cost_model_location where) 1202 { 1203 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind, 1204 stmt_info, misalign, where); 1205 if (dump_file && (dump_flags & TDF_DETAILS)) 1206 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, 1207 cost, where); 1208 return cost; 1209 } 1210 1211 /* Alias targetm.vectorize.finish_cost. */ 1212 1213 static inline void 1214 finish_cost (void *data, unsigned *prologue_cost, 1215 unsigned *body_cost, unsigned *epilogue_cost) 1216 { 1217 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost); 1218 } 1219 1220 /* Alias targetm.vectorize.destroy_cost_data. */ 1221 1222 static inline void 1223 destroy_cost_data (void *data) 1224 { 1225 targetm.vectorize.destroy_cost_data (data); 1226 } 1227 1228 inline void 1229 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec) 1230 { 1231 stmt_info_for_cost *cost; 1232 unsigned i; 1233 FOR_EACH_VEC_ELT (*cost_vec, i, cost) 1234 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info, 1235 cost->misalign, cost->where); 1236 } 1237 1238 /*-----------------------------------------------------------------*/ 1239 /* Info on data references alignment. */ 1240 /*-----------------------------------------------------------------*/ 1241 #define DR_MISALIGNMENT_UNKNOWN (-1) 1242 #define DR_MISALIGNMENT_UNINITIALIZED (-2) 1243 1244 inline void 1245 set_dr_misalignment (dr_vec_info *dr_info, int val) 1246 { 1247 dr_info->misalignment = val; 1248 } 1249 1250 inline int 1251 dr_misalignment (dr_vec_info *dr_info) 1252 { 1253 int misalign = dr_info->misalignment; 1254 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED); 1255 return misalign; 1256 } 1257 1258 /* Reflects actual alignment of first access in the vectorized loop, 1259 taking into account peeling/versioning if applied. */ 1260 #define DR_MISALIGNMENT(DR) dr_misalignment (DR) 1261 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL) 1262 1263 /* Only defined once DR_MISALIGNMENT is defined. */ 1264 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment) 1265 1266 /* Return true if data access DR_INFO is aligned to its target alignment 1267 (which may be less than a full vector). */ 1268 1269 static inline bool 1270 aligned_access_p (dr_vec_info *dr_info) 1271 { 1272 return (DR_MISALIGNMENT (dr_info) == 0); 1273 } 1274 1275 /* Return TRUE if the alignment of the data access is known, and FALSE 1276 otherwise. */ 1277 1278 static inline bool 1279 known_alignment_for_access_p (dr_vec_info *dr_info) 1280 { 1281 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN); 1282 } 1283 1284 /* Return the minimum alignment in bytes that the vectorized version 1285 of DR_INFO is guaranteed to have. */ 1286 1287 static inline unsigned int 1288 vect_known_alignment_in_bytes (dr_vec_info *dr_info) 1289 { 1290 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN) 1291 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr))); 1292 if (DR_MISALIGNMENT (dr_info) == 0) 1293 return known_alignment (DR_TARGET_ALIGNMENT (dr_info)); 1294 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info); 1295 } 1296 1297 /* Return the behavior of DR_INFO with respect to the vectorization context 1298 (which for outer loop vectorization might not be the behavior recorded 1299 in DR_INFO itself). */ 1300 1301 static inline innermost_loop_behavior * 1302 vect_dr_behavior (dr_vec_info *dr_info) 1303 { 1304 stmt_vec_info stmt_info = dr_info->stmt; 1305 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); 1306 if (loop_vinfo == NULL 1307 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info)) 1308 return &DR_INNERMOST (dr_info->dr); 1309 else 1310 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info); 1311 } 1312 1313 /* Return true if the vect cost model is unlimited. */ 1314 static inline bool 1315 unlimited_cost_model (loop_p loop) 1316 { 1317 if (loop != NULL && loop->force_vectorize 1318 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT) 1319 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED; 1320 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED); 1321 } 1322 1323 /* Return true if the loop described by LOOP_VINFO is fully-masked and 1324 if the first iteration should use a partial mask in order to achieve 1325 alignment. */ 1326 1327 static inline bool 1328 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo) 1329 { 1330 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo) 1331 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)); 1332 } 1333 1334 /* Return the number of vectors of type VECTYPE that are needed to get 1335 NUNITS elements. NUNITS should be based on the vectorization factor, 1336 so it is always a known multiple of the number of elements in VECTYPE. */ 1337 1338 static inline unsigned int 1339 vect_get_num_vectors (poly_uint64 nunits, tree vectype) 1340 { 1341 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant (); 1342 } 1343 1344 /* Return the number of copies needed for loop vectorization when 1345 a statement operates on vectors of type VECTYPE. This is the 1346 vectorization factor divided by the number of elements in 1347 VECTYPE and is always known at compile time. */ 1348 1349 static inline unsigned int 1350 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype) 1351 { 1352 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype); 1353 } 1354 1355 /* Update maximum unit count *MAX_NUNITS so that it accounts for 1356 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */ 1357 1358 static inline void 1359 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits) 1360 { 1361 /* All unit counts have the form current_vector_size * X for some 1362 rational X, so two unit sizes must have a common multiple. 1363 Everything is a multiple of the initial value of 1. */ 1364 *max_nunits = force_common_multiple (*max_nunits, nunits); 1365 } 1366 1367 /* Update maximum unit count *MAX_NUNITS so that it accounts for 1368 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1 1369 if we haven't yet recorded any vector types. */ 1370 1371 static inline void 1372 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype) 1373 { 1374 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype)); 1375 } 1376 1377 /* Return the vectorization factor that should be used for costing 1378 purposes while vectorizing the loop described by LOOP_VINFO. 1379 Pick a reasonable estimate if the vectorization factor isn't 1380 known at compile time. */ 1381 1382 static inline unsigned int 1383 vect_vf_for_cost (loop_vec_info loop_vinfo) 1384 { 1385 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo)); 1386 } 1387 1388 /* Estimate the number of elements in VEC_TYPE for costing purposes. 1389 Pick a reasonable estimate if the exact number isn't known at 1390 compile time. */ 1391 1392 static inline unsigned int 1393 vect_nunits_for_cost (tree vec_type) 1394 { 1395 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type)); 1396 } 1397 1398 /* Return the maximum possible vectorization factor for LOOP_VINFO. */ 1399 1400 static inline unsigned HOST_WIDE_INT 1401 vect_max_vf (loop_vec_info loop_vinfo) 1402 { 1403 unsigned HOST_WIDE_INT vf; 1404 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf)) 1405 return vf; 1406 return MAX_VECTORIZATION_FACTOR; 1407 } 1408 1409 /* Return the size of the value accessed by unvectorized data reference 1410 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated 1411 for the associated gimple statement, since that guarantees that DR_INFO 1412 accesses either a scalar or a scalar equivalent. ("Scalar equivalent" 1413 here includes things like V1SI, which can be vectorized in the same way 1414 as a plain SI.) */ 1415 1416 inline unsigned int 1417 vect_get_scalar_dr_size (dr_vec_info *dr_info) 1418 { 1419 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr)))); 1420 } 1421 1422 /* Source location + hotness information. */ 1423 extern dump_user_location_t vect_location; 1424 1425 /* A macro for calling: 1426 dump_begin_scope (MSG, vect_location); 1427 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc, 1428 and then calling 1429 dump_end_scope (); 1430 once the object goes out of scope, thus capturing the nesting of 1431 the scopes. 1432 1433 These scopes affect dump messages within them: dump messages at the 1434 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those 1435 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */ 1436 1437 #define DUMP_VECT_SCOPE(MSG) \ 1438 AUTO_DUMP_SCOPE (MSG, vect_location) 1439 1440 /* A sentinel class for ensuring that the "vect_location" global gets 1441 reset at the end of a scope. 1442 1443 The "vect_location" global is used during dumping and contains a 1444 location_t, which could contain references to a tree block via the 1445 ad-hoc data. This data is used for tracking inlining information, 1446 but it's not a GC root; it's simply assumed that such locations never 1447 get accessed if the blocks are optimized away. 1448 1449 Hence we need to ensure that such locations are purged at the end 1450 of any operations using them (e.g. via this class). */ 1451 1452 class auto_purge_vect_location 1453 { 1454 public: 1455 ~auto_purge_vect_location (); 1456 }; 1457 1458 /*-----------------------------------------------------------------*/ 1459 /* Function prototypes. */ 1460 /*-----------------------------------------------------------------*/ 1461 1462 /* Simple loop peeling and versioning utilities for vectorizer's purposes - 1463 in tree-vect-loop-manip.c. */ 1464 extern void vect_set_loop_condition (struct loop *, loop_vec_info, 1465 tree, tree, tree, bool); 1466 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge); 1467 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *, 1468 struct loop *, edge); 1469 struct loop *vect_loop_versioning (loop_vec_info, unsigned int, bool, 1470 poly_uint64); 1471 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree, 1472 tree *, tree *, tree *, int, bool, bool); 1473 extern void vect_prepare_for_masked_peels (loop_vec_info); 1474 extern dump_user_location_t find_loop_location (struct loop *); 1475 extern bool vect_can_advance_ivs_p (loop_vec_info); 1476 1477 /* In tree-vect-stmts.c. */ 1478 extern poly_uint64 current_vector_size; 1479 extern tree get_vectype_for_scalar_type (tree); 1480 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64); 1481 extern tree get_mask_type_for_scalar_type (tree); 1482 extern tree get_same_sized_vectype (tree, tree); 1483 extern bool vect_get_loop_mask_type (loop_vec_info); 1484 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *, 1485 stmt_vec_info * = NULL, gimple ** = NULL); 1486 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *, 1487 tree *, stmt_vec_info * = NULL, 1488 gimple ** = NULL); 1489 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info, 1490 tree, tree, enum tree_code *, 1491 enum tree_code *, int *, 1492 vec<tree> *); 1493 extern bool supportable_narrowing_operation (enum tree_code, tree, tree, 1494 enum tree_code *, 1495 int *, vec<tree> *); 1496 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int, 1497 enum vect_cost_for_stmt, stmt_vec_info, 1498 int, enum vect_cost_model_location); 1499 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *); 1500 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *, 1501 gimple_stmt_iterator *); 1502 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info); 1503 extern tree vect_get_store_rhs (stmt_vec_info); 1504 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type); 1505 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL); 1506 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *, 1507 vec<tree> *, slp_tree); 1508 extern void vect_get_vec_defs_for_stmt_copy (vec_info *, 1509 vec<tree> *, vec<tree> *); 1510 extern tree vect_init_vector (stmt_vec_info, tree, tree, 1511 gimple_stmt_iterator *); 1512 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree); 1513 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *, 1514 slp_tree, slp_instance); 1515 extern void vect_remove_stores (stmt_vec_info); 1516 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree, 1517 slp_instance, stmt_vector_for_cost *); 1518 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *, 1519 stmt_vec_info *, bool, slp_tree, 1520 stmt_vector_for_cost *); 1521 extern bool vectorizable_shift (stmt_vec_info, gimple_stmt_iterator *, 1522 stmt_vec_info *, slp_tree, 1523 stmt_vector_for_cost *); 1524 extern void vect_get_load_cost (stmt_vec_info, int, bool, 1525 unsigned int *, unsigned int *, 1526 stmt_vector_for_cost *, 1527 stmt_vector_for_cost *, bool); 1528 extern void vect_get_store_cost (stmt_vec_info, int, 1529 unsigned int *, stmt_vector_for_cost *); 1530 extern bool vect_supportable_shift (enum tree_code, tree); 1531 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &); 1532 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &); 1533 extern void optimize_mask_stores (struct loop*); 1534 extern gcall *vect_gen_while (tree, tree, tree); 1535 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree); 1536 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *, 1537 tree *); 1538 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info); 1539 1540 /* In tree-vect-data-refs.c. */ 1541 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64); 1542 extern enum dr_alignment_support vect_supportable_dr_alignment 1543 (dr_vec_info *, bool); 1544 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *, 1545 HOST_WIDE_INT *); 1546 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *); 1547 extern bool vect_slp_analyze_instance_dependence (slp_instance); 1548 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info); 1549 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info); 1550 extern opt_result vect_verify_datarefs_alignment (loop_vec_info); 1551 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance); 1552 extern opt_result vect_analyze_data_ref_accesses (vec_info *); 1553 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info); 1554 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int, 1555 signop, int, internal_fn *, tree *); 1556 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info, 1557 gather_scatter_info *); 1558 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *, 1559 vec<data_reference_p> *); 1560 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *); 1561 extern void vect_record_base_alignments (vec_info *); 1562 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree, 1563 tree *, gimple_stmt_iterator *, 1564 gimple **, bool, 1565 tree = NULL_TREE, tree = NULL_TREE); 1566 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, 1567 stmt_vec_info, tree); 1568 extern void vect_copy_ref_info (tree, tree); 1569 extern tree vect_create_destination_var (tree, tree); 1570 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT); 1571 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool); 1572 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT); 1573 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool); 1574 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info, 1575 gimple_stmt_iterator *, vec<tree> *); 1576 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *, 1577 tree *, enum dr_alignment_support, tree, 1578 struct loop **); 1579 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int, 1580 gimple_stmt_iterator *); 1581 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>); 1582 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *); 1583 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind, 1584 const char * = NULL); 1585 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *, 1586 tree, tree = NULL_TREE); 1587 1588 /* In tree-vect-loop.c. */ 1589 /* FORNOW: Used in tree-parloops.c. */ 1590 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info, 1591 bool *, bool); 1592 /* Used in gimple-loop-interchange.c. */ 1593 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree, 1594 enum tree_code); 1595 /* Drive for loop analysis stage. */ 1596 extern opt_loop_vec_info vect_analyze_loop (struct loop *, 1597 loop_vec_info, 1598 vec_info_shared *); 1599 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL); 1600 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *, 1601 tree *, bool); 1602 extern tree vect_halve_mask_nunits (tree); 1603 extern tree vect_double_mask_nunits (tree); 1604 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *, 1605 unsigned int, tree); 1606 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *, 1607 unsigned int, tree, unsigned int); 1608 1609 /* Drive for loop transformation stage. */ 1610 extern struct loop *vect_transform_loop (loop_vec_info); 1611 extern opt_loop_vec_info vect_analyze_loop_form (struct loop *, 1612 vec_info_shared *); 1613 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *, 1614 slp_tree, int, stmt_vec_info *, 1615 stmt_vector_for_cost *); 1616 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *, 1617 stmt_vec_info *, slp_tree, slp_instance, 1618 stmt_vector_for_cost *); 1619 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *, 1620 stmt_vec_info *, slp_tree, 1621 stmt_vector_for_cost *); 1622 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *); 1623 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code); 1624 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *, 1625 stmt_vector_for_cost *, 1626 stmt_vector_for_cost *, 1627 stmt_vector_for_cost *); 1628 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree); 1629 1630 /* In tree-vect-slp.c. */ 1631 extern void vect_free_slp_instance (slp_instance, bool); 1632 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> , 1633 gimple_stmt_iterator *, poly_uint64, 1634 slp_instance, bool, unsigned *); 1635 extern bool vect_slp_analyze_operations (vec_info *); 1636 extern void vect_schedule_slp (vec_info *); 1637 extern opt_result vect_analyze_slp (vec_info *, unsigned); 1638 extern bool vect_make_slp_decision (loop_vec_info); 1639 extern void vect_detect_hybrid_slp (loop_vec_info); 1640 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *); 1641 extern bool vect_slp_bb (basic_block); 1642 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree); 1643 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info); 1644 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode, 1645 unsigned int * = NULL, 1646 tree * = NULL, tree * = NULL); 1647 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>, 1648 unsigned int, vec<tree> &); 1649 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info); 1650 1651 /* In tree-vect-patterns.c. */ 1652 /* Pattern recognition functions. 1653 Additional pattern recognition functions can (and will) be added 1654 in the future. */ 1655 void vect_pattern_recog (vec_info *); 1656 1657 /* In tree-vectorizer.c. */ 1658 unsigned vectorize_loops (void); 1659 void vect_free_loop_info_assumptions (struct loop *); 1660 1661 #endif /* GCC_TREE_VECTORIZER_H */ 1662