xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-vectorizer.h (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* Vectorizer
2    Copyright (C) 2003-2019 Free Software Foundation, Inc.
3    Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23 
24 typedef struct _stmt_vec_info *stmt_vec_info;
25 
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 
30 /* Used for naming of new temporaries.  */
31 enum vect_var_kind {
32   vect_simple_var,
33   vect_pointer_var,
34   vect_scalar_var,
35   vect_mask_var
36 };
37 
38 /* Defines type of operation.  */
39 enum operation_type {
40   unary_op = 1,
41   binary_op,
42   ternary_op
43 };
44 
45 /* Define type of available alignment support.  */
46 enum dr_alignment_support {
47   dr_unaligned_unsupported,
48   dr_unaligned_supported,
49   dr_explicit_realign,
50   dr_explicit_realign_optimized,
51   dr_aligned
52 };
53 
54 /* Define type of def-use cross-iteration cycle.  */
55 enum vect_def_type {
56   vect_uninitialized_def = 0,
57   vect_constant_def = 1,
58   vect_external_def,
59   vect_internal_def,
60   vect_induction_def,
61   vect_reduction_def,
62   vect_double_reduction_def,
63   vect_nested_cycle,
64   vect_unknown_def_type
65 };
66 
67 /* Define type of reduction.  */
68 enum vect_reduction_type {
69   TREE_CODE_REDUCTION,
70   COND_REDUCTION,
71   INTEGER_INDUC_COND_REDUCTION,
72   CONST_COND_REDUCTION,
73 
74   /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75      to implement:
76 
77        for (int i = 0; i < VF; ++i)
78          res = cond[i] ? val[i] : res;  */
79   EXTRACT_LAST_REDUCTION,
80 
81   /* Use a folding reduction within the loop to implement:
82 
83        for (int i = 0; i < VF; ++i)
84 	 res = res OP val[i];
85 
86      (with no reassocation).  */
87   FOLD_LEFT_REDUCTION
88 };
89 
90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def)           \
91                                    || ((D) == vect_double_reduction_def) \
92                                    || ((D) == vect_nested_cycle))
93 
94 /* Structure to encapsulate information about a group of like
95    instructions to be presented to the target cost model.  */
96 struct stmt_info_for_cost {
97   int count;
98   enum vect_cost_for_stmt kind;
99   enum vect_cost_model_location where;
100   stmt_vec_info stmt_info;
101   int misalign;
102 };
103 
104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
105 
106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
107    known alignment for that base.  */
108 typedef hash_map<tree_operand_hash,
109 		 innermost_loop_behavior *> vec_base_alignments;
110 
111 /************************************************************************
112   SLP
113  ************************************************************************/
114 typedef struct _slp_tree *slp_tree;
115 
116 /* A computation tree of an SLP instance.  Each node corresponds to a group of
117    stmts to be packed in a SIMD stmt.  */
118 struct _slp_tree {
119   /* Nodes that contain def-stmts of this node statements operands.  */
120   vec<slp_tree> children;
121   /* A group of scalar stmts to be vectorized together.  */
122   vec<stmt_vec_info> stmts;
123   /* Load permutation relative to the stores, NULL if there is no
124      permutation.  */
125   vec<unsigned> load_permutation;
126   /* Vectorized stmt/s.  */
127   vec<stmt_vec_info> vec_stmts;
128   /* Number of vector stmts that are created to replace the group of scalar
129      stmts. It is calculated during the transformation phase as the number of
130      scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
131      divided by vector size.  */
132   unsigned int vec_stmts_size;
133   /* Reference count in the SLP graph.  */
134   unsigned int refcnt;
135   /* The maximum number of vector elements for the subtree rooted
136      at this node.  */
137   poly_uint64 max_nunits;
138   /* Whether the scalar computations use two different operators.  */
139   bool two_operators;
140   /* The DEF type of this node.  */
141   enum vect_def_type def_type;
142 };
143 
144 
145 /* SLP instance is a sequence of stmts in a loop that can be packed into
146    SIMD stmts.  */
147 typedef struct _slp_instance {
148   /* The root of SLP tree.  */
149   slp_tree root;
150 
151   /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s.  */
152   unsigned int group_size;
153 
154   /* The unrolling factor required to vectorized this SLP instance.  */
155   poly_uint64 unrolling_factor;
156 
157   /* The group of nodes that contain loads of this SLP instance.  */
158   vec<slp_tree> loads;
159 
160   /* The SLP node containing the reduction PHIs.  */
161   slp_tree reduc_phis;
162 } *slp_instance;
163 
164 
165 /* Access Functions.  */
166 #define SLP_INSTANCE_TREE(S)                     (S)->root
167 #define SLP_INSTANCE_GROUP_SIZE(S)               (S)->group_size
168 #define SLP_INSTANCE_UNROLLING_FACTOR(S)         (S)->unrolling_factor
169 #define SLP_INSTANCE_LOADS(S)                    (S)->loads
170 
171 #define SLP_TREE_CHILDREN(S)                     (S)->children
172 #define SLP_TREE_SCALAR_STMTS(S)                 (S)->stmts
173 #define SLP_TREE_VEC_STMTS(S)                    (S)->vec_stmts
174 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S)          (S)->vec_stmts_size
175 #define SLP_TREE_LOAD_PERMUTATION(S)             (S)->load_permutation
176 #define SLP_TREE_TWO_OPERATORS(S)		 (S)->two_operators
177 #define SLP_TREE_DEF_TYPE(S)			 (S)->def_type
178 
179 
180 
181 /* Describes two objects whose addresses must be unequal for the vectorized
182    loop to be valid.  */
183 typedef std::pair<tree, tree> vec_object_pair;
184 
185 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
186    UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR.  */
187 struct vec_lower_bound {
188   vec_lower_bound () {}
189   vec_lower_bound (tree e, bool u, poly_uint64 m)
190     : expr (e), unsigned_p (u), min_value (m) {}
191 
192   tree expr;
193   bool unsigned_p;
194   poly_uint64 min_value;
195 };
196 
197 /* Vectorizer state shared between different analyses like vector sizes
198    of the same CFG region.  */
199 struct vec_info_shared {
200   vec_info_shared();
201   ~vec_info_shared();
202 
203   void save_datarefs();
204   void check_datarefs();
205 
206   /* All data references.  Freed by free_data_refs, so not an auto_vec.  */
207   vec<data_reference_p> datarefs;
208   vec<data_reference> datarefs_copy;
209 
210   /* The loop nest in which the data dependences are computed.  */
211   auto_vec<loop_p> loop_nest;
212 
213   /* All data dependences.  Freed by free_dependence_relations, so not
214      an auto_vec.  */
215   vec<ddr_p> ddrs;
216 };
217 
218 /* Vectorizer state common between loop and basic-block vectorization.  */
219 struct vec_info {
220   enum vec_kind { bb, loop };
221 
222   vec_info (vec_kind, void *, vec_info_shared *);
223   ~vec_info ();
224 
225   stmt_vec_info add_stmt (gimple *);
226   stmt_vec_info lookup_stmt (gimple *);
227   stmt_vec_info lookup_def (tree);
228   stmt_vec_info lookup_single_use (tree);
229   struct dr_vec_info *lookup_dr (data_reference *);
230   void move_dr (stmt_vec_info, stmt_vec_info);
231   void remove_stmt (stmt_vec_info);
232   void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
233 
234   /* The type of vectorization.  */
235   vec_kind kind;
236 
237   /* Shared vectorizer state.  */
238   vec_info_shared *shared;
239 
240   /* The mapping of GIMPLE UID to stmt_vec_info.  */
241   vec<stmt_vec_info> stmt_vec_infos;
242 
243   /* All SLP instances.  */
244   auto_vec<slp_instance> slp_instances;
245 
246   /* Maps base addresses to an innermost_loop_behavior that gives the maximum
247      known alignment for that base.  */
248   vec_base_alignments base_alignments;
249 
250   /* All interleaving chains of stores, represented by the first
251      stmt in the chain.  */
252   auto_vec<stmt_vec_info> grouped_stores;
253 
254   /* Cost data used by the target cost model.  */
255   void *target_cost_data;
256 
257 private:
258   stmt_vec_info new_stmt_vec_info (gimple *stmt);
259   void set_vinfo_for_stmt (gimple *, stmt_vec_info);
260   void free_stmt_vec_infos ();
261   void free_stmt_vec_info (stmt_vec_info);
262 };
263 
264 struct _loop_vec_info;
265 struct _bb_vec_info;
266 
267 template<>
268 template<>
269 inline bool
270 is_a_helper <_loop_vec_info *>::test (vec_info *i)
271 {
272   return i->kind == vec_info::loop;
273 }
274 
275 template<>
276 template<>
277 inline bool
278 is_a_helper <_bb_vec_info *>::test (vec_info *i)
279 {
280   return i->kind == vec_info::bb;
281 }
282 
283 
284 /* In general, we can divide the vector statements in a vectorized loop
285    into related groups ("rgroups") and say that for each rgroup there is
286    some nS such that the rgroup operates on nS values from one scalar
287    iteration followed by nS values from the next.  That is, if VF is the
288    vectorization factor of the loop, the rgroup operates on a sequence:
289 
290      (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
291 
292    where (i,j) represents a scalar value with index j in a scalar
293    iteration with index i.
294 
295    [ We use the term "rgroup" to emphasise that this grouping isn't
296      necessarily the same as the grouping of statements used elsewhere.
297      For example, if we implement a group of scalar loads using gather
298      loads, we'll use a separate gather load for each scalar load, and
299      thus each gather load will belong to its own rgroup. ]
300 
301    In general this sequence will occupy nV vectors concatenated
302    together.  If these vectors have nL lanes each, the total number
303    of scalar values N is given by:
304 
305        N = nS * VF = nV * nL
306 
307    None of nS, VF, nV and nL are required to be a power of 2.  nS and nV
308    are compile-time constants but VF and nL can be variable (if the target
309    supports variable-length vectors).
310 
311    In classical vectorization, each iteration of the vector loop would
312    handle exactly VF iterations of the original scalar loop.  However,
313    in a fully-masked loop, a particular iteration of the vector loop
314    might handle fewer than VF iterations of the scalar loop.  The vector
315    lanes that correspond to iterations of the scalar loop are said to be
316    "active" and the other lanes are said to be "inactive".
317 
318    In a fully-masked loop, many rgroups need to be masked to ensure that
319    they have no effect for the inactive lanes.  Each such rgroup needs a
320    sequence of booleans in the same order as above, but with each (i,j)
321    replaced by a boolean that indicates whether iteration i is active.
322    This sequence occupies nV vector masks that again have nL lanes each.
323    Thus the mask sequence as a whole consists of VF independent booleans
324    that are each repeated nS times.
325 
326    We make the simplifying assumption that if a sequence of nV masks is
327    suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
328    VIEW_CONVERTing it.  This holds for all current targets that support
329    fully-masked loops.  For example, suppose the scalar loop is:
330 
331      float *f;
332      double *d;
333      for (int i = 0; i < n; ++i)
334        {
335 	 f[i * 2 + 0] += 1.0f;
336 	 f[i * 2 + 1] += 2.0f;
337 	 d[i] += 3.0;
338        }
339 
340    and suppose that vectors have 256 bits.  The vectorized f accesses
341    will belong to one rgroup and the vectorized d access to another:
342 
343      f rgroup: nS = 2, nV = 1, nL = 8
344      d rgroup: nS = 1, nV = 1, nL = 4
345 	       VF = 4
346 
347      [ In this simple example the rgroups do correspond to the normal
348        SLP grouping scheme. ]
349 
350    If only the first three lanes are active, the masks we need are:
351 
352      f rgroup: 1 1 | 1 1 | 1 1 | 0 0
353      d rgroup:  1  |  1  |  1  |  0
354 
355    Here we can use a mask calculated for f's rgroup for d's, but not
356    vice versa.
357 
358    Thus for each value of nV, it is enough to provide nV masks, with the
359    mask being calculated based on the highest nL (or, equivalently, based
360    on the highest nS) required by any rgroup with that nV.  We therefore
361    represent the entire collection of masks as a two-level table, with the
362    first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
363    the second being indexed by the mask index 0 <= i < nV.  */
364 
365 /* The masks needed by rgroups with nV vectors, according to the
366    description above.  */
367 struct rgroup_masks {
368   /* The largest nS for all rgroups that use these masks.  */
369   unsigned int max_nscalars_per_iter;
370 
371   /* The type of mask to use, based on the highest nS recorded above.  */
372   tree mask_type;
373 
374   /* A vector of nV masks, in iteration order.  */
375   vec<tree> masks;
376 };
377 
378 typedef auto_vec<rgroup_masks> vec_loop_masks;
379 
380 /*-----------------------------------------------------------------*/
381 /* Info on vectorized loops.                                       */
382 /*-----------------------------------------------------------------*/
383 typedef struct _loop_vec_info : public vec_info {
384   _loop_vec_info (struct loop *, vec_info_shared *);
385   ~_loop_vec_info ();
386 
387   /* The loop to which this info struct refers to.  */
388   struct loop *loop;
389 
390   /* The loop basic blocks.  */
391   basic_block *bbs;
392 
393   /* Number of latch executions.  */
394   tree num_itersm1;
395   /* Number of iterations.  */
396   tree num_iters;
397   /* Number of iterations of the original loop.  */
398   tree num_iters_unchanged;
399   /* Condition under which this loop is analyzed and versioned.  */
400   tree num_iters_assumptions;
401 
402   /* Threshold of number of iterations below which vectorzation will not be
403      performed. It is calculated from MIN_PROFITABLE_ITERS and
404      PARAM_MIN_VECT_LOOP_BOUND.  */
405   unsigned int th;
406 
407   /* When applying loop versioning, the vector form should only be used
408      if the number of scalar iterations is >= this value, on top of all
409      the other requirements.  Ignored when loop versioning is not being
410      used.  */
411   poly_uint64 versioning_threshold;
412 
413   /* Unrolling factor  */
414   poly_uint64 vectorization_factor;
415 
416   /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
417      if there is no particular limit.  */
418   unsigned HOST_WIDE_INT max_vectorization_factor;
419 
420   /* The masks that a fully-masked loop should use to avoid operating
421      on inactive scalars.  */
422   vec_loop_masks masks;
423 
424   /* If we are using a loop mask to align memory addresses, this variable
425      contains the number of vector elements that we should skip in the
426      first iteration of the vector loop (i.e. the number of leading
427      elements that should be false in the first mask).  */
428   tree mask_skip_niters;
429 
430   /* Type of the variables to use in the WHILE_ULT call for fully-masked
431      loops.  */
432   tree mask_compare_type;
433 
434   /* For #pragma omp simd if (x) loops the x expression.  If constant 0,
435      the loop should not be vectorized, if constant non-zero, simd_if_cond
436      shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
437      should be versioned on that condition, using scalar loop if the condition
438      is false and vectorized loop otherwise.  */
439   tree simd_if_cond;
440 
441   /* Unknown DRs according to which loop was peeled.  */
442   struct dr_vec_info *unaligned_dr;
443 
444   /* peeling_for_alignment indicates whether peeling for alignment will take
445      place, and what the peeling factor should be:
446      peeling_for_alignment = X means:
447         If X=0: Peeling for alignment will not be applied.
448         If X>0: Peel first X iterations.
449         If X=-1: Generate a runtime test to calculate the number of iterations
450                  to be peeled, using the dataref recorded in the field
451                  unaligned_dr.  */
452   int peeling_for_alignment;
453 
454   /* The mask used to check the alignment of pointers or arrays.  */
455   int ptr_mask;
456 
457   /* Data Dependence Relations defining address ranges that are candidates
458      for a run-time aliasing check.  */
459   auto_vec<ddr_p> may_alias_ddrs;
460 
461   /* Data Dependence Relations defining address ranges together with segment
462      lengths from which the run-time aliasing check is built.  */
463   auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
464 
465   /* Check that the addresses of each pair of objects is unequal.  */
466   auto_vec<vec_object_pair> check_unequal_addrs;
467 
468   /* List of values that are required to be nonzero.  This is used to check
469      whether things like "x[i * n] += 1;" are safe and eventually gets added
470      to the checks for lower bounds below.  */
471   auto_vec<tree> check_nonzero;
472 
473   /* List of values that need to be checked for a minimum value.  */
474   auto_vec<vec_lower_bound> lower_bounds;
475 
476   /* Statements in the loop that have data references that are candidates for a
477      runtime (loop versioning) misalignment check.  */
478   auto_vec<stmt_vec_info> may_misalign_stmts;
479 
480   /* Reduction cycles detected in the loop. Used in loop-aware SLP.  */
481   auto_vec<stmt_vec_info> reductions;
482 
483   /* All reduction chains in the loop, represented by the first
484      stmt in the chain.  */
485   auto_vec<stmt_vec_info> reduction_chains;
486 
487   /* Cost vector for a single scalar iteration.  */
488   auto_vec<stmt_info_for_cost> scalar_cost_vec;
489 
490   /* Map of IV base/step expressions to inserted name in the preheader.  */
491   hash_map<tree_operand_hash, tree> *ivexpr_map;
492 
493   /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
494      applied to the loop, i.e., no unrolling is needed, this is 1.  */
495   poly_uint64 slp_unrolling_factor;
496 
497   /* Cost of a single scalar iteration.  */
498   int single_scalar_iteration_cost;
499 
500   /* Is the loop vectorizable? */
501   bool vectorizable;
502 
503   /* Records whether we still have the option of using a fully-masked loop.  */
504   bool can_fully_mask_p;
505 
506   /* True if have decided to use a fully-masked loop.  */
507   bool fully_masked_p;
508 
509   /* When we have grouped data accesses with gaps, we may introduce invalid
510      memory accesses.  We peel the last iteration of the loop to prevent
511      this.  */
512   bool peeling_for_gaps;
513 
514   /* When the number of iterations is not a multiple of the vector size
515      we need to peel off iterations at the end to form an epilogue loop.  */
516   bool peeling_for_niter;
517 
518   /* Reductions are canonicalized so that the last operand is the reduction
519      operand.  If this places a constant into RHS1, this decanonicalizes
520      GIMPLE for other phases, so we must track when this has occurred and
521      fix it up.  */
522   bool operands_swapped;
523 
524   /* True if there are no loop carried data dependencies in the loop.
525      If loop->safelen <= 1, then this is always true, either the loop
526      didn't have any loop carried data dependencies, or the loop is being
527      vectorized guarded with some runtime alias checks, or couldn't
528      be vectorized at all, but then this field shouldn't be used.
529      For loop->safelen >= 2, the user has asserted that there are no
530      backward dependencies, but there still could be loop carried forward
531      dependencies in such loops.  This flag will be false if normal
532      vectorizer data dependency analysis would fail or require versioning
533      for alias, but because of loop->safelen >= 2 it has been vectorized
534      even without versioning for alias.  E.g. in:
535      #pragma omp simd
536      for (int i = 0; i < m; i++)
537        a[i] = a[i + k] * c;
538      (or #pragma simd or #pragma ivdep) we can vectorize this and it will
539      DTRT even for k > 0 && k < m, but without safelen we would not
540      vectorize this, so this field would be false.  */
541   bool no_data_dependencies;
542 
543   /* Mark loops having masked stores.  */
544   bool has_mask_store;
545 
546   /* If if-conversion versioned this loop before conversion, this is the
547      loop version without if-conversion.  */
548   struct loop *scalar_loop;
549 
550   /* For loops being epilogues of already vectorized loops
551      this points to the original vectorized loop.  Otherwise NULL.  */
552   _loop_vec_info *orig_loop_info;
553 
554 } *loop_vec_info;
555 
556 /* Access Functions.  */
557 #define LOOP_VINFO_LOOP(L)                 (L)->loop
558 #define LOOP_VINFO_BBS(L)                  (L)->bbs
559 #define LOOP_VINFO_NITERSM1(L)             (L)->num_itersm1
560 #define LOOP_VINFO_NITERS(L)               (L)->num_iters
561 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
562    prologue peeling retain total unchanged scalar loop iterations for
563    cost model.  */
564 #define LOOP_VINFO_NITERS_UNCHANGED(L)     (L)->num_iters_unchanged
565 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L)   (L)->num_iters_assumptions
566 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
567 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
568 #define LOOP_VINFO_VECTORIZABLE_P(L)       (L)->vectorizable
569 #define LOOP_VINFO_CAN_FULLY_MASK_P(L)     (L)->can_fully_mask_p
570 #define LOOP_VINFO_FULLY_MASKED_P(L)       (L)->fully_masked_p
571 #define LOOP_VINFO_VECT_FACTOR(L)          (L)->vectorization_factor
572 #define LOOP_VINFO_MAX_VECT_FACTOR(L)      (L)->max_vectorization_factor
573 #define LOOP_VINFO_MASKS(L)                (L)->masks
574 #define LOOP_VINFO_MASK_SKIP_NITERS(L)     (L)->mask_skip_niters
575 #define LOOP_VINFO_MASK_COMPARE_TYPE(L)    (L)->mask_compare_type
576 #define LOOP_VINFO_PTR_MASK(L)             (L)->ptr_mask
577 #define LOOP_VINFO_LOOP_NEST(L)            (L)->shared->loop_nest
578 #define LOOP_VINFO_DATAREFS(L)             (L)->shared->datarefs
579 #define LOOP_VINFO_DDRS(L)                 (L)->shared->ddrs
580 #define LOOP_VINFO_INT_NITERS(L)           (TREE_INT_CST_LOW ((L)->num_iters))
581 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
582 #define LOOP_VINFO_UNALIGNED_DR(L)         (L)->unaligned_dr
583 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L)   (L)->may_misalign_stmts
584 #define LOOP_VINFO_MAY_ALIAS_DDRS(L)       (L)->may_alias_ddrs
585 #define LOOP_VINFO_COMP_ALIAS_DDRS(L)      (L)->comp_alias_ddrs
586 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L)  (L)->check_unequal_addrs
587 #define LOOP_VINFO_CHECK_NONZERO(L)        (L)->check_nonzero
588 #define LOOP_VINFO_LOWER_BOUNDS(L)         (L)->lower_bounds
589 #define LOOP_VINFO_GROUPED_STORES(L)       (L)->grouped_stores
590 #define LOOP_VINFO_SLP_INSTANCES(L)        (L)->slp_instances
591 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
592 #define LOOP_VINFO_REDUCTIONS(L)           (L)->reductions
593 #define LOOP_VINFO_REDUCTION_CHAINS(L)     (L)->reduction_chains
594 #define LOOP_VINFO_TARGET_COST_DATA(L)     (L)->target_cost_data
595 #define LOOP_VINFO_PEELING_FOR_GAPS(L)     (L)->peeling_for_gaps
596 #define LOOP_VINFO_OPERANDS_SWAPPED(L)     (L)->operands_swapped
597 #define LOOP_VINFO_PEELING_FOR_NITER(L)    (L)->peeling_for_niter
598 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
599 #define LOOP_VINFO_SCALAR_LOOP(L)	   (L)->scalar_loop
600 #define LOOP_VINFO_HAS_MASK_STORE(L)       (L)->has_mask_store
601 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
602 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
603 #define LOOP_VINFO_ORIG_LOOP_INFO(L)       (L)->orig_loop_info
604 #define LOOP_VINFO_SIMD_IF_COND(L)         (L)->simd_if_cond
605 
606 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L)	\
607   ((L)->may_misalign_stmts.length () > 0)
608 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)		\
609   ((L)->comp_alias_ddrs.length () > 0 \
610    || (L)->check_unequal_addrs.length () > 0 \
611    || (L)->lower_bounds.length () > 0)
612 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L)		\
613   (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
614 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L)	\
615   (LOOP_VINFO_SIMD_IF_COND (L))
616 #define LOOP_REQUIRES_VERSIONING(L)			\
617   (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L)		\
618    || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L)		\
619    || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L)		\
620    || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
621 
622 #define LOOP_VINFO_NITERS_KNOWN_P(L)          \
623   (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
624 
625 #define LOOP_VINFO_EPILOGUE_P(L) \
626   (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
627 
628 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
629   (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
630 
631 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
632    value signifies success, and a NULL value signifies failure, supporting
633    propagating an opt_problem * describing the failure back up the call
634    stack.  */
635 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
636 
637 static inline loop_vec_info
638 loop_vec_info_for_loop (struct loop *loop)
639 {
640   return (loop_vec_info) loop->aux;
641 }
642 
643 typedef struct _bb_vec_info : public vec_info
644 {
645   _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
646   ~_bb_vec_info ();
647 
648   basic_block bb;
649   gimple_stmt_iterator region_begin;
650   gimple_stmt_iterator region_end;
651 } *bb_vec_info;
652 
653 #define BB_VINFO_BB(B)               (B)->bb
654 #define BB_VINFO_GROUPED_STORES(B)   (B)->grouped_stores
655 #define BB_VINFO_SLP_INSTANCES(B)    (B)->slp_instances
656 #define BB_VINFO_DATAREFS(B)         (B)->shared->datarefs
657 #define BB_VINFO_DDRS(B)             (B)->shared->ddrs
658 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
659 
660 static inline bb_vec_info
661 vec_info_for_bb (basic_block bb)
662 {
663   return (bb_vec_info) bb->aux;
664 }
665 
666 /*-----------------------------------------------------------------*/
667 /* Info on vectorized defs.                                        */
668 /*-----------------------------------------------------------------*/
669 enum stmt_vec_info_type {
670   undef_vec_info_type = 0,
671   load_vec_info_type,
672   store_vec_info_type,
673   shift_vec_info_type,
674   op_vec_info_type,
675   call_vec_info_type,
676   call_simd_clone_vec_info_type,
677   assignment_vec_info_type,
678   condition_vec_info_type,
679   comparison_vec_info_type,
680   reduc_vec_info_type,
681   induc_vec_info_type,
682   type_promotion_vec_info_type,
683   type_demotion_vec_info_type,
684   type_conversion_vec_info_type,
685   loop_exit_ctrl_vec_info_type
686 };
687 
688 /* Indicates whether/how a variable is used in the scope of loop/basic
689    block.  */
690 enum vect_relevant {
691   vect_unused_in_scope = 0,
692 
693   /* The def is only used outside the loop.  */
694   vect_used_only_live,
695   /* The def is in the inner loop, and the use is in the outer loop, and the
696      use is a reduction stmt.  */
697   vect_used_in_outer_by_reduction,
698   /* The def is in the inner loop, and the use is in the outer loop (and is
699      not part of reduction).  */
700   vect_used_in_outer,
701 
702   /* defs that feed computations that end up (only) in a reduction. These
703      defs may be used by non-reduction stmts, but eventually, any
704      computations/values that are affected by these defs are used to compute
705      a reduction (i.e. don't get stored to memory, for example). We use this
706      to identify computations that we can change the order in which they are
707      computed.  */
708   vect_used_by_reduction,
709 
710   vect_used_in_scope
711 };
712 
713 /* The type of vectorization that can be applied to the stmt: regular loop-based
714    vectorization; pure SLP - the stmt is a part of SLP instances and does not
715    have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
716    a part of SLP instance and also must be loop-based vectorized, since it has
717    uses outside SLP sequences.
718 
719    In the loop context the meanings of pure and hybrid SLP are slightly
720    different. By saying that pure SLP is applied to the loop, we mean that we
721    exploit only intra-iteration parallelism in the loop; i.e., the loop can be
722    vectorized without doing any conceptual unrolling, cause we don't pack
723    together stmts from different iterations, only within a single iteration.
724    Loop hybrid SLP means that we exploit both intra-iteration and
725    inter-iteration parallelism (e.g., number of elements in the vector is 4
726    and the slp-group-size is 2, in which case we don't have enough parallelism
727    within an iteration, so we obtain the rest of the parallelism from subsequent
728    iterations by unrolling the loop by 2).  */
729 enum slp_vect_type {
730   loop_vect = 0,
731   pure_slp,
732   hybrid
733 };
734 
735 /* Says whether a statement is a load, a store of a vectorized statement
736    result, or a store of an invariant value.  */
737 enum vec_load_store_type {
738   VLS_LOAD,
739   VLS_STORE,
740   VLS_STORE_INVARIANT
741 };
742 
743 /* Describes how we're going to vectorize an individual load or store,
744    or a group of loads or stores.  */
745 enum vect_memory_access_type {
746   /* An access to an invariant address.  This is used only for loads.  */
747   VMAT_INVARIANT,
748 
749   /* A simple contiguous access.  */
750   VMAT_CONTIGUOUS,
751 
752   /* A contiguous access that goes down in memory rather than up,
753      with no additional permutation.  This is used only for stores
754      of invariants.  */
755   VMAT_CONTIGUOUS_DOWN,
756 
757   /* A simple contiguous access in which the elements need to be permuted
758      after loading or before storing.  Only used for loop vectorization;
759      SLP uses separate permutes.  */
760   VMAT_CONTIGUOUS_PERMUTE,
761 
762   /* A simple contiguous access in which the elements need to be reversed
763      after loading or before storing.  */
764   VMAT_CONTIGUOUS_REVERSE,
765 
766   /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES.  */
767   VMAT_LOAD_STORE_LANES,
768 
769   /* An access in which each scalar element is loaded or stored
770      individually.  */
771   VMAT_ELEMENTWISE,
772 
773   /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
774      SLP accesses.  Each unrolled iteration uses a contiguous load
775      or store for the whole group, but the groups from separate iterations
776      are combined in the same way as for VMAT_ELEMENTWISE.  */
777   VMAT_STRIDED_SLP,
778 
779   /* The access uses gather loads or scatter stores.  */
780   VMAT_GATHER_SCATTER
781 };
782 
783 struct dr_vec_info {
784   /* The data reference itself.  */
785   data_reference *dr;
786   /* The statement that contains the data reference.  */
787   stmt_vec_info stmt;
788   /* The misalignment in bytes of the reference, or -1 if not known.  */
789   int misalignment;
790   /* The byte alignment that we'd ideally like the reference to have,
791      and the value that misalignment is measured against.  */
792   poly_uint64 target_alignment;
793   /* If true the alignment of base_decl needs to be increased.  */
794   bool base_misaligned;
795   tree base_decl;
796 };
797 
798 typedef struct data_reference *dr_p;
799 
800 struct _stmt_vec_info {
801 
802   enum stmt_vec_info_type type;
803 
804   /* Indicates whether this stmts is part of a computation whose result is
805      used outside the loop.  */
806   bool live;
807 
808   /* Stmt is part of some pattern (computation idiom)  */
809   bool in_pattern_p;
810 
811   /* True if the statement was created during pattern recognition as
812      part of the replacement for RELATED_STMT.  This implies that the
813      statement isn't part of any basic block, although for convenience
814      its gimple_bb is the same as for RELATED_STMT.  */
815   bool pattern_stmt_p;
816 
817   /* Is this statement vectorizable or should it be skipped in (partial)
818      vectorization.  */
819   bool vectorizable;
820 
821   /* The stmt to which this info struct refers to.  */
822   gimple *stmt;
823 
824   /* The vec_info with respect to which STMT is vectorized.  */
825   vec_info *vinfo;
826 
827   /* The vector type to be used for the LHS of this statement.  */
828   tree vectype;
829 
830   /* The vectorized version of the stmt.  */
831   stmt_vec_info vectorized_stmt;
832 
833 
834   /* The following is relevant only for stmts that contain a non-scalar
835      data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
836      at most one such data-ref.  */
837 
838   dr_vec_info dr_aux;
839 
840   /* Information about the data-ref relative to this loop
841      nest (the loop that is being considered for vectorization).  */
842   innermost_loop_behavior dr_wrt_vec_loop;
843 
844   /* For loop PHI nodes, the base and evolution part of it.  This makes sure
845      this information is still available in vect_update_ivs_after_vectorizer
846      where we may not be able to re-analyze the PHI nodes evolution as
847      peeling for the prologue loop can make it unanalyzable.  The evolution
848      part is still correct after peeling, but the base may have changed from
849      the version here.  */
850   tree loop_phi_evolution_base_unchanged;
851   tree loop_phi_evolution_part;
852 
853   /* Used for various bookkeeping purposes, generally holding a pointer to
854      some other stmt S that is in some way "related" to this stmt.
855      Current use of this field is:
856         If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
857         true): S is the "pattern stmt" that represents (and replaces) the
858         sequence of stmts that constitutes the pattern.  Similarly, the
859         related_stmt of the "pattern stmt" points back to this stmt (which is
860         the last stmt in the original sequence of stmts that constitutes the
861         pattern).  */
862   stmt_vec_info related_stmt;
863 
864   /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
865      The sequence is attached to the original statement rather than the
866      pattern statement.  */
867   gimple_seq pattern_def_seq;
868 
869   /* List of datarefs that are known to have the same alignment as the dataref
870      of this stmt.  */
871   vec<dr_p> same_align_refs;
872 
873   /* Selected SIMD clone's function info.  First vector element
874      is SIMD clone's function decl, followed by a pair of trees (base + step)
875      for linear arguments (pair of NULLs for other arguments).  */
876   vec<tree> simd_clone_info;
877 
878   /* Classify the def of this stmt.  */
879   enum vect_def_type def_type;
880 
881   /*  Whether the stmt is SLPed, loop-based vectorized, or both.  */
882   enum slp_vect_type slp_type;
883 
884   /* Interleaving and reduction chains info.  */
885   /* First element in the group.  */
886   stmt_vec_info first_element;
887   /* Pointer to the next element in the group.  */
888   stmt_vec_info next_element;
889   /* The size of the group.  */
890   unsigned int size;
891   /* For stores, number of stores from this group seen. We vectorize the last
892      one.  */
893   unsigned int store_count;
894   /* For loads only, the gap from the previous load. For consecutive loads, GAP
895      is 1.  */
896   unsigned int gap;
897 
898   /* The minimum negative dependence distance this stmt participates in
899      or zero if none.  */
900   unsigned int min_neg_dist;
901 
902   /* Not all stmts in the loop need to be vectorized. e.g, the increment
903      of the loop induction variable and computation of array indexes. relevant
904      indicates whether the stmt needs to be vectorized.  */
905   enum vect_relevant relevant;
906 
907   /* For loads if this is a gather, for stores if this is a scatter.  */
908   bool gather_scatter_p;
909 
910   /* True if this is an access with loop-invariant stride.  */
911   bool strided_p;
912 
913   /* For both loads and stores.  */
914   bool simd_lane_access_p;
915 
916   /* Classifies how the load or store is going to be implemented
917      for loop vectorization.  */
918   vect_memory_access_type memory_access_type;
919 
920   /* For reduction loops, this is the type of reduction.  */
921   enum vect_reduction_type v_reduc_type;
922 
923   /* For CONST_COND_REDUCTION, record the reduc code.  */
924   enum tree_code const_cond_reduc_code;
925 
926   /* On a reduction PHI the reduction type as detected by
927      vect_force_simple_reduction.  */
928   enum vect_reduction_type reduc_type;
929 
930   /* On a reduction PHI the def returned by vect_force_simple_reduction.
931      On the def returned by vect_force_simple_reduction the
932      corresponding PHI.  */
933   stmt_vec_info reduc_def;
934 
935   /* The number of scalar stmt references from active SLP instances.  */
936   unsigned int num_slp_uses;
937 
938   /* If nonzero, the lhs of the statement could be truncated to this
939      many bits without affecting any users of the result.  */
940   unsigned int min_output_precision;
941 
942   /* If nonzero, all non-boolean input operands have the same precision,
943      and they could each be truncated to this many bits without changing
944      the result.  */
945   unsigned int min_input_precision;
946 
947   /* If OPERATION_BITS is nonzero, the statement could be performed on
948      an integer with the sign and number of bits given by OPERATION_SIGN
949      and OPERATION_BITS without changing the result.  */
950   unsigned int operation_precision;
951   signop operation_sign;
952 };
953 
954 /* Information about a gather/scatter call.  */
955 struct gather_scatter_info {
956   /* The internal function to use for the gather/scatter operation,
957      or IFN_LAST if a built-in function should be used instead.  */
958   internal_fn ifn;
959 
960   /* The FUNCTION_DECL for the built-in gather/scatter function,
961      or null if an internal function should be used instead.  */
962   tree decl;
963 
964   /* The loop-invariant base value.  */
965   tree base;
966 
967   /* The original scalar offset, which is a non-loop-invariant SSA_NAME.  */
968   tree offset;
969 
970   /* Each offset element should be multiplied by this amount before
971      being added to the base.  */
972   int scale;
973 
974   /* The definition type for the vectorized offset.  */
975   enum vect_def_type offset_dt;
976 
977   /* The type of the vectorized offset.  */
978   tree offset_vectype;
979 
980   /* The type of the scalar elements after loading or before storing.  */
981   tree element_type;
982 
983   /* The type of the scalar elements being loaded or stored.  */
984   tree memory_type;
985 };
986 
987 /* Access Functions.  */
988 #define STMT_VINFO_TYPE(S)                 (S)->type
989 #define STMT_VINFO_STMT(S)                 (S)->stmt
990 inline loop_vec_info
991 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
992 {
993   if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
994     return loop_vinfo;
995   return NULL;
996 }
997 inline bb_vec_info
998 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
999 {
1000   if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1001     return bb_vinfo;
1002   return NULL;
1003 }
1004 #define STMT_VINFO_RELEVANT(S)             (S)->relevant
1005 #define STMT_VINFO_LIVE_P(S)               (S)->live
1006 #define STMT_VINFO_VECTYPE(S)              (S)->vectype
1007 #define STMT_VINFO_VEC_STMT(S)             (S)->vectorized_stmt
1008 #define STMT_VINFO_VECTORIZABLE(S)         (S)->vectorizable
1009 #define STMT_VINFO_DATA_REF(S)             ((S)->dr_aux.dr + 0)
1010 #define STMT_VINFO_GATHER_SCATTER_P(S)	   (S)->gather_scatter_p
1011 #define STMT_VINFO_STRIDED_P(S)	   	   (S)->strided_p
1012 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S)   (S)->memory_access_type
1013 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S)   (S)->simd_lane_access_p
1014 #define STMT_VINFO_VEC_REDUCTION_TYPE(S)   (S)->v_reduc_type
1015 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1016 
1017 #define STMT_VINFO_DR_WRT_VEC_LOOP(S)      (S)->dr_wrt_vec_loop
1018 #define STMT_VINFO_DR_BASE_ADDRESS(S)      (S)->dr_wrt_vec_loop.base_address
1019 #define STMT_VINFO_DR_INIT(S)              (S)->dr_wrt_vec_loop.init
1020 #define STMT_VINFO_DR_OFFSET(S)            (S)->dr_wrt_vec_loop.offset
1021 #define STMT_VINFO_DR_STEP(S)              (S)->dr_wrt_vec_loop.step
1022 #define STMT_VINFO_DR_BASE_ALIGNMENT(S)    (S)->dr_wrt_vec_loop.base_alignment
1023 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1024   (S)->dr_wrt_vec_loop.base_misalignment
1025 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1026   (S)->dr_wrt_vec_loop.offset_alignment
1027 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1028   (S)->dr_wrt_vec_loop.step_alignment
1029 
1030 #define STMT_VINFO_DR_INFO(S) \
1031   (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1032 
1033 #define STMT_VINFO_IN_PATTERN_P(S)         (S)->in_pattern_p
1034 #define STMT_VINFO_RELATED_STMT(S)         (S)->related_stmt
1035 #define STMT_VINFO_PATTERN_DEF_SEQ(S)      (S)->pattern_def_seq
1036 #define STMT_VINFO_SAME_ALIGN_REFS(S)      (S)->same_align_refs
1037 #define STMT_VINFO_SIMD_CLONE_INFO(S)	   (S)->simd_clone_info
1038 #define STMT_VINFO_DEF_TYPE(S)             (S)->def_type
1039 #define STMT_VINFO_GROUPED_ACCESS(S) \
1040   ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1041 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1042 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1043 #define STMT_VINFO_MIN_NEG_DIST(S)	(S)->min_neg_dist
1044 #define STMT_VINFO_NUM_SLP_USES(S)	(S)->num_slp_uses
1045 #define STMT_VINFO_REDUC_TYPE(S)	(S)->reduc_type
1046 #define STMT_VINFO_REDUC_DEF(S)		(S)->reduc_def
1047 
1048 #define DR_GROUP_FIRST_ELEMENT(S) \
1049   (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1050 #define DR_GROUP_NEXT_ELEMENT(S) \
1051   (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1052 #define DR_GROUP_SIZE(S) \
1053   (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1054 #define DR_GROUP_STORE_COUNT(S) \
1055   (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1056 #define DR_GROUP_GAP(S) \
1057   (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1058 
1059 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1060   (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1061 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1062   (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1063 #define REDUC_GROUP_SIZE(S) \
1064   (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1065 
1066 #define STMT_VINFO_RELEVANT_P(S)          ((S)->relevant != vect_unused_in_scope)
1067 
1068 #define HYBRID_SLP_STMT(S)                ((S)->slp_type == hybrid)
1069 #define PURE_SLP_STMT(S)                  ((S)->slp_type == pure_slp)
1070 #define STMT_SLP_TYPE(S)                   (S)->slp_type
1071 
1072 #define VECT_MAX_COST 1000
1073 
1074 /* The maximum number of intermediate steps required in multi-step type
1075    conversion.  */
1076 #define MAX_INTERM_CVT_STEPS         3
1077 
1078 #define MAX_VECTORIZATION_FACTOR INT_MAX
1079 
1080 /* Nonzero if TYPE represents a (scalar) boolean type or type
1081    in the middle-end compatible with it (unsigned precision 1 integral
1082    types).  Used to determine which types should be vectorized as
1083    VECTOR_BOOLEAN_TYPE_P.  */
1084 
1085 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1086   (TREE_CODE (TYPE) == BOOLEAN_TYPE		\
1087    || ((TREE_CODE (TYPE) == INTEGER_TYPE	\
1088 	|| TREE_CODE (TYPE) == ENUMERAL_TYPE)	\
1089        && TYPE_PRECISION (TYPE) == 1		\
1090        && TYPE_UNSIGNED (TYPE)))
1091 
1092 static inline bool
1093 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1094 {
1095   return (loop->inner
1096 	  && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1097 }
1098 
1099 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1100    pattern.  */
1101 
1102 static inline bool
1103 is_pattern_stmt_p (stmt_vec_info stmt_info)
1104 {
1105   return stmt_info->pattern_stmt_p;
1106 }
1107 
1108 /* If STMT_INFO is a pattern statement, return the statement that it
1109    replaces, otherwise return STMT_INFO itself.  */
1110 
1111 inline stmt_vec_info
1112 vect_orig_stmt (stmt_vec_info stmt_info)
1113 {
1114   if (is_pattern_stmt_p (stmt_info))
1115     return STMT_VINFO_RELATED_STMT (stmt_info);
1116   return stmt_info;
1117 }
1118 
1119 /* Return the later statement between STMT1_INFO and STMT2_INFO.  */
1120 
1121 static inline stmt_vec_info
1122 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1123 {
1124   if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1125       > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1126     return stmt1_info;
1127   else
1128     return stmt2_info;
1129 }
1130 
1131 /* If STMT_INFO has been replaced by a pattern statement, return the
1132    replacement statement, otherwise return STMT_INFO itself.  */
1133 
1134 inline stmt_vec_info
1135 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1136 {
1137   if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1138     return STMT_VINFO_RELATED_STMT (stmt_info);
1139   return stmt_info;
1140 }
1141 
1142 /* Return true if BB is a loop header.  */
1143 
1144 static inline bool
1145 is_loop_header_bb_p (basic_block bb)
1146 {
1147   if (bb == (bb->loop_father)->header)
1148     return true;
1149   gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1150   return false;
1151 }
1152 
1153 /* Return pow2 (X).  */
1154 
1155 static inline int
1156 vect_pow2 (int x)
1157 {
1158   int i, res = 1;
1159 
1160   for (i = 0; i < x; i++)
1161     res *= 2;
1162 
1163   return res;
1164 }
1165 
1166 /* Alias targetm.vectorize.builtin_vectorization_cost.  */
1167 
1168 static inline int
1169 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1170 			    tree vectype, int misalign)
1171 {
1172   return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1173 						       vectype, misalign);
1174 }
1175 
1176 /* Get cost by calling cost target builtin.  */
1177 
1178 static inline
1179 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1180 {
1181   return builtin_vectorization_cost (type_of_cost, NULL, 0);
1182 }
1183 
1184 /* Alias targetm.vectorize.init_cost.  */
1185 
1186 static inline void *
1187 init_cost (struct loop *loop_info)
1188 {
1189   return targetm.vectorize.init_cost (loop_info);
1190 }
1191 
1192 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1193 			    stmt_vec_info, int, unsigned,
1194 			    enum vect_cost_model_location);
1195 
1196 /* Alias targetm.vectorize.add_stmt_cost.  */
1197 
1198 static inline unsigned
1199 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1200 	       stmt_vec_info stmt_info, int misalign,
1201 	       enum vect_cost_model_location where)
1202 {
1203   unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1204 						   stmt_info, misalign, where);
1205   if (dump_file && (dump_flags & TDF_DETAILS))
1206     dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1207 		    cost, where);
1208   return cost;
1209 }
1210 
1211 /* Alias targetm.vectorize.finish_cost.  */
1212 
1213 static inline void
1214 finish_cost (void *data, unsigned *prologue_cost,
1215 	     unsigned *body_cost, unsigned *epilogue_cost)
1216 {
1217   targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1218 }
1219 
1220 /* Alias targetm.vectorize.destroy_cost_data.  */
1221 
1222 static inline void
1223 destroy_cost_data (void *data)
1224 {
1225   targetm.vectorize.destroy_cost_data (data);
1226 }
1227 
1228 inline void
1229 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1230 {
1231   stmt_info_for_cost *cost;
1232   unsigned i;
1233   FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1234     add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1235 		   cost->misalign, cost->where);
1236 }
1237 
1238 /*-----------------------------------------------------------------*/
1239 /* Info on data references alignment.                              */
1240 /*-----------------------------------------------------------------*/
1241 #define DR_MISALIGNMENT_UNKNOWN (-1)
1242 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1243 
1244 inline void
1245 set_dr_misalignment (dr_vec_info *dr_info, int val)
1246 {
1247   dr_info->misalignment = val;
1248 }
1249 
1250 inline int
1251 dr_misalignment (dr_vec_info *dr_info)
1252 {
1253   int misalign = dr_info->misalignment;
1254   gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1255   return misalign;
1256 }
1257 
1258 /* Reflects actual alignment of first access in the vectorized loop,
1259    taking into account peeling/versioning if applied.  */
1260 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1261 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1262 
1263 /* Only defined once DR_MISALIGNMENT is defined.  */
1264 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1265 
1266 /* Return true if data access DR_INFO is aligned to its target alignment
1267    (which may be less than a full vector).  */
1268 
1269 static inline bool
1270 aligned_access_p (dr_vec_info *dr_info)
1271 {
1272   return (DR_MISALIGNMENT (dr_info) == 0);
1273 }
1274 
1275 /* Return TRUE if the alignment of the data access is known, and FALSE
1276    otherwise.  */
1277 
1278 static inline bool
1279 known_alignment_for_access_p (dr_vec_info *dr_info)
1280 {
1281   return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1282 }
1283 
1284 /* Return the minimum alignment in bytes that the vectorized version
1285    of DR_INFO is guaranteed to have.  */
1286 
1287 static inline unsigned int
1288 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1289 {
1290   if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1291     return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1292   if (DR_MISALIGNMENT (dr_info) == 0)
1293     return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1294   return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1295 }
1296 
1297 /* Return the behavior of DR_INFO with respect to the vectorization context
1298    (which for outer loop vectorization might not be the behavior recorded
1299    in DR_INFO itself).  */
1300 
1301 static inline innermost_loop_behavior *
1302 vect_dr_behavior (dr_vec_info *dr_info)
1303 {
1304   stmt_vec_info stmt_info = dr_info->stmt;
1305   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1306   if (loop_vinfo == NULL
1307       || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1308     return &DR_INNERMOST (dr_info->dr);
1309   else
1310     return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1311 }
1312 
1313 /* Return true if the vect cost model is unlimited.  */
1314 static inline bool
1315 unlimited_cost_model (loop_p loop)
1316 {
1317   if (loop != NULL && loop->force_vectorize
1318       && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1319     return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1320   return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1321 }
1322 
1323 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1324    if the first iteration should use a partial mask in order to achieve
1325    alignment.  */
1326 
1327 static inline bool
1328 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1329 {
1330   return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1331 	  && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1332 }
1333 
1334 /* Return the number of vectors of type VECTYPE that are needed to get
1335    NUNITS elements.  NUNITS should be based on the vectorization factor,
1336    so it is always a known multiple of the number of elements in VECTYPE.  */
1337 
1338 static inline unsigned int
1339 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1340 {
1341   return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1342 }
1343 
1344 /* Return the number of copies needed for loop vectorization when
1345    a statement operates on vectors of type VECTYPE.  This is the
1346    vectorization factor divided by the number of elements in
1347    VECTYPE and is always known at compile time.  */
1348 
1349 static inline unsigned int
1350 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1351 {
1352   return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1353 }
1354 
1355 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1356    NUNITS.  *MAX_NUNITS can be 1 if we haven't yet recorded anything.  */
1357 
1358 static inline void
1359 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1360 {
1361   /* All unit counts have the form current_vector_size * X for some
1362      rational X, so two unit sizes must have a common multiple.
1363      Everything is a multiple of the initial value of 1.  */
1364   *max_nunits = force_common_multiple (*max_nunits, nunits);
1365 }
1366 
1367 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1368    the number of units in vector type VECTYPE.  *MAX_NUNITS can be 1
1369    if we haven't yet recorded any vector types.  */
1370 
1371 static inline void
1372 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1373 {
1374   vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1375 }
1376 
1377 /* Return the vectorization factor that should be used for costing
1378    purposes while vectorizing the loop described by LOOP_VINFO.
1379    Pick a reasonable estimate if the vectorization factor isn't
1380    known at compile time.  */
1381 
1382 static inline unsigned int
1383 vect_vf_for_cost (loop_vec_info loop_vinfo)
1384 {
1385   return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1386 }
1387 
1388 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1389    Pick a reasonable estimate if the exact number isn't known at
1390    compile time.  */
1391 
1392 static inline unsigned int
1393 vect_nunits_for_cost (tree vec_type)
1394 {
1395   return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1396 }
1397 
1398 /* Return the maximum possible vectorization factor for LOOP_VINFO.  */
1399 
1400 static inline unsigned HOST_WIDE_INT
1401 vect_max_vf (loop_vec_info loop_vinfo)
1402 {
1403   unsigned HOST_WIDE_INT vf;
1404   if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1405     return vf;
1406   return MAX_VECTORIZATION_FACTOR;
1407 }
1408 
1409 /* Return the size of the value accessed by unvectorized data reference
1410    DR_INFO.  This is only valid once STMT_VINFO_VECTYPE has been calculated
1411    for the associated gimple statement, since that guarantees that DR_INFO
1412    accesses either a scalar or a scalar equivalent.  ("Scalar equivalent"
1413    here includes things like V1SI, which can be vectorized in the same way
1414    as a plain SI.)  */
1415 
1416 inline unsigned int
1417 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1418 {
1419   return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1420 }
1421 
1422 /* Source location + hotness information. */
1423 extern dump_user_location_t vect_location;
1424 
1425 /* A macro for calling:
1426      dump_begin_scope (MSG, vect_location);
1427    via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1428    and then calling
1429      dump_end_scope ();
1430    once the object goes out of scope, thus capturing the nesting of
1431    the scopes.
1432 
1433    These scopes affect dump messages within them: dump messages at the
1434    top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1435    in a nested scope implicitly default to MSG_PRIORITY_INTERNALS.  */
1436 
1437 #define DUMP_VECT_SCOPE(MSG) \
1438   AUTO_DUMP_SCOPE (MSG, vect_location)
1439 
1440 /* A sentinel class for ensuring that the "vect_location" global gets
1441    reset at the end of a scope.
1442 
1443    The "vect_location" global is used during dumping and contains a
1444    location_t, which could contain references to a tree block via the
1445    ad-hoc data.  This data is used for tracking inlining information,
1446    but it's not a GC root; it's simply assumed that such locations never
1447    get accessed if the blocks are optimized away.
1448 
1449    Hence we need to ensure that such locations are purged at the end
1450    of any operations using them (e.g. via this class).  */
1451 
1452 class auto_purge_vect_location
1453 {
1454  public:
1455   ~auto_purge_vect_location ();
1456 };
1457 
1458 /*-----------------------------------------------------------------*/
1459 /* Function prototypes.                                            */
1460 /*-----------------------------------------------------------------*/
1461 
1462 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1463    in tree-vect-loop-manip.c.  */
1464 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1465 				     tree, tree, tree, bool);
1466 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1467 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1468 						     struct loop *, edge);
1469 struct loop *vect_loop_versioning (loop_vec_info, unsigned int, bool,
1470 				   poly_uint64);
1471 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1472 				     tree *, tree *, tree *, int, bool, bool);
1473 extern void vect_prepare_for_masked_peels (loop_vec_info);
1474 extern dump_user_location_t find_loop_location (struct loop *);
1475 extern bool vect_can_advance_ivs_p (loop_vec_info);
1476 
1477 /* In tree-vect-stmts.c.  */
1478 extern poly_uint64 current_vector_size;
1479 extern tree get_vectype_for_scalar_type (tree);
1480 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1481 extern tree get_mask_type_for_scalar_type (tree);
1482 extern tree get_same_sized_vectype (tree, tree);
1483 extern bool vect_get_loop_mask_type (loop_vec_info);
1484 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1485 				stmt_vec_info * = NULL, gimple ** = NULL);
1486 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1487 				tree *, stmt_vec_info * = NULL,
1488 				gimple ** = NULL);
1489 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1490 					    tree, tree, enum tree_code *,
1491 					    enum tree_code *, int *,
1492 					    vec<tree> *);
1493 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1494 					     enum tree_code *,
1495 					     int *, vec<tree> *);
1496 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1497 				  enum vect_cost_for_stmt, stmt_vec_info,
1498 				  int, enum vect_cost_model_location);
1499 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1500 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1501 						  gimple_stmt_iterator *);
1502 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info);
1503 extern tree vect_get_store_rhs (stmt_vec_info);
1504 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1505 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1506 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1507 			       vec<tree> *, slp_tree);
1508 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1509 					     vec<tree> *, vec<tree> *);
1510 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1511                               gimple_stmt_iterator *);
1512 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1513 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1514 				 slp_tree, slp_instance);
1515 extern void vect_remove_stores (stmt_vec_info);
1516 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1517 				     slp_instance, stmt_vector_for_cost *);
1518 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1519 				    stmt_vec_info *, bool, slp_tree,
1520 				    stmt_vector_for_cost *);
1521 extern bool vectorizable_shift (stmt_vec_info, gimple_stmt_iterator *,
1522 				stmt_vec_info *, slp_tree,
1523 				stmt_vector_for_cost *);
1524 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1525 				unsigned int *, unsigned int *,
1526 				stmt_vector_for_cost *,
1527 				stmt_vector_for_cost *, bool);
1528 extern void vect_get_store_cost (stmt_vec_info, int,
1529 				 unsigned int *, stmt_vector_for_cost *);
1530 extern bool vect_supportable_shift (enum tree_code, tree);
1531 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1532 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1533 extern void optimize_mask_stores (struct loop*);
1534 extern gcall *vect_gen_while (tree, tree, tree);
1535 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1536 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1537 						  tree *);
1538 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
1539 
1540 /* In tree-vect-data-refs.c.  */
1541 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1542 extern enum dr_alignment_support vect_supportable_dr_alignment
1543                                            (dr_vec_info *, bool);
1544 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1545                                            HOST_WIDE_INT *);
1546 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1547 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1548 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1549 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1550 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1551 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1552 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1553 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1554 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1555 				      signop, int, internal_fn *, tree *);
1556 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1557 				       gather_scatter_info *);
1558 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1559 						 vec<data_reference_p> *);
1560 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *);
1561 extern void vect_record_base_alignments (vec_info *);
1562 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1563 				      tree *, gimple_stmt_iterator *,
1564 				      gimple **, bool,
1565 				      tree = NULL_TREE, tree = NULL_TREE);
1566 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1567 			     stmt_vec_info, tree);
1568 extern void vect_copy_ref_info (tree, tree);
1569 extern tree vect_create_destination_var (tree, tree);
1570 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1571 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1572 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1573 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1574 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1575                                     gimple_stmt_iterator *, vec<tree> *);
1576 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1577 				    tree *, enum dr_alignment_support, tree,
1578                                     struct loop **);
1579 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1580                                          gimple_stmt_iterator *);
1581 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1582 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1583 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1584 				   const char * = NULL);
1585 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1586 						  tree, tree = NULL_TREE);
1587 
1588 /* In tree-vect-loop.c.  */
1589 /* FORNOW: Used in tree-parloops.c.  */
1590 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1591 						  bool *, bool);
1592 /* Used in gimple-loop-interchange.c.  */
1593 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1594 				  enum tree_code);
1595 /* Drive for loop analysis stage.  */
1596 extern opt_loop_vec_info vect_analyze_loop (struct loop *,
1597 					    loop_vec_info,
1598 					    vec_info_shared *);
1599 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1600 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1601 					 tree *, bool);
1602 extern tree vect_halve_mask_nunits (tree);
1603 extern tree vect_double_mask_nunits (tree);
1604 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1605 				   unsigned int, tree);
1606 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1607 				unsigned int, tree, unsigned int);
1608 
1609 /* Drive for loop transformation stage.  */
1610 extern struct loop *vect_transform_loop (loop_vec_info);
1611 extern opt_loop_vec_info vect_analyze_loop_form (struct loop *,
1612 						 vec_info_shared *);
1613 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1614 					 slp_tree, int, stmt_vec_info *,
1615 					 stmt_vector_for_cost *);
1616 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1617 				    stmt_vec_info *, slp_tree, slp_instance,
1618 				    stmt_vector_for_cost *);
1619 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1620 				    stmt_vec_info *, slp_tree,
1621 				    stmt_vector_for_cost *);
1622 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1623 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1624 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1625 					stmt_vector_for_cost *,
1626 					stmt_vector_for_cost *,
1627 					stmt_vector_for_cost *);
1628 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1629 
1630 /* In tree-vect-slp.c.  */
1631 extern void vect_free_slp_instance (slp_instance, bool);
1632 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1633 					  gimple_stmt_iterator *, poly_uint64,
1634 					  slp_instance, bool, unsigned *);
1635 extern bool vect_slp_analyze_operations (vec_info *);
1636 extern void vect_schedule_slp (vec_info *);
1637 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1638 extern bool vect_make_slp_decision (loop_vec_info);
1639 extern void vect_detect_hybrid_slp (loop_vec_info);
1640 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1641 extern bool vect_slp_bb (basic_block);
1642 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1643 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1644 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1645 					    unsigned int * = NULL,
1646 					    tree * = NULL, tree * = NULL);
1647 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1648 				      unsigned int, vec<tree> &);
1649 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1650 
1651 /* In tree-vect-patterns.c.  */
1652 /* Pattern recognition functions.
1653    Additional pattern recognition functions can (and will) be added
1654    in the future.  */
1655 void vect_pattern_recog (vec_info *);
1656 
1657 /* In tree-vectorizer.c.  */
1658 unsigned vectorize_loops (void);
1659 void vect_free_loop_info_assumptions (struct loop *);
1660 
1661 #endif  /* GCC_TREE_VECTORIZER_H  */
1662