xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-vectorizer.h (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Vectorizer
2    Copyright (C) 2003-2020 Free Software Foundation, Inc.
3    Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23 
24 typedef class _stmt_vec_info *stmt_vec_info;
25 
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include <utility>
30 
31 /* Used for naming of new temporaries.  */
32 enum vect_var_kind {
33   vect_simple_var,
34   vect_pointer_var,
35   vect_scalar_var,
36   vect_mask_var
37 };
38 
39 /* Defines type of operation.  */
40 enum operation_type {
41   unary_op = 1,
42   binary_op,
43   ternary_op
44 };
45 
46 /* Define type of available alignment support.  */
47 enum dr_alignment_support {
48   dr_unaligned_unsupported,
49   dr_unaligned_supported,
50   dr_explicit_realign,
51   dr_explicit_realign_optimized,
52   dr_aligned
53 };
54 
55 /* Define type of def-use cross-iteration cycle.  */
56 enum vect_def_type {
57   vect_uninitialized_def = 0,
58   vect_constant_def = 1,
59   vect_external_def,
60   vect_internal_def,
61   vect_induction_def,
62   vect_reduction_def,
63   vect_double_reduction_def,
64   vect_nested_cycle,
65   vect_unknown_def_type
66 };
67 
68 /* Define type of reduction.  */
69 enum vect_reduction_type {
70   TREE_CODE_REDUCTION,
71   COND_REDUCTION,
72   INTEGER_INDUC_COND_REDUCTION,
73   CONST_COND_REDUCTION,
74 
75   /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76      to implement:
77 
78        for (int i = 0; i < VF; ++i)
79          res = cond[i] ? val[i] : res;  */
80   EXTRACT_LAST_REDUCTION,
81 
82   /* Use a folding reduction within the loop to implement:
83 
84        for (int i = 0; i < VF; ++i)
85 	 res = res OP val[i];
86 
87      (with no reassocation).  */
88   FOLD_LEFT_REDUCTION
89 };
90 
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def)           \
92                                    || ((D) == vect_double_reduction_def) \
93                                    || ((D) == vect_nested_cycle))
94 
95 /* Structure to encapsulate information about a group of like
96    instructions to be presented to the target cost model.  */
97 struct stmt_info_for_cost {
98   int count;
99   enum vect_cost_for_stmt kind;
100   enum vect_cost_model_location where;
101   stmt_vec_info stmt_info;
102   int misalign;
103 };
104 
105 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
106 
107 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
108    known alignment for that base.  */
109 typedef hash_map<tree_operand_hash,
110 		 innermost_loop_behavior *> vec_base_alignments;
111 
112 /************************************************************************
113   SLP
114  ************************************************************************/
115 typedef struct _slp_tree *slp_tree;
116 
117 /* A computation tree of an SLP instance.  Each node corresponds to a group of
118    stmts to be packed in a SIMD stmt.  */
119 struct _slp_tree {
120   /* Nodes that contain def-stmts of this node statements operands.  */
121   vec<slp_tree> children;
122   /* A group of scalar stmts to be vectorized together.  */
123   vec<stmt_vec_info> stmts;
124   /* A group of scalar operands to be vectorized together.  */
125   vec<tree> ops;
126   /* Load permutation relative to the stores, NULL if there is no
127      permutation.  */
128   vec<unsigned> load_permutation;
129   /* Vectorized stmt/s.  */
130   vec<stmt_vec_info> vec_stmts;
131   /* Number of vector stmts that are created to replace the group of scalar
132      stmts. It is calculated during the transformation phase as the number of
133      scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
134      divided by vector size.  */
135   unsigned int vec_stmts_size;
136   /* Reference count in the SLP graph.  */
137   unsigned int refcnt;
138   /* The maximum number of vector elements for the subtree rooted
139      at this node.  */
140   poly_uint64 max_nunits;
141   /* Whether the scalar computations use two different operators.  */
142   bool two_operators;
143   /* The DEF type of this node.  */
144   enum vect_def_type def_type;
145 };
146 
147 
148 /* SLP instance is a sequence of stmts in a loop that can be packed into
149    SIMD stmts.  */
150 typedef class _slp_instance {
151 public:
152   /* The root of SLP tree.  */
153   slp_tree root;
154 
155   /* For vector constructors, the constructor stmt that the SLP tree is built
156      from, NULL otherwise.  */
157   stmt_vec_info root_stmt;
158 
159   /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s.  */
160   unsigned int group_size;
161 
162   /* The unrolling factor required to vectorized this SLP instance.  */
163   poly_uint64 unrolling_factor;
164 
165   /* The group of nodes that contain loads of this SLP instance.  */
166   vec<slp_tree> loads;
167 
168   /* The SLP node containing the reduction PHIs.  */
169   slp_tree reduc_phis;
170 } *slp_instance;
171 
172 
173 /* Access Functions.  */
174 #define SLP_INSTANCE_TREE(S)                     (S)->root
175 #define SLP_INSTANCE_GROUP_SIZE(S)               (S)->group_size
176 #define SLP_INSTANCE_UNROLLING_FACTOR(S)         (S)->unrolling_factor
177 #define SLP_INSTANCE_LOADS(S)                    (S)->loads
178 #define SLP_INSTANCE_ROOT_STMT(S)                (S)->root_stmt
179 
180 #define SLP_TREE_CHILDREN(S)                     (S)->children
181 #define SLP_TREE_SCALAR_STMTS(S)                 (S)->stmts
182 #define SLP_TREE_SCALAR_OPS(S)                   (S)->ops
183 #define SLP_TREE_VEC_STMTS(S)                    (S)->vec_stmts
184 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S)          (S)->vec_stmts_size
185 #define SLP_TREE_LOAD_PERMUTATION(S)             (S)->load_permutation
186 #define SLP_TREE_TWO_OPERATORS(S)		 (S)->two_operators
187 #define SLP_TREE_DEF_TYPE(S)			 (S)->def_type
188 
189 /* Key for map that records association between
190    scalar conditions and corresponding loop mask, and
191    is populated by vect_record_loop_mask.  */
192 
193 struct scalar_cond_masked_key
194 {
scalar_cond_masked_keyscalar_cond_masked_key195   scalar_cond_masked_key (tree t, unsigned ncopies_)
196     : ncopies (ncopies_)
197   {
198     get_cond_ops_from_tree (t);
199   }
200 
201   void get_cond_ops_from_tree (tree);
202 
203   unsigned ncopies;
204   tree_code code;
205   tree op0;
206   tree op1;
207 };
208 
209 template<>
210 struct default_hash_traits<scalar_cond_masked_key>
211 {
212   typedef scalar_cond_masked_key compare_type;
213   typedef scalar_cond_masked_key value_type;
214 
215   static inline hashval_t
216   hash (value_type v)
217   {
218     inchash::hash h;
219     h.add_int (v.code);
220     inchash::add_expr (v.op0, h, 0);
221     inchash::add_expr (v.op1, h, 0);
222     h.add_int (v.ncopies);
223     return h.end ();
224   }
225 
226   static inline bool
227   equal (value_type existing, value_type candidate)
228   {
229     return (existing.ncopies == candidate.ncopies
230            && existing.code == candidate.code
231            && operand_equal_p (existing.op0, candidate.op0, 0)
232            && operand_equal_p (existing.op1, candidate.op1, 0));
233   }
234 
235   static const bool empty_zero_p = true;
236 
237   static inline void
238   mark_empty (value_type &v)
239   {
240     v.ncopies = 0;
241   }
242 
243   static inline bool
244   is_empty (value_type v)
245   {
246     return v.ncopies == 0;
247   }
248 
249   static inline void mark_deleted (value_type &) {}
250 
251   static inline bool is_deleted (const value_type &)
252   {
253     return false;
254   }
255 
256   static inline void remove (value_type &) {}
257 };
258 
259 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
260 
261 /* Describes two objects whose addresses must be unequal for the vectorized
262    loop to be valid.  */
263 typedef std::pair<tree, tree> vec_object_pair;
264 
265 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
266    UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR.  */
267 class vec_lower_bound {
268 public:
269   vec_lower_bound () {}
270   vec_lower_bound (tree e, bool u, poly_uint64 m)
271     : expr (e), unsigned_p (u), min_value (m) {}
272 
273   tree expr;
274   bool unsigned_p;
275   poly_uint64 min_value;
276 };
277 
278 /* Vectorizer state shared between different analyses like vector sizes
279    of the same CFG region.  */
280 class vec_info_shared {
281 public:
282   vec_info_shared();
283   ~vec_info_shared();
284 
285   void save_datarefs();
286   void check_datarefs();
287 
288   /* All data references.  Freed by free_data_refs, so not an auto_vec.  */
289   vec<data_reference_p> datarefs;
290   vec<data_reference> datarefs_copy;
291 
292   /* The loop nest in which the data dependences are computed.  */
293   auto_vec<loop_p> loop_nest;
294 
295   /* All data dependences.  Freed by free_dependence_relations, so not
296      an auto_vec.  */
297   vec<ddr_p> ddrs;
298 };
299 
300 /* Vectorizer state common between loop and basic-block vectorization.  */
301 class vec_info {
302 public:
303   typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
304   enum vec_kind { bb, loop };
305 
306   vec_info (vec_kind, void *, vec_info_shared *);
307   ~vec_info ();
308 
309   stmt_vec_info add_stmt (gimple *);
310   stmt_vec_info lookup_stmt (gimple *);
311   stmt_vec_info lookup_def (tree);
312   stmt_vec_info lookup_single_use (tree);
313   class dr_vec_info *lookup_dr (data_reference *);
314   void move_dr (stmt_vec_info, stmt_vec_info);
315   void remove_stmt (stmt_vec_info);
316   void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
317 
318   /* The type of vectorization.  */
319   vec_kind kind;
320 
321   /* Shared vectorizer state.  */
322   vec_info_shared *shared;
323 
324   /* The mapping of GIMPLE UID to stmt_vec_info.  */
325   vec<stmt_vec_info> stmt_vec_infos;
326 
327   /* All SLP instances.  */
328   auto_vec<slp_instance> slp_instances;
329 
330   /* Maps base addresses to an innermost_loop_behavior that gives the maximum
331      known alignment for that base.  */
332   vec_base_alignments base_alignments;
333 
334   /* All interleaving chains of stores, represented by the first
335      stmt in the chain.  */
336   auto_vec<stmt_vec_info> grouped_stores;
337 
338   /* Cost data used by the target cost model.  */
339   void *target_cost_data;
340 
341   /* The set of vector modes used in the vectorized region.  */
342   mode_set used_vector_modes;
343 
344   /* The argument we should pass to related_vector_mode when looking up
345      the vector mode for a scalar mode, or VOIDmode if we haven't yet
346      made any decisions about which vector modes to use.  */
347   machine_mode vector_mode;
348 
349 private:
350   stmt_vec_info new_stmt_vec_info (gimple *stmt);
351   void set_vinfo_for_stmt (gimple *, stmt_vec_info);
352   void free_stmt_vec_infos ();
353   void free_stmt_vec_info (stmt_vec_info);
354 };
355 
356 class _loop_vec_info;
357 class _bb_vec_info;
358 
359 template<>
360 template<>
361 inline bool
362 is_a_helper <_loop_vec_info *>::test (vec_info *i)
363 {
364   return i->kind == vec_info::loop;
365 }
366 
367 template<>
368 template<>
369 inline bool
370 is_a_helper <_bb_vec_info *>::test (vec_info *i)
371 {
372   return i->kind == vec_info::bb;
373 }
374 
375 
376 /* In general, we can divide the vector statements in a vectorized loop
377    into related groups ("rgroups") and say that for each rgroup there is
378    some nS such that the rgroup operates on nS values from one scalar
379    iteration followed by nS values from the next.  That is, if VF is the
380    vectorization factor of the loop, the rgroup operates on a sequence:
381 
382      (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
383 
384    where (i,j) represents a scalar value with index j in a scalar
385    iteration with index i.
386 
387    [ We use the term "rgroup" to emphasise that this grouping isn't
388      necessarily the same as the grouping of statements used elsewhere.
389      For example, if we implement a group of scalar loads using gather
390      loads, we'll use a separate gather load for each scalar load, and
391      thus each gather load will belong to its own rgroup. ]
392 
393    In general this sequence will occupy nV vectors concatenated
394    together.  If these vectors have nL lanes each, the total number
395    of scalar values N is given by:
396 
397        N = nS * VF = nV * nL
398 
399    None of nS, VF, nV and nL are required to be a power of 2.  nS and nV
400    are compile-time constants but VF and nL can be variable (if the target
401    supports variable-length vectors).
402 
403    In classical vectorization, each iteration of the vector loop would
404    handle exactly VF iterations of the original scalar loop.  However,
405    in a fully-masked loop, a particular iteration of the vector loop
406    might handle fewer than VF iterations of the scalar loop.  The vector
407    lanes that correspond to iterations of the scalar loop are said to be
408    "active" and the other lanes are said to be "inactive".
409 
410    In a fully-masked loop, many rgroups need to be masked to ensure that
411    they have no effect for the inactive lanes.  Each such rgroup needs a
412    sequence of booleans in the same order as above, but with each (i,j)
413    replaced by a boolean that indicates whether iteration i is active.
414    This sequence occupies nV vector masks that again have nL lanes each.
415    Thus the mask sequence as a whole consists of VF independent booleans
416    that are each repeated nS times.
417 
418    We make the simplifying assumption that if a sequence of nV masks is
419    suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
420    VIEW_CONVERTing it.  This holds for all current targets that support
421    fully-masked loops.  For example, suppose the scalar loop is:
422 
423      float *f;
424      double *d;
425      for (int i = 0; i < n; ++i)
426        {
427 	 f[i * 2 + 0] += 1.0f;
428 	 f[i * 2 + 1] += 2.0f;
429 	 d[i] += 3.0;
430        }
431 
432    and suppose that vectors have 256 bits.  The vectorized f accesses
433    will belong to one rgroup and the vectorized d access to another:
434 
435      f rgroup: nS = 2, nV = 1, nL = 8
436      d rgroup: nS = 1, nV = 1, nL = 4
437 	       VF = 4
438 
439      [ In this simple example the rgroups do correspond to the normal
440        SLP grouping scheme. ]
441 
442    If only the first three lanes are active, the masks we need are:
443 
444      f rgroup: 1 1 | 1 1 | 1 1 | 0 0
445      d rgroup:  1  |  1  |  1  |  0
446 
447    Here we can use a mask calculated for f's rgroup for d's, but not
448    vice versa.
449 
450    Thus for each value of nV, it is enough to provide nV masks, with the
451    mask being calculated based on the highest nL (or, equivalently, based
452    on the highest nS) required by any rgroup with that nV.  We therefore
453    represent the entire collection of masks as a two-level table, with the
454    first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
455    the second being indexed by the mask index 0 <= i < nV.  */
456 
457 /* The masks needed by rgroups with nV vectors, according to the
458    description above.  */
459 struct rgroup_masks {
460   /* The largest nS for all rgroups that use these masks.  */
461   unsigned int max_nscalars_per_iter;
462 
463   /* The type of mask to use, based on the highest nS recorded above.  */
464   tree mask_type;
465 
466   /* A vector of nV masks, in iteration order.  */
467   vec<tree> masks;
468 };
469 
470 typedef auto_vec<rgroup_masks> vec_loop_masks;
471 
472 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
473 
474 /*-----------------------------------------------------------------*/
475 /* Info on vectorized loops.                                       */
476 /*-----------------------------------------------------------------*/
477 typedef class _loop_vec_info : public vec_info {
478 public:
479   _loop_vec_info (class loop *, vec_info_shared *);
480   ~_loop_vec_info ();
481 
482   /* The loop to which this info struct refers to.  */
483   class loop *loop;
484 
485   /* The loop basic blocks.  */
486   basic_block *bbs;
487 
488   /* Number of latch executions.  */
489   tree num_itersm1;
490   /* Number of iterations.  */
491   tree num_iters;
492   /* Number of iterations of the original loop.  */
493   tree num_iters_unchanged;
494   /* Condition under which this loop is analyzed and versioned.  */
495   tree num_iters_assumptions;
496 
497   /* Threshold of number of iterations below which vectorization will not be
498      performed. It is calculated from MIN_PROFITABLE_ITERS and
499      param_min_vect_loop_bound.  */
500   unsigned int th;
501 
502   /* When applying loop versioning, the vector form should only be used
503      if the number of scalar iterations is >= this value, on top of all
504      the other requirements.  Ignored when loop versioning is not being
505      used.  */
506   poly_uint64 versioning_threshold;
507 
508   /* Unrolling factor  */
509   poly_uint64 vectorization_factor;
510 
511   /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
512      if there is no particular limit.  */
513   unsigned HOST_WIDE_INT max_vectorization_factor;
514 
515   /* The masks that a fully-masked loop should use to avoid operating
516      on inactive scalars.  */
517   vec_loop_masks masks;
518 
519   /* Set of scalar conditions that have loop mask applied.  */
520   scalar_cond_masked_set_type scalar_cond_masked_set;
521 
522   /* If we are using a loop mask to align memory addresses, this variable
523      contains the number of vector elements that we should skip in the
524      first iteration of the vector loop (i.e. the number of leading
525      elements that should be false in the first mask).  */
526   tree mask_skip_niters;
527 
528   /* Type of the variables to use in the WHILE_ULT call for fully-masked
529      loops.  */
530   tree mask_compare_type;
531 
532   /* For #pragma omp simd if (x) loops the x expression.  If constant 0,
533      the loop should not be vectorized, if constant non-zero, simd_if_cond
534      shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
535      should be versioned on that condition, using scalar loop if the condition
536      is false and vectorized loop otherwise.  */
537   tree simd_if_cond;
538 
539   /* Type of the IV to use in the WHILE_ULT call for fully-masked
540      loops.  */
541   tree iv_type;
542 
543   /* Unknown DRs according to which loop was peeled.  */
544   class dr_vec_info *unaligned_dr;
545 
546   /* peeling_for_alignment indicates whether peeling for alignment will take
547      place, and what the peeling factor should be:
548      peeling_for_alignment = X means:
549         If X=0: Peeling for alignment will not be applied.
550         If X>0: Peel first X iterations.
551         If X=-1: Generate a runtime test to calculate the number of iterations
552                  to be peeled, using the dataref recorded in the field
553                  unaligned_dr.  */
554   int peeling_for_alignment;
555 
556   /* The mask used to check the alignment of pointers or arrays.  */
557   int ptr_mask;
558 
559   /* Data Dependence Relations defining address ranges that are candidates
560      for a run-time aliasing check.  */
561   auto_vec<ddr_p> may_alias_ddrs;
562 
563   /* Data Dependence Relations defining address ranges together with segment
564      lengths from which the run-time aliasing check is built.  */
565   auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
566 
567   /* Check that the addresses of each pair of objects is unequal.  */
568   auto_vec<vec_object_pair> check_unequal_addrs;
569 
570   /* List of values that are required to be nonzero.  This is used to check
571      whether things like "x[i * n] += 1;" are safe and eventually gets added
572      to the checks for lower bounds below.  */
573   auto_vec<tree> check_nonzero;
574 
575   /* List of values that need to be checked for a minimum value.  */
576   auto_vec<vec_lower_bound> lower_bounds;
577 
578   /* Statements in the loop that have data references that are candidates for a
579      runtime (loop versioning) misalignment check.  */
580   auto_vec<stmt_vec_info> may_misalign_stmts;
581 
582   /* Reduction cycles detected in the loop. Used in loop-aware SLP.  */
583   auto_vec<stmt_vec_info> reductions;
584 
585   /* All reduction chains in the loop, represented by the first
586      stmt in the chain.  */
587   auto_vec<stmt_vec_info> reduction_chains;
588 
589   /* Cost vector for a single scalar iteration.  */
590   auto_vec<stmt_info_for_cost> scalar_cost_vec;
591 
592   /* Map of IV base/step expressions to inserted name in the preheader.  */
593   hash_map<tree_operand_hash, tree> *ivexpr_map;
594 
595   /* Map of OpenMP "omp simd array" scan variables to corresponding
596      rhs of the store of the initializer.  */
597   hash_map<tree, tree> *scan_map;
598 
599   /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
600      applied to the loop, i.e., no unrolling is needed, this is 1.  */
601   poly_uint64 slp_unrolling_factor;
602 
603   /* Cost of a single scalar iteration.  */
604   int single_scalar_iteration_cost;
605 
606   /* The cost of the vector prologue and epilogue, including peeled
607      iterations and set-up code.  */
608   int vec_outside_cost;
609 
610   /* The cost of the vector loop body.  */
611   int vec_inside_cost;
612 
613   /* Is the loop vectorizable? */
614   bool vectorizable;
615 
616   /* Records whether we still have the option of using a fully-masked loop.  */
617   bool can_fully_mask_p;
618 
619   /* True if have decided to use a fully-masked loop.  */
620   bool fully_masked_p;
621 
622   /* When we have grouped data accesses with gaps, we may introduce invalid
623      memory accesses.  We peel the last iteration of the loop to prevent
624      this.  */
625   bool peeling_for_gaps;
626 
627   /* When the number of iterations is not a multiple of the vector size
628      we need to peel off iterations at the end to form an epilogue loop.  */
629   bool peeling_for_niter;
630 
631   /* True if there are no loop carried data dependencies in the loop.
632      If loop->safelen <= 1, then this is always true, either the loop
633      didn't have any loop carried data dependencies, or the loop is being
634      vectorized guarded with some runtime alias checks, or couldn't
635      be vectorized at all, but then this field shouldn't be used.
636      For loop->safelen >= 2, the user has asserted that there are no
637      backward dependencies, but there still could be loop carried forward
638      dependencies in such loops.  This flag will be false if normal
639      vectorizer data dependency analysis would fail or require versioning
640      for alias, but because of loop->safelen >= 2 it has been vectorized
641      even without versioning for alias.  E.g. in:
642      #pragma omp simd
643      for (int i = 0; i < m; i++)
644        a[i] = a[i + k] * c;
645      (or #pragma simd or #pragma ivdep) we can vectorize this and it will
646      DTRT even for k > 0 && k < m, but without safelen we would not
647      vectorize this, so this field would be false.  */
648   bool no_data_dependencies;
649 
650   /* Mark loops having masked stores.  */
651   bool has_mask_store;
652 
653   /* Queued scaling factor for the scalar loop.  */
654   profile_probability scalar_loop_scaling;
655 
656   /* If if-conversion versioned this loop before conversion, this is the
657      loop version without if-conversion.  */
658   class loop *scalar_loop;
659 
660   /* For loops being epilogues of already vectorized loops
661      this points to the original vectorized loop.  Otherwise NULL.  */
662   _loop_vec_info *orig_loop_info;
663 
664   /* Used to store loop_vec_infos of epilogues of this loop during
665      analysis.  */
666   vec<_loop_vec_info *> epilogue_vinfos;
667 
668 } *loop_vec_info;
669 
670 /* Access Functions.  */
671 #define LOOP_VINFO_LOOP(L)                 (L)->loop
672 #define LOOP_VINFO_BBS(L)                  (L)->bbs
673 #define LOOP_VINFO_NITERSM1(L)             (L)->num_itersm1
674 #define LOOP_VINFO_NITERS(L)               (L)->num_iters
675 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
676    prologue peeling retain total unchanged scalar loop iterations for
677    cost model.  */
678 #define LOOP_VINFO_NITERS_UNCHANGED(L)     (L)->num_iters_unchanged
679 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L)   (L)->num_iters_assumptions
680 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
681 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
682 #define LOOP_VINFO_VECTORIZABLE_P(L)       (L)->vectorizable
683 #define LOOP_VINFO_CAN_FULLY_MASK_P(L)     (L)->can_fully_mask_p
684 #define LOOP_VINFO_FULLY_MASKED_P(L)       (L)->fully_masked_p
685 #define LOOP_VINFO_VECT_FACTOR(L)          (L)->vectorization_factor
686 #define LOOP_VINFO_MAX_VECT_FACTOR(L)      (L)->max_vectorization_factor
687 #define LOOP_VINFO_MASKS(L)                (L)->masks
688 #define LOOP_VINFO_MASK_SKIP_NITERS(L)     (L)->mask_skip_niters
689 #define LOOP_VINFO_MASK_COMPARE_TYPE(L)    (L)->mask_compare_type
690 #define LOOP_VINFO_MASK_IV_TYPE(L)         (L)->iv_type
691 #define LOOP_VINFO_PTR_MASK(L)             (L)->ptr_mask
692 #define LOOP_VINFO_LOOP_NEST(L)            (L)->shared->loop_nest
693 #define LOOP_VINFO_DATAREFS(L)             (L)->shared->datarefs
694 #define LOOP_VINFO_DDRS(L)                 (L)->shared->ddrs
695 #define LOOP_VINFO_INT_NITERS(L)           (TREE_INT_CST_LOW ((L)->num_iters))
696 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
697 #define LOOP_VINFO_UNALIGNED_DR(L)         (L)->unaligned_dr
698 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L)   (L)->may_misalign_stmts
699 #define LOOP_VINFO_MAY_ALIAS_DDRS(L)       (L)->may_alias_ddrs
700 #define LOOP_VINFO_COMP_ALIAS_DDRS(L)      (L)->comp_alias_ddrs
701 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L)  (L)->check_unequal_addrs
702 #define LOOP_VINFO_CHECK_NONZERO(L)        (L)->check_nonzero
703 #define LOOP_VINFO_LOWER_BOUNDS(L)         (L)->lower_bounds
704 #define LOOP_VINFO_GROUPED_STORES(L)       (L)->grouped_stores
705 #define LOOP_VINFO_SLP_INSTANCES(L)        (L)->slp_instances
706 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
707 #define LOOP_VINFO_REDUCTIONS(L)           (L)->reductions
708 #define LOOP_VINFO_REDUCTION_CHAINS(L)     (L)->reduction_chains
709 #define LOOP_VINFO_TARGET_COST_DATA(L)     (L)->target_cost_data
710 #define LOOP_VINFO_PEELING_FOR_GAPS(L)     (L)->peeling_for_gaps
711 #define LOOP_VINFO_PEELING_FOR_NITER(L)    (L)->peeling_for_niter
712 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
713 #define LOOP_VINFO_SCALAR_LOOP(L)	   (L)->scalar_loop
714 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L)  (L)->scalar_loop_scaling
715 #define LOOP_VINFO_HAS_MASK_STORE(L)       (L)->has_mask_store
716 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
717 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
718 #define LOOP_VINFO_ORIG_LOOP_INFO(L)       (L)->orig_loop_info
719 #define LOOP_VINFO_SIMD_IF_COND(L)         (L)->simd_if_cond
720 
721 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L)	\
722   ((L)->may_misalign_stmts.length () > 0)
723 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)		\
724   ((L)->comp_alias_ddrs.length () > 0 \
725    || (L)->check_unequal_addrs.length () > 0 \
726    || (L)->lower_bounds.length () > 0)
727 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L)		\
728   (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
729 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L)	\
730   (LOOP_VINFO_SIMD_IF_COND (L))
731 #define LOOP_REQUIRES_VERSIONING(L)			\
732   (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L)		\
733    || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L)		\
734    || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L)		\
735    || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
736 
737 #define LOOP_VINFO_NITERS_KNOWN_P(L)          \
738   (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
739 
740 #define LOOP_VINFO_EPILOGUE_P(L) \
741   (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
742 
743 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
744   (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
745 
746 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
747    value signifies success, and a NULL value signifies failure, supporting
748    propagating an opt_problem * describing the failure back up the call
749    stack.  */
750 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
751 
752 static inline loop_vec_info
753 loop_vec_info_for_loop (class loop *loop)
754 {
755   return (loop_vec_info) loop->aux;
756 }
757 
758 typedef class _bb_vec_info : public vec_info
759 {
760 public:
761   _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
762   ~_bb_vec_info ();
763 
764   basic_block bb;
765   gimple_stmt_iterator region_begin;
766   gimple_stmt_iterator region_end;
767 } *bb_vec_info;
768 
769 #define BB_VINFO_BB(B)               (B)->bb
770 #define BB_VINFO_GROUPED_STORES(B)   (B)->grouped_stores
771 #define BB_VINFO_SLP_INSTANCES(B)    (B)->slp_instances
772 #define BB_VINFO_DATAREFS(B)         (B)->shared->datarefs
773 #define BB_VINFO_DDRS(B)             (B)->shared->ddrs
774 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
775 
776 static inline bb_vec_info
777 vec_info_for_bb (basic_block bb)
778 {
779   return (bb_vec_info) bb->aux;
780 }
781 
782 /*-----------------------------------------------------------------*/
783 /* Info on vectorized defs.                                        */
784 /*-----------------------------------------------------------------*/
785 enum stmt_vec_info_type {
786   undef_vec_info_type = 0,
787   load_vec_info_type,
788   store_vec_info_type,
789   shift_vec_info_type,
790   op_vec_info_type,
791   call_vec_info_type,
792   call_simd_clone_vec_info_type,
793   assignment_vec_info_type,
794   condition_vec_info_type,
795   comparison_vec_info_type,
796   reduc_vec_info_type,
797   induc_vec_info_type,
798   type_promotion_vec_info_type,
799   type_demotion_vec_info_type,
800   type_conversion_vec_info_type,
801   cycle_phi_info_type,
802   lc_phi_info_type,
803   loop_exit_ctrl_vec_info_type
804 };
805 
806 /* Indicates whether/how a variable is used in the scope of loop/basic
807    block.  */
808 enum vect_relevant {
809   vect_unused_in_scope = 0,
810 
811   /* The def is only used outside the loop.  */
812   vect_used_only_live,
813   /* The def is in the inner loop, and the use is in the outer loop, and the
814      use is a reduction stmt.  */
815   vect_used_in_outer_by_reduction,
816   /* The def is in the inner loop, and the use is in the outer loop (and is
817      not part of reduction).  */
818   vect_used_in_outer,
819 
820   /* defs that feed computations that end up (only) in a reduction. These
821      defs may be used by non-reduction stmts, but eventually, any
822      computations/values that are affected by these defs are used to compute
823      a reduction (i.e. don't get stored to memory, for example). We use this
824      to identify computations that we can change the order in which they are
825      computed.  */
826   vect_used_by_reduction,
827 
828   vect_used_in_scope
829 };
830 
831 /* The type of vectorization that can be applied to the stmt: regular loop-based
832    vectorization; pure SLP - the stmt is a part of SLP instances and does not
833    have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
834    a part of SLP instance and also must be loop-based vectorized, since it has
835    uses outside SLP sequences.
836 
837    In the loop context the meanings of pure and hybrid SLP are slightly
838    different. By saying that pure SLP is applied to the loop, we mean that we
839    exploit only intra-iteration parallelism in the loop; i.e., the loop can be
840    vectorized without doing any conceptual unrolling, cause we don't pack
841    together stmts from different iterations, only within a single iteration.
842    Loop hybrid SLP means that we exploit both intra-iteration and
843    inter-iteration parallelism (e.g., number of elements in the vector is 4
844    and the slp-group-size is 2, in which case we don't have enough parallelism
845    within an iteration, so we obtain the rest of the parallelism from subsequent
846    iterations by unrolling the loop by 2).  */
847 enum slp_vect_type {
848   loop_vect = 0,
849   pure_slp,
850   hybrid
851 };
852 
853 /* Says whether a statement is a load, a store of a vectorized statement
854    result, or a store of an invariant value.  */
855 enum vec_load_store_type {
856   VLS_LOAD,
857   VLS_STORE,
858   VLS_STORE_INVARIANT
859 };
860 
861 /* Describes how we're going to vectorize an individual load or store,
862    or a group of loads or stores.  */
863 enum vect_memory_access_type {
864   /* An access to an invariant address.  This is used only for loads.  */
865   VMAT_INVARIANT,
866 
867   /* A simple contiguous access.  */
868   VMAT_CONTIGUOUS,
869 
870   /* A contiguous access that goes down in memory rather than up,
871      with no additional permutation.  This is used only for stores
872      of invariants.  */
873   VMAT_CONTIGUOUS_DOWN,
874 
875   /* A simple contiguous access in which the elements need to be permuted
876      after loading or before storing.  Only used for loop vectorization;
877      SLP uses separate permutes.  */
878   VMAT_CONTIGUOUS_PERMUTE,
879 
880   /* A simple contiguous access in which the elements need to be reversed
881      after loading or before storing.  */
882   VMAT_CONTIGUOUS_REVERSE,
883 
884   /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES.  */
885   VMAT_LOAD_STORE_LANES,
886 
887   /* An access in which each scalar element is loaded or stored
888      individually.  */
889   VMAT_ELEMENTWISE,
890 
891   /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
892      SLP accesses.  Each unrolled iteration uses a contiguous load
893      or store for the whole group, but the groups from separate iterations
894      are combined in the same way as for VMAT_ELEMENTWISE.  */
895   VMAT_STRIDED_SLP,
896 
897   /* The access uses gather loads or scatter stores.  */
898   VMAT_GATHER_SCATTER
899 };
900 
901 class dr_vec_info {
902 public:
903   /* The data reference itself.  */
904   data_reference *dr;
905   /* The statement that contains the data reference.  */
906   stmt_vec_info stmt;
907   /* The misalignment in bytes of the reference, or -1 if not known.  */
908   int misalignment;
909   /* The byte alignment that we'd ideally like the reference to have,
910      and the value that misalignment is measured against.  */
911   poly_uint64 target_alignment;
912   /* If true the alignment of base_decl needs to be increased.  */
913   bool base_misaligned;
914   tree base_decl;
915 
916   /* Stores current vectorized loop's offset.  To be added to the DR's
917      offset to calculate current offset of data reference.  */
918   tree offset;
919 };
920 
921 typedef struct data_reference *dr_p;
922 
923 class _stmt_vec_info {
924 public:
925 
926   enum stmt_vec_info_type type;
927 
928   /* Indicates whether this stmts is part of a computation whose result is
929      used outside the loop.  */
930   bool live;
931 
932   /* Stmt is part of some pattern (computation idiom)  */
933   bool in_pattern_p;
934 
935   /* True if the statement was created during pattern recognition as
936      part of the replacement for RELATED_STMT.  This implies that the
937      statement isn't part of any basic block, although for convenience
938      its gimple_bb is the same as for RELATED_STMT.  */
939   bool pattern_stmt_p;
940 
941   /* Is this statement vectorizable or should it be skipped in (partial)
942      vectorization.  */
943   bool vectorizable;
944 
945   /* The stmt to which this info struct refers to.  */
946   gimple *stmt;
947 
948   /* The vec_info with respect to which STMT is vectorized.  */
949   vec_info *vinfo;
950 
951   /* The vector type to be used for the LHS of this statement.  */
952   tree vectype;
953 
954   /* The vectorized version of the stmt.  */
955   stmt_vec_info vectorized_stmt;
956 
957 
958   /* The following is relevant only for stmts that contain a non-scalar
959      data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
960      at most one such data-ref.  */
961 
962   dr_vec_info dr_aux;
963 
964   /* Information about the data-ref relative to this loop
965      nest (the loop that is being considered for vectorization).  */
966   innermost_loop_behavior dr_wrt_vec_loop;
967 
968   /* For loop PHI nodes, the base and evolution part of it.  This makes sure
969      this information is still available in vect_update_ivs_after_vectorizer
970      where we may not be able to re-analyze the PHI nodes evolution as
971      peeling for the prologue loop can make it unanalyzable.  The evolution
972      part is still correct after peeling, but the base may have changed from
973      the version here.  */
974   tree loop_phi_evolution_base_unchanged;
975   tree loop_phi_evolution_part;
976 
977   /* Used for various bookkeeping purposes, generally holding a pointer to
978      some other stmt S that is in some way "related" to this stmt.
979      Current use of this field is:
980         If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
981         true): S is the "pattern stmt" that represents (and replaces) the
982         sequence of stmts that constitutes the pattern.  Similarly, the
983         related_stmt of the "pattern stmt" points back to this stmt (which is
984         the last stmt in the original sequence of stmts that constitutes the
985         pattern).  */
986   stmt_vec_info related_stmt;
987 
988   /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
989      The sequence is attached to the original statement rather than the
990      pattern statement.  */
991   gimple_seq pattern_def_seq;
992 
993   /* List of datarefs that are known to have the same alignment as the dataref
994      of this stmt.  */
995   vec<dr_p> same_align_refs;
996 
997   /* Selected SIMD clone's function info.  First vector element
998      is SIMD clone's function decl, followed by a pair of trees (base + step)
999      for linear arguments (pair of NULLs for other arguments).  */
1000   vec<tree> simd_clone_info;
1001 
1002   /* Classify the def of this stmt.  */
1003   enum vect_def_type def_type;
1004 
1005   /*  Whether the stmt is SLPed, loop-based vectorized, or both.  */
1006   enum slp_vect_type slp_type;
1007 
1008   /* Interleaving and reduction chains info.  */
1009   /* First element in the group.  */
1010   stmt_vec_info first_element;
1011   /* Pointer to the next element in the group.  */
1012   stmt_vec_info next_element;
1013   /* The size of the group.  */
1014   unsigned int size;
1015   /* For stores, number of stores from this group seen. We vectorize the last
1016      one.  */
1017   unsigned int store_count;
1018   /* For loads only, the gap from the previous load. For consecutive loads, GAP
1019      is 1.  */
1020   unsigned int gap;
1021 
1022   /* The minimum negative dependence distance this stmt participates in
1023      or zero if none.  */
1024   unsigned int min_neg_dist;
1025 
1026   /* Not all stmts in the loop need to be vectorized. e.g, the increment
1027      of the loop induction variable and computation of array indexes. relevant
1028      indicates whether the stmt needs to be vectorized.  */
1029   enum vect_relevant relevant;
1030 
1031   /* For loads if this is a gather, for stores if this is a scatter.  */
1032   bool gather_scatter_p;
1033 
1034   /* True if this is an access with loop-invariant stride.  */
1035   bool strided_p;
1036 
1037   /* For both loads and stores.  */
1038   unsigned simd_lane_access_p : 3;
1039 
1040   /* Classifies how the load or store is going to be implemented
1041      for loop vectorization.  */
1042   vect_memory_access_type memory_access_type;
1043 
1044   /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used.  */
1045   tree induc_cond_initial_val;
1046 
1047   /* If not NULL the value to be added to compute final reduction value.  */
1048   tree reduc_epilogue_adjustment;
1049 
1050   /* On a reduction PHI the reduction type as detected by
1051      vect_is_simple_reduction and vectorizable_reduction.  */
1052   enum vect_reduction_type reduc_type;
1053 
1054   /* The original reduction code, to be used in the epilogue.  */
1055   enum tree_code reduc_code;
1056   /* An internal function we should use in the epilogue.  */
1057   internal_fn reduc_fn;
1058 
1059   /* On a stmt participating in the reduction the index of the operand
1060      on the reduction SSA cycle.  */
1061   int reduc_idx;
1062 
1063   /* On a reduction PHI the def returned by vect_force_simple_reduction.
1064      On the def returned by vect_force_simple_reduction the
1065      corresponding PHI.  */
1066   stmt_vec_info reduc_def;
1067 
1068   /* The vector input type relevant for reduction vectorization.  */
1069   tree reduc_vectype_in;
1070 
1071   /* The vector type for performing the actual reduction.  */
1072   tree reduc_vectype;
1073 
1074   /* Whether we force a single cycle PHI during reduction vectorization.  */
1075   bool force_single_cycle;
1076 
1077   /* Whether on this stmt reduction meta is recorded.  */
1078   bool is_reduc_info;
1079 
1080   /* The number of scalar stmt references from active SLP instances.  */
1081   unsigned int num_slp_uses;
1082 
1083   /* If nonzero, the lhs of the statement could be truncated to this
1084      many bits without affecting any users of the result.  */
1085   unsigned int min_output_precision;
1086 
1087   /* If nonzero, all non-boolean input operands have the same precision,
1088      and they could each be truncated to this many bits without changing
1089      the result.  */
1090   unsigned int min_input_precision;
1091 
1092   /* If OPERATION_BITS is nonzero, the statement could be performed on
1093      an integer with the sign and number of bits given by OPERATION_SIGN
1094      and OPERATION_BITS without changing the result.  */
1095   unsigned int operation_precision;
1096   signop operation_sign;
1097 
1098   /* If the statement produces a boolean result, this value describes
1099      how we should choose the associated vector type.  The possible
1100      values are:
1101 
1102      - an integer precision N if we should use the vector mask type
1103        associated with N-bit integers.  This is only used if all relevant
1104        input booleans also want the vector mask type for N-bit integers,
1105        or if we can convert them into that form by pattern-matching.
1106 
1107      - ~0U if we considered choosing a vector mask type but decided
1108        to treat the boolean as a normal integer type instead.
1109 
1110      - 0 otherwise.  This means either that the operation isn't one that
1111        could have a vector mask type (and so should have a normal vector
1112        type instead) or that we simply haven't made a choice either way.  */
1113   unsigned int mask_precision;
1114 
1115   /* True if this is only suitable for SLP vectorization.  */
1116   bool slp_vect_only_p;
1117 };
1118 
1119 /* Information about a gather/scatter call.  */
1120 struct gather_scatter_info {
1121   /* The internal function to use for the gather/scatter operation,
1122      or IFN_LAST if a built-in function should be used instead.  */
1123   internal_fn ifn;
1124 
1125   /* The FUNCTION_DECL for the built-in gather/scatter function,
1126      or null if an internal function should be used instead.  */
1127   tree decl;
1128 
1129   /* The loop-invariant base value.  */
1130   tree base;
1131 
1132   /* The original scalar offset, which is a non-loop-invariant SSA_NAME.  */
1133   tree offset;
1134 
1135   /* Each offset element should be multiplied by this amount before
1136      being added to the base.  */
1137   int scale;
1138 
1139   /* The definition type for the vectorized offset.  */
1140   enum vect_def_type offset_dt;
1141 
1142   /* The type of the vectorized offset.  */
1143   tree offset_vectype;
1144 
1145   /* The type of the scalar elements after loading or before storing.  */
1146   tree element_type;
1147 
1148   /* The type of the scalar elements being loaded or stored.  */
1149   tree memory_type;
1150 };
1151 
1152 /* Access Functions.  */
1153 #define STMT_VINFO_TYPE(S)                 (S)->type
1154 #define STMT_VINFO_STMT(S)                 (S)->stmt
1155 inline loop_vec_info
1156 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1157 {
1158   if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1159     return loop_vinfo;
1160   return NULL;
1161 }
1162 inline bb_vec_info
1163 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1164 {
1165   if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1166     return bb_vinfo;
1167   return NULL;
1168 }
1169 #define STMT_VINFO_RELEVANT(S)             (S)->relevant
1170 #define STMT_VINFO_LIVE_P(S)               (S)->live
1171 #define STMT_VINFO_VECTYPE(S)              (S)->vectype
1172 #define STMT_VINFO_VEC_STMT(S)             (S)->vectorized_stmt
1173 #define STMT_VINFO_VECTORIZABLE(S)         (S)->vectorizable
1174 #define STMT_VINFO_DATA_REF(S)             ((S)->dr_aux.dr + 0)
1175 #define STMT_VINFO_GATHER_SCATTER_P(S)	   (S)->gather_scatter_p
1176 #define STMT_VINFO_STRIDED_P(S)	   	   (S)->strided_p
1177 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S)   (S)->memory_access_type
1178 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S)   (S)->simd_lane_access_p
1179 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1180 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1181 #define STMT_VINFO_REDUC_IDX(S)		   (S)->reduc_idx
1182 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S)   (S)->force_single_cycle
1183 
1184 #define STMT_VINFO_DR_WRT_VEC_LOOP(S)      (S)->dr_wrt_vec_loop
1185 #define STMT_VINFO_DR_BASE_ADDRESS(S)      (S)->dr_wrt_vec_loop.base_address
1186 #define STMT_VINFO_DR_INIT(S)              (S)->dr_wrt_vec_loop.init
1187 #define STMT_VINFO_DR_OFFSET(S)            (S)->dr_wrt_vec_loop.offset
1188 #define STMT_VINFO_DR_STEP(S)              (S)->dr_wrt_vec_loop.step
1189 #define STMT_VINFO_DR_BASE_ALIGNMENT(S)    (S)->dr_wrt_vec_loop.base_alignment
1190 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1191   (S)->dr_wrt_vec_loop.base_misalignment
1192 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1193   (S)->dr_wrt_vec_loop.offset_alignment
1194 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1195   (S)->dr_wrt_vec_loop.step_alignment
1196 
1197 #define STMT_VINFO_DR_INFO(S) \
1198   (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1199 
1200 #define STMT_VINFO_IN_PATTERN_P(S)         (S)->in_pattern_p
1201 #define STMT_VINFO_RELATED_STMT(S)         (S)->related_stmt
1202 #define STMT_VINFO_PATTERN_DEF_SEQ(S)      (S)->pattern_def_seq
1203 #define STMT_VINFO_SAME_ALIGN_REFS(S)      (S)->same_align_refs
1204 #define STMT_VINFO_SIMD_CLONE_INFO(S)	   (S)->simd_clone_info
1205 #define STMT_VINFO_DEF_TYPE(S)             (S)->def_type
1206 #define STMT_VINFO_GROUPED_ACCESS(S) \
1207   ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1208 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1209 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1210 #define STMT_VINFO_MIN_NEG_DIST(S)	(S)->min_neg_dist
1211 #define STMT_VINFO_NUM_SLP_USES(S)	(S)->num_slp_uses
1212 #define STMT_VINFO_REDUC_TYPE(S)	(S)->reduc_type
1213 #define STMT_VINFO_REDUC_CODE(S)	(S)->reduc_code
1214 #define STMT_VINFO_REDUC_FN(S)		(S)->reduc_fn
1215 #define STMT_VINFO_REDUC_DEF(S)		(S)->reduc_def
1216 #define STMT_VINFO_REDUC_VECTYPE(S)     (S)->reduc_vectype
1217 #define STMT_VINFO_REDUC_VECTYPE_IN(S)  (S)->reduc_vectype_in
1218 #define STMT_VINFO_SLP_VECT_ONLY(S)     (S)->slp_vect_only_p
1219 
1220 #define DR_GROUP_FIRST_ELEMENT(S) \
1221   (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1222 #define DR_GROUP_NEXT_ELEMENT(S) \
1223   (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1224 #define DR_GROUP_SIZE(S) \
1225   (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1226 #define DR_GROUP_STORE_COUNT(S) \
1227   (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1228 #define DR_GROUP_GAP(S) \
1229   (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1230 
1231 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1232   (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1233 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1234   (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1235 #define REDUC_GROUP_SIZE(S) \
1236   (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1237 
1238 #define STMT_VINFO_RELEVANT_P(S)          ((S)->relevant != vect_unused_in_scope)
1239 
1240 #define HYBRID_SLP_STMT(S)                ((S)->slp_type == hybrid)
1241 #define PURE_SLP_STMT(S)                  ((S)->slp_type == pure_slp)
1242 #define STMT_SLP_TYPE(S)                   (S)->slp_type
1243 
1244 #define VECT_MAX_COST 1000
1245 
1246 /* The maximum number of intermediate steps required in multi-step type
1247    conversion.  */
1248 #define MAX_INTERM_CVT_STEPS         3
1249 
1250 #define MAX_VECTORIZATION_FACTOR INT_MAX
1251 
1252 /* Nonzero if TYPE represents a (scalar) boolean type or type
1253    in the middle-end compatible with it (unsigned precision 1 integral
1254    types).  Used to determine which types should be vectorized as
1255    VECTOR_BOOLEAN_TYPE_P.  */
1256 
1257 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1258   (TREE_CODE (TYPE) == BOOLEAN_TYPE		\
1259    || ((TREE_CODE (TYPE) == INTEGER_TYPE	\
1260 	|| TREE_CODE (TYPE) == ENUMERAL_TYPE)	\
1261        && TYPE_PRECISION (TYPE) == 1		\
1262        && TYPE_UNSIGNED (TYPE)))
1263 
1264 static inline bool
1265 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1266 {
1267   return (loop->inner
1268 	  && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1269 }
1270 
1271 /* Return true if STMT_INFO should produce a vector mask type rather than
1272    a normal nonmask type.  */
1273 
1274 static inline bool
1275 vect_use_mask_type_p (stmt_vec_info stmt_info)
1276 {
1277   return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1278 }
1279 
1280 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1281    pattern.  */
1282 
1283 static inline bool
1284 is_pattern_stmt_p (stmt_vec_info stmt_info)
1285 {
1286   return stmt_info->pattern_stmt_p;
1287 }
1288 
1289 /* If STMT_INFO is a pattern statement, return the statement that it
1290    replaces, otherwise return STMT_INFO itself.  */
1291 
1292 inline stmt_vec_info
1293 vect_orig_stmt (stmt_vec_info stmt_info)
1294 {
1295   if (is_pattern_stmt_p (stmt_info))
1296     return STMT_VINFO_RELATED_STMT (stmt_info);
1297   return stmt_info;
1298 }
1299 
1300 /* Return the later statement between STMT1_INFO and STMT2_INFO.  */
1301 
1302 static inline stmt_vec_info
1303 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1304 {
1305   if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1306       > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1307     return stmt1_info;
1308   else
1309     return stmt2_info;
1310 }
1311 
1312 /* If STMT_INFO has been replaced by a pattern statement, return the
1313    replacement statement, otherwise return STMT_INFO itself.  */
1314 
1315 inline stmt_vec_info
1316 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1317 {
1318   if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1319     return STMT_VINFO_RELATED_STMT (stmt_info);
1320   return stmt_info;
1321 }
1322 
1323 /* Return true if BB is a loop header.  */
1324 
1325 static inline bool
1326 is_loop_header_bb_p (basic_block bb)
1327 {
1328   if (bb == (bb->loop_father)->header)
1329     return true;
1330   gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1331   return false;
1332 }
1333 
1334 /* Return pow2 (X).  */
1335 
1336 static inline int
1337 vect_pow2 (int x)
1338 {
1339   int i, res = 1;
1340 
1341   for (i = 0; i < x; i++)
1342     res *= 2;
1343 
1344   return res;
1345 }
1346 
1347 /* Alias targetm.vectorize.builtin_vectorization_cost.  */
1348 
1349 static inline int
1350 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1351 			    tree vectype, int misalign)
1352 {
1353   return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1354 						       vectype, misalign);
1355 }
1356 
1357 /* Get cost by calling cost target builtin.  */
1358 
1359 static inline
1360 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1361 {
1362   return builtin_vectorization_cost (type_of_cost, NULL, 0);
1363 }
1364 
1365 /* Alias targetm.vectorize.init_cost.  */
1366 
1367 static inline void *
1368 init_cost (class loop *loop_info)
1369 {
1370   return targetm.vectorize.init_cost (loop_info);
1371 }
1372 
1373 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1374 			    stmt_vec_info, int, unsigned,
1375 			    enum vect_cost_model_location);
1376 
1377 /* Alias targetm.vectorize.add_stmt_cost.  */
1378 
1379 static inline unsigned
1380 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1381 	       stmt_vec_info stmt_info, int misalign,
1382 	       enum vect_cost_model_location where)
1383 {
1384   unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1385 						   stmt_info, misalign, where);
1386   if (dump_file && (dump_flags & TDF_DETAILS))
1387     dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1388 		    cost, where);
1389   return cost;
1390 }
1391 
1392 /* Alias targetm.vectorize.finish_cost.  */
1393 
1394 static inline void
1395 finish_cost (void *data, unsigned *prologue_cost,
1396 	     unsigned *body_cost, unsigned *epilogue_cost)
1397 {
1398   targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1399 }
1400 
1401 /* Alias targetm.vectorize.destroy_cost_data.  */
1402 
1403 static inline void
1404 destroy_cost_data (void *data)
1405 {
1406   targetm.vectorize.destroy_cost_data (data);
1407 }
1408 
1409 inline void
1410 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1411 {
1412   stmt_info_for_cost *cost;
1413   unsigned i;
1414   FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1415     add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1416 		   cost->misalign, cost->where);
1417 }
1418 
1419 /*-----------------------------------------------------------------*/
1420 /* Info on data references alignment.                              */
1421 /*-----------------------------------------------------------------*/
1422 #define DR_MISALIGNMENT_UNKNOWN (-1)
1423 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1424 
1425 inline void
1426 set_dr_misalignment (dr_vec_info *dr_info, int val)
1427 {
1428   dr_info->misalignment = val;
1429 }
1430 
1431 inline int
1432 dr_misalignment (dr_vec_info *dr_info)
1433 {
1434   int misalign = dr_info->misalignment;
1435   gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1436   return misalign;
1437 }
1438 
1439 /* Reflects actual alignment of first access in the vectorized loop,
1440    taking into account peeling/versioning if applied.  */
1441 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1442 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1443 
1444 /* Only defined once DR_MISALIGNMENT is defined.  */
1445 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1446 
1447 /* Return true if data access DR_INFO is aligned to its target alignment
1448    (which may be less than a full vector).  */
1449 
1450 static inline bool
1451 aligned_access_p (dr_vec_info *dr_info)
1452 {
1453   return (DR_MISALIGNMENT (dr_info) == 0);
1454 }
1455 
1456 /* Return TRUE if the alignment of the data access is known, and FALSE
1457    otherwise.  */
1458 
1459 static inline bool
1460 known_alignment_for_access_p (dr_vec_info *dr_info)
1461 {
1462   return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1463 }
1464 
1465 /* Return the minimum alignment in bytes that the vectorized version
1466    of DR_INFO is guaranteed to have.  */
1467 
1468 static inline unsigned int
1469 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1470 {
1471   if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1472     return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1473   if (DR_MISALIGNMENT (dr_info) == 0)
1474     return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1475   return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1476 }
1477 
1478 /* Return the behavior of DR_INFO with respect to the vectorization context
1479    (which for outer loop vectorization might not be the behavior recorded
1480    in DR_INFO itself).  */
1481 
1482 static inline innermost_loop_behavior *
1483 vect_dr_behavior (dr_vec_info *dr_info)
1484 {
1485   stmt_vec_info stmt_info = dr_info->stmt;
1486   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1487   if (loop_vinfo == NULL
1488       || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1489     return &DR_INNERMOST (dr_info->dr);
1490   else
1491     return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1492 }
1493 
1494 /* Return the offset calculated by adding the offset of this DR_INFO to the
1495    corresponding data_reference's offset.  If CHECK_OUTER then use
1496    vect_dr_behavior to select the appropriate data_reference to use.  */
1497 
1498 inline tree
1499 get_dr_vinfo_offset (dr_vec_info *dr_info, bool check_outer = false)
1500 {
1501   innermost_loop_behavior *base;
1502   if (check_outer)
1503     base = vect_dr_behavior (dr_info);
1504   else
1505     base = &dr_info->dr->innermost;
1506 
1507   tree offset = base->offset;
1508 
1509   if (!dr_info->offset)
1510     return offset;
1511 
1512   offset = fold_convert (sizetype, offset);
1513   return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1514 		      dr_info->offset);
1515 }
1516 
1517 
1518 /* Return true if the vect cost model is unlimited.  */
1519 static inline bool
1520 unlimited_cost_model (loop_p loop)
1521 {
1522   if (loop != NULL && loop->force_vectorize
1523       && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1524     return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1525   return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1526 }
1527 
1528 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1529    if the first iteration should use a partial mask in order to achieve
1530    alignment.  */
1531 
1532 static inline bool
1533 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1534 {
1535   return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1536 	  && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1537 }
1538 
1539 /* Return the number of vectors of type VECTYPE that are needed to get
1540    NUNITS elements.  NUNITS should be based on the vectorization factor,
1541    so it is always a known multiple of the number of elements in VECTYPE.  */
1542 
1543 static inline unsigned int
1544 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1545 {
1546   return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1547 }
1548 
1549 /* Return the number of copies needed for loop vectorization when
1550    a statement operates on vectors of type VECTYPE.  This is the
1551    vectorization factor divided by the number of elements in
1552    VECTYPE and is always known at compile time.  */
1553 
1554 static inline unsigned int
1555 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1556 {
1557   return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1558 }
1559 
1560 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1561    NUNITS.  *MAX_NUNITS can be 1 if we haven't yet recorded anything.  */
1562 
1563 static inline void
1564 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1565 {
1566   /* All unit counts have the form vec_info::vector_size * X for some
1567      rational X, so two unit sizes must have a common multiple.
1568      Everything is a multiple of the initial value of 1.  */
1569   *max_nunits = force_common_multiple (*max_nunits, nunits);
1570 }
1571 
1572 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1573    the number of units in vector type VECTYPE.  *MAX_NUNITS can be 1
1574    if we haven't yet recorded any vector types.  */
1575 
1576 static inline void
1577 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1578 {
1579   vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1580 }
1581 
1582 /* Return the vectorization factor that should be used for costing
1583    purposes while vectorizing the loop described by LOOP_VINFO.
1584    Pick a reasonable estimate if the vectorization factor isn't
1585    known at compile time.  */
1586 
1587 static inline unsigned int
1588 vect_vf_for_cost (loop_vec_info loop_vinfo)
1589 {
1590   return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1591 }
1592 
1593 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1594    Pick a reasonable estimate if the exact number isn't known at
1595    compile time.  */
1596 
1597 static inline unsigned int
1598 vect_nunits_for_cost (tree vec_type)
1599 {
1600   return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1601 }
1602 
1603 /* Return the maximum possible vectorization factor for LOOP_VINFO.  */
1604 
1605 static inline unsigned HOST_WIDE_INT
1606 vect_max_vf (loop_vec_info loop_vinfo)
1607 {
1608   unsigned HOST_WIDE_INT vf;
1609   if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1610     return vf;
1611   return MAX_VECTORIZATION_FACTOR;
1612 }
1613 
1614 /* Return the size of the value accessed by unvectorized data reference
1615    DR_INFO.  This is only valid once STMT_VINFO_VECTYPE has been calculated
1616    for the associated gimple statement, since that guarantees that DR_INFO
1617    accesses either a scalar or a scalar equivalent.  ("Scalar equivalent"
1618    here includes things like V1SI, which can be vectorized in the same way
1619    as a plain SI.)  */
1620 
1621 inline unsigned int
1622 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1623 {
1624   return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1625 }
1626 
1627 /* Return true if LOOP_VINFO requires a runtime check for whether the
1628    vector loop is profitable.  */
1629 
1630 inline bool
1631 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1632 {
1633   unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1634   return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1635 	  && th >= vect_vf_for_cost (loop_vinfo));
1636 }
1637 
1638 /* Source location + hotness information. */
1639 extern dump_user_location_t vect_location;
1640 
1641 /* A macro for calling:
1642      dump_begin_scope (MSG, vect_location);
1643    via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1644    and then calling
1645      dump_end_scope ();
1646    once the object goes out of scope, thus capturing the nesting of
1647    the scopes.
1648 
1649    These scopes affect dump messages within them: dump messages at the
1650    top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1651    in a nested scope implicitly default to MSG_PRIORITY_INTERNALS.  */
1652 
1653 #define DUMP_VECT_SCOPE(MSG) \
1654   AUTO_DUMP_SCOPE (MSG, vect_location)
1655 
1656 /* A sentinel class for ensuring that the "vect_location" global gets
1657    reset at the end of a scope.
1658 
1659    The "vect_location" global is used during dumping and contains a
1660    location_t, which could contain references to a tree block via the
1661    ad-hoc data.  This data is used for tracking inlining information,
1662    but it's not a GC root; it's simply assumed that such locations never
1663    get accessed if the blocks are optimized away.
1664 
1665    Hence we need to ensure that such locations are purged at the end
1666    of any operations using them (e.g. via this class).  */
1667 
1668 class auto_purge_vect_location
1669 {
1670  public:
1671   ~auto_purge_vect_location ();
1672 };
1673 
1674 /*-----------------------------------------------------------------*/
1675 /* Function prototypes.                                            */
1676 /*-----------------------------------------------------------------*/
1677 
1678 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1679    in tree-vect-loop-manip.c.  */
1680 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1681 				     tree, tree, tree, bool);
1682 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1683 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1684 						     class loop *, edge);
1685 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1686 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1687 				    tree *, tree *, tree *, int, bool, bool,
1688 				    tree *);
1689 extern void vect_prepare_for_masked_peels (loop_vec_info);
1690 extern dump_user_location_t find_loop_location (class loop *);
1691 extern bool vect_can_advance_ivs_p (loop_vec_info);
1692 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1693 
1694 /* In tree-vect-stmts.c.  */
1695 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1696 						 poly_uint64 = 0);
1697 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1698 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1699 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1700 extern tree get_same_sized_vectype (tree, tree);
1701 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1702 extern bool vect_get_loop_mask_type (loop_vec_info);
1703 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1704 				stmt_vec_info * = NULL, gimple ** = NULL);
1705 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1706 				tree *, stmt_vec_info * = NULL,
1707 				gimple ** = NULL);
1708 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1709 					    tree, tree, enum tree_code *,
1710 					    enum tree_code *, int *,
1711 					    vec<tree> *);
1712 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1713 					     enum tree_code *, int *,
1714 					     vec<tree> *);
1715 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1716 				  enum vect_cost_for_stmt, stmt_vec_info,
1717 				  int, enum vect_cost_model_location);
1718 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1719 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1720 						  gimple_stmt_iterator *);
1721 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1722 extern tree vect_get_store_rhs (stmt_vec_info);
1723 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1724 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1725 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1726 			       vec<tree> *, slp_tree);
1727 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1728 					     vec<tree> *, vec<tree> *);
1729 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1730                               gimple_stmt_iterator *);
1731 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1732 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1733 				 slp_tree, slp_instance);
1734 extern void vect_remove_stores (stmt_vec_info);
1735 extern bool vect_nop_conversion_p (stmt_vec_info);
1736 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1737 				     slp_instance, stmt_vector_for_cost *);
1738 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1739 				unsigned int *, unsigned int *,
1740 				stmt_vector_for_cost *,
1741 				stmt_vector_for_cost *, bool);
1742 extern void vect_get_store_cost (stmt_vec_info, int,
1743 				 unsigned int *, stmt_vector_for_cost *);
1744 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1745 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1746 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1747 extern void optimize_mask_stores (class loop*);
1748 extern gcall *vect_gen_while (tree, tree, tree);
1749 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1750 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1751 						  tree *, unsigned int = 0);
1752 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1753 
1754 /* In tree-vect-data-refs.c.  */
1755 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1756 extern enum dr_alignment_support vect_supportable_dr_alignment
1757                                            (dr_vec_info *, bool);
1758 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1759                                            HOST_WIDE_INT *);
1760 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1761 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1762 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1763 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1764 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1765 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1766 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1767 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1768 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1769 				      tree, int, internal_fn *, tree *);
1770 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1771 				       gather_scatter_info *);
1772 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1773 						 vec<data_reference_p> *);
1774 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1775 extern void vect_record_base_alignments (vec_info *);
1776 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
1777 				      tree *, gimple_stmt_iterator *,
1778 				      gimple **, bool,
1779 				      tree = NULL_TREE, tree = NULL_TREE);
1780 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1781 			     stmt_vec_info, tree);
1782 extern void vect_copy_ref_info (tree, tree);
1783 extern tree vect_create_destination_var (tree, tree);
1784 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1785 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1786 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1787 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1788 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1789                                     gimple_stmt_iterator *, vec<tree> *);
1790 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1791 				    tree *, enum dr_alignment_support, tree,
1792 	                            class loop **);
1793 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1794                                          gimple_stmt_iterator *);
1795 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1796 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1797 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1798 				   const char * = NULL);
1799 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1800 						  tree, tree = NULL_TREE);
1801 
1802 /* In tree-vect-loop.c.  */
1803 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1804 /* Used in tree-vect-loop-manip.c */
1805 extern void determine_peel_for_niter (loop_vec_info);
1806 /* Used in gimple-loop-interchange.c and tree-parloops.c.  */
1807 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1808 				  enum tree_code);
1809 extern bool needs_fold_left_reduction_p (tree, tree_code);
1810 /* Drive for loop analysis stage.  */
1811 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1812 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1813 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1814 					 tree *, bool);
1815 extern tree vect_halve_mask_nunits (tree, machine_mode);
1816 extern tree vect_double_mask_nunits (tree, machine_mode);
1817 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1818 				   unsigned int, tree, tree);
1819 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1820 				unsigned int, tree, unsigned int);
1821 extern stmt_vec_info info_for_reduction (stmt_vec_info);
1822 
1823 /* Drive for loop transformation stage.  */
1824 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1825 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1826 						 vec_info_shared *);
1827 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1828 					 slp_tree, slp_instance, int,
1829 					 bool, stmt_vector_for_cost *);
1830 extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
1831 				    stmt_vector_for_cost *);
1832 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1833 				    stmt_vec_info *, slp_tree,
1834 				    stmt_vector_for_cost *);
1835 extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
1836 				      stmt_vec_info *, slp_tree);
1837 extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
1838 				      slp_tree, slp_instance);
1839 extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
1840 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1841 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1842 					stmt_vector_for_cost *,
1843 					stmt_vector_for_cost *,
1844 					stmt_vector_for_cost *);
1845 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1846 
1847 /* In tree-vect-slp.c.  */
1848 extern void vect_free_slp_instance (slp_instance, bool);
1849 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1850 					  gimple_stmt_iterator *, poly_uint64,
1851 					  slp_instance, bool, unsigned *);
1852 extern bool vect_slp_analyze_operations (vec_info *);
1853 extern void vect_schedule_slp (vec_info *);
1854 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1855 extern bool vect_make_slp_decision (loop_vec_info);
1856 extern void vect_detect_hybrid_slp (loop_vec_info);
1857 extern void vect_get_slp_defs (slp_tree, vec<vec<tree> > *, unsigned n = -1U);
1858 extern bool vect_slp_bb (basic_block);
1859 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1860 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1861 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
1862 					    unsigned int * = NULL,
1863 					    tree * = NULL, tree * = NULL);
1864 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1865 				      vec<tree>, unsigned int, vec<tree> &);
1866 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1867 
1868 /* In tree-vect-patterns.c.  */
1869 /* Pattern recognition functions.
1870    Additional pattern recognition functions can (and will) be added
1871    in the future.  */
1872 void vect_pattern_recog (vec_info *);
1873 
1874 /* In tree-vectorizer.c.  */
1875 unsigned vectorize_loops (void);
1876 void vect_free_loop_info_assumptions (class loop *);
1877 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1878 
1879 
1880 #endif  /* GCC_TREE_VECTORIZER_H  */
1881