xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/resource.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Definitions for computing resource usage of specific insns.
2    Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "memmodel.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "emit-rtl.h"
30 #include "resource.h"
31 #include "insn-attr.h"
32 #include "params.h"
33 
34 /* This structure is used to record liveness information at the targets or
35    fallthrough insns of branches.  We will most likely need the information
36    at targets again, so save them in a hash table rather than recomputing them
37    each time.  */
38 
39 struct target_info
40 {
41   int uid;			/* INSN_UID of target.  */
42   struct target_info *next;	/* Next info for same hash bucket.  */
43   HARD_REG_SET live_regs;	/* Registers live at target.  */
44   int block;			/* Basic block number containing target.  */
45   int bb_tick;			/* Generation count of basic block info.  */
46 };
47 
48 #define TARGET_HASH_PRIME 257
49 
50 /* Indicates what resources are required at the beginning of the epilogue.  */
51 static struct resources start_of_epilogue_needs;
52 
53 /* Indicates what resources are required at function end.  */
54 static struct resources end_of_function_needs;
55 
56 /* Define the hash table itself.  */
57 static struct target_info **target_hash_table = NULL;
58 
59 /* For each basic block, we maintain a generation number of its basic
60    block info, which is updated each time we move an insn from the
61    target of a jump.  This is the generation number indexed by block
62    number.  */
63 
64 static int *bb_ticks;
65 
66 /* Marks registers possibly live at the current place being scanned by
67    mark_target_live_regs.  Also used by update_live_status.  */
68 
69 static HARD_REG_SET current_live_regs;
70 
71 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
72    Also only used by the next two functions.  */
73 
74 static HARD_REG_SET pending_dead_regs;
75 
76 static void update_live_status (rtx, const_rtx, void *);
77 static int find_basic_block (rtx_insn *, int);
78 static rtx_insn *next_insn_no_annul (rtx_insn *);
79 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
80 					     rtx *, int, struct resources,
81 					     struct resources);
82 
83 /* Utility function called from mark_target_live_regs via note_stores.
84    It deadens any CLOBBERed registers and livens any SET registers.  */
85 
86 static void
87 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
88 {
89   int first_regno, last_regno;
90   int i;
91 
92   if (!REG_P (dest)
93       && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
94     return;
95 
96   if (GET_CODE (dest) == SUBREG)
97     {
98       first_regno = subreg_regno (dest);
99       last_regno = first_regno + subreg_nregs (dest);
100 
101     }
102   else
103     {
104       first_regno = REGNO (dest);
105       last_regno = END_REGNO (dest);
106     }
107 
108   if (GET_CODE (x) == CLOBBER)
109     for (i = first_regno; i < last_regno; i++)
110       CLEAR_HARD_REG_BIT (current_live_regs, i);
111   else
112     for (i = first_regno; i < last_regno; i++)
113       {
114 	SET_HARD_REG_BIT (current_live_regs, i);
115 	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
116       }
117 }
118 
119 /* Find the number of the basic block with correct live register
120    information that starts closest to INSN.  Return -1 if we couldn't
121    find such a basic block or the beginning is more than
122    SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
123    an unlimited search.
124 
125    The delay slot filling code destroys the control-flow graph so,
126    instead of finding the basic block containing INSN, we search
127    backwards toward a BARRIER where the live register information is
128    correct.  */
129 
130 static int
131 find_basic_block (rtx_insn *insn, int search_limit)
132 {
133   /* Scan backwards to the previous BARRIER.  Then see if we can find a
134      label that starts a basic block.  Return the basic block number.  */
135   for (insn = prev_nonnote_insn (insn);
136        insn && !BARRIER_P (insn) && search_limit != 0;
137        insn = prev_nonnote_insn (insn), --search_limit)
138     ;
139 
140   /* The closest BARRIER is too far away.  */
141   if (search_limit == 0)
142     return -1;
143 
144   /* The start of the function.  */
145   else if (insn == 0)
146     return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
147 
148   /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
149      anything other than a CODE_LABEL or note, we can't find this code.  */
150   for (insn = next_nonnote_insn (insn);
151        insn && LABEL_P (insn);
152        insn = next_nonnote_insn (insn))
153     if (BLOCK_FOR_INSN (insn))
154       return BLOCK_FOR_INSN (insn)->index;
155 
156   return -1;
157 }
158 
159 /* Similar to next_insn, but ignores insns in the delay slots of
160    an annulled branch.  */
161 
162 static rtx_insn *
163 next_insn_no_annul (rtx_insn *insn)
164 {
165   if (insn)
166     {
167       /* If INSN is an annulled branch, skip any insns from the target
168 	 of the branch.  */
169       if (JUMP_P (insn)
170 	  && INSN_ANNULLED_BRANCH_P (insn)
171 	  && NEXT_INSN (PREV_INSN (insn)) != insn)
172 	{
173 	  rtx_insn *next = NEXT_INSN (insn);
174 
175 	  while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
176 		 && INSN_FROM_TARGET_P (next))
177 	    {
178 	      insn = next;
179 	      next = NEXT_INSN (insn);
180 	    }
181 	}
182 
183       insn = NEXT_INSN (insn);
184       if (insn && NONJUMP_INSN_P (insn)
185 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
186 	insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
187     }
188 
189   return insn;
190 }
191 
192 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
193    which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
194    is TRUE, resources used by the called routine will be included for
195    CALL_INSNs.  */
196 
197 void
198 mark_referenced_resources (rtx x, struct resources *res,
199 			   bool include_delayed_effects)
200 {
201   enum rtx_code code = GET_CODE (x);
202   int i, j;
203   unsigned int r;
204   const char *format_ptr;
205 
206   /* Handle leaf items for which we set resource flags.  Also, special-case
207      CALL, SET and CLOBBER operators.  */
208   switch (code)
209     {
210     case CONST:
211     CASE_CONST_ANY:
212     case PC:
213     case SYMBOL_REF:
214     case LABEL_REF:
215       return;
216 
217     case SUBREG:
218       if (!REG_P (SUBREG_REG (x)))
219 	mark_referenced_resources (SUBREG_REG (x), res, false);
220       else
221 	{
222 	  unsigned int regno = subreg_regno (x);
223 	  unsigned int last_regno = regno + subreg_nregs (x);
224 
225 	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
226 	  for (r = regno; r < last_regno; r++)
227 	    SET_HARD_REG_BIT (res->regs, r);
228 	}
229       return;
230 
231     case REG:
232       gcc_assert (HARD_REGISTER_P (x));
233       add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
234       return;
235 
236     case MEM:
237       /* If this memory shouldn't change, it really isn't referencing
238 	 memory.  */
239       if (! MEM_READONLY_P (x))
240 	res->memory = 1;
241       res->volatil |= MEM_VOLATILE_P (x);
242 
243       /* Mark registers used to access memory.  */
244       mark_referenced_resources (XEXP (x, 0), res, false);
245       return;
246 
247     case CC0:
248       res->cc = 1;
249       return;
250 
251     case UNSPEC_VOLATILE:
252     case TRAP_IF:
253     case ASM_INPUT:
254       /* Traditional asm's are always volatile.  */
255       res->volatil = 1;
256       break;
257 
258     case ASM_OPERANDS:
259       res->volatil |= MEM_VOLATILE_P (x);
260 
261       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
262 	 We can not just fall through here since then we would be confused
263 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
264 	 traditional asms unlike their normal usage.  */
265 
266       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
267 	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
268       return;
269 
270     case CALL:
271       /* The first operand will be a (MEM (xxx)) but doesn't really reference
272 	 memory.  The second operand may be referenced, though.  */
273       mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
274       mark_referenced_resources (XEXP (x, 1), res, false);
275       return;
276 
277     case SET:
278       /* Usually, the first operand of SET is set, not referenced.  But
279 	 registers used to access memory are referenced.  SET_DEST is
280 	 also referenced if it is a ZERO_EXTRACT.  */
281 
282       mark_referenced_resources (SET_SRC (x), res, false);
283 
284       x = SET_DEST (x);
285       if (GET_CODE (x) == ZERO_EXTRACT
286 	  || GET_CODE (x) == STRICT_LOW_PART)
287 	mark_referenced_resources (x, res, false);
288       else if (GET_CODE (x) == SUBREG)
289 	x = SUBREG_REG (x);
290       if (MEM_P (x))
291 	mark_referenced_resources (XEXP (x, 0), res, false);
292       return;
293 
294     case CLOBBER:
295       return;
296 
297     case CALL_INSN:
298       if (include_delayed_effects)
299 	{
300 	  /* A CALL references memory, the frame pointer if it exists, the
301 	     stack pointer, any global registers and any registers given in
302 	     USE insns immediately in front of the CALL.
303 
304 	     However, we may have moved some of the parameter loading insns
305 	     into the delay slot of this CALL.  If so, the USE's for them
306 	     don't count and should be skipped.  */
307 	  rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
308 	  rtx_sequence *sequence = 0;
309 	  int seq_size = 0;
310 	  int i;
311 
312 	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
313 	  if (NEXT_INSN (insn) != x)
314 	    {
315 	      sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
316 	      seq_size = sequence->len ();
317 	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
318 	    }
319 
320 	  res->memory = 1;
321 	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
322 	  if (frame_pointer_needed)
323 	    {
324 	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
325 	      if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
326 		SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
327 	    }
328 
329 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
330 	    if (global_regs[i])
331 	      SET_HARD_REG_BIT (res->regs, i);
332 
333 	  /* Check for a REG_SETJMP.  If it exists, then we must
334 	     assume that this call can need any register.
335 
336 	     This is done to be more conservative about how we handle setjmp.
337 	     We assume that they both use and set all registers.  Using all
338 	     registers ensures that a register will not be considered dead
339 	     just because it crosses a setjmp call.  A register should be
340 	     considered dead only if the setjmp call returns nonzero.  */
341 	  if (find_reg_note (x, REG_SETJMP, NULL))
342 	    SET_HARD_REG_SET (res->regs);
343 
344 	  {
345 	    rtx link;
346 
347 	    for (link = CALL_INSN_FUNCTION_USAGE (x);
348 		 link;
349 		 link = XEXP (link, 1))
350 	      if (GET_CODE (XEXP (link, 0)) == USE)
351 		{
352 		  for (i = 1; i < seq_size; i++)
353 		    {
354 		      rtx slot_pat = PATTERN (sequence->element (i));
355 		      if (GET_CODE (slot_pat) == SET
356 			  && rtx_equal_p (SET_DEST (slot_pat),
357 					  XEXP (XEXP (link, 0), 0)))
358 			break;
359 		    }
360 		  if (i >= seq_size)
361 		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
362 					       res, false);
363 		}
364 	  }
365 	}
366 
367       /* ... fall through to other INSN processing ...  */
368       gcc_fallthrough ();
369 
370     case INSN:
371     case JUMP_INSN:
372 
373       if (GET_CODE (PATTERN (x)) == COND_EXEC)
374       /* In addition to the usual references, also consider all outputs
375 	 as referenced, to compensate for mark_set_resources treating
376 	 them as killed.  This is similar to ZERO_EXTRACT / STRICT_LOW_PART
377 	 handling, execpt that we got a partial incidence instead of a partial
378 	 width.  */
379       mark_set_resources (x, res, 0,
380 			  include_delayed_effects
381 			  ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
382 
383       if (! include_delayed_effects
384 	  && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
385 	return;
386 
387       /* No special processing, just speed up.  */
388       mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
389       return;
390 
391     default:
392       break;
393     }
394 
395   /* Process each sub-expression and flag what it needs.  */
396   format_ptr = GET_RTX_FORMAT (code);
397   for (i = 0; i < GET_RTX_LENGTH (code); i++)
398     switch (*format_ptr++)
399       {
400       case 'e':
401 	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
402 	break;
403 
404       case 'E':
405 	for (j = 0; j < XVECLEN (x, i); j++)
406 	  mark_referenced_resources (XVECEXP (x, i, j), res,
407 				     include_delayed_effects);
408 	break;
409       }
410 }
411 
412 /* A subroutine of mark_target_live_regs.  Search forward from TARGET
413    looking for registers that are set before they are used.  These are dead.
414    Stop after passing a few conditional jumps, and/or a small
415    number of unconditional branches.  */
416 
417 static rtx_insn *
418 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
419 			    rtx *jump_target, int jump_count,
420 			    struct resources set, struct resources needed)
421 {
422   HARD_REG_SET scratch;
423   rtx_insn *insn;
424   rtx_insn *next_insn;
425   rtx_insn *jump_insn = 0;
426   int i;
427 
428   for (insn = target; insn; insn = next_insn)
429     {
430       rtx_insn *this_insn = insn;
431 
432       next_insn = NEXT_INSN (insn);
433 
434       /* If this instruction can throw an exception, then we don't
435 	 know where we might end up next.  That means that we have to
436 	 assume that whatever we have already marked as live really is
437 	 live.  */
438       if (can_throw_internal (insn))
439 	break;
440 
441       switch (GET_CODE (insn))
442 	{
443 	case CODE_LABEL:
444 	  /* After a label, any pending dead registers that weren't yet
445 	     used can be made dead.  */
446 	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
447 	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
448 	  CLEAR_HARD_REG_SET (pending_dead_regs);
449 
450 	  continue;
451 
452 	case BARRIER:
453 	case NOTE:
454 	  continue;
455 
456 	case INSN:
457 	  if (GET_CODE (PATTERN (insn)) == USE)
458 	    {
459 	      /* If INSN is a USE made by update_block, we care about the
460 		 underlying insn.  Any registers set by the underlying insn
461 		 are live since the insn is being done somewhere else.  */
462 	      if (INSN_P (XEXP (PATTERN (insn), 0)))
463 		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
464 				    MARK_SRC_DEST_CALL);
465 
466 	      /* All other USE insns are to be ignored.  */
467 	      continue;
468 	    }
469 	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
470 	    continue;
471 	  else if (rtx_sequence *seq =
472 		     dyn_cast <rtx_sequence *> (PATTERN (insn)))
473 	    {
474 	      /* An unconditional jump can be used to fill the delay slot
475 		 of a call, so search for a JUMP_INSN in any position.  */
476 	      for (i = 0; i < seq->len (); i++)
477 		{
478 		  this_insn = seq->insn (i);
479 		  if (JUMP_P (this_insn))
480 		    break;
481 		}
482 	    }
483 
484 	default:
485 	  break;
486 	}
487 
488       if (rtx_jump_insn *this_jump_insn =
489 	    dyn_cast <rtx_jump_insn *> (this_insn))
490 	{
491 	  if (jump_count++ < 10)
492 	    {
493 	      if (any_uncondjump_p (this_jump_insn)
494 		  || ANY_RETURN_P (PATTERN (this_jump_insn)))
495 		{
496 		  rtx lab_or_return = this_jump_insn->jump_label ();
497 		  if (ANY_RETURN_P (lab_or_return))
498 		    next_insn = NULL;
499 		  else
500 		    next_insn = as_a <rtx_insn *> (lab_or_return);
501 		  if (jump_insn == 0)
502 		    {
503 		      jump_insn = insn;
504 		      if (jump_target)
505 			*jump_target = JUMP_LABEL (this_jump_insn);
506 		    }
507 		}
508 	      else if (any_condjump_p (this_jump_insn))
509 		{
510 		  struct resources target_set, target_res;
511 		  struct resources fallthrough_res;
512 
513 		  /* We can handle conditional branches here by following
514 		     both paths, and then IOR the results of the two paths
515 		     together, which will give us registers that are dead
516 		     on both paths.  Since this is expensive, we give it
517 		     a much higher cost than unconditional branches.  The
518 		     cost was chosen so that we will follow at most 1
519 		     conditional branch.  */
520 
521 		  jump_count += 4;
522 		  if (jump_count >= 10)
523 		    break;
524 
525 		  mark_referenced_resources (insn, &needed, true);
526 
527 		  /* For an annulled branch, mark_set_resources ignores slots
528 		     filled by instructions from the target.  This is correct
529 		     if the branch is not taken.  Since we are following both
530 		     paths from the branch, we must also compute correct info
531 		     if the branch is taken.  We do this by inverting all of
532 		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
533 		     and then inverting the INSN_FROM_TARGET_P bits again.  */
534 
535 		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
536 		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
537 		    {
538 		      rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
539 		      for (i = 1; i < seq->len (); i++)
540 			INSN_FROM_TARGET_P (seq->element (i))
541 			  = ! INSN_FROM_TARGET_P (seq->element (i));
542 
543 		      target_set = set;
544 		      mark_set_resources (insn, &target_set, 0,
545 					  MARK_SRC_DEST_CALL);
546 
547 		      for (i = 1; i < seq->len (); i++)
548 			INSN_FROM_TARGET_P (seq->element (i))
549 			  = ! INSN_FROM_TARGET_P (seq->element (i));
550 
551 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
552 		    }
553 		  else
554 		    {
555 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
556 		      target_set = set;
557 		    }
558 
559 		  target_res = *res;
560 		  COPY_HARD_REG_SET (scratch, target_set.regs);
561 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
562 		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
563 
564 		  fallthrough_res = *res;
565 		  COPY_HARD_REG_SET (scratch, set.regs);
566 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
567 		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
568 
569 		  if (!ANY_RETURN_P (this_jump_insn->jump_label ()))
570 		    find_dead_or_set_registers
571 			  (this_jump_insn->jump_target (),
572 			   &target_res, 0, jump_count, target_set, needed);
573 		  find_dead_or_set_registers (next_insn,
574 					      &fallthrough_res, 0, jump_count,
575 					      set, needed);
576 		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
577 		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
578 		  break;
579 		}
580 	      else
581 		break;
582 	    }
583 	  else
584 	    {
585 	      /* Don't try this optimization if we expired our jump count
586 		 above, since that would mean there may be an infinite loop
587 		 in the function being compiled.  */
588 	      jump_insn = 0;
589 	      break;
590 	    }
591 	}
592 
593       mark_referenced_resources (insn, &needed, true);
594       mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
595 
596       COPY_HARD_REG_SET (scratch, set.regs);
597       AND_COMPL_HARD_REG_SET (scratch, needed.regs);
598       AND_COMPL_HARD_REG_SET (res->regs, scratch);
599     }
600 
601   return jump_insn;
602 }
603 
604 /* Given X, a part of an insn, and a pointer to a `struct resource',
605    RES, indicate which resources are modified by the insn. If
606    MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
607    set by the called routine.
608 
609    If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
610    objects are being referenced instead of set.
611 
612    We never mark the insn as modifying the condition code unless it explicitly
613    SETs CC0 even though this is not totally correct.  The reason for this is
614    that we require a SET of CC0 to immediately precede the reference to CC0.
615    So if some other insn sets CC0 as a side-effect, we know it cannot affect
616    our computation and thus may be placed in a delay slot.  */
617 
618 void
619 mark_set_resources (rtx x, struct resources *res, int in_dest,
620 		    enum mark_resource_type mark_type)
621 {
622   enum rtx_code code;
623   int i, j;
624   unsigned int r;
625   const char *format_ptr;
626 
627  restart:
628 
629   code = GET_CODE (x);
630 
631   switch (code)
632     {
633     case NOTE:
634     case BARRIER:
635     case CODE_LABEL:
636     case USE:
637     CASE_CONST_ANY:
638     case LABEL_REF:
639     case SYMBOL_REF:
640     case CONST:
641     case PC:
642       /* These don't set any resources.  */
643       return;
644 
645     case CC0:
646       if (in_dest)
647 	res->cc = 1;
648       return;
649 
650     case CALL_INSN:
651       /* Called routine modifies the condition code, memory, any registers
652 	 that aren't saved across calls, global registers and anything
653 	 explicitly CLOBBERed immediately after the CALL_INSN.  */
654 
655       if (mark_type == MARK_SRC_DEST_CALL)
656 	{
657 	  rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
658 	  rtx link;
659 	  HARD_REG_SET regs;
660 
661 	  res->cc = res->memory = 1;
662 
663 	  get_call_reg_set_usage (call_insn, &regs, regs_invalidated_by_call);
664 	  IOR_HARD_REG_SET (res->regs, regs);
665 
666 	  for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
667 	       link; link = XEXP (link, 1))
668 	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
669 	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
670 				  MARK_SRC_DEST);
671 
672 	  /* Check for a REG_SETJMP.  If it exists, then we must
673 	     assume that this call can clobber any register.  */
674 	  if (find_reg_note (call_insn, REG_SETJMP, NULL))
675 	    SET_HARD_REG_SET (res->regs);
676 	}
677 
678       /* ... and also what its RTL says it modifies, if anything.  */
679       gcc_fallthrough ();
680 
681     case JUMP_INSN:
682     case INSN:
683 
684 	/* An insn consisting of just a CLOBBER (or USE) is just for flow
685 	   and doesn't actually do anything, so we ignore it.  */
686 
687       if (mark_type != MARK_SRC_DEST_CALL
688 	  && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
689 	return;
690 
691       x = PATTERN (x);
692       if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
693 	goto restart;
694       return;
695 
696     case SET:
697       /* If the source of a SET is a CALL, this is actually done by
698 	 the called routine.  So only include it if we are to include the
699 	 effects of the calling routine.  */
700 
701       mark_set_resources (SET_DEST (x), res,
702 			  (mark_type == MARK_SRC_DEST_CALL
703 			   || GET_CODE (SET_SRC (x)) != CALL),
704 			  mark_type);
705 
706       mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
707       return;
708 
709     case CLOBBER:
710       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
711       return;
712 
713     case SEQUENCE:
714       {
715         rtx_sequence *seq = as_a <rtx_sequence *> (x);
716         rtx control = seq->element (0);
717         bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
718 
719         mark_set_resources (control, res, 0, mark_type);
720         for (i = seq->len () - 1; i >= 0; --i)
721 	  {
722 	    rtx elt = seq->element (i);
723 	    if (!annul_p && INSN_FROM_TARGET_P (elt))
724 	      mark_set_resources (elt, res, 0, mark_type);
725 	  }
726       }
727       return;
728 
729     case POST_INC:
730     case PRE_INC:
731     case POST_DEC:
732     case PRE_DEC:
733       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
734       return;
735 
736     case PRE_MODIFY:
737     case POST_MODIFY:
738       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
739       mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
740       mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
741       return;
742 
743     case SIGN_EXTRACT:
744     case ZERO_EXTRACT:
745       mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
746       mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
747       mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
748       return;
749 
750     case MEM:
751       if (in_dest)
752 	{
753 	  res->memory = 1;
754 	  res->volatil |= MEM_VOLATILE_P (x);
755 	}
756 
757       mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
758       return;
759 
760     case SUBREG:
761       if (in_dest)
762 	{
763 	  if (!REG_P (SUBREG_REG (x)))
764 	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
765 	  else
766 	    {
767 	      unsigned int regno = subreg_regno (x);
768 	      unsigned int last_regno = regno + subreg_nregs (x);
769 
770 	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
771 	      for (r = regno; r < last_regno; r++)
772 		SET_HARD_REG_BIT (res->regs, r);
773 	    }
774 	}
775       return;
776 
777     case REG:
778       if (in_dest)
779 	{
780 	  gcc_assert (HARD_REGISTER_P (x));
781 	  add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
782 	}
783       return;
784 
785     case UNSPEC_VOLATILE:
786     case ASM_INPUT:
787       /* Traditional asm's are always volatile.  */
788       res->volatil = 1;
789       return;
790 
791     case TRAP_IF:
792       res->volatil = 1;
793       break;
794 
795     case ASM_OPERANDS:
796       res->volatil |= MEM_VOLATILE_P (x);
797 
798       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
799 	 We can not just fall through here since then we would be confused
800 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
801 	 traditional asms unlike their normal usage.  */
802 
803       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
804 	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
805 			    MARK_SRC_DEST);
806       return;
807 
808     default:
809       break;
810     }
811 
812   /* Process each sub-expression and flag what it needs.  */
813   format_ptr = GET_RTX_FORMAT (code);
814   for (i = 0; i < GET_RTX_LENGTH (code); i++)
815     switch (*format_ptr++)
816       {
817       case 'e':
818 	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
819 	break;
820 
821       case 'E':
822 	for (j = 0; j < XVECLEN (x, i); j++)
823 	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
824 	break;
825       }
826 }
827 
828 /* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
829 
830 static bool
831 return_insn_p (const_rtx insn)
832 {
833   if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
834     return true;
835 
836   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
837     return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
838 
839   return false;
840 }
841 
842 /* Set the resources that are live at TARGET.
843 
844    If TARGET is zero, we refer to the end of the current function and can
845    return our precomputed value.
846 
847    Otherwise, we try to find out what is live by consulting the basic block
848    information.  This is tricky, because we must consider the actions of
849    reload and jump optimization, which occur after the basic block information
850    has been computed.
851 
852    Accordingly, we proceed as follows::
853 
854    We find the previous BARRIER and look at all immediately following labels
855    (with no intervening active insns) to see if any of them start a basic
856    block.  If we hit the start of the function first, we use block 0.
857 
858    Once we have found a basic block and a corresponding first insn, we can
859    accurately compute the live status (by starting at a label following a
860    BARRIER, we are immune to actions taken by reload and jump.)  Then we
861    scan all insns between that point and our target.  For each CLOBBER (or
862    for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
863    registers are dead.  For a SET, mark them as live.
864 
865    We have to be careful when using REG_DEAD notes because they are not
866    updated by such things as find_equiv_reg.  So keep track of registers
867    marked as dead that haven't been assigned to, and mark them dead at the
868    next CODE_LABEL since reload and jump won't propagate values across labels.
869 
870    If we cannot find the start of a basic block (should be a very rare
871    case, if it can happen at all), mark everything as potentially live.
872 
873    Next, scan forward from TARGET looking for things set or clobbered
874    before they are used.  These are not live.
875 
876    Because we can be called many times on the same target, save our results
877    in a hash table indexed by INSN_UID.  This is only done if the function
878    init_resource_info () was invoked before we are called.  */
879 
880 void
881 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
882 {
883   int b = -1;
884   unsigned int i;
885   struct target_info *tinfo = NULL;
886   rtx_insn *insn;
887   rtx jump_target;
888   HARD_REG_SET scratch;
889   struct resources set, needed;
890 
891   /* Handle end of function.  */
892   if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
893     {
894       *res = end_of_function_needs;
895       return;
896     }
897 
898   /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
899      instruction.  */
900   rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
901 
902   /* Handle return insn.  */
903   if (return_insn_p (target))
904     {
905       *res = end_of_function_needs;
906       mark_referenced_resources (target, res, false);
907       return;
908     }
909 
910   /* We have to assume memory is needed, but the CC isn't.  */
911   res->memory = 1;
912   res->volatil = 0;
913   res->cc = 0;
914 
915   /* See if we have computed this value already.  */
916   if (target_hash_table != NULL)
917     {
918       for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
919 	   tinfo; tinfo = tinfo->next)
920 	if (tinfo->uid == INSN_UID (target))
921 	  break;
922 
923       /* Start by getting the basic block number.  If we have saved
924 	 information, we can get it from there unless the insn at the
925 	 start of the basic block has been deleted.  */
926       if (tinfo && tinfo->block != -1
927 	  && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
928 	b = tinfo->block;
929     }
930 
931   if (b == -1)
932     b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
933 
934   if (target_hash_table != NULL)
935     {
936       if (tinfo)
937 	{
938 	  /* If the information is up-to-date, use it.  Otherwise, we will
939 	     update it below.  */
940 	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
941 	    {
942 	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
943 	      return;
944 	    }
945 	}
946       else
947 	{
948 	  /* Allocate a place to put our results and chain it into the
949 	     hash table.  */
950 	  tinfo = XNEW (struct target_info);
951 	  tinfo->uid = INSN_UID (target);
952 	  tinfo->block = b;
953 	  tinfo->next
954 	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
955 	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
956 	}
957     }
958 
959   CLEAR_HARD_REG_SET (pending_dead_regs);
960 
961   /* If we found a basic block, get the live registers from it and update
962      them with anything set or killed between its start and the insn before
963      TARGET; this custom life analysis is really about registers so we need
964      to use the LR problem.  Otherwise, we must assume everything is live.  */
965   if (b != -1)
966     {
967       regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
968       rtx_insn *start_insn, *stop_insn;
969       df_ref def;
970 
971       /* Compute hard regs live at start of block.  */
972       REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
973       FOR_EACH_ARTIFICIAL_DEF (def, b)
974 	if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
975 	  SET_HARD_REG_BIT (current_live_regs, DF_REF_REGNO (def));
976 
977       /* Get starting and ending insn, handling the case where each might
978 	 be a SEQUENCE.  */
979       start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
980 		    insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
981       stop_insn = target;
982 
983       if (NONJUMP_INSN_P (start_insn)
984 	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
985 	start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
986 
987       if (NONJUMP_INSN_P (stop_insn)
988 	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
989 	stop_insn = next_insn (PREV_INSN (stop_insn));
990 
991       for (insn = start_insn; insn != stop_insn;
992 	   insn = next_insn_no_annul (insn))
993 	{
994 	  rtx link;
995 	  rtx_insn *real_insn = insn;
996 	  enum rtx_code code = GET_CODE (insn);
997 
998 	  if (DEBUG_INSN_P (insn))
999 	    continue;
1000 
1001 	  /* If this insn is from the target of a branch, it isn't going to
1002 	     be used in the sequel.  If it is used in both cases, this
1003 	     test will not be true.  */
1004 	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1005 	      && INSN_FROM_TARGET_P (insn))
1006 	    continue;
1007 
1008 	  /* If this insn is a USE made by update_block, we care about the
1009 	     underlying insn.  */
1010 	  if (code == INSN
1011 	      && GET_CODE (PATTERN (insn)) == USE
1012 	      && INSN_P (XEXP (PATTERN (insn), 0)))
1013 	    real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1014 
1015 	  if (CALL_P (real_insn))
1016 	    {
1017 	      /* Values in call-clobbered registers survive a COND_EXEC CALL
1018 		 if that is not executed; this matters for resoure use because
1019 		 they may be used by a complementarily (or more strictly)
1020 		 predicated instruction, or if the CALL is NORETURN.  */
1021 	      if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1022 		{
1023 		  HARD_REG_SET regs_invalidated_by_this_call;
1024 		  get_call_reg_set_usage (real_insn,
1025 					  &regs_invalidated_by_this_call,
1026 					  regs_invalidated_by_call);
1027 		  /* CALL clobbers all call-used regs that aren't fixed except
1028 		     sp, ap, and fp.  Do this before setting the result of the
1029 		     call live.  */
1030 		  AND_COMPL_HARD_REG_SET (current_live_regs,
1031 					  regs_invalidated_by_this_call);
1032 		}
1033 
1034 	      /* A CALL_INSN sets any global register live, since it may
1035 		 have been modified by the call.  */
1036 	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1037 		if (global_regs[i])
1038 		  SET_HARD_REG_BIT (current_live_regs, i);
1039 	    }
1040 
1041 	  /* Mark anything killed in an insn to be deadened at the next
1042 	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1043 	     parameters.  But they might be early.  A CALL_INSN will usually
1044 	     clobber registers used for parameters.  It isn't worth bothering
1045 	     with the unlikely case when it won't.  */
1046 	  if ((NONJUMP_INSN_P (real_insn)
1047 	       && GET_CODE (PATTERN (real_insn)) != USE
1048 	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1049 	      || JUMP_P (real_insn)
1050 	      || CALL_P (real_insn))
1051 	    {
1052 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1053 		if (REG_NOTE_KIND (link) == REG_DEAD
1054 		    && REG_P (XEXP (link, 0))
1055 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1056 		  add_to_hard_reg_set (&pending_dead_regs,
1057 				      GET_MODE (XEXP (link, 0)),
1058 				      REGNO (XEXP (link, 0)));
1059 
1060 	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1061 
1062 	      /* If any registers were unused after this insn, kill them.
1063 		 These notes will always be accurate.  */
1064 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1065 		if (REG_NOTE_KIND (link) == REG_UNUSED
1066 		    && REG_P (XEXP (link, 0))
1067 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1068 		  remove_from_hard_reg_set (&current_live_regs,
1069 					   GET_MODE (XEXP (link, 0)),
1070 					   REGNO (XEXP (link, 0)));
1071 	    }
1072 
1073 	  else if (LABEL_P (real_insn))
1074 	    {
1075 	      basic_block bb;
1076 
1077 	      /* A label clobbers the pending dead registers since neither
1078 		 reload nor jump will propagate a value across a label.  */
1079 	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1080 	      CLEAR_HARD_REG_SET (pending_dead_regs);
1081 
1082 	      /* We must conservatively assume that all registers that used
1083 		 to be live here still are.  The fallthrough edge may have
1084 		 left a live register uninitialized.  */
1085 	      bb = BLOCK_FOR_INSN (real_insn);
1086 	      if (bb)
1087 		{
1088 		  HARD_REG_SET extra_live;
1089 
1090 		  REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1091 		  IOR_HARD_REG_SET (current_live_regs, extra_live);
1092 		}
1093 	    }
1094 
1095 	  /* The beginning of the epilogue corresponds to the end of the
1096 	     RTL chain when there are no epilogue insns.  Certain resources
1097 	     are implicitly required at that point.  */
1098 	  else if (NOTE_P (real_insn)
1099 		   && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1100 	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1101 	}
1102 
1103       COPY_HARD_REG_SET (res->regs, current_live_regs);
1104       if (tinfo != NULL)
1105 	{
1106 	  tinfo->block = b;
1107 	  tinfo->bb_tick = bb_ticks[b];
1108 	}
1109     }
1110   else
1111     /* We didn't find the start of a basic block.  Assume everything
1112        in use.  This should happen only extremely rarely.  */
1113     SET_HARD_REG_SET (res->regs);
1114 
1115   CLEAR_RESOURCE (&set);
1116   CLEAR_RESOURCE (&needed);
1117 
1118   rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target,
1119 						    0, set, needed);
1120 
1121   /* If we hit an unconditional branch, we have another way of finding out
1122      what is live: we can see what is live at the branch target and include
1123      anything used but not set before the branch.  We add the live
1124      resources found using the test below to those found until now.  */
1125 
1126   if (jump_insn)
1127     {
1128       struct resources new_resources;
1129       rtx_insn *stop_insn = next_active_insn (jump_insn);
1130 
1131       if (!ANY_RETURN_P (jump_target))
1132 	jump_target = next_active_insn (as_a<rtx_insn *> (jump_target));
1133       mark_target_live_regs (insns, jump_target, &new_resources);
1134       CLEAR_RESOURCE (&set);
1135       CLEAR_RESOURCE (&needed);
1136 
1137       /* Include JUMP_INSN in the needed registers.  */
1138       for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1139 	{
1140 	  mark_referenced_resources (insn, &needed, true);
1141 
1142 	  COPY_HARD_REG_SET (scratch, needed.regs);
1143 	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1144 	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1145 
1146 	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1147 	}
1148 
1149       IOR_HARD_REG_SET (res->regs, new_resources.regs);
1150     }
1151 
1152   if (tinfo != NULL)
1153     {
1154       COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1155     }
1156 }
1157 
1158 /* Initialize the resources required by mark_target_live_regs ().
1159    This should be invoked before the first call to mark_target_live_regs.  */
1160 
1161 void
1162 init_resource_info (rtx_insn *epilogue_insn)
1163 {
1164   int i;
1165   basic_block bb;
1166 
1167   /* Indicate what resources are required to be valid at the end of the current
1168      function.  The condition code never is and memory always is.
1169      The stack pointer is needed unless EXIT_IGNORE_STACK is true
1170      and there is an epilogue that restores the original stack pointer
1171      from the frame pointer.  Registers used to return the function value
1172      are needed.  Registers holding global variables are needed.  */
1173 
1174   end_of_function_needs.cc = 0;
1175   end_of_function_needs.memory = 1;
1176   CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1177 
1178   if (frame_pointer_needed)
1179     {
1180       SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1181       if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1182 	SET_HARD_REG_BIT (end_of_function_needs.regs,
1183 			  HARD_FRAME_POINTER_REGNUM);
1184     }
1185   if (!(frame_pointer_needed
1186 	&& EXIT_IGNORE_STACK
1187 	&& epilogue_insn
1188 	&& !crtl->sp_is_unchanging))
1189     SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1190 
1191   if (crtl->return_rtx != 0)
1192     mark_referenced_resources (crtl->return_rtx,
1193 			       &end_of_function_needs, true);
1194 
1195   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1196     if (global_regs[i] || EPILOGUE_USES (i))
1197       SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1198 
1199   /* The registers required to be live at the end of the function are
1200      represented in the flow information as being dead just prior to
1201      reaching the end of the function.  For example, the return of a value
1202      might be represented by a USE of the return register immediately
1203      followed by an unconditional jump to the return label where the
1204      return label is the end of the RTL chain.  The end of the RTL chain
1205      is then taken to mean that the return register is live.
1206 
1207      This sequence is no longer maintained when epilogue instructions are
1208      added to the RTL chain.  To reconstruct the original meaning, the
1209      start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1210      point where these registers become live (start_of_epilogue_needs).
1211      If epilogue instructions are present, the registers set by those
1212      instructions won't have been processed by flow.  Thus, those
1213      registers are additionally required at the end of the RTL chain
1214      (end_of_function_needs).  */
1215 
1216   start_of_epilogue_needs = end_of_function_needs;
1217 
1218   while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1219     {
1220       mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1221 			  MARK_SRC_DEST_CALL);
1222       if (return_insn_p (epilogue_insn))
1223 	break;
1224     }
1225 
1226   /* Allocate and initialize the tables used by mark_target_live_regs.  */
1227   target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1228   bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1229 
1230   /* Set the BLOCK_FOR_INSN of each label that starts a basic block.  */
1231   FOR_EACH_BB_FN (bb, cfun)
1232     if (LABEL_P (BB_HEAD (bb)))
1233       BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1234 }
1235 
1236 /* Free up the resources allocated to mark_target_live_regs ().  This
1237    should be invoked after the last call to mark_target_live_regs ().  */
1238 
1239 void
1240 free_resource_info (void)
1241 {
1242   basic_block bb;
1243 
1244   if (target_hash_table != NULL)
1245     {
1246       int i;
1247 
1248       for (i = 0; i < TARGET_HASH_PRIME; ++i)
1249 	{
1250 	  struct target_info *ti = target_hash_table[i];
1251 
1252 	  while (ti)
1253 	    {
1254 	      struct target_info *next = ti->next;
1255 	      free (ti);
1256 	      ti = next;
1257 	    }
1258 	}
1259 
1260       free (target_hash_table);
1261       target_hash_table = NULL;
1262     }
1263 
1264   if (bb_ticks != NULL)
1265     {
1266       free (bb_ticks);
1267       bb_ticks = NULL;
1268     }
1269 
1270   FOR_EACH_BB_FN (bb, cfun)
1271     if (LABEL_P (BB_HEAD (bb)))
1272       BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1273 }
1274 
1275 /* Clear any hashed information that we have stored for INSN.  */
1276 
1277 void
1278 clear_hashed_info_for_insn (rtx_insn *insn)
1279 {
1280   struct target_info *tinfo;
1281 
1282   if (target_hash_table != NULL)
1283     {
1284       for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1285 	   tinfo; tinfo = tinfo->next)
1286 	if (tinfo->uid == INSN_UID (insn))
1287 	  break;
1288 
1289       if (tinfo)
1290 	tinfo->block = -1;
1291     }
1292 }
1293 
1294 /* Increment the tick count for the basic block that contains INSN.  */
1295 
1296 void
1297 incr_ticks_for_insn (rtx_insn *insn)
1298 {
1299   int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1300 
1301   if (b != -1)
1302     bb_ticks[b]++;
1303 }
1304 
1305 /* Add TRIAL to the set of resources used at the end of the current
1306    function.  */
1307 void
1308 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1309 {
1310   mark_referenced_resources (trial, &end_of_function_needs,
1311 			     include_delayed_effects);
1312 }
1313