xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/resource.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Definitions for computing resource usage of specific insns.
2    Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "memmodel.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "emit-rtl.h"
30 #include "resource.h"
31 #include "insn-attr.h"
32 #include "function-abi.h"
33 
34 /* This structure is used to record liveness information at the targets or
35    fallthrough insns of branches.  We will most likely need the information
36    at targets again, so save them in a hash table rather than recomputing them
37    each time.  */
38 
39 struct target_info
40 {
41   int uid;			/* INSN_UID of target.  */
42   struct target_info *next;	/* Next info for same hash bucket.  */
43   HARD_REG_SET live_regs;	/* Registers live at target.  */
44   int block;			/* Basic block number containing target.  */
45   int bb_tick;			/* Generation count of basic block info.  */
46 };
47 
48 #define TARGET_HASH_PRIME 257
49 
50 /* Indicates what resources are required at the beginning of the epilogue.  */
51 static struct resources start_of_epilogue_needs;
52 
53 /* Indicates what resources are required at function end.  */
54 static struct resources end_of_function_needs;
55 
56 /* Define the hash table itself.  */
57 static struct target_info **target_hash_table = NULL;
58 
59 /* For each basic block, we maintain a generation number of its basic
60    block info, which is updated each time we move an insn from the
61    target of a jump.  This is the generation number indexed by block
62    number.  */
63 
64 static int *bb_ticks;
65 
66 /* Marks registers possibly live at the current place being scanned by
67    mark_target_live_regs.  Also used by update_live_status.  */
68 
69 static HARD_REG_SET current_live_regs;
70 
71 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
72    Also only used by the next two functions.  */
73 
74 static HARD_REG_SET pending_dead_regs;
75 
76 static void update_live_status (rtx, const_rtx, void *);
77 static int find_basic_block (rtx_insn *, int);
78 static rtx_insn *next_insn_no_annul (rtx_insn *);
79 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
80 					     rtx *, int, struct resources,
81 					     struct resources);
82 
83 /* Utility function called from mark_target_live_regs via note_stores.
84    It deadens any CLOBBERed registers and livens any SET registers.  */
85 
86 static void
update_live_status(rtx dest,const_rtx x,void * data ATTRIBUTE_UNUSED)87 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
88 {
89   int first_regno, last_regno;
90   int i;
91 
92   if (!REG_P (dest)
93       && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
94     return;
95 
96   if (GET_CODE (dest) == SUBREG)
97     {
98       first_regno = subreg_regno (dest);
99       last_regno = first_regno + subreg_nregs (dest);
100 
101     }
102   else
103     {
104       first_regno = REGNO (dest);
105       last_regno = END_REGNO (dest);
106     }
107 
108   if (GET_CODE (x) == CLOBBER)
109     for (i = first_regno; i < last_regno; i++)
110       CLEAR_HARD_REG_BIT (current_live_regs, i);
111   else
112     for (i = first_regno; i < last_regno; i++)
113       {
114 	SET_HARD_REG_BIT (current_live_regs, i);
115 	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
116       }
117 }
118 
119 /* Find the number of the basic block with correct live register
120    information that starts closest to INSN.  Return -1 if we couldn't
121    find such a basic block or the beginning is more than
122    SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
123    an unlimited search.
124 
125    The delay slot filling code destroys the control-flow graph so,
126    instead of finding the basic block containing INSN, we search
127    backwards toward a BARRIER where the live register information is
128    correct.  */
129 
130 static int
find_basic_block(rtx_insn * insn,int search_limit)131 find_basic_block (rtx_insn *insn, int search_limit)
132 {
133   /* Scan backwards to the previous BARRIER.  Then see if we can find a
134      label that starts a basic block.  Return the basic block number.  */
135   for (insn = prev_nonnote_insn (insn);
136        insn && !BARRIER_P (insn) && search_limit != 0;
137        insn = prev_nonnote_insn (insn), --search_limit)
138     ;
139 
140   /* The closest BARRIER is too far away.  */
141   if (search_limit == 0)
142     return -1;
143 
144   /* The start of the function.  */
145   else if (insn == 0)
146     return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
147 
148   /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
149      anything other than a CODE_LABEL or note, we can't find this code.  */
150   for (insn = next_nonnote_insn (insn);
151        insn && LABEL_P (insn);
152        insn = next_nonnote_insn (insn))
153     if (BLOCK_FOR_INSN (insn))
154       return BLOCK_FOR_INSN (insn)->index;
155 
156   return -1;
157 }
158 
159 /* Similar to next_insn, but ignores insns in the delay slots of
160    an annulled branch.  */
161 
162 static rtx_insn *
next_insn_no_annul(rtx_insn * insn)163 next_insn_no_annul (rtx_insn *insn)
164 {
165   if (insn)
166     {
167       /* If INSN is an annulled branch, skip any insns from the target
168 	 of the branch.  */
169       if (JUMP_P (insn)
170 	  && INSN_ANNULLED_BRANCH_P (insn)
171 	  && NEXT_INSN (PREV_INSN (insn)) != insn)
172 	{
173 	  rtx_insn *next = NEXT_INSN (insn);
174 
175 	  while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
176 		 && INSN_FROM_TARGET_P (next))
177 	    {
178 	      insn = next;
179 	      next = NEXT_INSN (insn);
180 	    }
181 	}
182 
183       insn = NEXT_INSN (insn);
184       if (insn && NONJUMP_INSN_P (insn)
185 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
186 	insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
187     }
188 
189   return insn;
190 }
191 
192 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
193    which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
194    is TRUE, resources used by the called routine will be included for
195    CALL_INSNs.  */
196 
197 void
mark_referenced_resources(rtx x,struct resources * res,bool include_delayed_effects)198 mark_referenced_resources (rtx x, struct resources *res,
199 			   bool include_delayed_effects)
200 {
201   enum rtx_code code = GET_CODE (x);
202   int i, j;
203   unsigned int r;
204   const char *format_ptr;
205 
206   /* Handle leaf items for which we set resource flags.  Also, special-case
207      CALL, SET and CLOBBER operators.  */
208   switch (code)
209     {
210     case CONST:
211     CASE_CONST_ANY:
212     case PC:
213     case SYMBOL_REF:
214     case LABEL_REF:
215     case DEBUG_INSN:
216       return;
217 
218     case SUBREG:
219       if (!REG_P (SUBREG_REG (x)))
220 	mark_referenced_resources (SUBREG_REG (x), res, false);
221       else
222 	{
223 	  unsigned int regno = subreg_regno (x);
224 	  unsigned int last_regno = regno + subreg_nregs (x);
225 
226 	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
227 	  for (r = regno; r < last_regno; r++)
228 	    SET_HARD_REG_BIT (res->regs, r);
229 	}
230       return;
231 
232     case REG:
233       gcc_assert (HARD_REGISTER_P (x));
234       add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
235       return;
236 
237     case MEM:
238       /* If this memory shouldn't change, it really isn't referencing
239 	 memory.  */
240       if (! MEM_READONLY_P (x))
241 	res->memory = 1;
242       res->volatil |= MEM_VOLATILE_P (x);
243 
244       /* Mark registers used to access memory.  */
245       mark_referenced_resources (XEXP (x, 0), res, false);
246       return;
247 
248     case CC0:
249       res->cc = 1;
250       return;
251 
252     case UNSPEC_VOLATILE:
253     case TRAP_IF:
254     case ASM_INPUT:
255       /* Traditional asm's are always volatile.  */
256       res->volatil = 1;
257       break;
258 
259     case ASM_OPERANDS:
260       res->volatil |= MEM_VOLATILE_P (x);
261 
262       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
263 	 We cannot just fall through here since then we would be confused
264 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
265 	 traditional asms unlike their normal usage.  */
266 
267       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
268 	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
269       return;
270 
271     case CALL:
272       /* The first operand will be a (MEM (xxx)) but doesn't really reference
273 	 memory.  The second operand may be referenced, though.  */
274       mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
275       mark_referenced_resources (XEXP (x, 1), res, false);
276       return;
277 
278     case SET:
279       /* Usually, the first operand of SET is set, not referenced.  But
280 	 registers used to access memory are referenced.  SET_DEST is
281 	 also referenced if it is a ZERO_EXTRACT.  */
282 
283       mark_referenced_resources (SET_SRC (x), res, false);
284 
285       x = SET_DEST (x);
286       if (GET_CODE (x) == ZERO_EXTRACT
287 	  || GET_CODE (x) == STRICT_LOW_PART)
288 	mark_referenced_resources (x, res, false);
289       else if (GET_CODE (x) == SUBREG)
290 	x = SUBREG_REG (x);
291       if (MEM_P (x))
292 	mark_referenced_resources (XEXP (x, 0), res, false);
293       return;
294 
295     case CLOBBER:
296       return;
297 
298     case CALL_INSN:
299       if (include_delayed_effects)
300 	{
301 	  /* A CALL references memory, the frame pointer if it exists, the
302 	     stack pointer, any global registers and any registers given in
303 	     USE insns immediately in front of the CALL.
304 
305 	     However, we may have moved some of the parameter loading insns
306 	     into the delay slot of this CALL.  If so, the USE's for them
307 	     don't count and should be skipped.  */
308 	  rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
309 	  rtx_sequence *sequence = 0;
310 	  int seq_size = 0;
311 	  int i;
312 
313 	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
314 	  if (NEXT_INSN (insn) != x)
315 	    {
316 	      sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
317 	      seq_size = sequence->len ();
318 	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
319 	    }
320 
321 	  res->memory = 1;
322 	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
323 	  if (frame_pointer_needed)
324 	    {
325 	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
326 	      if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
327 		SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
328 	    }
329 
330 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
331 	    if (global_regs[i])
332 	      SET_HARD_REG_BIT (res->regs, i);
333 
334 	  /* Check for a REG_SETJMP.  If it exists, then we must
335 	     assume that this call can need any register.
336 
337 	     This is done to be more conservative about how we handle setjmp.
338 	     We assume that they both use and set all registers.  Using all
339 	     registers ensures that a register will not be considered dead
340 	     just because it crosses a setjmp call.  A register should be
341 	     considered dead only if the setjmp call returns nonzero.  */
342 	  if (find_reg_note (x, REG_SETJMP, NULL))
343 	    SET_HARD_REG_SET (res->regs);
344 
345 	  {
346 	    rtx link;
347 
348 	    for (link = CALL_INSN_FUNCTION_USAGE (x);
349 		 link;
350 		 link = XEXP (link, 1))
351 	      if (GET_CODE (XEXP (link, 0)) == USE)
352 		{
353 		  for (i = 1; i < seq_size; i++)
354 		    {
355 		      rtx slot_pat = PATTERN (sequence->element (i));
356 		      if (GET_CODE (slot_pat) == SET
357 			  && rtx_equal_p (SET_DEST (slot_pat),
358 					  XEXP (XEXP (link, 0), 0)))
359 			break;
360 		    }
361 		  if (i >= seq_size)
362 		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
363 					       res, false);
364 		}
365 	  }
366 	}
367 
368       /* ... fall through to other INSN processing ...  */
369       gcc_fallthrough ();
370 
371     case INSN:
372     case JUMP_INSN:
373 
374       if (GET_CODE (PATTERN (x)) == COND_EXEC)
375       /* In addition to the usual references, also consider all outputs
376 	 as referenced, to compensate for mark_set_resources treating
377 	 them as killed.  This is similar to ZERO_EXTRACT / STRICT_LOW_PART
378 	 handling, execpt that we got a partial incidence instead of a partial
379 	 width.  */
380       mark_set_resources (x, res, 0,
381 			  include_delayed_effects
382 			  ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
383 
384       if (! include_delayed_effects
385 	  && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
386 	return;
387 
388       /* No special processing, just speed up.  */
389       mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
390       return;
391 
392     default:
393       break;
394     }
395 
396   /* Process each sub-expression and flag what it needs.  */
397   format_ptr = GET_RTX_FORMAT (code);
398   for (i = 0; i < GET_RTX_LENGTH (code); i++)
399     switch (*format_ptr++)
400       {
401       case 'e':
402 	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
403 	break;
404 
405       case 'E':
406 	for (j = 0; j < XVECLEN (x, i); j++)
407 	  mark_referenced_resources (XVECEXP (x, i, j), res,
408 				     include_delayed_effects);
409 	break;
410       }
411 }
412 
413 /* A subroutine of mark_target_live_regs.  Search forward from TARGET
414    looking for registers that are set before they are used.  These are dead.
415    Stop after passing a few conditional jumps, and/or a small
416    number of unconditional branches.  */
417 
418 static rtx_insn *
find_dead_or_set_registers(rtx_insn * target,struct resources * res,rtx * jump_target,int jump_count,struct resources set,struct resources needed)419 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
420 			    rtx *jump_target, int jump_count,
421 			    struct resources set, struct resources needed)
422 {
423   HARD_REG_SET scratch;
424   rtx_insn *insn;
425   rtx_insn *next_insn;
426   rtx_insn *jump_insn = 0;
427   int i;
428 
429   for (insn = target; insn; insn = next_insn)
430     {
431       rtx_insn *this_insn = insn;
432 
433       next_insn = NEXT_INSN (insn);
434 
435       /* If this instruction can throw an exception, then we don't
436 	 know where we might end up next.  That means that we have to
437 	 assume that whatever we have already marked as live really is
438 	 live.  */
439       if (can_throw_internal (insn))
440 	break;
441 
442       switch (GET_CODE (insn))
443 	{
444 	case CODE_LABEL:
445 	  /* After a label, any pending dead registers that weren't yet
446 	     used can be made dead.  */
447 	  pending_dead_regs &= ~needed.regs;
448 	  res->regs &= ~pending_dead_regs;
449 	  CLEAR_HARD_REG_SET (pending_dead_regs);
450 
451 	  continue;
452 
453 	case BARRIER:
454 	case NOTE:
455 	case DEBUG_INSN:
456 	  continue;
457 
458 	case INSN:
459 	  if (GET_CODE (PATTERN (insn)) == USE)
460 	    {
461 	      /* If INSN is a USE made by update_block, we care about the
462 		 underlying insn.  Any registers set by the underlying insn
463 		 are live since the insn is being done somewhere else.  */
464 	      if (INSN_P (XEXP (PATTERN (insn), 0)))
465 		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
466 				    MARK_SRC_DEST_CALL);
467 
468 	      /* All other USE insns are to be ignored.  */
469 	      continue;
470 	    }
471 	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
472 	    continue;
473 	  else if (rtx_sequence *seq =
474 		     dyn_cast <rtx_sequence *> (PATTERN (insn)))
475 	    {
476 	      /* An unconditional jump can be used to fill the delay slot
477 		 of a call, so search for a JUMP_INSN in any position.  */
478 	      for (i = 0; i < seq->len (); i++)
479 		{
480 		  this_insn = seq->insn (i);
481 		  if (JUMP_P (this_insn))
482 		    break;
483 		}
484 	    }
485 
486 	default:
487 	  break;
488 	}
489 
490       if (rtx_jump_insn *this_jump_insn =
491 	    dyn_cast <rtx_jump_insn *> (this_insn))
492 	{
493 	  if (jump_count++ < 10)
494 	    {
495 	      if (any_uncondjump_p (this_jump_insn)
496 		  || ANY_RETURN_P (PATTERN (this_jump_insn)))
497 		{
498 		  rtx lab_or_return = this_jump_insn->jump_label ();
499 		  if (ANY_RETURN_P (lab_or_return))
500 		    next_insn = NULL;
501 		  else
502 		    next_insn = as_a <rtx_insn *> (lab_or_return);
503 		  if (jump_insn == 0)
504 		    {
505 		      jump_insn = insn;
506 		      if (jump_target)
507 			*jump_target = JUMP_LABEL (this_jump_insn);
508 		    }
509 		}
510 	      else if (any_condjump_p (this_jump_insn))
511 		{
512 		  struct resources target_set, target_res;
513 		  struct resources fallthrough_res;
514 
515 		  /* We can handle conditional branches here by following
516 		     both paths, and then IOR the results of the two paths
517 		     together, which will give us registers that are dead
518 		     on both paths.  Since this is expensive, we give it
519 		     a much higher cost than unconditional branches.  The
520 		     cost was chosen so that we will follow at most 1
521 		     conditional branch.  */
522 
523 		  jump_count += 4;
524 		  if (jump_count >= 10)
525 		    break;
526 
527 		  mark_referenced_resources (insn, &needed, true);
528 
529 		  /* For an annulled branch, mark_set_resources ignores slots
530 		     filled by instructions from the target.  This is correct
531 		     if the branch is not taken.  Since we are following both
532 		     paths from the branch, we must also compute correct info
533 		     if the branch is taken.  We do this by inverting all of
534 		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
535 		     and then inverting the INSN_FROM_TARGET_P bits again.  */
536 
537 		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
538 		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
539 		    {
540 		      rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
541 		      for (i = 1; i < seq->len (); i++)
542 			INSN_FROM_TARGET_P (seq->element (i))
543 			  = ! INSN_FROM_TARGET_P (seq->element (i));
544 
545 		      target_set = set;
546 		      mark_set_resources (insn, &target_set, 0,
547 					  MARK_SRC_DEST_CALL);
548 
549 		      for (i = 1; i < seq->len (); i++)
550 			INSN_FROM_TARGET_P (seq->element (i))
551 			  = ! INSN_FROM_TARGET_P (seq->element (i));
552 
553 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
554 		    }
555 		  else
556 		    {
557 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
558 		      target_set = set;
559 		    }
560 
561 		  target_res = *res;
562 		  scratch = target_set.regs & ~needed.regs;
563 		  target_res.regs &= ~scratch;
564 
565 		  fallthrough_res = *res;
566 		  scratch = set.regs & ~needed.regs;
567 		  fallthrough_res.regs &= ~scratch;
568 
569 		  if (!ANY_RETURN_P (this_jump_insn->jump_label ()))
570 		    find_dead_or_set_registers
571 			  (this_jump_insn->jump_target (),
572 			   &target_res, 0, jump_count, target_set, needed);
573 		  find_dead_or_set_registers (next_insn,
574 					      &fallthrough_res, 0, jump_count,
575 					      set, needed);
576 		  fallthrough_res.regs |= target_res.regs;
577 		  res->regs &= fallthrough_res.regs;
578 		  break;
579 		}
580 	      else
581 		break;
582 	    }
583 	  else
584 	    {
585 	      /* Don't try this optimization if we expired our jump count
586 		 above, since that would mean there may be an infinite loop
587 		 in the function being compiled.  */
588 	      jump_insn = 0;
589 	      break;
590 	    }
591 	}
592 
593       mark_referenced_resources (insn, &needed, true);
594       mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
595 
596       scratch = set.regs & ~needed.regs;
597       res->regs &= ~scratch;
598     }
599 
600   return jump_insn;
601 }
602 
603 /* Given X, a part of an insn, and a pointer to a `struct resource',
604    RES, indicate which resources are modified by the insn. If
605    MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
606    set by the called routine.
607 
608    If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
609    objects are being referenced instead of set.
610 
611    We never mark the insn as modifying the condition code unless it explicitly
612    SETs CC0 even though this is not totally correct.  The reason for this is
613    that we require a SET of CC0 to immediately precede the reference to CC0.
614    So if some other insn sets CC0 as a side-effect, we know it cannot affect
615    our computation and thus may be placed in a delay slot.  */
616 
617 void
mark_set_resources(rtx x,struct resources * res,int in_dest,enum mark_resource_type mark_type)618 mark_set_resources (rtx x, struct resources *res, int in_dest,
619 		    enum mark_resource_type mark_type)
620 {
621   enum rtx_code code;
622   int i, j;
623   unsigned int r;
624   const char *format_ptr;
625 
626  restart:
627 
628   code = GET_CODE (x);
629 
630   switch (code)
631     {
632     case NOTE:
633     case BARRIER:
634     case CODE_LABEL:
635     case USE:
636     CASE_CONST_ANY:
637     case LABEL_REF:
638     case SYMBOL_REF:
639     case CONST:
640     case PC:
641     case DEBUG_INSN:
642       /* These don't set any resources.  */
643       return;
644 
645     case CC0:
646       if (in_dest)
647 	res->cc = 1;
648       return;
649 
650     case CALL_INSN:
651       /* Called routine modifies the condition code, memory, any registers
652 	 that aren't saved across calls, global registers and anything
653 	 explicitly CLOBBERed immediately after the CALL_INSN.  */
654 
655       if (mark_type == MARK_SRC_DEST_CALL)
656 	{
657 	  rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
658 	  rtx link;
659 
660 	  res->cc = res->memory = 1;
661 
662 	  res->regs |= insn_callee_abi (call_insn).full_reg_clobbers ();
663 
664 	  for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
665 	       link; link = XEXP (link, 1))
666 	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
667 	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
668 				  MARK_SRC_DEST);
669 
670 	  /* Check for a REG_SETJMP.  If it exists, then we must
671 	     assume that this call can clobber any register.  */
672 	  if (find_reg_note (call_insn, REG_SETJMP, NULL))
673 	    SET_HARD_REG_SET (res->regs);
674 	}
675 
676       /* ... and also what its RTL says it modifies, if anything.  */
677       gcc_fallthrough ();
678 
679     case JUMP_INSN:
680     case INSN:
681 
682 	/* An insn consisting of just a CLOBBER (or USE) is just for flow
683 	   and doesn't actually do anything, so we ignore it.  */
684 
685       if (mark_type != MARK_SRC_DEST_CALL
686 	  && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
687 	return;
688 
689       x = PATTERN (x);
690       if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
691 	goto restart;
692       return;
693 
694     case SET:
695       /* If the source of a SET is a CALL, this is actually done by
696 	 the called routine.  So only include it if we are to include the
697 	 effects of the calling routine.  */
698 
699       mark_set_resources (SET_DEST (x), res,
700 			  (mark_type == MARK_SRC_DEST_CALL
701 			   || GET_CODE (SET_SRC (x)) != CALL),
702 			  mark_type);
703 
704       mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
705       return;
706 
707     case CLOBBER:
708       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
709       return;
710 
711     case SEQUENCE:
712       {
713         rtx_sequence *seq = as_a <rtx_sequence *> (x);
714         rtx control = seq->element (0);
715         bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
716 
717         mark_set_resources (control, res, 0, mark_type);
718         for (i = seq->len () - 1; i >= 0; --i)
719 	  {
720 	    rtx elt = seq->element (i);
721 	    if (!annul_p && INSN_FROM_TARGET_P (elt))
722 	      mark_set_resources (elt, res, 0, mark_type);
723 	  }
724       }
725       return;
726 
727     case POST_INC:
728     case PRE_INC:
729     case POST_DEC:
730     case PRE_DEC:
731       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
732       return;
733 
734     case PRE_MODIFY:
735     case POST_MODIFY:
736       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
737       mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
738       mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
739       return;
740 
741     case SIGN_EXTRACT:
742     case ZERO_EXTRACT:
743       mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
744       mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
745       mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
746       return;
747 
748     case MEM:
749       if (in_dest)
750 	{
751 	  res->memory = 1;
752 	  res->volatil |= MEM_VOLATILE_P (x);
753 	}
754 
755       mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
756       return;
757 
758     case SUBREG:
759       if (in_dest)
760 	{
761 	  if (!REG_P (SUBREG_REG (x)))
762 	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
763 	  else
764 	    {
765 	      unsigned int regno = subreg_regno (x);
766 	      unsigned int last_regno = regno + subreg_nregs (x);
767 
768 	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
769 	      for (r = regno; r < last_regno; r++)
770 		SET_HARD_REG_BIT (res->regs, r);
771 	    }
772 	}
773       return;
774 
775     case REG:
776       if (in_dest)
777 	{
778 	  gcc_assert (HARD_REGISTER_P (x));
779 	  add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
780 	}
781       return;
782 
783     case UNSPEC_VOLATILE:
784     case ASM_INPUT:
785       /* Traditional asm's are always volatile.  */
786       res->volatil = 1;
787       return;
788 
789     case TRAP_IF:
790       res->volatil = 1;
791       break;
792 
793     case ASM_OPERANDS:
794       res->volatil |= MEM_VOLATILE_P (x);
795 
796       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
797 	 We cannot just fall through here since then we would be confused
798 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
799 	 traditional asms unlike their normal usage.  */
800 
801       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
802 	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
803 			    MARK_SRC_DEST);
804       return;
805 
806     default:
807       break;
808     }
809 
810   /* Process each sub-expression and flag what it needs.  */
811   format_ptr = GET_RTX_FORMAT (code);
812   for (i = 0; i < GET_RTX_LENGTH (code); i++)
813     switch (*format_ptr++)
814       {
815       case 'e':
816 	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
817 	break;
818 
819       case 'E':
820 	for (j = 0; j < XVECLEN (x, i); j++)
821 	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
822 	break;
823       }
824 }
825 
826 /* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
827 
828 static bool
return_insn_p(const_rtx insn)829 return_insn_p (const_rtx insn)
830 {
831   if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
832     return true;
833 
834   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
835     return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
836 
837   return false;
838 }
839 
840 /* Set the resources that are live at TARGET.
841 
842    If TARGET is zero, we refer to the end of the current function and can
843    return our precomputed value.
844 
845    Otherwise, we try to find out what is live by consulting the basic block
846    information.  This is tricky, because we must consider the actions of
847    reload and jump optimization, which occur after the basic block information
848    has been computed.
849 
850    Accordingly, we proceed as follows::
851 
852    We find the previous BARRIER and look at all immediately following labels
853    (with no intervening active insns) to see if any of them start a basic
854    block.  If we hit the start of the function first, we use block 0.
855 
856    Once we have found a basic block and a corresponding first insn, we can
857    accurately compute the live status (by starting at a label following a
858    BARRIER, we are immune to actions taken by reload and jump.)  Then we
859    scan all insns between that point and our target.  For each CLOBBER (or
860    for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
861    registers are dead.  For a SET, mark them as live.
862 
863    We have to be careful when using REG_DEAD notes because they are not
864    updated by such things as find_equiv_reg.  So keep track of registers
865    marked as dead that haven't been assigned to, and mark them dead at the
866    next CODE_LABEL since reload and jump won't propagate values across labels.
867 
868    If we cannot find the start of a basic block (should be a very rare
869    case, if it can happen at all), mark everything as potentially live.
870 
871    Next, scan forward from TARGET looking for things set or clobbered
872    before they are used.  These are not live.
873 
874    Because we can be called many times on the same target, save our results
875    in a hash table indexed by INSN_UID.  This is only done if the function
876    init_resource_info () was invoked before we are called.  */
877 
878 void
mark_target_live_regs(rtx_insn * insns,rtx target_maybe_return,struct resources * res)879 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
880 {
881   int b = -1;
882   unsigned int i;
883   struct target_info *tinfo = NULL;
884   rtx_insn *insn;
885   rtx jump_target;
886   HARD_REG_SET scratch;
887   struct resources set, needed;
888 
889   /* Handle end of function.  */
890   if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
891     {
892       *res = end_of_function_needs;
893       return;
894     }
895 
896   /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
897      instruction.  */
898   rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
899 
900   /* Handle return insn.  */
901   if (return_insn_p (target))
902     {
903       *res = end_of_function_needs;
904       mark_referenced_resources (target, res, false);
905       return;
906     }
907 
908   /* We have to assume memory is needed, but the CC isn't.  */
909   res->memory = 1;
910   res->volatil = 0;
911   res->cc = 0;
912 
913   /* See if we have computed this value already.  */
914   if (target_hash_table != NULL)
915     {
916       for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
917 	   tinfo; tinfo = tinfo->next)
918 	if (tinfo->uid == INSN_UID (target))
919 	  break;
920 
921       /* Start by getting the basic block number.  If we have saved
922 	 information, we can get it from there unless the insn at the
923 	 start of the basic block has been deleted.  */
924       if (tinfo && tinfo->block != -1
925 	  && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
926 	b = tinfo->block;
927     }
928 
929   if (b == -1)
930     b = find_basic_block (target, param_max_delay_slot_live_search);
931 
932   if (target_hash_table != NULL)
933     {
934       if (tinfo)
935 	{
936 	  /* If the information is up-to-date, use it.  Otherwise, we will
937 	     update it below.  */
938 	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
939 	    {
940 	      res->regs = tinfo->live_regs;
941 	      return;
942 	    }
943 	}
944       else
945 	{
946 	  /* Allocate a place to put our results and chain it into the
947 	     hash table.  */
948 	  tinfo = XNEW (struct target_info);
949 	  tinfo->uid = INSN_UID (target);
950 	  tinfo->block = b;
951 	  tinfo->next
952 	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
953 	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
954 	}
955     }
956 
957   CLEAR_HARD_REG_SET (pending_dead_regs);
958 
959   /* If we found a basic block, get the live registers from it and update
960      them with anything set or killed between its start and the insn before
961      TARGET; this custom life analysis is really about registers so we need
962      to use the LR problem.  Otherwise, we must assume everything is live.  */
963   if (b != -1)
964     {
965       regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
966       rtx_insn *start_insn, *stop_insn;
967       df_ref def;
968 
969       /* Compute hard regs live at start of block.  */
970       REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
971       FOR_EACH_ARTIFICIAL_DEF (def, b)
972 	if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
973 	  SET_HARD_REG_BIT (current_live_regs, DF_REF_REGNO (def));
974 
975       /* Get starting and ending insn, handling the case where each might
976 	 be a SEQUENCE.  */
977       start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
978 		    insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
979       stop_insn = target;
980 
981       if (NONJUMP_INSN_P (start_insn)
982 	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
983 	start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
984 
985       if (NONJUMP_INSN_P (stop_insn)
986 	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
987 	stop_insn = next_insn (PREV_INSN (stop_insn));
988 
989       for (insn = start_insn; insn != stop_insn;
990 	   insn = next_insn_no_annul (insn))
991 	{
992 	  rtx link;
993 	  rtx_insn *real_insn = insn;
994 	  enum rtx_code code = GET_CODE (insn);
995 
996 	  if (DEBUG_INSN_P (insn))
997 	    continue;
998 
999 	  /* If this insn is from the target of a branch, it isn't going to
1000 	     be used in the sequel.  If it is used in both cases, this
1001 	     test will not be true.  */
1002 	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1003 	      && INSN_FROM_TARGET_P (insn))
1004 	    continue;
1005 
1006 	  /* If this insn is a USE made by update_block, we care about the
1007 	     underlying insn.  */
1008 	  if (code == INSN
1009 	      && GET_CODE (PATTERN (insn)) == USE
1010 	      && INSN_P (XEXP (PATTERN (insn), 0)))
1011 	    real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1012 
1013 	  if (CALL_P (real_insn))
1014 	    {
1015 	      /* Values in call-clobbered registers survive a COND_EXEC CALL
1016 		 if that is not executed; this matters for resoure use because
1017 		 they may be used by a complementarily (or more strictly)
1018 		 predicated instruction, or if the CALL is NORETURN.  */
1019 	      if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1020 		{
1021 		  HARD_REG_SET regs_invalidated_by_this_call
1022 		    = insn_callee_abi (real_insn).full_reg_clobbers ();
1023 		  /* CALL clobbers all call-used regs that aren't fixed except
1024 		     sp, ap, and fp.  Do this before setting the result of the
1025 		     call live.  */
1026 		  current_live_regs &= ~regs_invalidated_by_this_call;
1027 		}
1028 
1029 	      /* A CALL_INSN sets any global register live, since it may
1030 		 have been modified by the call.  */
1031 	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1032 		if (global_regs[i])
1033 		  SET_HARD_REG_BIT (current_live_regs, i);
1034 	    }
1035 
1036 	  /* Mark anything killed in an insn to be deadened at the next
1037 	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1038 	     parameters.  But they might be early.  A CALL_INSN will usually
1039 	     clobber registers used for parameters.  It isn't worth bothering
1040 	     with the unlikely case when it won't.  */
1041 	  if ((NONJUMP_INSN_P (real_insn)
1042 	       && GET_CODE (PATTERN (real_insn)) != USE
1043 	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1044 	      || JUMP_P (real_insn)
1045 	      || CALL_P (real_insn))
1046 	    {
1047 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1048 		if (REG_NOTE_KIND (link) == REG_DEAD
1049 		    && REG_P (XEXP (link, 0))
1050 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1051 		  add_to_hard_reg_set (&pending_dead_regs,
1052 				      GET_MODE (XEXP (link, 0)),
1053 				      REGNO (XEXP (link, 0)));
1054 
1055 	      note_stores (real_insn, update_live_status, NULL);
1056 
1057 	      /* If any registers were unused after this insn, kill them.
1058 		 These notes will always be accurate.  */
1059 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1060 		if (REG_NOTE_KIND (link) == REG_UNUSED
1061 		    && REG_P (XEXP (link, 0))
1062 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1063 		  remove_from_hard_reg_set (&current_live_regs,
1064 					   GET_MODE (XEXP (link, 0)),
1065 					   REGNO (XEXP (link, 0)));
1066 	    }
1067 
1068 	  else if (LABEL_P (real_insn))
1069 	    {
1070 	      basic_block bb;
1071 
1072 	      /* A label clobbers the pending dead registers since neither
1073 		 reload nor jump will propagate a value across a label.  */
1074 	      current_live_regs &= ~pending_dead_regs;
1075 	      CLEAR_HARD_REG_SET (pending_dead_regs);
1076 
1077 	      /* We must conservatively assume that all registers that used
1078 		 to be live here still are.  The fallthrough edge may have
1079 		 left a live register uninitialized.  */
1080 	      bb = BLOCK_FOR_INSN (real_insn);
1081 	      if (bb)
1082 		{
1083 		  HARD_REG_SET extra_live;
1084 
1085 		  REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1086 		  current_live_regs |= extra_live;
1087 		}
1088 	    }
1089 
1090 	  /* The beginning of the epilogue corresponds to the end of the
1091 	     RTL chain when there are no epilogue insns.  Certain resources
1092 	     are implicitly required at that point.  */
1093 	  else if (NOTE_P (real_insn)
1094 		   && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1095 	    current_live_regs |= start_of_epilogue_needs.regs;
1096 	}
1097 
1098       res->regs = current_live_regs;
1099       if (tinfo != NULL)
1100 	{
1101 	  tinfo->block = b;
1102 	  tinfo->bb_tick = bb_ticks[b];
1103 	}
1104     }
1105   else
1106     /* We didn't find the start of a basic block.  Assume everything
1107        in use.  This should happen only extremely rarely.  */
1108     SET_HARD_REG_SET (res->regs);
1109 
1110   CLEAR_RESOURCE (&set);
1111   CLEAR_RESOURCE (&needed);
1112 
1113   rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target,
1114 						    0, set, needed);
1115 
1116   /* If we hit an unconditional branch, we have another way of finding out
1117      what is live: we can see what is live at the branch target and include
1118      anything used but not set before the branch.  We add the live
1119      resources found using the test below to those found until now.  */
1120 
1121   if (jump_insn)
1122     {
1123       struct resources new_resources;
1124       rtx_insn *stop_insn = next_active_insn (jump_insn);
1125 
1126       if (!ANY_RETURN_P (jump_target))
1127 	jump_target = next_active_insn (as_a<rtx_insn *> (jump_target));
1128       mark_target_live_regs (insns, jump_target, &new_resources);
1129       CLEAR_RESOURCE (&set);
1130       CLEAR_RESOURCE (&needed);
1131 
1132       /* Include JUMP_INSN in the needed registers.  */
1133       for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1134 	{
1135 	  mark_referenced_resources (insn, &needed, true);
1136 
1137 	  scratch = needed.regs & ~set.regs;
1138 	  new_resources.regs |= scratch;
1139 
1140 	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1141 	}
1142 
1143       res->regs |= new_resources.regs;
1144     }
1145 
1146   if (tinfo != NULL)
1147     tinfo->live_regs = res->regs;
1148 }
1149 
1150 /* Initialize the resources required by mark_target_live_regs ().
1151    This should be invoked before the first call to mark_target_live_regs.  */
1152 
1153 void
init_resource_info(rtx_insn * epilogue_insn)1154 init_resource_info (rtx_insn *epilogue_insn)
1155 {
1156   int i;
1157   basic_block bb;
1158 
1159   /* Indicate what resources are required to be valid at the end of the current
1160      function.  The condition code never is and memory always is.
1161      The stack pointer is needed unless EXIT_IGNORE_STACK is true
1162      and there is an epilogue that restores the original stack pointer
1163      from the frame pointer.  Registers used to return the function value
1164      are needed.  Registers holding global variables are needed.  */
1165 
1166   end_of_function_needs.cc = 0;
1167   end_of_function_needs.memory = 1;
1168   CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1169 
1170   if (frame_pointer_needed)
1171     {
1172       SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1173       if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1174 	SET_HARD_REG_BIT (end_of_function_needs.regs,
1175 			  HARD_FRAME_POINTER_REGNUM);
1176     }
1177   if (!(frame_pointer_needed
1178 	&& EXIT_IGNORE_STACK
1179 	&& epilogue_insn
1180 	&& !crtl->sp_is_unchanging))
1181     SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1182 
1183   if (crtl->return_rtx != 0)
1184     mark_referenced_resources (crtl->return_rtx,
1185 			       &end_of_function_needs, true);
1186 
1187   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1188     if (global_regs[i] || EPILOGUE_USES (i))
1189       SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1190 
1191   /* The registers required to be live at the end of the function are
1192      represented in the flow information as being dead just prior to
1193      reaching the end of the function.  For example, the return of a value
1194      might be represented by a USE of the return register immediately
1195      followed by an unconditional jump to the return label where the
1196      return label is the end of the RTL chain.  The end of the RTL chain
1197      is then taken to mean that the return register is live.
1198 
1199      This sequence is no longer maintained when epilogue instructions are
1200      added to the RTL chain.  To reconstruct the original meaning, the
1201      start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1202      point where these registers become live (start_of_epilogue_needs).
1203      If epilogue instructions are present, the registers set by those
1204      instructions won't have been processed by flow.  Thus, those
1205      registers are additionally required at the end of the RTL chain
1206      (end_of_function_needs).  */
1207 
1208   start_of_epilogue_needs = end_of_function_needs;
1209 
1210   while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1211     {
1212       mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1213 			  MARK_SRC_DEST_CALL);
1214       if (return_insn_p (epilogue_insn))
1215 	break;
1216     }
1217 
1218   /* Allocate and initialize the tables used by mark_target_live_regs.  */
1219   target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1220   bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1221 
1222   /* Set the BLOCK_FOR_INSN of each label that starts a basic block.  */
1223   FOR_EACH_BB_FN (bb, cfun)
1224     if (LABEL_P (BB_HEAD (bb)))
1225       BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1226 }
1227 
1228 /* Free up the resources allocated to mark_target_live_regs ().  This
1229    should be invoked after the last call to mark_target_live_regs ().  */
1230 
1231 void
free_resource_info(void)1232 free_resource_info (void)
1233 {
1234   basic_block bb;
1235 
1236   if (target_hash_table != NULL)
1237     {
1238       int i;
1239 
1240       for (i = 0; i < TARGET_HASH_PRIME; ++i)
1241 	{
1242 	  struct target_info *ti = target_hash_table[i];
1243 
1244 	  while (ti)
1245 	    {
1246 	      struct target_info *next = ti->next;
1247 	      free (ti);
1248 	      ti = next;
1249 	    }
1250 	}
1251 
1252       free (target_hash_table);
1253       target_hash_table = NULL;
1254     }
1255 
1256   if (bb_ticks != NULL)
1257     {
1258       free (bb_ticks);
1259       bb_ticks = NULL;
1260     }
1261 
1262   FOR_EACH_BB_FN (bb, cfun)
1263     if (LABEL_P (BB_HEAD (bb)))
1264       BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1265 }
1266 
1267 /* Clear any hashed information that we have stored for INSN.  */
1268 
1269 void
clear_hashed_info_for_insn(rtx_insn * insn)1270 clear_hashed_info_for_insn (rtx_insn *insn)
1271 {
1272   struct target_info *tinfo;
1273 
1274   if (target_hash_table != NULL)
1275     {
1276       for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1277 	   tinfo; tinfo = tinfo->next)
1278 	if (tinfo->uid == INSN_UID (insn))
1279 	  break;
1280 
1281       if (tinfo)
1282 	tinfo->block = -1;
1283     }
1284 }
1285 
1286 /* Clear any hashed information that we have stored for instructions
1287    between INSN and the next BARRIER that follow a JUMP or a LABEL.  */
1288 
1289 void
clear_hashed_info_until_next_barrier(rtx_insn * insn)1290 clear_hashed_info_until_next_barrier (rtx_insn *insn)
1291 {
1292   while (insn && !BARRIER_P (insn))
1293     {
1294       if (JUMP_P (insn) || LABEL_P (insn))
1295 	{
1296 	  rtx_insn *next = next_active_insn (insn);
1297 	  if (next)
1298 	    clear_hashed_info_for_insn (next);
1299 	}
1300 
1301       insn = next_nonnote_insn (insn);
1302     }
1303 }
1304 
1305 /* Increment the tick count for the basic block that contains INSN.  */
1306 
1307 void
incr_ticks_for_insn(rtx_insn * insn)1308 incr_ticks_for_insn (rtx_insn *insn)
1309 {
1310   int b = find_basic_block (insn, param_max_delay_slot_live_search);
1311 
1312   if (b != -1)
1313     bb_ticks[b]++;
1314 }
1315 
1316 /* Add TRIAL to the set of resources used at the end of the current
1317    function.  */
1318 void
mark_end_of_function_resources(rtx trial,bool include_delayed_effects)1319 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1320 {
1321   mark_referenced_resources (trial, &end_of_function_needs,
1322 			     include_delayed_effects);
1323 }
1324