1 /* Definitions for computing resource usage of specific insns. 2 Copyright (C) 1999-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "df.h" 26 #include "memmodel.h" 27 #include "tm_p.h" 28 #include "regs.h" 29 #include "emit-rtl.h" 30 #include "resource.h" 31 #include "insn-attr.h" 32 #include "params.h" 33 34 /* This structure is used to record liveness information at the targets or 35 fallthrough insns of branches. We will most likely need the information 36 at targets again, so save them in a hash table rather than recomputing them 37 each time. */ 38 39 struct target_info 40 { 41 int uid; /* INSN_UID of target. */ 42 struct target_info *next; /* Next info for same hash bucket. */ 43 HARD_REG_SET live_regs; /* Registers live at target. */ 44 int block; /* Basic block number containing target. */ 45 int bb_tick; /* Generation count of basic block info. */ 46 }; 47 48 #define TARGET_HASH_PRIME 257 49 50 /* Indicates what resources are required at the beginning of the epilogue. */ 51 static struct resources start_of_epilogue_needs; 52 53 /* Indicates what resources are required at function end. */ 54 static struct resources end_of_function_needs; 55 56 /* Define the hash table itself. */ 57 static struct target_info **target_hash_table = NULL; 58 59 /* For each basic block, we maintain a generation number of its basic 60 block info, which is updated each time we move an insn from the 61 target of a jump. This is the generation number indexed by block 62 number. */ 63 64 static int *bb_ticks; 65 66 /* Marks registers possibly live at the current place being scanned by 67 mark_target_live_regs. Also used by update_live_status. */ 68 69 static HARD_REG_SET current_live_regs; 70 71 /* Marks registers for which we have seen a REG_DEAD note but no assignment. 72 Also only used by the next two functions. */ 73 74 static HARD_REG_SET pending_dead_regs; 75 76 static void update_live_status (rtx, const_rtx, void *); 77 static int find_basic_block (rtx_insn *, int); 78 static rtx_insn *next_insn_no_annul (rtx_insn *); 79 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*, 80 rtx *, int, struct resources, 81 struct resources); 82 83 /* Utility function called from mark_target_live_regs via note_stores. 84 It deadens any CLOBBERed registers and livens any SET registers. */ 85 86 static void 87 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED) 88 { 89 int first_regno, last_regno; 90 int i; 91 92 if (!REG_P (dest) 93 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest)))) 94 return; 95 96 if (GET_CODE (dest) == SUBREG) 97 { 98 first_regno = subreg_regno (dest); 99 last_regno = first_regno + subreg_nregs (dest); 100 101 } 102 else 103 { 104 first_regno = REGNO (dest); 105 last_regno = END_REGNO (dest); 106 } 107 108 if (GET_CODE (x) == CLOBBER) 109 for (i = first_regno; i < last_regno; i++) 110 CLEAR_HARD_REG_BIT (current_live_regs, i); 111 else if (GET_CODE (x) == CLOBBER_HIGH) 112 /* No current target supports both branch delay slots and CLOBBER_HIGH. 113 We'd need more elaborate liveness tracking to handle that 114 combination. */ 115 gcc_unreachable (); 116 else 117 for (i = first_regno; i < last_regno; i++) 118 { 119 SET_HARD_REG_BIT (current_live_regs, i); 120 CLEAR_HARD_REG_BIT (pending_dead_regs, i); 121 } 122 } 123 124 /* Find the number of the basic block with correct live register 125 information that starts closest to INSN. Return -1 if we couldn't 126 find such a basic block or the beginning is more than 127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for 128 an unlimited search. 129 130 The delay slot filling code destroys the control-flow graph so, 131 instead of finding the basic block containing INSN, we search 132 backwards toward a BARRIER where the live register information is 133 correct. */ 134 135 static int 136 find_basic_block (rtx_insn *insn, int search_limit) 137 { 138 /* Scan backwards to the previous BARRIER. Then see if we can find a 139 label that starts a basic block. Return the basic block number. */ 140 for (insn = prev_nonnote_insn (insn); 141 insn && !BARRIER_P (insn) && search_limit != 0; 142 insn = prev_nonnote_insn (insn), --search_limit) 143 ; 144 145 /* The closest BARRIER is too far away. */ 146 if (search_limit == 0) 147 return -1; 148 149 /* The start of the function. */ 150 else if (insn == 0) 151 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index; 152 153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach 154 anything other than a CODE_LABEL or note, we can't find this code. */ 155 for (insn = next_nonnote_insn (insn); 156 insn && LABEL_P (insn); 157 insn = next_nonnote_insn (insn)) 158 if (BLOCK_FOR_INSN (insn)) 159 return BLOCK_FOR_INSN (insn)->index; 160 161 return -1; 162 } 163 164 /* Similar to next_insn, but ignores insns in the delay slots of 165 an annulled branch. */ 166 167 static rtx_insn * 168 next_insn_no_annul (rtx_insn *insn) 169 { 170 if (insn) 171 { 172 /* If INSN is an annulled branch, skip any insns from the target 173 of the branch. */ 174 if (JUMP_P (insn) 175 && INSN_ANNULLED_BRANCH_P (insn) 176 && NEXT_INSN (PREV_INSN (insn)) != insn) 177 { 178 rtx_insn *next = NEXT_INSN (insn); 179 180 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next)) 181 && INSN_FROM_TARGET_P (next)) 182 { 183 insn = next; 184 next = NEXT_INSN (insn); 185 } 186 } 187 188 insn = NEXT_INSN (insn); 189 if (insn && NONJUMP_INSN_P (insn) 190 && GET_CODE (PATTERN (insn)) == SEQUENCE) 191 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 192 } 193 194 return insn; 195 } 196 197 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark 198 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS 199 is TRUE, resources used by the called routine will be included for 200 CALL_INSNs. */ 201 202 void 203 mark_referenced_resources (rtx x, struct resources *res, 204 bool include_delayed_effects) 205 { 206 enum rtx_code code = GET_CODE (x); 207 int i, j; 208 unsigned int r; 209 const char *format_ptr; 210 211 /* Handle leaf items for which we set resource flags. Also, special-case 212 CALL, SET and CLOBBER operators. */ 213 switch (code) 214 { 215 case CONST: 216 CASE_CONST_ANY: 217 case PC: 218 case SYMBOL_REF: 219 case LABEL_REF: 220 case DEBUG_INSN: 221 return; 222 223 case SUBREG: 224 if (!REG_P (SUBREG_REG (x))) 225 mark_referenced_resources (SUBREG_REG (x), res, false); 226 else 227 { 228 unsigned int regno = subreg_regno (x); 229 unsigned int last_regno = regno + subreg_nregs (x); 230 231 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER); 232 for (r = regno; r < last_regno; r++) 233 SET_HARD_REG_BIT (res->regs, r); 234 } 235 return; 236 237 case REG: 238 gcc_assert (HARD_REGISTER_P (x)); 239 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x)); 240 return; 241 242 case MEM: 243 /* If this memory shouldn't change, it really isn't referencing 244 memory. */ 245 if (! MEM_READONLY_P (x)) 246 res->memory = 1; 247 res->volatil |= MEM_VOLATILE_P (x); 248 249 /* Mark registers used to access memory. */ 250 mark_referenced_resources (XEXP (x, 0), res, false); 251 return; 252 253 case CC0: 254 res->cc = 1; 255 return; 256 257 case UNSPEC_VOLATILE: 258 case TRAP_IF: 259 case ASM_INPUT: 260 /* Traditional asm's are always volatile. */ 261 res->volatil = 1; 262 break; 263 264 case ASM_OPERANDS: 265 res->volatil |= MEM_VOLATILE_P (x); 266 267 /* For all ASM_OPERANDS, we must traverse the vector of input operands. 268 We cannot just fall through here since then we would be confused 269 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate 270 traditional asms unlike their normal usage. */ 271 272 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) 273 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false); 274 return; 275 276 case CALL: 277 /* The first operand will be a (MEM (xxx)) but doesn't really reference 278 memory. The second operand may be referenced, though. */ 279 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false); 280 mark_referenced_resources (XEXP (x, 1), res, false); 281 return; 282 283 case SET: 284 /* Usually, the first operand of SET is set, not referenced. But 285 registers used to access memory are referenced. SET_DEST is 286 also referenced if it is a ZERO_EXTRACT. */ 287 288 mark_referenced_resources (SET_SRC (x), res, false); 289 290 x = SET_DEST (x); 291 if (GET_CODE (x) == ZERO_EXTRACT 292 || GET_CODE (x) == STRICT_LOW_PART) 293 mark_referenced_resources (x, res, false); 294 else if (GET_CODE (x) == SUBREG) 295 x = SUBREG_REG (x); 296 if (MEM_P (x)) 297 mark_referenced_resources (XEXP (x, 0), res, false); 298 return; 299 300 case CLOBBER: 301 case CLOBBER_HIGH: 302 return; 303 304 case CALL_INSN: 305 if (include_delayed_effects) 306 { 307 /* A CALL references memory, the frame pointer if it exists, the 308 stack pointer, any global registers and any registers given in 309 USE insns immediately in front of the CALL. 310 311 However, we may have moved some of the parameter loading insns 312 into the delay slot of this CALL. If so, the USE's for them 313 don't count and should be skipped. */ 314 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x)); 315 rtx_sequence *sequence = 0; 316 int seq_size = 0; 317 int i; 318 319 /* If we are part of a delay slot sequence, point at the SEQUENCE. */ 320 if (NEXT_INSN (insn) != x) 321 { 322 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn))); 323 seq_size = sequence->len (); 324 gcc_assert (GET_CODE (sequence) == SEQUENCE); 325 } 326 327 res->memory = 1; 328 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM); 329 if (frame_pointer_needed) 330 { 331 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM); 332 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER) 333 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM); 334 } 335 336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 337 if (global_regs[i]) 338 SET_HARD_REG_BIT (res->regs, i); 339 340 /* Check for a REG_SETJMP. If it exists, then we must 341 assume that this call can need any register. 342 343 This is done to be more conservative about how we handle setjmp. 344 We assume that they both use and set all registers. Using all 345 registers ensures that a register will not be considered dead 346 just because it crosses a setjmp call. A register should be 347 considered dead only if the setjmp call returns nonzero. */ 348 if (find_reg_note (x, REG_SETJMP, NULL)) 349 SET_HARD_REG_SET (res->regs); 350 351 { 352 rtx link; 353 354 for (link = CALL_INSN_FUNCTION_USAGE (x); 355 link; 356 link = XEXP (link, 1)) 357 if (GET_CODE (XEXP (link, 0)) == USE) 358 { 359 for (i = 1; i < seq_size; i++) 360 { 361 rtx slot_pat = PATTERN (sequence->element (i)); 362 if (GET_CODE (slot_pat) == SET 363 && rtx_equal_p (SET_DEST (slot_pat), 364 XEXP (XEXP (link, 0), 0))) 365 break; 366 } 367 if (i >= seq_size) 368 mark_referenced_resources (XEXP (XEXP (link, 0), 0), 369 res, false); 370 } 371 } 372 } 373 374 /* ... fall through to other INSN processing ... */ 375 gcc_fallthrough (); 376 377 case INSN: 378 case JUMP_INSN: 379 380 if (GET_CODE (PATTERN (x)) == COND_EXEC) 381 /* In addition to the usual references, also consider all outputs 382 as referenced, to compensate for mark_set_resources treating 383 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART 384 handling, execpt that we got a partial incidence instead of a partial 385 width. */ 386 mark_set_resources (x, res, 0, 387 include_delayed_effects 388 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST); 389 390 if (! include_delayed_effects 391 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x))) 392 return; 393 394 /* No special processing, just speed up. */ 395 mark_referenced_resources (PATTERN (x), res, include_delayed_effects); 396 return; 397 398 default: 399 break; 400 } 401 402 /* Process each sub-expression and flag what it needs. */ 403 format_ptr = GET_RTX_FORMAT (code); 404 for (i = 0; i < GET_RTX_LENGTH (code); i++) 405 switch (*format_ptr++) 406 { 407 case 'e': 408 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects); 409 break; 410 411 case 'E': 412 for (j = 0; j < XVECLEN (x, i); j++) 413 mark_referenced_resources (XVECEXP (x, i, j), res, 414 include_delayed_effects); 415 break; 416 } 417 } 418 419 /* A subroutine of mark_target_live_regs. Search forward from TARGET 420 looking for registers that are set before they are used. These are dead. 421 Stop after passing a few conditional jumps, and/or a small 422 number of unconditional branches. */ 423 424 static rtx_insn * 425 find_dead_or_set_registers (rtx_insn *target, struct resources *res, 426 rtx *jump_target, int jump_count, 427 struct resources set, struct resources needed) 428 { 429 HARD_REG_SET scratch; 430 rtx_insn *insn; 431 rtx_insn *next_insn; 432 rtx_insn *jump_insn = 0; 433 int i; 434 435 for (insn = target; insn; insn = next_insn) 436 { 437 rtx_insn *this_insn = insn; 438 439 next_insn = NEXT_INSN (insn); 440 441 /* If this instruction can throw an exception, then we don't 442 know where we might end up next. That means that we have to 443 assume that whatever we have already marked as live really is 444 live. */ 445 if (can_throw_internal (insn)) 446 break; 447 448 switch (GET_CODE (insn)) 449 { 450 case CODE_LABEL: 451 /* After a label, any pending dead registers that weren't yet 452 used can be made dead. */ 453 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs); 454 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs); 455 CLEAR_HARD_REG_SET (pending_dead_regs); 456 457 continue; 458 459 case BARRIER: 460 case NOTE: 461 case DEBUG_INSN: 462 continue; 463 464 case INSN: 465 if (GET_CODE (PATTERN (insn)) == USE) 466 { 467 /* If INSN is a USE made by update_block, we care about the 468 underlying insn. Any registers set by the underlying insn 469 are live since the insn is being done somewhere else. */ 470 if (INSN_P (XEXP (PATTERN (insn), 0))) 471 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 472 MARK_SRC_DEST_CALL); 473 474 /* All other USE insns are to be ignored. */ 475 continue; 476 } 477 else if (GET_CODE (PATTERN (insn)) == CLOBBER) 478 continue; 479 else if (rtx_sequence *seq = 480 dyn_cast <rtx_sequence *> (PATTERN (insn))) 481 { 482 /* An unconditional jump can be used to fill the delay slot 483 of a call, so search for a JUMP_INSN in any position. */ 484 for (i = 0; i < seq->len (); i++) 485 { 486 this_insn = seq->insn (i); 487 if (JUMP_P (this_insn)) 488 break; 489 } 490 } 491 492 default: 493 break; 494 } 495 496 if (rtx_jump_insn *this_jump_insn = 497 dyn_cast <rtx_jump_insn *> (this_insn)) 498 { 499 if (jump_count++ < 10) 500 { 501 if (any_uncondjump_p (this_jump_insn) 502 || ANY_RETURN_P (PATTERN (this_jump_insn))) 503 { 504 rtx lab_or_return = this_jump_insn->jump_label (); 505 if (ANY_RETURN_P (lab_or_return)) 506 next_insn = NULL; 507 else 508 next_insn = as_a <rtx_insn *> (lab_or_return); 509 if (jump_insn == 0) 510 { 511 jump_insn = insn; 512 if (jump_target) 513 *jump_target = JUMP_LABEL (this_jump_insn); 514 } 515 } 516 else if (any_condjump_p (this_jump_insn)) 517 { 518 struct resources target_set, target_res; 519 struct resources fallthrough_res; 520 521 /* We can handle conditional branches here by following 522 both paths, and then IOR the results of the two paths 523 together, which will give us registers that are dead 524 on both paths. Since this is expensive, we give it 525 a much higher cost than unconditional branches. The 526 cost was chosen so that we will follow at most 1 527 conditional branch. */ 528 529 jump_count += 4; 530 if (jump_count >= 10) 531 break; 532 533 mark_referenced_resources (insn, &needed, true); 534 535 /* For an annulled branch, mark_set_resources ignores slots 536 filled by instructions from the target. This is correct 537 if the branch is not taken. Since we are following both 538 paths from the branch, we must also compute correct info 539 if the branch is taken. We do this by inverting all of 540 the INSN_FROM_TARGET_P bits, calling mark_set_resources, 541 and then inverting the INSN_FROM_TARGET_P bits again. */ 542 543 if (GET_CODE (PATTERN (insn)) == SEQUENCE 544 && INSN_ANNULLED_BRANCH_P (this_jump_insn)) 545 { 546 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn)); 547 for (i = 1; i < seq->len (); i++) 548 INSN_FROM_TARGET_P (seq->element (i)) 549 = ! INSN_FROM_TARGET_P (seq->element (i)); 550 551 target_set = set; 552 mark_set_resources (insn, &target_set, 0, 553 MARK_SRC_DEST_CALL); 554 555 for (i = 1; i < seq->len (); i++) 556 INSN_FROM_TARGET_P (seq->element (i)) 557 = ! INSN_FROM_TARGET_P (seq->element (i)); 558 559 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 560 } 561 else 562 { 563 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 564 target_set = set; 565 } 566 567 target_res = *res; 568 COPY_HARD_REG_SET (scratch, target_set.regs); 569 AND_COMPL_HARD_REG_SET (scratch, needed.regs); 570 AND_COMPL_HARD_REG_SET (target_res.regs, scratch); 571 572 fallthrough_res = *res; 573 COPY_HARD_REG_SET (scratch, set.regs); 574 AND_COMPL_HARD_REG_SET (scratch, needed.regs); 575 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch); 576 577 if (!ANY_RETURN_P (this_jump_insn->jump_label ())) 578 find_dead_or_set_registers 579 (this_jump_insn->jump_target (), 580 &target_res, 0, jump_count, target_set, needed); 581 find_dead_or_set_registers (next_insn, 582 &fallthrough_res, 0, jump_count, 583 set, needed); 584 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs); 585 AND_HARD_REG_SET (res->regs, fallthrough_res.regs); 586 break; 587 } 588 else 589 break; 590 } 591 else 592 { 593 /* Don't try this optimization if we expired our jump count 594 above, since that would mean there may be an infinite loop 595 in the function being compiled. */ 596 jump_insn = 0; 597 break; 598 } 599 } 600 601 mark_referenced_resources (insn, &needed, true); 602 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 603 604 COPY_HARD_REG_SET (scratch, set.regs); 605 AND_COMPL_HARD_REG_SET (scratch, needed.regs); 606 AND_COMPL_HARD_REG_SET (res->regs, scratch); 607 } 608 609 return jump_insn; 610 } 611 612 /* Given X, a part of an insn, and a pointer to a `struct resource', 613 RES, indicate which resources are modified by the insn. If 614 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially 615 set by the called routine. 616 617 If IN_DEST is nonzero, it means we are inside a SET. Otherwise, 618 objects are being referenced instead of set. 619 620 We never mark the insn as modifying the condition code unless it explicitly 621 SETs CC0 even though this is not totally correct. The reason for this is 622 that we require a SET of CC0 to immediately precede the reference to CC0. 623 So if some other insn sets CC0 as a side-effect, we know it cannot affect 624 our computation and thus may be placed in a delay slot. */ 625 626 void 627 mark_set_resources (rtx x, struct resources *res, int in_dest, 628 enum mark_resource_type mark_type) 629 { 630 enum rtx_code code; 631 int i, j; 632 unsigned int r; 633 const char *format_ptr; 634 635 restart: 636 637 code = GET_CODE (x); 638 639 switch (code) 640 { 641 case NOTE: 642 case BARRIER: 643 case CODE_LABEL: 644 case USE: 645 CASE_CONST_ANY: 646 case LABEL_REF: 647 case SYMBOL_REF: 648 case CONST: 649 case PC: 650 case DEBUG_INSN: 651 /* These don't set any resources. */ 652 return; 653 654 case CC0: 655 if (in_dest) 656 res->cc = 1; 657 return; 658 659 case CALL_INSN: 660 /* Called routine modifies the condition code, memory, any registers 661 that aren't saved across calls, global registers and anything 662 explicitly CLOBBERed immediately after the CALL_INSN. */ 663 664 if (mark_type == MARK_SRC_DEST_CALL) 665 { 666 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x); 667 rtx link; 668 HARD_REG_SET regs; 669 670 res->cc = res->memory = 1; 671 672 get_call_reg_set_usage (call_insn, ®s, regs_invalidated_by_call); 673 IOR_HARD_REG_SET (res->regs, regs); 674 675 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); 676 link; link = XEXP (link, 1)) 677 { 678 /* We could support CLOBBER_HIGH and treat it in the same way as 679 HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that 680 yet. */ 681 gcc_assert (GET_CODE (XEXP (link, 0)) != CLOBBER_HIGH); 682 if (GET_CODE (XEXP (link, 0)) == CLOBBER) 683 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 684 MARK_SRC_DEST); 685 } 686 687 /* Check for a REG_SETJMP. If it exists, then we must 688 assume that this call can clobber any register. */ 689 if (find_reg_note (call_insn, REG_SETJMP, NULL)) 690 SET_HARD_REG_SET (res->regs); 691 } 692 693 /* ... and also what its RTL says it modifies, if anything. */ 694 gcc_fallthrough (); 695 696 case JUMP_INSN: 697 case INSN: 698 699 /* An insn consisting of just a CLOBBER (or USE) is just for flow 700 and doesn't actually do anything, so we ignore it. */ 701 702 if (mark_type != MARK_SRC_DEST_CALL 703 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x))) 704 return; 705 706 x = PATTERN (x); 707 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER) 708 goto restart; 709 return; 710 711 case SET: 712 /* If the source of a SET is a CALL, this is actually done by 713 the called routine. So only include it if we are to include the 714 effects of the calling routine. */ 715 716 mark_set_resources (SET_DEST (x), res, 717 (mark_type == MARK_SRC_DEST_CALL 718 || GET_CODE (SET_SRC (x)) != CALL), 719 mark_type); 720 721 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST); 722 return; 723 724 case CLOBBER: 725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); 726 return; 727 728 case CLOBBER_HIGH: 729 /* No current target supports both branch delay slots and CLOBBER_HIGH. 730 We'd need more elaborate liveness tracking to handle that 731 combination. */ 732 gcc_unreachable (); 733 734 case SEQUENCE: 735 { 736 rtx_sequence *seq = as_a <rtx_sequence *> (x); 737 rtx control = seq->element (0); 738 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control); 739 740 mark_set_resources (control, res, 0, mark_type); 741 for (i = seq->len () - 1; i >= 0; --i) 742 { 743 rtx elt = seq->element (i); 744 if (!annul_p && INSN_FROM_TARGET_P (elt)) 745 mark_set_resources (elt, res, 0, mark_type); 746 } 747 } 748 return; 749 750 case POST_INC: 751 case PRE_INC: 752 case POST_DEC: 753 case PRE_DEC: 754 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); 755 return; 756 757 case PRE_MODIFY: 758 case POST_MODIFY: 759 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); 760 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST); 761 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST); 762 return; 763 764 case SIGN_EXTRACT: 765 case ZERO_EXTRACT: 766 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST); 767 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST); 768 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST); 769 return; 770 771 case MEM: 772 if (in_dest) 773 { 774 res->memory = 1; 775 res->volatil |= MEM_VOLATILE_P (x); 776 } 777 778 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST); 779 return; 780 781 case SUBREG: 782 if (in_dest) 783 { 784 if (!REG_P (SUBREG_REG (x))) 785 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type); 786 else 787 { 788 unsigned int regno = subreg_regno (x); 789 unsigned int last_regno = regno + subreg_nregs (x); 790 791 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER); 792 for (r = regno; r < last_regno; r++) 793 SET_HARD_REG_BIT (res->regs, r); 794 } 795 } 796 return; 797 798 case REG: 799 if (in_dest) 800 { 801 gcc_assert (HARD_REGISTER_P (x)); 802 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x)); 803 } 804 return; 805 806 case UNSPEC_VOLATILE: 807 case ASM_INPUT: 808 /* Traditional asm's are always volatile. */ 809 res->volatil = 1; 810 return; 811 812 case TRAP_IF: 813 res->volatil = 1; 814 break; 815 816 case ASM_OPERANDS: 817 res->volatil |= MEM_VOLATILE_P (x); 818 819 /* For all ASM_OPERANDS, we must traverse the vector of input operands. 820 We cannot just fall through here since then we would be confused 821 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate 822 traditional asms unlike their normal usage. */ 823 824 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) 825 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest, 826 MARK_SRC_DEST); 827 return; 828 829 default: 830 break; 831 } 832 833 /* Process each sub-expression and flag what it needs. */ 834 format_ptr = GET_RTX_FORMAT (code); 835 for (i = 0; i < GET_RTX_LENGTH (code); i++) 836 switch (*format_ptr++) 837 { 838 case 'e': 839 mark_set_resources (XEXP (x, i), res, in_dest, mark_type); 840 break; 841 842 case 'E': 843 for (j = 0; j < XVECLEN (x, i); j++) 844 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type); 845 break; 846 } 847 } 848 849 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */ 850 851 static bool 852 return_insn_p (const_rtx insn) 853 { 854 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn))) 855 return true; 856 857 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 858 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0)); 859 860 return false; 861 } 862 863 /* Set the resources that are live at TARGET. 864 865 If TARGET is zero, we refer to the end of the current function and can 866 return our precomputed value. 867 868 Otherwise, we try to find out what is live by consulting the basic block 869 information. This is tricky, because we must consider the actions of 870 reload and jump optimization, which occur after the basic block information 871 has been computed. 872 873 Accordingly, we proceed as follows:: 874 875 We find the previous BARRIER and look at all immediately following labels 876 (with no intervening active insns) to see if any of them start a basic 877 block. If we hit the start of the function first, we use block 0. 878 879 Once we have found a basic block and a corresponding first insn, we can 880 accurately compute the live status (by starting at a label following a 881 BARRIER, we are immune to actions taken by reload and jump.) Then we 882 scan all insns between that point and our target. For each CLOBBER (or 883 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate 884 registers are dead. For a SET, mark them as live. 885 886 We have to be careful when using REG_DEAD notes because they are not 887 updated by such things as find_equiv_reg. So keep track of registers 888 marked as dead that haven't been assigned to, and mark them dead at the 889 next CODE_LABEL since reload and jump won't propagate values across labels. 890 891 If we cannot find the start of a basic block (should be a very rare 892 case, if it can happen at all), mark everything as potentially live. 893 894 Next, scan forward from TARGET looking for things set or clobbered 895 before they are used. These are not live. 896 897 Because we can be called many times on the same target, save our results 898 in a hash table indexed by INSN_UID. This is only done if the function 899 init_resource_info () was invoked before we are called. */ 900 901 void 902 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res) 903 { 904 int b = -1; 905 unsigned int i; 906 struct target_info *tinfo = NULL; 907 rtx_insn *insn; 908 rtx jump_target; 909 HARD_REG_SET scratch; 910 struct resources set, needed; 911 912 /* Handle end of function. */ 913 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return)) 914 { 915 *res = end_of_function_needs; 916 return; 917 } 918 919 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an 920 instruction. */ 921 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return); 922 923 /* Handle return insn. */ 924 if (return_insn_p (target)) 925 { 926 *res = end_of_function_needs; 927 mark_referenced_resources (target, res, false); 928 return; 929 } 930 931 /* We have to assume memory is needed, but the CC isn't. */ 932 res->memory = 1; 933 res->volatil = 0; 934 res->cc = 0; 935 936 /* See if we have computed this value already. */ 937 if (target_hash_table != NULL) 938 { 939 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; 940 tinfo; tinfo = tinfo->next) 941 if (tinfo->uid == INSN_UID (target)) 942 break; 943 944 /* Start by getting the basic block number. If we have saved 945 information, we can get it from there unless the insn at the 946 start of the basic block has been deleted. */ 947 if (tinfo && tinfo->block != -1 948 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ()) 949 b = tinfo->block; 950 } 951 952 if (b == -1) 953 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH); 954 955 if (target_hash_table != NULL) 956 { 957 if (tinfo) 958 { 959 /* If the information is up-to-date, use it. Otherwise, we will 960 update it below. */ 961 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b]) 962 { 963 COPY_HARD_REG_SET (res->regs, tinfo->live_regs); 964 return; 965 } 966 } 967 else 968 { 969 /* Allocate a place to put our results and chain it into the 970 hash table. */ 971 tinfo = XNEW (struct target_info); 972 tinfo->uid = INSN_UID (target); 973 tinfo->block = b; 974 tinfo->next 975 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; 976 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo; 977 } 978 } 979 980 CLEAR_HARD_REG_SET (pending_dead_regs); 981 982 /* If we found a basic block, get the live registers from it and update 983 them with anything set or killed between its start and the insn before 984 TARGET; this custom life analysis is really about registers so we need 985 to use the LR problem. Otherwise, we must assume everything is live. */ 986 if (b != -1) 987 { 988 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b)); 989 rtx_insn *start_insn, *stop_insn; 990 df_ref def; 991 992 /* Compute hard regs live at start of block. */ 993 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live); 994 FOR_EACH_ARTIFICIAL_DEF (def, b) 995 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) 996 SET_HARD_REG_BIT (current_live_regs, DF_REF_REGNO (def)); 997 998 /* Get starting and ending insn, handling the case where each might 999 be a SEQUENCE. */ 1000 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ? 1001 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b))); 1002 stop_insn = target; 1003 1004 if (NONJUMP_INSN_P (start_insn) 1005 && GET_CODE (PATTERN (start_insn)) == SEQUENCE) 1006 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0); 1007 1008 if (NONJUMP_INSN_P (stop_insn) 1009 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE) 1010 stop_insn = next_insn (PREV_INSN (stop_insn)); 1011 1012 for (insn = start_insn; insn != stop_insn; 1013 insn = next_insn_no_annul (insn)) 1014 { 1015 rtx link; 1016 rtx_insn *real_insn = insn; 1017 enum rtx_code code = GET_CODE (insn); 1018 1019 if (DEBUG_INSN_P (insn)) 1020 continue; 1021 1022 /* If this insn is from the target of a branch, it isn't going to 1023 be used in the sequel. If it is used in both cases, this 1024 test will not be true. */ 1025 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN) 1026 && INSN_FROM_TARGET_P (insn)) 1027 continue; 1028 1029 /* If this insn is a USE made by update_block, we care about the 1030 underlying insn. */ 1031 if (code == INSN 1032 && GET_CODE (PATTERN (insn)) == USE 1033 && INSN_P (XEXP (PATTERN (insn), 0))) 1034 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0)); 1035 1036 if (CALL_P (real_insn)) 1037 { 1038 /* Values in call-clobbered registers survive a COND_EXEC CALL 1039 if that is not executed; this matters for resoure use because 1040 they may be used by a complementarily (or more strictly) 1041 predicated instruction, or if the CALL is NORETURN. */ 1042 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC) 1043 { 1044 HARD_REG_SET regs_invalidated_by_this_call; 1045 get_call_reg_set_usage (real_insn, 1046 ®s_invalidated_by_this_call, 1047 regs_invalidated_by_call); 1048 /* CALL clobbers all call-used regs that aren't fixed except 1049 sp, ap, and fp. Do this before setting the result of the 1050 call live. */ 1051 AND_COMPL_HARD_REG_SET (current_live_regs, 1052 regs_invalidated_by_this_call); 1053 } 1054 1055 /* A CALL_INSN sets any global register live, since it may 1056 have been modified by the call. */ 1057 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 1058 if (global_regs[i]) 1059 SET_HARD_REG_BIT (current_live_regs, i); 1060 } 1061 1062 /* Mark anything killed in an insn to be deadened at the next 1063 label. Ignore USE insns; the only REG_DEAD notes will be for 1064 parameters. But they might be early. A CALL_INSN will usually 1065 clobber registers used for parameters. It isn't worth bothering 1066 with the unlikely case when it won't. */ 1067 if ((NONJUMP_INSN_P (real_insn) 1068 && GET_CODE (PATTERN (real_insn)) != USE 1069 && GET_CODE (PATTERN (real_insn)) != CLOBBER) 1070 || JUMP_P (real_insn) 1071 || CALL_P (real_insn)) 1072 { 1073 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) 1074 if (REG_NOTE_KIND (link) == REG_DEAD 1075 && REG_P (XEXP (link, 0)) 1076 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) 1077 add_to_hard_reg_set (&pending_dead_regs, 1078 GET_MODE (XEXP (link, 0)), 1079 REGNO (XEXP (link, 0))); 1080 1081 note_stores (PATTERN (real_insn), update_live_status, NULL); 1082 1083 /* If any registers were unused after this insn, kill them. 1084 These notes will always be accurate. */ 1085 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) 1086 if (REG_NOTE_KIND (link) == REG_UNUSED 1087 && REG_P (XEXP (link, 0)) 1088 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) 1089 remove_from_hard_reg_set (¤t_live_regs, 1090 GET_MODE (XEXP (link, 0)), 1091 REGNO (XEXP (link, 0))); 1092 } 1093 1094 else if (LABEL_P (real_insn)) 1095 { 1096 basic_block bb; 1097 1098 /* A label clobbers the pending dead registers since neither 1099 reload nor jump will propagate a value across a label. */ 1100 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs); 1101 CLEAR_HARD_REG_SET (pending_dead_regs); 1102 1103 /* We must conservatively assume that all registers that used 1104 to be live here still are. The fallthrough edge may have 1105 left a live register uninitialized. */ 1106 bb = BLOCK_FOR_INSN (real_insn); 1107 if (bb) 1108 { 1109 HARD_REG_SET extra_live; 1110 1111 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb)); 1112 IOR_HARD_REG_SET (current_live_regs, extra_live); 1113 } 1114 } 1115 1116 /* The beginning of the epilogue corresponds to the end of the 1117 RTL chain when there are no epilogue insns. Certain resources 1118 are implicitly required at that point. */ 1119 else if (NOTE_P (real_insn) 1120 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG) 1121 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs); 1122 } 1123 1124 COPY_HARD_REG_SET (res->regs, current_live_regs); 1125 if (tinfo != NULL) 1126 { 1127 tinfo->block = b; 1128 tinfo->bb_tick = bb_ticks[b]; 1129 } 1130 } 1131 else 1132 /* We didn't find the start of a basic block. Assume everything 1133 in use. This should happen only extremely rarely. */ 1134 SET_HARD_REG_SET (res->regs); 1135 1136 CLEAR_RESOURCE (&set); 1137 CLEAR_RESOURCE (&needed); 1138 1139 rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target, 1140 0, set, needed); 1141 1142 /* If we hit an unconditional branch, we have another way of finding out 1143 what is live: we can see what is live at the branch target and include 1144 anything used but not set before the branch. We add the live 1145 resources found using the test below to those found until now. */ 1146 1147 if (jump_insn) 1148 { 1149 struct resources new_resources; 1150 rtx_insn *stop_insn = next_active_insn (jump_insn); 1151 1152 if (!ANY_RETURN_P (jump_target)) 1153 jump_target = next_active_insn (as_a<rtx_insn *> (jump_target)); 1154 mark_target_live_regs (insns, jump_target, &new_resources); 1155 CLEAR_RESOURCE (&set); 1156 CLEAR_RESOURCE (&needed); 1157 1158 /* Include JUMP_INSN in the needed registers. */ 1159 for (insn = target; insn != stop_insn; insn = next_active_insn (insn)) 1160 { 1161 mark_referenced_resources (insn, &needed, true); 1162 1163 COPY_HARD_REG_SET (scratch, needed.regs); 1164 AND_COMPL_HARD_REG_SET (scratch, set.regs); 1165 IOR_HARD_REG_SET (new_resources.regs, scratch); 1166 1167 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 1168 } 1169 1170 IOR_HARD_REG_SET (res->regs, new_resources.regs); 1171 } 1172 1173 if (tinfo != NULL) 1174 { 1175 COPY_HARD_REG_SET (tinfo->live_regs, res->regs); 1176 } 1177 } 1178 1179 /* Initialize the resources required by mark_target_live_regs (). 1180 This should be invoked before the first call to mark_target_live_regs. */ 1181 1182 void 1183 init_resource_info (rtx_insn *epilogue_insn) 1184 { 1185 int i; 1186 basic_block bb; 1187 1188 /* Indicate what resources are required to be valid at the end of the current 1189 function. The condition code never is and memory always is. 1190 The stack pointer is needed unless EXIT_IGNORE_STACK is true 1191 and there is an epilogue that restores the original stack pointer 1192 from the frame pointer. Registers used to return the function value 1193 are needed. Registers holding global variables are needed. */ 1194 1195 end_of_function_needs.cc = 0; 1196 end_of_function_needs.memory = 1; 1197 CLEAR_HARD_REG_SET (end_of_function_needs.regs); 1198 1199 if (frame_pointer_needed) 1200 { 1201 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM); 1202 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER) 1203 SET_HARD_REG_BIT (end_of_function_needs.regs, 1204 HARD_FRAME_POINTER_REGNUM); 1205 } 1206 if (!(frame_pointer_needed 1207 && EXIT_IGNORE_STACK 1208 && epilogue_insn 1209 && !crtl->sp_is_unchanging)) 1210 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM); 1211 1212 if (crtl->return_rtx != 0) 1213 mark_referenced_resources (crtl->return_rtx, 1214 &end_of_function_needs, true); 1215 1216 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 1217 if (global_regs[i] || EPILOGUE_USES (i)) 1218 SET_HARD_REG_BIT (end_of_function_needs.regs, i); 1219 1220 /* The registers required to be live at the end of the function are 1221 represented in the flow information as being dead just prior to 1222 reaching the end of the function. For example, the return of a value 1223 might be represented by a USE of the return register immediately 1224 followed by an unconditional jump to the return label where the 1225 return label is the end of the RTL chain. The end of the RTL chain 1226 is then taken to mean that the return register is live. 1227 1228 This sequence is no longer maintained when epilogue instructions are 1229 added to the RTL chain. To reconstruct the original meaning, the 1230 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the 1231 point where these registers become live (start_of_epilogue_needs). 1232 If epilogue instructions are present, the registers set by those 1233 instructions won't have been processed by flow. Thus, those 1234 registers are additionally required at the end of the RTL chain 1235 (end_of_function_needs). */ 1236 1237 start_of_epilogue_needs = end_of_function_needs; 1238 1239 while ((epilogue_insn = next_nonnote_insn (epilogue_insn))) 1240 { 1241 mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1242 MARK_SRC_DEST_CALL); 1243 if (return_insn_p (epilogue_insn)) 1244 break; 1245 } 1246 1247 /* Allocate and initialize the tables used by mark_target_live_regs. */ 1248 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME); 1249 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun)); 1250 1251 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */ 1252 FOR_EACH_BB_FN (bb, cfun) 1253 if (LABEL_P (BB_HEAD (bb))) 1254 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb; 1255 } 1256 1257 /* Free up the resources allocated to mark_target_live_regs (). This 1258 should be invoked after the last call to mark_target_live_regs (). */ 1259 1260 void 1261 free_resource_info (void) 1262 { 1263 basic_block bb; 1264 1265 if (target_hash_table != NULL) 1266 { 1267 int i; 1268 1269 for (i = 0; i < TARGET_HASH_PRIME; ++i) 1270 { 1271 struct target_info *ti = target_hash_table[i]; 1272 1273 while (ti) 1274 { 1275 struct target_info *next = ti->next; 1276 free (ti); 1277 ti = next; 1278 } 1279 } 1280 1281 free (target_hash_table); 1282 target_hash_table = NULL; 1283 } 1284 1285 if (bb_ticks != NULL) 1286 { 1287 free (bb_ticks); 1288 bb_ticks = NULL; 1289 } 1290 1291 FOR_EACH_BB_FN (bb, cfun) 1292 if (LABEL_P (BB_HEAD (bb))) 1293 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL; 1294 } 1295 1296 /* Clear any hashed information that we have stored for INSN. */ 1297 1298 void 1299 clear_hashed_info_for_insn (rtx_insn *insn) 1300 { 1301 struct target_info *tinfo; 1302 1303 if (target_hash_table != NULL) 1304 { 1305 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME]; 1306 tinfo; tinfo = tinfo->next) 1307 if (tinfo->uid == INSN_UID (insn)) 1308 break; 1309 1310 if (tinfo) 1311 tinfo->block = -1; 1312 } 1313 } 1314 1315 /* Increment the tick count for the basic block that contains INSN. */ 1316 1317 void 1318 incr_ticks_for_insn (rtx_insn *insn) 1319 { 1320 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH); 1321 1322 if (b != -1) 1323 bb_ticks[b]++; 1324 } 1325 1326 /* Add TRIAL to the set of resources used at the end of the current 1327 function. */ 1328 void 1329 mark_end_of_function_resources (rtx trial, bool include_delayed_effects) 1330 { 1331 mark_referenced_resources (trial, &end_of_function_needs, 1332 include_delayed_effects); 1333 } 1334