1 /* Definitions for computing resource usage of specific insns. 2 Copyright (C) 1999-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "df.h" 26 #include "memmodel.h" 27 #include "tm_p.h" 28 #include "regs.h" 29 #include "emit-rtl.h" 30 #include "resource.h" 31 #include "insn-attr.h" 32 #include "function-abi.h" 33 34 /* This structure is used to record liveness information at the targets or 35 fallthrough insns of branches. We will most likely need the information 36 at targets again, so save them in a hash table rather than recomputing them 37 each time. */ 38 39 struct target_info 40 { 41 int uid; /* INSN_UID of target. */ 42 struct target_info *next; /* Next info for same hash bucket. */ 43 HARD_REG_SET live_regs; /* Registers live at target. */ 44 int block; /* Basic block number containing target. */ 45 int bb_tick; /* Generation count of basic block info. */ 46 }; 47 48 #define TARGET_HASH_PRIME 257 49 50 /* Indicates what resources are required at the beginning of the epilogue. */ 51 static struct resources start_of_epilogue_needs; 52 53 /* Indicates what resources are required at function end. */ 54 static struct resources end_of_function_needs; 55 56 /* Define the hash table itself. */ 57 static struct target_info **target_hash_table = NULL; 58 59 /* For each basic block, we maintain a generation number of its basic 60 block info, which is updated each time we move an insn from the 61 target of a jump. This is the generation number indexed by block 62 number. */ 63 64 static int *bb_ticks; 65 66 /* Marks registers possibly live at the current place being scanned by 67 mark_target_live_regs. Also used by update_live_status. */ 68 69 static HARD_REG_SET current_live_regs; 70 71 /* Marks registers for which we have seen a REG_DEAD note but no assignment. 72 Also only used by the next two functions. */ 73 74 static HARD_REG_SET pending_dead_regs; 75 76 static void update_live_status (rtx, const_rtx, void *); 77 static int find_basic_block (rtx_insn *, int); 78 static rtx_insn *next_insn_no_annul (rtx_insn *); 79 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*, 80 rtx *, int, struct resources, 81 struct resources); 82 83 /* Utility function called from mark_target_live_regs via note_stores. 84 It deadens any CLOBBERed registers and livens any SET registers. */ 85 86 static void 87 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED) 88 { 89 int first_regno, last_regno; 90 int i; 91 92 if (!REG_P (dest) 93 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest)))) 94 return; 95 96 if (GET_CODE (dest) == SUBREG) 97 { 98 first_regno = subreg_regno (dest); 99 last_regno = first_regno + subreg_nregs (dest); 100 101 } 102 else 103 { 104 first_regno = REGNO (dest); 105 last_regno = END_REGNO (dest); 106 } 107 108 if (GET_CODE (x) == CLOBBER) 109 for (i = first_regno; i < last_regno; i++) 110 CLEAR_HARD_REG_BIT (current_live_regs, i); 111 else 112 for (i = first_regno; i < last_regno; i++) 113 { 114 SET_HARD_REG_BIT (current_live_regs, i); 115 CLEAR_HARD_REG_BIT (pending_dead_regs, i); 116 } 117 } 118 119 /* Find the number of the basic block with correct live register 120 information that starts closest to INSN. Return -1 if we couldn't 121 find such a basic block or the beginning is more than 122 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for 123 an unlimited search. 124 125 The delay slot filling code destroys the control-flow graph so, 126 instead of finding the basic block containing INSN, we search 127 backwards toward a BARRIER where the live register information is 128 correct. */ 129 130 static int 131 find_basic_block (rtx_insn *insn, int search_limit) 132 { 133 /* Scan backwards to the previous BARRIER. Then see if we can find a 134 label that starts a basic block. Return the basic block number. */ 135 for (insn = prev_nonnote_insn (insn); 136 insn && !BARRIER_P (insn) && search_limit != 0; 137 insn = prev_nonnote_insn (insn), --search_limit) 138 ; 139 140 /* The closest BARRIER is too far away. */ 141 if (search_limit == 0) 142 return -1; 143 144 /* The start of the function. */ 145 else if (insn == 0) 146 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index; 147 148 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach 149 anything other than a CODE_LABEL or note, we can't find this code. */ 150 for (insn = next_nonnote_insn (insn); 151 insn && LABEL_P (insn); 152 insn = next_nonnote_insn (insn)) 153 if (BLOCK_FOR_INSN (insn)) 154 return BLOCK_FOR_INSN (insn)->index; 155 156 return -1; 157 } 158 159 /* Similar to next_insn, but ignores insns in the delay slots of 160 an annulled branch. */ 161 162 static rtx_insn * 163 next_insn_no_annul (rtx_insn *insn) 164 { 165 if (insn) 166 { 167 /* If INSN is an annulled branch, skip any insns from the target 168 of the branch. */ 169 if (JUMP_P (insn) 170 && INSN_ANNULLED_BRANCH_P (insn) 171 && NEXT_INSN (PREV_INSN (insn)) != insn) 172 { 173 rtx_insn *next = NEXT_INSN (insn); 174 175 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next)) 176 && INSN_FROM_TARGET_P (next)) 177 { 178 insn = next; 179 next = NEXT_INSN (insn); 180 } 181 } 182 183 insn = NEXT_INSN (insn); 184 if (insn && NONJUMP_INSN_P (insn) 185 && GET_CODE (PATTERN (insn)) == SEQUENCE) 186 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 187 } 188 189 return insn; 190 } 191 192 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark 193 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS 194 is TRUE, resources used by the called routine will be included for 195 CALL_INSNs. */ 196 197 void 198 mark_referenced_resources (rtx x, struct resources *res, 199 bool include_delayed_effects) 200 { 201 enum rtx_code code = GET_CODE (x); 202 int i, j; 203 unsigned int r; 204 const char *format_ptr; 205 206 /* Handle leaf items for which we set resource flags. Also, special-case 207 CALL, SET and CLOBBER operators. */ 208 switch (code) 209 { 210 case CONST: 211 CASE_CONST_ANY: 212 case PC: 213 case SYMBOL_REF: 214 case LABEL_REF: 215 case DEBUG_INSN: 216 return; 217 218 case SUBREG: 219 if (!REG_P (SUBREG_REG (x))) 220 mark_referenced_resources (SUBREG_REG (x), res, false); 221 else 222 { 223 unsigned int regno = subreg_regno (x); 224 unsigned int last_regno = regno + subreg_nregs (x); 225 226 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER); 227 for (r = regno; r < last_regno; r++) 228 SET_HARD_REG_BIT (res->regs, r); 229 } 230 return; 231 232 case REG: 233 gcc_assert (HARD_REGISTER_P (x)); 234 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x)); 235 return; 236 237 case MEM: 238 /* If this memory shouldn't change, it really isn't referencing 239 memory. */ 240 if (! MEM_READONLY_P (x)) 241 res->memory = 1; 242 res->volatil |= MEM_VOLATILE_P (x); 243 244 /* Mark registers used to access memory. */ 245 mark_referenced_resources (XEXP (x, 0), res, false); 246 return; 247 248 case CC0: 249 res->cc = 1; 250 return; 251 252 case UNSPEC_VOLATILE: 253 case TRAP_IF: 254 case ASM_INPUT: 255 /* Traditional asm's are always volatile. */ 256 res->volatil = 1; 257 break; 258 259 case ASM_OPERANDS: 260 res->volatil |= MEM_VOLATILE_P (x); 261 262 /* For all ASM_OPERANDS, we must traverse the vector of input operands. 263 We cannot just fall through here since then we would be confused 264 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate 265 traditional asms unlike their normal usage. */ 266 267 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) 268 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false); 269 return; 270 271 case CALL: 272 /* The first operand will be a (MEM (xxx)) but doesn't really reference 273 memory. The second operand may be referenced, though. */ 274 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false); 275 mark_referenced_resources (XEXP (x, 1), res, false); 276 return; 277 278 case SET: 279 /* Usually, the first operand of SET is set, not referenced. But 280 registers used to access memory are referenced. SET_DEST is 281 also referenced if it is a ZERO_EXTRACT. */ 282 283 mark_referenced_resources (SET_SRC (x), res, false); 284 285 x = SET_DEST (x); 286 if (GET_CODE (x) == ZERO_EXTRACT 287 || GET_CODE (x) == STRICT_LOW_PART) 288 mark_referenced_resources (x, res, false); 289 else if (GET_CODE (x) == SUBREG) 290 x = SUBREG_REG (x); 291 if (MEM_P (x)) 292 mark_referenced_resources (XEXP (x, 0), res, false); 293 return; 294 295 case CLOBBER: 296 return; 297 298 case CALL_INSN: 299 if (include_delayed_effects) 300 { 301 /* A CALL references memory, the frame pointer if it exists, the 302 stack pointer, any global registers and any registers given in 303 USE insns immediately in front of the CALL. 304 305 However, we may have moved some of the parameter loading insns 306 into the delay slot of this CALL. If so, the USE's for them 307 don't count and should be skipped. */ 308 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x)); 309 rtx_sequence *sequence = 0; 310 int seq_size = 0; 311 int i; 312 313 /* If we are part of a delay slot sequence, point at the SEQUENCE. */ 314 if (NEXT_INSN (insn) != x) 315 { 316 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn))); 317 seq_size = sequence->len (); 318 gcc_assert (GET_CODE (sequence) == SEQUENCE); 319 } 320 321 res->memory = 1; 322 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM); 323 if (frame_pointer_needed) 324 { 325 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM); 326 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER) 327 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM); 328 } 329 330 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 331 if (global_regs[i]) 332 SET_HARD_REG_BIT (res->regs, i); 333 334 /* Check for a REG_SETJMP. If it exists, then we must 335 assume that this call can need any register. 336 337 This is done to be more conservative about how we handle setjmp. 338 We assume that they both use and set all registers. Using all 339 registers ensures that a register will not be considered dead 340 just because it crosses a setjmp call. A register should be 341 considered dead only if the setjmp call returns nonzero. */ 342 if (find_reg_note (x, REG_SETJMP, NULL)) 343 SET_HARD_REG_SET (res->regs); 344 345 { 346 rtx link; 347 348 for (link = CALL_INSN_FUNCTION_USAGE (x); 349 link; 350 link = XEXP (link, 1)) 351 if (GET_CODE (XEXP (link, 0)) == USE) 352 { 353 for (i = 1; i < seq_size; i++) 354 { 355 rtx slot_pat = PATTERN (sequence->element (i)); 356 if (GET_CODE (slot_pat) == SET 357 && rtx_equal_p (SET_DEST (slot_pat), 358 XEXP (XEXP (link, 0), 0))) 359 break; 360 } 361 if (i >= seq_size) 362 mark_referenced_resources (XEXP (XEXP (link, 0), 0), 363 res, false); 364 } 365 } 366 } 367 368 /* ... fall through to other INSN processing ... */ 369 gcc_fallthrough (); 370 371 case INSN: 372 case JUMP_INSN: 373 374 if (GET_CODE (PATTERN (x)) == COND_EXEC) 375 /* In addition to the usual references, also consider all outputs 376 as referenced, to compensate for mark_set_resources treating 377 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART 378 handling, execpt that we got a partial incidence instead of a partial 379 width. */ 380 mark_set_resources (x, res, 0, 381 include_delayed_effects 382 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST); 383 384 if (! include_delayed_effects 385 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x))) 386 return; 387 388 /* No special processing, just speed up. */ 389 mark_referenced_resources (PATTERN (x), res, include_delayed_effects); 390 return; 391 392 default: 393 break; 394 } 395 396 /* Process each sub-expression and flag what it needs. */ 397 format_ptr = GET_RTX_FORMAT (code); 398 for (i = 0; i < GET_RTX_LENGTH (code); i++) 399 switch (*format_ptr++) 400 { 401 case 'e': 402 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects); 403 break; 404 405 case 'E': 406 for (j = 0; j < XVECLEN (x, i); j++) 407 mark_referenced_resources (XVECEXP (x, i, j), res, 408 include_delayed_effects); 409 break; 410 } 411 } 412 413 /* A subroutine of mark_target_live_regs. Search forward from TARGET 414 looking for registers that are set before they are used. These are dead. 415 Stop after passing a few conditional jumps, and/or a small 416 number of unconditional branches. */ 417 418 static rtx_insn * 419 find_dead_or_set_registers (rtx_insn *target, struct resources *res, 420 rtx *jump_target, int jump_count, 421 struct resources set, struct resources needed) 422 { 423 HARD_REG_SET scratch; 424 rtx_insn *insn; 425 rtx_insn *next_insn; 426 rtx_insn *jump_insn = 0; 427 int i; 428 429 for (insn = target; insn; insn = next_insn) 430 { 431 rtx_insn *this_insn = insn; 432 433 next_insn = NEXT_INSN (insn); 434 435 /* If this instruction can throw an exception, then we don't 436 know where we might end up next. That means that we have to 437 assume that whatever we have already marked as live really is 438 live. */ 439 if (can_throw_internal (insn)) 440 break; 441 442 switch (GET_CODE (insn)) 443 { 444 case CODE_LABEL: 445 /* After a label, any pending dead registers that weren't yet 446 used can be made dead. */ 447 pending_dead_regs &= ~needed.regs; 448 res->regs &= ~pending_dead_regs; 449 CLEAR_HARD_REG_SET (pending_dead_regs); 450 451 continue; 452 453 case BARRIER: 454 case NOTE: 455 case DEBUG_INSN: 456 continue; 457 458 case INSN: 459 if (GET_CODE (PATTERN (insn)) == USE) 460 { 461 /* If INSN is a USE made by update_block, we care about the 462 underlying insn. Any registers set by the underlying insn 463 are live since the insn is being done somewhere else. */ 464 if (INSN_P (XEXP (PATTERN (insn), 0))) 465 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 466 MARK_SRC_DEST_CALL); 467 468 /* All other USE insns are to be ignored. */ 469 continue; 470 } 471 else if (GET_CODE (PATTERN (insn)) == CLOBBER) 472 continue; 473 else if (rtx_sequence *seq = 474 dyn_cast <rtx_sequence *> (PATTERN (insn))) 475 { 476 /* An unconditional jump can be used to fill the delay slot 477 of a call, so search for a JUMP_INSN in any position. */ 478 for (i = 0; i < seq->len (); i++) 479 { 480 this_insn = seq->insn (i); 481 if (JUMP_P (this_insn)) 482 break; 483 } 484 } 485 486 default: 487 break; 488 } 489 490 if (rtx_jump_insn *this_jump_insn = 491 dyn_cast <rtx_jump_insn *> (this_insn)) 492 { 493 if (jump_count++ < 10) 494 { 495 if (any_uncondjump_p (this_jump_insn) 496 || ANY_RETURN_P (PATTERN (this_jump_insn))) 497 { 498 rtx lab_or_return = this_jump_insn->jump_label (); 499 if (ANY_RETURN_P (lab_or_return)) 500 next_insn = NULL; 501 else 502 next_insn = as_a <rtx_insn *> (lab_or_return); 503 if (jump_insn == 0) 504 { 505 jump_insn = insn; 506 if (jump_target) 507 *jump_target = JUMP_LABEL (this_jump_insn); 508 } 509 } 510 else if (any_condjump_p (this_jump_insn)) 511 { 512 struct resources target_set, target_res; 513 struct resources fallthrough_res; 514 515 /* We can handle conditional branches here by following 516 both paths, and then IOR the results of the two paths 517 together, which will give us registers that are dead 518 on both paths. Since this is expensive, we give it 519 a much higher cost than unconditional branches. The 520 cost was chosen so that we will follow at most 1 521 conditional branch. */ 522 523 jump_count += 4; 524 if (jump_count >= 10) 525 break; 526 527 mark_referenced_resources (insn, &needed, true); 528 529 /* For an annulled branch, mark_set_resources ignores slots 530 filled by instructions from the target. This is correct 531 if the branch is not taken. Since we are following both 532 paths from the branch, we must also compute correct info 533 if the branch is taken. We do this by inverting all of 534 the INSN_FROM_TARGET_P bits, calling mark_set_resources, 535 and then inverting the INSN_FROM_TARGET_P bits again. */ 536 537 if (GET_CODE (PATTERN (insn)) == SEQUENCE 538 && INSN_ANNULLED_BRANCH_P (this_jump_insn)) 539 { 540 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn)); 541 for (i = 1; i < seq->len (); i++) 542 INSN_FROM_TARGET_P (seq->element (i)) 543 = ! INSN_FROM_TARGET_P (seq->element (i)); 544 545 target_set = set; 546 mark_set_resources (insn, &target_set, 0, 547 MARK_SRC_DEST_CALL); 548 549 for (i = 1; i < seq->len (); i++) 550 INSN_FROM_TARGET_P (seq->element (i)) 551 = ! INSN_FROM_TARGET_P (seq->element (i)); 552 553 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 554 } 555 else 556 { 557 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 558 target_set = set; 559 } 560 561 target_res = *res; 562 scratch = target_set.regs & ~needed.regs; 563 target_res.regs &= ~scratch; 564 565 fallthrough_res = *res; 566 scratch = set.regs & ~needed.regs; 567 fallthrough_res.regs &= ~scratch; 568 569 if (!ANY_RETURN_P (this_jump_insn->jump_label ())) 570 find_dead_or_set_registers 571 (this_jump_insn->jump_target (), 572 &target_res, 0, jump_count, target_set, needed); 573 find_dead_or_set_registers (next_insn, 574 &fallthrough_res, 0, jump_count, 575 set, needed); 576 fallthrough_res.regs |= target_res.regs; 577 res->regs &= fallthrough_res.regs; 578 break; 579 } 580 else 581 break; 582 } 583 else 584 { 585 /* Don't try this optimization if we expired our jump count 586 above, since that would mean there may be an infinite loop 587 in the function being compiled. */ 588 jump_insn = 0; 589 break; 590 } 591 } 592 593 mark_referenced_resources (insn, &needed, true); 594 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 595 596 scratch = set.regs & ~needed.regs; 597 res->regs &= ~scratch; 598 } 599 600 return jump_insn; 601 } 602 603 /* Given X, a part of an insn, and a pointer to a `struct resource', 604 RES, indicate which resources are modified by the insn. If 605 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially 606 set by the called routine. 607 608 If IN_DEST is nonzero, it means we are inside a SET. Otherwise, 609 objects are being referenced instead of set. 610 611 We never mark the insn as modifying the condition code unless it explicitly 612 SETs CC0 even though this is not totally correct. The reason for this is 613 that we require a SET of CC0 to immediately precede the reference to CC0. 614 So if some other insn sets CC0 as a side-effect, we know it cannot affect 615 our computation and thus may be placed in a delay slot. */ 616 617 void 618 mark_set_resources (rtx x, struct resources *res, int in_dest, 619 enum mark_resource_type mark_type) 620 { 621 enum rtx_code code; 622 int i, j; 623 unsigned int r; 624 const char *format_ptr; 625 626 restart: 627 628 code = GET_CODE (x); 629 630 switch (code) 631 { 632 case NOTE: 633 case BARRIER: 634 case CODE_LABEL: 635 case USE: 636 CASE_CONST_ANY: 637 case LABEL_REF: 638 case SYMBOL_REF: 639 case CONST: 640 case PC: 641 case DEBUG_INSN: 642 /* These don't set any resources. */ 643 return; 644 645 case CC0: 646 if (in_dest) 647 res->cc = 1; 648 return; 649 650 case CALL_INSN: 651 /* Called routine modifies the condition code, memory, any registers 652 that aren't saved across calls, global registers and anything 653 explicitly CLOBBERed immediately after the CALL_INSN. */ 654 655 if (mark_type == MARK_SRC_DEST_CALL) 656 { 657 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x); 658 rtx link; 659 660 res->cc = res->memory = 1; 661 662 res->regs |= insn_callee_abi (call_insn).full_reg_clobbers (); 663 664 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); 665 link; link = XEXP (link, 1)) 666 if (GET_CODE (XEXP (link, 0)) == CLOBBER) 667 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 668 MARK_SRC_DEST); 669 670 /* Check for a REG_SETJMP. If it exists, then we must 671 assume that this call can clobber any register. */ 672 if (find_reg_note (call_insn, REG_SETJMP, NULL)) 673 SET_HARD_REG_SET (res->regs); 674 } 675 676 /* ... and also what its RTL says it modifies, if anything. */ 677 gcc_fallthrough (); 678 679 case JUMP_INSN: 680 case INSN: 681 682 /* An insn consisting of just a CLOBBER (or USE) is just for flow 683 and doesn't actually do anything, so we ignore it. */ 684 685 if (mark_type != MARK_SRC_DEST_CALL 686 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x))) 687 return; 688 689 x = PATTERN (x); 690 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER) 691 goto restart; 692 return; 693 694 case SET: 695 /* If the source of a SET is a CALL, this is actually done by 696 the called routine. So only include it if we are to include the 697 effects of the calling routine. */ 698 699 mark_set_resources (SET_DEST (x), res, 700 (mark_type == MARK_SRC_DEST_CALL 701 || GET_CODE (SET_SRC (x)) != CALL), 702 mark_type); 703 704 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST); 705 return; 706 707 case CLOBBER: 708 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); 709 return; 710 711 case SEQUENCE: 712 { 713 rtx_sequence *seq = as_a <rtx_sequence *> (x); 714 rtx control = seq->element (0); 715 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control); 716 717 mark_set_resources (control, res, 0, mark_type); 718 for (i = seq->len () - 1; i >= 0; --i) 719 { 720 rtx elt = seq->element (i); 721 if (!annul_p && INSN_FROM_TARGET_P (elt)) 722 mark_set_resources (elt, res, 0, mark_type); 723 } 724 } 725 return; 726 727 case POST_INC: 728 case PRE_INC: 729 case POST_DEC: 730 case PRE_DEC: 731 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); 732 return; 733 734 case PRE_MODIFY: 735 case POST_MODIFY: 736 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); 737 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST); 738 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST); 739 return; 740 741 case SIGN_EXTRACT: 742 case ZERO_EXTRACT: 743 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST); 744 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST); 745 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST); 746 return; 747 748 case MEM: 749 if (in_dest) 750 { 751 res->memory = 1; 752 res->volatil |= MEM_VOLATILE_P (x); 753 } 754 755 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST); 756 return; 757 758 case SUBREG: 759 if (in_dest) 760 { 761 if (!REG_P (SUBREG_REG (x))) 762 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type); 763 else 764 { 765 unsigned int regno = subreg_regno (x); 766 unsigned int last_regno = regno + subreg_nregs (x); 767 768 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER); 769 for (r = regno; r < last_regno; r++) 770 SET_HARD_REG_BIT (res->regs, r); 771 } 772 } 773 return; 774 775 case REG: 776 if (in_dest) 777 { 778 gcc_assert (HARD_REGISTER_P (x)); 779 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x)); 780 } 781 return; 782 783 case UNSPEC_VOLATILE: 784 case ASM_INPUT: 785 /* Traditional asm's are always volatile. */ 786 res->volatil = 1; 787 return; 788 789 case TRAP_IF: 790 res->volatil = 1; 791 break; 792 793 case ASM_OPERANDS: 794 res->volatil |= MEM_VOLATILE_P (x); 795 796 /* For all ASM_OPERANDS, we must traverse the vector of input operands. 797 We cannot just fall through here since then we would be confused 798 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate 799 traditional asms unlike their normal usage. */ 800 801 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) 802 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest, 803 MARK_SRC_DEST); 804 return; 805 806 default: 807 break; 808 } 809 810 /* Process each sub-expression and flag what it needs. */ 811 format_ptr = GET_RTX_FORMAT (code); 812 for (i = 0; i < GET_RTX_LENGTH (code); i++) 813 switch (*format_ptr++) 814 { 815 case 'e': 816 mark_set_resources (XEXP (x, i), res, in_dest, mark_type); 817 break; 818 819 case 'E': 820 for (j = 0; j < XVECLEN (x, i); j++) 821 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type); 822 break; 823 } 824 } 825 826 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */ 827 828 static bool 829 return_insn_p (const_rtx insn) 830 { 831 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn))) 832 return true; 833 834 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 835 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0)); 836 837 return false; 838 } 839 840 /* Set the resources that are live at TARGET. 841 842 If TARGET is zero, we refer to the end of the current function and can 843 return our precomputed value. 844 845 Otherwise, we try to find out what is live by consulting the basic block 846 information. This is tricky, because we must consider the actions of 847 reload and jump optimization, which occur after the basic block information 848 has been computed. 849 850 Accordingly, we proceed as follows:: 851 852 We find the previous BARRIER and look at all immediately following labels 853 (with no intervening active insns) to see if any of them start a basic 854 block. If we hit the start of the function first, we use block 0. 855 856 Once we have found a basic block and a corresponding first insn, we can 857 accurately compute the live status (by starting at a label following a 858 BARRIER, we are immune to actions taken by reload and jump.) Then we 859 scan all insns between that point and our target. For each CLOBBER (or 860 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate 861 registers are dead. For a SET, mark them as live. 862 863 We have to be careful when using REG_DEAD notes because they are not 864 updated by such things as find_equiv_reg. So keep track of registers 865 marked as dead that haven't been assigned to, and mark them dead at the 866 next CODE_LABEL since reload and jump won't propagate values across labels. 867 868 If we cannot find the start of a basic block (should be a very rare 869 case, if it can happen at all), mark everything as potentially live. 870 871 Next, scan forward from TARGET looking for things set or clobbered 872 before they are used. These are not live. 873 874 Because we can be called many times on the same target, save our results 875 in a hash table indexed by INSN_UID. This is only done if the function 876 init_resource_info () was invoked before we are called. */ 877 878 void 879 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res) 880 { 881 int b = -1; 882 unsigned int i; 883 struct target_info *tinfo = NULL; 884 rtx_insn *insn; 885 rtx jump_target; 886 HARD_REG_SET scratch; 887 struct resources set, needed; 888 889 /* Handle end of function. */ 890 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return)) 891 { 892 *res = end_of_function_needs; 893 return; 894 } 895 896 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an 897 instruction. */ 898 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return); 899 900 /* Handle return insn. */ 901 if (return_insn_p (target)) 902 { 903 *res = end_of_function_needs; 904 mark_referenced_resources (target, res, false); 905 return; 906 } 907 908 /* We have to assume memory is needed, but the CC isn't. */ 909 res->memory = 1; 910 res->volatil = 0; 911 res->cc = 0; 912 913 /* See if we have computed this value already. */ 914 if (target_hash_table != NULL) 915 { 916 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; 917 tinfo; tinfo = tinfo->next) 918 if (tinfo->uid == INSN_UID (target)) 919 break; 920 921 /* Start by getting the basic block number. If we have saved 922 information, we can get it from there unless the insn at the 923 start of the basic block has been deleted. */ 924 if (tinfo && tinfo->block != -1 925 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ()) 926 b = tinfo->block; 927 } 928 929 if (b == -1) 930 b = find_basic_block (target, param_max_delay_slot_live_search); 931 932 if (target_hash_table != NULL) 933 { 934 if (tinfo) 935 { 936 /* If the information is up-to-date, use it. Otherwise, we will 937 update it below. */ 938 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b]) 939 { 940 res->regs = tinfo->live_regs; 941 return; 942 } 943 } 944 else 945 { 946 /* Allocate a place to put our results and chain it into the 947 hash table. */ 948 tinfo = XNEW (struct target_info); 949 tinfo->uid = INSN_UID (target); 950 tinfo->block = b; 951 tinfo->next 952 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; 953 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo; 954 } 955 } 956 957 CLEAR_HARD_REG_SET (pending_dead_regs); 958 959 /* If we found a basic block, get the live registers from it and update 960 them with anything set or killed between its start and the insn before 961 TARGET; this custom life analysis is really about registers so we need 962 to use the LR problem. Otherwise, we must assume everything is live. */ 963 if (b != -1) 964 { 965 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b)); 966 rtx_insn *start_insn, *stop_insn; 967 df_ref def; 968 969 /* Compute hard regs live at start of block. */ 970 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live); 971 FOR_EACH_ARTIFICIAL_DEF (def, b) 972 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) 973 SET_HARD_REG_BIT (current_live_regs, DF_REF_REGNO (def)); 974 975 /* Get starting and ending insn, handling the case where each might 976 be a SEQUENCE. */ 977 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ? 978 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b))); 979 stop_insn = target; 980 981 if (NONJUMP_INSN_P (start_insn) 982 && GET_CODE (PATTERN (start_insn)) == SEQUENCE) 983 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0); 984 985 if (NONJUMP_INSN_P (stop_insn) 986 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE) 987 stop_insn = next_insn (PREV_INSN (stop_insn)); 988 989 for (insn = start_insn; insn != stop_insn; 990 insn = next_insn_no_annul (insn)) 991 { 992 rtx link; 993 rtx_insn *real_insn = insn; 994 enum rtx_code code = GET_CODE (insn); 995 996 if (DEBUG_INSN_P (insn)) 997 continue; 998 999 /* If this insn is from the target of a branch, it isn't going to 1000 be used in the sequel. If it is used in both cases, this 1001 test will not be true. */ 1002 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN) 1003 && INSN_FROM_TARGET_P (insn)) 1004 continue; 1005 1006 /* If this insn is a USE made by update_block, we care about the 1007 underlying insn. */ 1008 if (code == INSN 1009 && GET_CODE (PATTERN (insn)) == USE 1010 && INSN_P (XEXP (PATTERN (insn), 0))) 1011 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0)); 1012 1013 if (CALL_P (real_insn)) 1014 { 1015 /* Values in call-clobbered registers survive a COND_EXEC CALL 1016 if that is not executed; this matters for resoure use because 1017 they may be used by a complementarily (or more strictly) 1018 predicated instruction, or if the CALL is NORETURN. */ 1019 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC) 1020 { 1021 HARD_REG_SET regs_invalidated_by_this_call 1022 = insn_callee_abi (real_insn).full_reg_clobbers (); 1023 /* CALL clobbers all call-used regs that aren't fixed except 1024 sp, ap, and fp. Do this before setting the result of the 1025 call live. */ 1026 current_live_regs &= ~regs_invalidated_by_this_call; 1027 } 1028 1029 /* A CALL_INSN sets any global register live, since it may 1030 have been modified by the call. */ 1031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 1032 if (global_regs[i]) 1033 SET_HARD_REG_BIT (current_live_regs, i); 1034 } 1035 1036 /* Mark anything killed in an insn to be deadened at the next 1037 label. Ignore USE insns; the only REG_DEAD notes will be for 1038 parameters. But they might be early. A CALL_INSN will usually 1039 clobber registers used for parameters. It isn't worth bothering 1040 with the unlikely case when it won't. */ 1041 if ((NONJUMP_INSN_P (real_insn) 1042 && GET_CODE (PATTERN (real_insn)) != USE 1043 && GET_CODE (PATTERN (real_insn)) != CLOBBER) 1044 || JUMP_P (real_insn) 1045 || CALL_P (real_insn)) 1046 { 1047 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) 1048 if (REG_NOTE_KIND (link) == REG_DEAD 1049 && REG_P (XEXP (link, 0)) 1050 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) 1051 add_to_hard_reg_set (&pending_dead_regs, 1052 GET_MODE (XEXP (link, 0)), 1053 REGNO (XEXP (link, 0))); 1054 1055 note_stores (real_insn, update_live_status, NULL); 1056 1057 /* If any registers were unused after this insn, kill them. 1058 These notes will always be accurate. */ 1059 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) 1060 if (REG_NOTE_KIND (link) == REG_UNUSED 1061 && REG_P (XEXP (link, 0)) 1062 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) 1063 remove_from_hard_reg_set (¤t_live_regs, 1064 GET_MODE (XEXP (link, 0)), 1065 REGNO (XEXP (link, 0))); 1066 } 1067 1068 else if (LABEL_P (real_insn)) 1069 { 1070 basic_block bb; 1071 1072 /* A label clobbers the pending dead registers since neither 1073 reload nor jump will propagate a value across a label. */ 1074 current_live_regs &= ~pending_dead_regs; 1075 CLEAR_HARD_REG_SET (pending_dead_regs); 1076 1077 /* We must conservatively assume that all registers that used 1078 to be live here still are. The fallthrough edge may have 1079 left a live register uninitialized. */ 1080 bb = BLOCK_FOR_INSN (real_insn); 1081 if (bb) 1082 { 1083 HARD_REG_SET extra_live; 1084 1085 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb)); 1086 current_live_regs |= extra_live; 1087 } 1088 } 1089 1090 /* The beginning of the epilogue corresponds to the end of the 1091 RTL chain when there are no epilogue insns. Certain resources 1092 are implicitly required at that point. */ 1093 else if (NOTE_P (real_insn) 1094 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG) 1095 current_live_regs |= start_of_epilogue_needs.regs; 1096 } 1097 1098 res->regs = current_live_regs; 1099 if (tinfo != NULL) 1100 { 1101 tinfo->block = b; 1102 tinfo->bb_tick = bb_ticks[b]; 1103 } 1104 } 1105 else 1106 /* We didn't find the start of a basic block. Assume everything 1107 in use. This should happen only extremely rarely. */ 1108 SET_HARD_REG_SET (res->regs); 1109 1110 CLEAR_RESOURCE (&set); 1111 CLEAR_RESOURCE (&needed); 1112 1113 rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target, 1114 0, set, needed); 1115 1116 /* If we hit an unconditional branch, we have another way of finding out 1117 what is live: we can see what is live at the branch target and include 1118 anything used but not set before the branch. We add the live 1119 resources found using the test below to those found until now. */ 1120 1121 if (jump_insn) 1122 { 1123 struct resources new_resources; 1124 rtx_insn *stop_insn = next_active_insn (jump_insn); 1125 1126 if (!ANY_RETURN_P (jump_target)) 1127 jump_target = next_active_insn (as_a<rtx_insn *> (jump_target)); 1128 mark_target_live_regs (insns, jump_target, &new_resources); 1129 CLEAR_RESOURCE (&set); 1130 CLEAR_RESOURCE (&needed); 1131 1132 /* Include JUMP_INSN in the needed registers. */ 1133 for (insn = target; insn != stop_insn; insn = next_active_insn (insn)) 1134 { 1135 mark_referenced_resources (insn, &needed, true); 1136 1137 scratch = needed.regs & ~set.regs; 1138 new_resources.regs |= scratch; 1139 1140 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); 1141 } 1142 1143 res->regs |= new_resources.regs; 1144 } 1145 1146 if (tinfo != NULL) 1147 tinfo->live_regs = res->regs; 1148 } 1149 1150 /* Initialize the resources required by mark_target_live_regs (). 1151 This should be invoked before the first call to mark_target_live_regs. */ 1152 1153 void 1154 init_resource_info (rtx_insn *epilogue_insn) 1155 { 1156 int i; 1157 basic_block bb; 1158 1159 /* Indicate what resources are required to be valid at the end of the current 1160 function. The condition code never is and memory always is. 1161 The stack pointer is needed unless EXIT_IGNORE_STACK is true 1162 and there is an epilogue that restores the original stack pointer 1163 from the frame pointer. Registers used to return the function value 1164 are needed. Registers holding global variables are needed. */ 1165 1166 end_of_function_needs.cc = 0; 1167 end_of_function_needs.memory = 1; 1168 CLEAR_HARD_REG_SET (end_of_function_needs.regs); 1169 1170 if (frame_pointer_needed) 1171 { 1172 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM); 1173 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER) 1174 SET_HARD_REG_BIT (end_of_function_needs.regs, 1175 HARD_FRAME_POINTER_REGNUM); 1176 } 1177 if (!(frame_pointer_needed 1178 && EXIT_IGNORE_STACK 1179 && epilogue_insn 1180 && !crtl->sp_is_unchanging)) 1181 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM); 1182 1183 if (crtl->return_rtx != 0) 1184 mark_referenced_resources (crtl->return_rtx, 1185 &end_of_function_needs, true); 1186 1187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 1188 if (global_regs[i] || EPILOGUE_USES (i)) 1189 SET_HARD_REG_BIT (end_of_function_needs.regs, i); 1190 1191 /* The registers required to be live at the end of the function are 1192 represented in the flow information as being dead just prior to 1193 reaching the end of the function. For example, the return of a value 1194 might be represented by a USE of the return register immediately 1195 followed by an unconditional jump to the return label where the 1196 return label is the end of the RTL chain. The end of the RTL chain 1197 is then taken to mean that the return register is live. 1198 1199 This sequence is no longer maintained when epilogue instructions are 1200 added to the RTL chain. To reconstruct the original meaning, the 1201 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the 1202 point where these registers become live (start_of_epilogue_needs). 1203 If epilogue instructions are present, the registers set by those 1204 instructions won't have been processed by flow. Thus, those 1205 registers are additionally required at the end of the RTL chain 1206 (end_of_function_needs). */ 1207 1208 start_of_epilogue_needs = end_of_function_needs; 1209 1210 while ((epilogue_insn = next_nonnote_insn (epilogue_insn))) 1211 { 1212 mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1213 MARK_SRC_DEST_CALL); 1214 if (return_insn_p (epilogue_insn)) 1215 break; 1216 } 1217 1218 /* Allocate and initialize the tables used by mark_target_live_regs. */ 1219 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME); 1220 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun)); 1221 1222 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */ 1223 FOR_EACH_BB_FN (bb, cfun) 1224 if (LABEL_P (BB_HEAD (bb))) 1225 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb; 1226 } 1227 1228 /* Free up the resources allocated to mark_target_live_regs (). This 1229 should be invoked after the last call to mark_target_live_regs (). */ 1230 1231 void 1232 free_resource_info (void) 1233 { 1234 basic_block bb; 1235 1236 if (target_hash_table != NULL) 1237 { 1238 int i; 1239 1240 for (i = 0; i < TARGET_HASH_PRIME; ++i) 1241 { 1242 struct target_info *ti = target_hash_table[i]; 1243 1244 while (ti) 1245 { 1246 struct target_info *next = ti->next; 1247 free (ti); 1248 ti = next; 1249 } 1250 } 1251 1252 free (target_hash_table); 1253 target_hash_table = NULL; 1254 } 1255 1256 if (bb_ticks != NULL) 1257 { 1258 free (bb_ticks); 1259 bb_ticks = NULL; 1260 } 1261 1262 FOR_EACH_BB_FN (bb, cfun) 1263 if (LABEL_P (BB_HEAD (bb))) 1264 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL; 1265 } 1266 1267 /* Clear any hashed information that we have stored for INSN. */ 1268 1269 void 1270 clear_hashed_info_for_insn (rtx_insn *insn) 1271 { 1272 struct target_info *tinfo; 1273 1274 if (target_hash_table != NULL) 1275 { 1276 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME]; 1277 tinfo; tinfo = tinfo->next) 1278 if (tinfo->uid == INSN_UID (insn)) 1279 break; 1280 1281 if (tinfo) 1282 tinfo->block = -1; 1283 } 1284 } 1285 1286 /* Clear any hashed information that we have stored for instructions 1287 between INSN and the next BARRIER that follow a JUMP or a LABEL. */ 1288 1289 void 1290 clear_hashed_info_until_next_barrier (rtx_insn *insn) 1291 { 1292 while (insn && !BARRIER_P (insn)) 1293 { 1294 if (JUMP_P (insn) || LABEL_P (insn)) 1295 { 1296 rtx_insn *next = next_active_insn (insn); 1297 if (next) 1298 clear_hashed_info_for_insn (next); 1299 } 1300 1301 insn = next_nonnote_insn (insn); 1302 } 1303 } 1304 1305 /* Increment the tick count for the basic block that contains INSN. */ 1306 1307 void 1308 incr_ticks_for_insn (rtx_insn *insn) 1309 { 1310 int b = find_basic_block (insn, param_max_delay_slot_live_search); 1311 1312 if (b != -1) 1313 bb_ticks[b]++; 1314 } 1315 1316 /* Add TRIAL to the set of resources used at the end of the current 1317 function. */ 1318 void 1319 mark_end_of_function_resources (rtx trial, bool include_delayed_effects) 1320 { 1321 mark_referenced_resources (trial, &end_of_function_needs, 1322 include_delayed_effects); 1323 } 1324