1 /* Loop interchange.
2 Copyright (C) 2017-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "is-a.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "gimplify.h"
33 #include "gimple-iterator.h"
34 #include "gimplify-me.h"
35 #include "cfgloop.h"
36 #include "tree-ssa.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-loop-manip.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop-ivopts.h"
41 #include "tree-ssa-dce.h"
42 #include "tree-data-ref.h"
43 #include "tree-vectorizer.h"
44
45 /* This pass performs loop interchange: for example, the loop nest
46
47 for (int j = 0; j < N; j++)
48 for (int k = 0; k < N; k++)
49 for (int i = 0; i < N; i++)
50 c[i][j] = c[i][j] + a[i][k]*b[k][j];
51
52 is transformed to
53
54 for (int i = 0; i < N; i++)
55 for (int j = 0; j < N; j++)
56 for (int k = 0; k < N; k++)
57 c[i][j] = c[i][j] + a[i][k]*b[k][j];
58
59 This pass implements loop interchange in the following steps:
60
61 1) Find perfect loop nest for each innermost loop and compute data
62 dependence relations for it. For above example, loop nest is
63 <loop_j, loop_k, loop_i>.
64 2) From innermost to outermost loop, this pass tries to interchange
65 each loop pair. For above case, it firstly tries to interchange
66 <loop_k, loop_i> and loop nest becomes <loop_j, loop_i, loop_k>.
67 Then it tries to interchange <loop_j, loop_i> and loop nest becomes
68 <loop_i, loop_j, loop_k>. The overall effect is to move innermost
69 loop to the outermost position. For loop pair <loop_i, loop_j>
70 to be interchanged, we:
71 3) Check if data dependence relations are valid for loop interchange.
72 4) Check if both loops can be interchanged in terms of transformation.
73 5) Check if interchanging the two loops is profitable.
74 6) Interchange the two loops by mapping induction variables.
75
76 This pass also handles reductions in loop nest. So far we only support
77 simple reduction of inner loop and double reduction of the loop nest. */
78
79 /* Maximum number of stmts in each loop that should be interchanged. */
80 #define MAX_NUM_STMT (param_loop_interchange_max_num_stmts)
81 /* Maximum number of data references in loop nest. */
82 #define MAX_DATAREFS (param_loop_max_datarefs_for_datadeps)
83
84 /* Comparison ratio of access stride between inner/outer loops to be
85 interchanged. This is the minimum stride ratio for loop interchange
86 to be profitable. */
87 #define OUTER_STRIDE_RATIO (param_loop_interchange_stride_ratio)
88 /* The same as above, but we require higher ratio for interchanging the
89 innermost two loops. */
90 #define INNER_STRIDE_RATIO ((OUTER_STRIDE_RATIO) + 1)
91
92 /* Comparison ratio of stmt cost between inner/outer loops. Loops won't
93 be interchanged if outer loop has too many stmts. */
94 #define STMT_COST_RATIO (3)
95
96 /* Vector of strides that DR accesses in each level loop of a loop nest. */
97 #define DR_ACCESS_STRIDE(dr) ((vec<tree> *) dr->aux)
98
99 /* Structure recording loop induction variable. */
100 typedef struct induction
101 {
102 /* IV itself. */
103 tree var;
104 /* IV's initializing value, which is the init arg of the IV PHI node. */
105 tree init_val;
106 /* IV's initializing expr, which is (the expanded result of) init_val. */
107 tree init_expr;
108 /* IV's step. */
109 tree step;
110 } *induction_p;
111
112 /* Enum type for loop reduction variable. */
113 enum reduction_type
114 {
115 UNKNOWN_RTYPE = 0,
116 SIMPLE_RTYPE,
117 DOUBLE_RTYPE
118 };
119
120 /* Structure recording loop reduction variable. */
121 typedef struct reduction
122 {
123 /* Reduction itself. */
124 tree var;
125 /* PHI node defining reduction variable. */
126 gphi *phi;
127 /* Init and next variables of the reduction. */
128 tree init;
129 tree next;
130 /* Lcssa PHI node if reduction is used outside of its definition loop. */
131 gphi *lcssa_phi;
132 /* Stmts defining init and next. */
133 gimple *producer;
134 gimple *consumer;
135 /* If init is loaded from memory, this is the loading memory reference. */
136 tree init_ref;
137 /* If reduction is finally stored to memory, this is the stored memory
138 reference. */
139 tree fini_ref;
140 enum reduction_type type;
141 } *reduction_p;
142
143
144 /* Dump reduction RE. */
145
146 static void
dump_reduction(reduction_p re)147 dump_reduction (reduction_p re)
148 {
149 if (re->type == SIMPLE_RTYPE)
150 fprintf (dump_file, " Simple reduction: ");
151 else if (re->type == DOUBLE_RTYPE)
152 fprintf (dump_file, " Double reduction: ");
153 else
154 fprintf (dump_file, " Unknown reduction: ");
155
156 print_gimple_stmt (dump_file, re->phi, 0);
157 }
158
159 /* Dump LOOP's induction IV. */
160 static void
dump_induction(class loop * loop,induction_p iv)161 dump_induction (class loop *loop, induction_p iv)
162 {
163 fprintf (dump_file, " Induction: ");
164 print_generic_expr (dump_file, iv->var, TDF_SLIM);
165 fprintf (dump_file, " = {");
166 print_generic_expr (dump_file, iv->init_expr, TDF_SLIM);
167 fprintf (dump_file, ", ");
168 print_generic_expr (dump_file, iv->step, TDF_SLIM);
169 fprintf (dump_file, "}_%d\n", loop->num);
170 }
171
172 /* Loop candidate for interchange. */
173
174 class loop_cand
175 {
176 public:
177 loop_cand (class loop *, class loop *);
178 ~loop_cand ();
179
180 reduction_p find_reduction_by_stmt (gimple *);
181 void classify_simple_reduction (reduction_p);
182 bool analyze_iloop_reduction_var (tree);
183 bool analyze_oloop_reduction_var (loop_cand *, tree);
184 bool analyze_induction_var (tree, tree);
185 bool analyze_carried_vars (loop_cand *);
186 bool analyze_lcssa_phis (void);
187 bool can_interchange_p (loop_cand *);
188 void undo_simple_reduction (reduction_p, bitmap);
189
190 /* The loop itself. */
191 class loop *m_loop;
192 /* The outer loop for interchange. It equals to loop if this loop cand
193 itself represents the outer loop. */
194 class loop *m_outer;
195 /* Vector of induction variables in loop. */
196 vec<induction_p> m_inductions;
197 /* Vector of reduction variables in loop. */
198 vec<reduction_p> m_reductions;
199 /* Lcssa PHI nodes of this loop. */
200 vec<gphi *> m_lcssa_nodes;
201 /* Single exit edge of this loop. */
202 edge m_exit;
203 /* Basic blocks of this loop. */
204 basic_block *m_bbs;
205 /* Number of stmts of this loop. Inner loops' stmts are not included. */
206 int m_num_stmts;
207 /* Number of constant initialized simple reduction. */
208 int m_const_init_reduc;
209 };
210
211 /* Constructor. */
212
loop_cand(class loop * loop,class loop * outer)213 loop_cand::loop_cand (class loop *loop, class loop *outer)
214 : m_loop (loop), m_outer (outer), m_exit (single_exit (loop)),
215 m_bbs (get_loop_body (loop)), m_num_stmts (0), m_const_init_reduc (0)
216 {
217 m_inductions.create (3);
218 m_reductions.create (3);
219 m_lcssa_nodes.create (3);
220 }
221
222 /* Destructor. */
223
~loop_cand()224 loop_cand::~loop_cand ()
225 {
226 induction_p iv;
227 for (unsigned i = 0; m_inductions.iterate (i, &iv); ++i)
228 free (iv);
229
230 reduction_p re;
231 for (unsigned i = 0; m_reductions.iterate (i, &re); ++i)
232 free (re);
233
234 m_inductions.release ();
235 m_reductions.release ();
236 m_lcssa_nodes.release ();
237 free (m_bbs);
238 }
239
240 /* Return single use stmt of VAR in LOOP, otherwise return NULL. */
241
242 static gimple *
single_use_in_loop(tree var,class loop * loop)243 single_use_in_loop (tree var, class loop *loop)
244 {
245 gimple *stmt, *res = NULL;
246 use_operand_p use_p;
247 imm_use_iterator iterator;
248
249 FOR_EACH_IMM_USE_FAST (use_p, iterator, var)
250 {
251 stmt = USE_STMT (use_p);
252 if (is_gimple_debug (stmt))
253 continue;
254
255 if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
256 continue;
257
258 if (res)
259 return NULL;
260
261 res = stmt;
262 }
263 return res;
264 }
265
266 /* Return true if E is unsupported in loop interchange, i.e, E is a complex
267 edge or part of irreducible loop. */
268
269 static inline bool
unsupported_edge(edge e)270 unsupported_edge (edge e)
271 {
272 return (e->flags & (EDGE_COMPLEX | EDGE_IRREDUCIBLE_LOOP));
273 }
274
275 /* Return the reduction if STMT is one of its lcssa PHI, producer or consumer
276 stmt. */
277
278 reduction_p
find_reduction_by_stmt(gimple * stmt)279 loop_cand::find_reduction_by_stmt (gimple *stmt)
280 {
281 gphi *phi = dyn_cast <gphi *> (stmt);
282 reduction_p re;
283
284 for (unsigned i = 0; m_reductions.iterate (i, &re); ++i)
285 if ((phi != NULL && phi == re->lcssa_phi)
286 || (stmt == re->producer || stmt == re->consumer))
287 return re;
288
289 return NULL;
290 }
291
292 /* Return true if current loop_cand be interchanged. ILOOP is not NULL if
293 current loop_cand is outer loop in loop nest. */
294
295 bool
can_interchange_p(loop_cand * iloop)296 loop_cand::can_interchange_p (loop_cand *iloop)
297 {
298 /* For now we only support at most one reduction. */
299 unsigned allowed_reduction_num = 1;
300
301 /* Only support reduction if the loop nest to be interchanged is the
302 innermostin two loops. */
303 if ((iloop == NULL && m_loop->inner != NULL)
304 || (iloop != NULL && iloop->m_loop->inner != NULL))
305 allowed_reduction_num = 0;
306
307 if (m_reductions.length () > allowed_reduction_num
308 || (m_reductions.length () == 1
309 && m_reductions[0]->type == UNKNOWN_RTYPE))
310 return false;
311
312 /* Only support lcssa PHI node which is for reduction. */
313 if (m_lcssa_nodes.length () > allowed_reduction_num)
314 return false;
315
316 /* Check if basic block has any unsupported operation. Note basic blocks
317 of inner loops are not checked here. */
318 for (unsigned i = 0; i < m_loop->num_nodes; i++)
319 {
320 basic_block bb = m_bbs[i];
321 gphi_iterator psi;
322 gimple_stmt_iterator gsi;
323
324 /* Skip basic blocks of inner loops. */
325 if (bb->loop_father != m_loop)
326 continue;
327
328 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
329 {
330 gimple *stmt = gsi_stmt (gsi);
331 if (is_gimple_debug (stmt))
332 continue;
333
334 if (gimple_has_side_effects (stmt))
335 return false;
336
337 m_num_stmts++;
338 if (gcall *call = dyn_cast <gcall *> (stmt))
339 {
340 /* In basic block of outer loop, the call should be cheap since
341 it will be moved to inner loop. */
342 if (iloop != NULL
343 && !gimple_inexpensive_call_p (call))
344 return false;
345 continue;
346 }
347
348 if (!iloop || !gimple_vuse (stmt))
349 continue;
350
351 /* Support stmt accessing memory in outer loop only if it is for
352 inner loop's reduction. */
353 if (iloop->find_reduction_by_stmt (stmt))
354 continue;
355
356 tree lhs;
357 /* Support loop invariant memory reference if it's only used once by
358 inner loop. */
359 /* ??? How's this checking for invariantness? */
360 if (gimple_assign_single_p (stmt)
361 && (lhs = gimple_assign_lhs (stmt)) != NULL_TREE
362 && TREE_CODE (lhs) == SSA_NAME
363 && single_use_in_loop (lhs, iloop->m_loop))
364 continue;
365
366 return false;
367 }
368 /* Check if loop has too many stmts. */
369 if (m_num_stmts > MAX_NUM_STMT)
370 return false;
371
372 /* Allow PHI nodes in any basic block of inner loop, PHI nodes in outer
373 loop's header, or PHI nodes in dest bb of inner loop's exit edge. */
374 if (!iloop || bb == m_loop->header
375 || bb == iloop->m_exit->dest)
376 continue;
377
378 /* Don't allow any other PHI nodes. */
379 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
380 if (!virtual_operand_p (PHI_RESULT (psi.phi ())))
381 return false;
382 }
383
384 return true;
385 }
386
387 /* Programmers and optimizers (like loop store motion) may optimize code:
388
389 for (int i = 0; i < N; i++)
390 for (int j = 0; j < N; j++)
391 a[i] += b[j][i] * c[j][i];
392
393 into reduction:
394
395 for (int i = 0; i < N; i++)
396 {
397 // producer. Note sum can be intitialized to a constant.
398 int sum = a[i];
399 for (int j = 0; j < N; j++)
400 {
401 sum += b[j][i] * c[j][i];
402 }
403 // consumer.
404 a[i] = sum;
405 }
406
407 The result code can't be interchanged without undoing the optimization.
408 This function classifies this kind reduction and records information so
409 that we can undo the store motion during interchange. */
410
411 void
classify_simple_reduction(reduction_p re)412 loop_cand::classify_simple_reduction (reduction_p re)
413 {
414 gimple *producer, *consumer;
415
416 /* Check init variable of reduction and how it is initialized. */
417 if (TREE_CODE (re->init) == SSA_NAME)
418 {
419 producer = SSA_NAME_DEF_STMT (re->init);
420 re->producer = producer;
421 basic_block bb = gimple_bb (producer);
422 if (!bb || bb->loop_father != m_outer)
423 return;
424
425 if (!gimple_assign_load_p (producer))
426 return;
427
428 re->init_ref = gimple_assign_rhs1 (producer);
429 }
430 else if (CONSTANT_CLASS_P (re->init))
431 m_const_init_reduc++;
432 else
433 return;
434
435 /* Check how reduction variable is used. */
436 consumer = single_use_in_loop (PHI_RESULT (re->lcssa_phi), m_outer);
437 if (!consumer
438 || !gimple_store_p (consumer))
439 return;
440
441 re->fini_ref = gimple_get_lhs (consumer);
442 re->consumer = consumer;
443
444 /* Simple reduction with constant initializer. */
445 if (!re->init_ref)
446 {
447 gcc_assert (CONSTANT_CLASS_P (re->init));
448 re->init_ref = unshare_expr (re->fini_ref);
449 }
450
451 /* Require memory references in producer and consumer are the same so
452 that we can undo reduction during interchange. */
453 if (re->init_ref && !operand_equal_p (re->init_ref, re->fini_ref, 0))
454 return;
455
456 re->type = SIMPLE_RTYPE;
457 }
458
459 /* Analyze reduction variable VAR for inner loop of the loop nest to be
460 interchanged. Return true if analysis succeeds. */
461
462 bool
analyze_iloop_reduction_var(tree var)463 loop_cand::analyze_iloop_reduction_var (tree var)
464 {
465 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
466 gphi *lcssa_phi = NULL, *use_phi;
467 tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
468 tree next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (m_loop));
469 reduction_p re;
470 gimple *stmt, *next_def, *single_use = NULL;
471 use_operand_p use_p;
472 imm_use_iterator iterator;
473
474 if (TREE_CODE (next) != SSA_NAME)
475 return false;
476
477 next_def = SSA_NAME_DEF_STMT (next);
478 basic_block bb = gimple_bb (next_def);
479 if (!bb || !flow_bb_inside_loop_p (m_loop, bb))
480 return false;
481
482 /* In restricted reduction, the var is (and must be) used in defining
483 the updated var. The process can be depicted as below:
484
485 var ;; = PHI<init, next>
486 |
487 |
488 v
489 +---------------------+
490 | reduction operators | <-- other operands
491 +---------------------+
492 |
493 |
494 v
495 next
496
497 In terms loop interchange, we don't change how NEXT is computed based
498 on VAR and OTHER OPERANDS. In case of double reduction in loop nest
499 to be interchanged, we don't changed it at all. In the case of simple
500 reduction in inner loop, we only make change how VAR/NEXT is loaded or
501 stored. With these conditions, we can relax restrictions on reduction
502 in a way that reduction operation is seen as black box. In general,
503 we can ignore reassociation of reduction operator; we can handle fake
504 reductions in which VAR is not even used to compute NEXT. */
505 if (! single_imm_use (var, &use_p, &single_use)
506 || ! flow_bb_inside_loop_p (m_loop, gimple_bb (single_use)))
507 return false;
508
509 /* Check the reduction operation. We require a left-associative operation.
510 For FP math we also need to be allowed to associate operations. */
511 if (gassign *ass = dyn_cast <gassign *> (single_use))
512 {
513 enum tree_code code = gimple_assign_rhs_code (ass);
514 if (! (associative_tree_code (code)
515 || (code == MINUS_EXPR
516 && use_p->use == gimple_assign_rhs1_ptr (ass)))
517 || (FLOAT_TYPE_P (TREE_TYPE (var))
518 && ! flag_associative_math))
519 return false;
520 }
521 else
522 return false;
523
524 /* Handle and verify a series of stmts feeding the reduction op. */
525 if (single_use != next_def
526 && !check_reduction_path (dump_user_location_t (), m_loop, phi, next,
527 gimple_assign_rhs_code (single_use)))
528 return false;
529
530 /* Only support cases in which INIT is used in inner loop. */
531 if (TREE_CODE (init) == SSA_NAME)
532 FOR_EACH_IMM_USE_FAST (use_p, iterator, init)
533 {
534 stmt = USE_STMT (use_p);
535 if (is_gimple_debug (stmt))
536 continue;
537
538 if (!flow_bb_inside_loop_p (m_loop, gimple_bb (stmt)))
539 return false;
540 }
541
542 FOR_EACH_IMM_USE_FAST (use_p, iterator, next)
543 {
544 stmt = USE_STMT (use_p);
545 if (is_gimple_debug (stmt))
546 continue;
547
548 /* Or else it's used in PHI itself. */
549 use_phi = dyn_cast <gphi *> (stmt);
550 if (use_phi == phi)
551 continue;
552
553 if (use_phi != NULL
554 && lcssa_phi == NULL
555 && gimple_bb (stmt) == m_exit->dest
556 && PHI_ARG_DEF_FROM_EDGE (use_phi, m_exit) == next)
557 lcssa_phi = use_phi;
558 else
559 return false;
560 }
561 if (!lcssa_phi)
562 return false;
563
564 re = XCNEW (struct reduction);
565 re->var = var;
566 re->init = init;
567 re->next = next;
568 re->phi = phi;
569 re->lcssa_phi = lcssa_phi;
570
571 classify_simple_reduction (re);
572
573 if (dump_file && (dump_flags & TDF_DETAILS))
574 dump_reduction (re);
575
576 m_reductions.safe_push (re);
577 return true;
578 }
579
580 /* Analyze reduction variable VAR for outer loop of the loop nest to be
581 interchanged. ILOOP is not NULL and points to inner loop. For the
582 moment, we only support double reduction for outer loop, like:
583
584 for (int i = 0; i < n; i++)
585 {
586 int sum = 0;
587
588 for (int j = 0; j < n; j++) // outer loop
589 for (int k = 0; k < n; k++) // inner loop
590 sum += a[i][k]*b[k][j];
591
592 s[i] = sum;
593 }
594
595 Note the innermost two loops are the loop nest to be interchanged.
596 Return true if analysis succeeds. */
597
598 bool
analyze_oloop_reduction_var(loop_cand * iloop,tree var)599 loop_cand::analyze_oloop_reduction_var (loop_cand *iloop, tree var)
600 {
601 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
602 gphi *lcssa_phi = NULL, *use_phi;
603 tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
604 tree next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (m_loop));
605 reduction_p re;
606 gimple *stmt, *next_def;
607 use_operand_p use_p;
608 imm_use_iterator iterator;
609
610 if (TREE_CODE (next) != SSA_NAME)
611 return false;
612
613 next_def = SSA_NAME_DEF_STMT (next);
614 basic_block bb = gimple_bb (next_def);
615 if (!bb || !flow_bb_inside_loop_p (m_loop, bb))
616 return false;
617
618 /* Find inner loop's simple reduction that uses var as initializer. */
619 reduction_p inner_re = NULL;
620 for (unsigned i = 0; iloop->m_reductions.iterate (i, &inner_re); ++i)
621 if (inner_re->init == var || operand_equal_p (inner_re->init, var, 0))
622 break;
623
624 if (inner_re == NULL
625 || inner_re->type != UNKNOWN_RTYPE
626 || inner_re->producer != phi)
627 return false;
628
629 /* In case of double reduction, outer loop's reduction should be updated
630 by inner loop's simple reduction. */
631 if (next_def != inner_re->lcssa_phi)
632 return false;
633
634 /* Outer loop's reduction should only be used to initialize inner loop's
635 simple reduction. */
636 if (! single_imm_use (var, &use_p, &stmt)
637 || stmt != inner_re->phi)
638 return false;
639
640 /* Check this reduction is correctly used outside of loop via lcssa phi. */
641 FOR_EACH_IMM_USE_FAST (use_p, iterator, next)
642 {
643 stmt = USE_STMT (use_p);
644 if (is_gimple_debug (stmt))
645 continue;
646
647 /* Or else it's used in PHI itself. */
648 use_phi = dyn_cast <gphi *> (stmt);
649 if (use_phi == phi)
650 continue;
651
652 if (lcssa_phi == NULL
653 && use_phi != NULL
654 && gimple_bb (stmt) == m_exit->dest
655 && PHI_ARG_DEF_FROM_EDGE (use_phi, m_exit) == next)
656 lcssa_phi = use_phi;
657 else
658 return false;
659 }
660 if (!lcssa_phi)
661 return false;
662
663 re = XCNEW (struct reduction);
664 re->var = var;
665 re->init = init;
666 re->next = next;
667 re->phi = phi;
668 re->lcssa_phi = lcssa_phi;
669 re->type = DOUBLE_RTYPE;
670 inner_re->type = DOUBLE_RTYPE;
671
672 if (dump_file && (dump_flags & TDF_DETAILS))
673 dump_reduction (re);
674
675 m_reductions.safe_push (re);
676 return true;
677 }
678
679 /* Return true if VAR is induction variable of current loop whose scev is
680 specified by CHREC. */
681
682 bool
analyze_induction_var(tree var,tree chrec)683 loop_cand::analyze_induction_var (tree var, tree chrec)
684 {
685 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
686 tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
687
688 /* Var is loop invariant, though it's unlikely to happen. */
689 if (tree_does_not_contain_chrecs (chrec))
690 {
691 /* Punt on floating point invariants if honoring signed zeros,
692 representing that as + 0.0 would change the result if init
693 is -0.0. Similarly for SNaNs it can raise exception. */
694 if (HONOR_SIGNED_ZEROS (chrec) || HONOR_SNANS (chrec))
695 return false;
696 struct induction *iv = XCNEW (struct induction);
697 iv->var = var;
698 iv->init_val = init;
699 iv->init_expr = chrec;
700 iv->step = build_zero_cst (TREE_TYPE (chrec));
701 m_inductions.safe_push (iv);
702 return true;
703 }
704
705 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC
706 || CHREC_VARIABLE (chrec) != (unsigned) m_loop->num
707 || tree_contains_chrecs (CHREC_LEFT (chrec), NULL)
708 || tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
709 return false;
710
711 struct induction *iv = XCNEW (struct induction);
712 iv->var = var;
713 iv->init_val = init;
714 iv->init_expr = CHREC_LEFT (chrec);
715 iv->step = CHREC_RIGHT (chrec);
716
717 if (dump_file && (dump_flags & TDF_DETAILS))
718 dump_induction (m_loop, iv);
719
720 m_inductions.safe_push (iv);
721 return true;
722 }
723
724 /* Return true if all loop carried variables defined in loop header can
725 be successfully analyzed. */
726
727 bool
analyze_carried_vars(loop_cand * iloop)728 loop_cand::analyze_carried_vars (loop_cand *iloop)
729 {
730 edge e = loop_preheader_edge (m_outer);
731 gphi_iterator gsi;
732
733 if (dump_file && (dump_flags & TDF_DETAILS))
734 fprintf (dump_file, "\nLoop(%d) carried vars:\n", m_loop->num);
735
736 for (gsi = gsi_start_phis (m_loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
737 {
738 gphi *phi = gsi.phi ();
739
740 tree var = PHI_RESULT (phi);
741 if (virtual_operand_p (var))
742 continue;
743
744 tree chrec = analyze_scalar_evolution (m_loop, var);
745 chrec = instantiate_scev (e, m_loop, chrec);
746
747 /* Analyze var as reduction variable. */
748 if (chrec_contains_undetermined (chrec)
749 || chrec_contains_symbols_defined_in_loop (chrec, m_outer->num))
750 {
751 if (iloop && !analyze_oloop_reduction_var (iloop, var))
752 return false;
753 if (!iloop && !analyze_iloop_reduction_var (var))
754 return false;
755 }
756 /* Analyze var as induction variable. */
757 else if (!analyze_induction_var (var, chrec))
758 return false;
759 }
760
761 return true;
762 }
763
764 /* Return TRUE if loop closed PHI nodes can be analyzed successfully. */
765
766 bool
analyze_lcssa_phis(void)767 loop_cand::analyze_lcssa_phis (void)
768 {
769 gphi_iterator gsi;
770 for (gsi = gsi_start_phis (m_exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
771 {
772 gphi *phi = gsi.phi ();
773
774 if (virtual_operand_p (PHI_RESULT (phi)))
775 continue;
776
777 /* TODO: We only support lcssa phi for reduction for now. */
778 if (!find_reduction_by_stmt (phi))
779 return false;
780 }
781
782 return true;
783 }
784
785 /* CONSUMER is a stmt in BB storing reduction result into memory object.
786 When the reduction is intialized from constant value, we need to add
787 a stmt loading from the memory object to target basic block in inner
788 loop during undoing the reduction. Problem is that memory reference
789 may use ssa variables not dominating the target basic block. This
790 function finds all stmts on which CONSUMER depends in basic block BB,
791 records and returns them via STMTS. */
792
793 static void
find_deps_in_bb_for_stmt(gimple_seq * stmts,basic_block bb,gimple * consumer)794 find_deps_in_bb_for_stmt (gimple_seq *stmts, basic_block bb, gimple *consumer)
795 {
796 auto_vec<gimple *, 4> worklist;
797 use_operand_p use_p;
798 ssa_op_iter iter;
799 gimple *stmt, *def_stmt;
800 gimple_stmt_iterator gsi;
801
802 /* First clear flag for stmts in bb. */
803 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
804 gimple_set_plf (gsi_stmt (gsi), GF_PLF_1, false);
805
806 /* DFS search all depended stmts in bb and mark flag for these stmts. */
807 worklist.safe_push (consumer);
808 while (!worklist.is_empty ())
809 {
810 stmt = worklist.pop ();
811 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
812 {
813 def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
814
815 if (is_a <gphi *> (def_stmt)
816 || gimple_bb (def_stmt) != bb
817 || gimple_plf (def_stmt, GF_PLF_1))
818 continue;
819
820 worklist.safe_push (def_stmt);
821 }
822 gimple_set_plf (stmt, GF_PLF_1, true);
823 }
824 for (gsi = gsi_start_nondebug_bb (bb);
825 !gsi_end_p (gsi) && (stmt = gsi_stmt (gsi)) != consumer;)
826 {
827 /* Move dep stmts to sequence STMTS. */
828 if (gimple_plf (stmt, GF_PLF_1))
829 {
830 gsi_remove (&gsi, false);
831 gimple_seq_add_stmt_without_update (stmts, stmt);
832 }
833 else
834 gsi_next_nondebug (&gsi);
835 }
836 }
837
838 /* User can write, optimizers can generate simple reduction RE for inner
839 loop. In order to make interchange valid, we have to undo reduction by
840 moving producer and consumer stmts into the inner loop. For example,
841 below code:
842
843 init = MEM_REF[idx]; //producer
844 loop:
845 var = phi<init, next>
846 next = var op ...
847 reduc_sum = phi<next>
848 MEM_REF[idx] = reduc_sum //consumer
849
850 is transformed into:
851
852 loop:
853 new_var = MEM_REF[idx]; //producer after moving
854 next = new_var op ...
855 MEM_REF[idx] = next; //consumer after moving
856
857 Note if the reduction variable is initialized to constant, like:
858
859 var = phi<0.0, next>
860
861 we compute new_var as below:
862
863 loop:
864 tmp = MEM_REF[idx];
865 new_var = !first_iteration ? tmp : 0.0;
866
867 so that the initial const is used in the first iteration of loop. Also
868 record ssa variables for dead code elimination in DCE_SEEDS. */
869
870 void
undo_simple_reduction(reduction_p re,bitmap dce_seeds)871 loop_cand::undo_simple_reduction (reduction_p re, bitmap dce_seeds)
872 {
873 gimple *stmt;
874 gimple_stmt_iterator from, to = gsi_after_labels (m_loop->header);
875 gimple_seq stmts = NULL;
876 tree new_var;
877
878 /* Prepare the initialization stmts and insert it to inner loop. */
879 if (re->producer != NULL)
880 {
881 gimple_set_vuse (re->producer, NULL_TREE);
882 update_stmt (re->producer);
883 from = gsi_for_stmt (re->producer);
884 gsi_remove (&from, false);
885 gimple_seq_add_stmt_without_update (&stmts, re->producer);
886 new_var = re->init;
887 }
888 else
889 {
890 /* Find all stmts on which expression "MEM_REF[idx]" depends. */
891 find_deps_in_bb_for_stmt (&stmts, gimple_bb (re->consumer), re->consumer);
892 /* Because we generate new stmt loading from the MEM_REF to TMP. */
893 tree cond, tmp = copy_ssa_name (re->var);
894 stmt = gimple_build_assign (tmp, re->init_ref);
895 gimple_seq_add_stmt_without_update (&stmts, stmt);
896
897 /* Init new_var to MEM_REF or CONST depending on if it is the first
898 iteration. */
899 induction_p iv = m_inductions[0];
900 cond = fold_build2 (NE_EXPR, boolean_type_node, iv->var, iv->init_val);
901 new_var = copy_ssa_name (re->var);
902 stmt = gimple_build_assign (new_var, COND_EXPR, cond, tmp, re->init);
903 gimple_seq_add_stmt_without_update (&stmts, stmt);
904 }
905 gsi_insert_seq_before (&to, stmts, GSI_SAME_STMT);
906
907 /* Replace all uses of reduction var with new variable. */
908 use_operand_p use_p;
909 imm_use_iterator iterator;
910 FOR_EACH_IMM_USE_STMT (stmt, iterator, re->var)
911 {
912 FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
913 SET_USE (use_p, new_var);
914
915 update_stmt (stmt);
916 }
917
918 /* Move consumer stmt into inner loop, just after reduction next's def. */
919 unlink_stmt_vdef (re->consumer);
920 release_ssa_name (gimple_vdef (re->consumer));
921 gimple_set_vdef (re->consumer, NULL_TREE);
922 gimple_set_vuse (re->consumer, NULL_TREE);
923 gimple_assign_set_rhs1 (re->consumer, re->next);
924 update_stmt (re->consumer);
925 from = gsi_for_stmt (re->consumer);
926 to = gsi_for_stmt (SSA_NAME_DEF_STMT (re->next));
927 gsi_move_after (&from, &to);
928
929 /* Mark the reduction variables for DCE. */
930 bitmap_set_bit (dce_seeds, SSA_NAME_VERSION (re->var));
931 bitmap_set_bit (dce_seeds, SSA_NAME_VERSION (PHI_RESULT (re->lcssa_phi)));
932 }
933
934 /* Free DATAREFS and its auxiliary memory. */
935
936 static void
free_data_refs_with_aux(vec<data_reference_p> datarefs)937 free_data_refs_with_aux (vec<data_reference_p> datarefs)
938 {
939 data_reference_p dr;
940 for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
941 if (dr->aux != NULL)
942 {
943 DR_ACCESS_STRIDE (dr)->release ();
944 delete (vec<tree> *) dr->aux;
945 }
946
947 free_data_refs (datarefs);
948 }
949
950 /* Class for loop interchange transformation. */
951
952 class tree_loop_interchange
953 {
954 public:
tree_loop_interchange(vec<class loop * > loop_nest)955 tree_loop_interchange (vec<class loop *> loop_nest)
956 : m_loop_nest (loop_nest), m_niters_iv_var (NULL_TREE),
957 m_dce_seeds (BITMAP_ALLOC (NULL)) { }
~tree_loop_interchange()958 ~tree_loop_interchange () { BITMAP_FREE (m_dce_seeds); }
959 bool interchange (vec<data_reference_p>, vec<ddr_p>);
960
961 private:
962 void update_data_info (unsigned, unsigned, vec<data_reference_p>, vec<ddr_p>);
963 bool valid_data_dependences (unsigned, unsigned, vec<ddr_p>);
964 void interchange_loops (loop_cand &, loop_cand &);
965 void map_inductions_to_loop (loop_cand &, loop_cand &);
966 void move_code_to_inner_loop (class loop *, class loop *, basic_block *);
967
968 /* The whole loop nest in which interchange is ongoing. */
969 vec<class loop *> m_loop_nest;
970 /* We create new IV which is only used in loop's exit condition check.
971 In case of 3-level loop nest interchange, when we interchange the
972 innermost two loops, new IV created in the middle level loop does
973 not need to be preserved in interchanging the outermost two loops
974 later. We record the IV so that it can be skipped. */
975 tree m_niters_iv_var;
976 /* Bitmap of seed variables for dead code elimination after interchange. */
977 bitmap m_dce_seeds;
978 };
979
980 /* Update data refs' access stride and dependence information after loop
981 interchange. I_IDX/O_IDX gives indices of interchanged loops in loop
982 nest. DATAREFS are data references. DDRS are data dependences. */
983
984 void
update_data_info(unsigned i_idx,unsigned o_idx,vec<data_reference_p> datarefs,vec<ddr_p> ddrs)985 tree_loop_interchange::update_data_info (unsigned i_idx, unsigned o_idx,
986 vec<data_reference_p> datarefs,
987 vec<ddr_p> ddrs)
988 {
989 struct data_reference *dr;
990 struct data_dependence_relation *ddr;
991
992 /* Update strides of data references. */
993 for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
994 {
995 vec<tree> *stride = DR_ACCESS_STRIDE (dr);
996 gcc_assert (stride->length () > i_idx);
997 std::swap ((*stride)[i_idx], (*stride)[o_idx]);
998 }
999 /* Update data dependences. */
1000 for (unsigned i = 0; ddrs.iterate (i, &ddr); ++i)
1001 if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
1002 {
1003 for (unsigned j = 0; j < DDR_NUM_DIST_VECTS (ddr); ++j)
1004 {
1005 lambda_vector dist_vect = DDR_DIST_VECT (ddr, j);
1006 std::swap (dist_vect[i_idx], dist_vect[o_idx]);
1007 }
1008 }
1009 }
1010
1011 /* Check data dependence relations, return TRUE if it's valid to interchange
1012 two loops specified by I_IDX/O_IDX. Theoretically, interchanging the two
1013 loops is valid only if dist vector, after interchanging, doesn't have '>'
1014 as the leftmost non-'=' direction. Practically, this function have been
1015 conservative here by not checking some valid cases. */
1016
1017 bool
valid_data_dependences(unsigned i_idx,unsigned o_idx,vec<ddr_p> ddrs)1018 tree_loop_interchange::valid_data_dependences (unsigned i_idx, unsigned o_idx,
1019 vec<ddr_p> ddrs)
1020 {
1021 struct data_dependence_relation *ddr;
1022
1023 for (unsigned i = 0; ddrs.iterate (i, &ddr); ++i)
1024 {
1025 /* Skip no-dependence case. */
1026 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1027 continue;
1028
1029 for (unsigned j = 0; j < DDR_NUM_DIST_VECTS (ddr); ++j)
1030 {
1031 lambda_vector dist_vect = DDR_DIST_VECT (ddr, j);
1032 unsigned level = dependence_level (dist_vect, m_loop_nest.length ());
1033
1034 /* If there is no carried dependence. */
1035 if (level == 0)
1036 continue;
1037
1038 level --;
1039
1040 /* If dependence is not carried by any loop in between the two
1041 loops [oloop, iloop] to interchange. */
1042 if (level < o_idx || level > i_idx)
1043 continue;
1044
1045 /* Be conservative, skip case if either direction at i_idx/o_idx
1046 levels is not '=' or '<'. */
1047 if ((!DDR_REVERSED_P (ddr) && dist_vect[i_idx] < 0)
1048 || (DDR_REVERSED_P (ddr) && dist_vect[i_idx] > 0)
1049 || (!DDR_REVERSED_P (ddr) && dist_vect[o_idx] < 0)
1050 || (DDR_REVERSED_P (ddr) && dist_vect[o_idx] > 0))
1051 return false;
1052 }
1053 }
1054
1055 return true;
1056 }
1057
1058 /* Interchange two loops specified by ILOOP and OLOOP. */
1059
1060 void
interchange_loops(loop_cand & iloop,loop_cand & oloop)1061 tree_loop_interchange::interchange_loops (loop_cand &iloop, loop_cand &oloop)
1062 {
1063 reduction_p re;
1064 gimple_stmt_iterator gsi;
1065 tree i_niters, o_niters, var_after;
1066
1067 /* Undo inner loop's simple reduction. */
1068 for (unsigned i = 0; iloop.m_reductions.iterate (i, &re); ++i)
1069 if (re->type != DOUBLE_RTYPE)
1070 {
1071 if (re->producer)
1072 reset_debug_uses (re->producer);
1073
1074 iloop.undo_simple_reduction (re, m_dce_seeds);
1075 }
1076
1077 /* Only need to reset debug uses for double reduction. */
1078 for (unsigned i = 0; oloop.m_reductions.iterate (i, &re); ++i)
1079 {
1080 gcc_assert (re->type == DOUBLE_RTYPE);
1081 reset_debug_uses (SSA_NAME_DEF_STMT (re->var));
1082 reset_debug_uses (SSA_NAME_DEF_STMT (re->next));
1083 }
1084
1085 /* Prepare niters for both loops. */
1086 class loop *loop_nest = m_loop_nest[0];
1087 edge instantiate_below = loop_preheader_edge (loop_nest);
1088 gsi = gsi_last_bb (loop_preheader_edge (loop_nest)->src);
1089 i_niters = number_of_latch_executions (iloop.m_loop);
1090 i_niters = analyze_scalar_evolution (loop_outer (iloop.m_loop), i_niters);
1091 i_niters = instantiate_scev (instantiate_below, loop_outer (iloop.m_loop),
1092 i_niters);
1093 i_niters = force_gimple_operand_gsi (&gsi, unshare_expr (i_niters), true,
1094 NULL_TREE, false, GSI_CONTINUE_LINKING);
1095 o_niters = number_of_latch_executions (oloop.m_loop);
1096 if (oloop.m_loop != loop_nest)
1097 {
1098 o_niters = analyze_scalar_evolution (loop_outer (oloop.m_loop), o_niters);
1099 o_niters = instantiate_scev (instantiate_below, loop_outer (oloop.m_loop),
1100 o_niters);
1101 }
1102 o_niters = force_gimple_operand_gsi (&gsi, unshare_expr (o_niters), true,
1103 NULL_TREE, false, GSI_CONTINUE_LINKING);
1104
1105 /* Move src's code to tgt loop. This is necessary when src is the outer
1106 loop and tgt is the inner loop. */
1107 move_code_to_inner_loop (oloop.m_loop, iloop.m_loop, oloop.m_bbs);
1108
1109 /* Map outer loop's IV to inner loop, and vice versa. */
1110 map_inductions_to_loop (oloop, iloop);
1111 map_inductions_to_loop (iloop, oloop);
1112
1113 /* Create canonical IV for both loops. Note canonical IV for outer/inner
1114 loop is actually from inner/outer loop. Also we record the new IV
1115 created for the outer loop so that it can be skipped in later loop
1116 interchange. */
1117 create_canonical_iv (oloop.m_loop, oloop.m_exit,
1118 i_niters, &m_niters_iv_var, &var_after);
1119 bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
1120 create_canonical_iv (iloop.m_loop, iloop.m_exit,
1121 o_niters, NULL, &var_after);
1122 bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
1123
1124 /* Scrap niters estimation of interchanged loops. */
1125 iloop.m_loop->any_upper_bound = false;
1126 iloop.m_loop->any_likely_upper_bound = false;
1127 free_numbers_of_iterations_estimates (iloop.m_loop);
1128 oloop.m_loop->any_upper_bound = false;
1129 oloop.m_loop->any_likely_upper_bound = false;
1130 free_numbers_of_iterations_estimates (oloop.m_loop);
1131
1132 /* Clear all cached scev information. This is expensive but shouldn't be
1133 a problem given we interchange in very limited times. */
1134 scev_reset_htab ();
1135
1136 /* ??? The association between the loop data structure and the
1137 CFG changed, so what was loop N at the source level is now
1138 loop M. We should think of retaining the association or breaking
1139 it fully by creating a new loop instead of re-using the "wrong" one. */
1140 }
1141
1142 /* Map induction variables of SRC loop to TGT loop. The function firstly
1143 creates the same IV of SRC loop in TGT loop, then deletes the original
1144 IV and re-initialize it using the newly created IV. For example, loop
1145 nest:
1146
1147 for (i = 0; i < N; i++)
1148 for (j = 0; j < M; j++)
1149 {
1150 //use of i;
1151 //use of j;
1152 }
1153
1154 will be transformed into:
1155
1156 for (jj = 0; jj < M; jj++)
1157 for (ii = 0; ii < N; ii++)
1158 {
1159 //use of ii;
1160 //use of jj;
1161 }
1162
1163 after loop interchange. */
1164
1165 void
map_inductions_to_loop(loop_cand & src,loop_cand & tgt)1166 tree_loop_interchange::map_inductions_to_loop (loop_cand &src, loop_cand &tgt)
1167 {
1168 induction_p iv;
1169 edge e = tgt.m_exit;
1170 gimple_stmt_iterator incr_pos = gsi_last_bb (e->src), gsi;
1171
1172 /* Map source loop's IV to target loop. */
1173 for (unsigned i = 0; src.m_inductions.iterate (i, &iv); ++i)
1174 {
1175 gimple *use_stmt, *stmt = SSA_NAME_DEF_STMT (iv->var);
1176 gcc_assert (is_a <gphi *> (stmt));
1177
1178 use_operand_p use_p;
1179 /* Only map original IV to target loop. */
1180 if (m_niters_iv_var != iv->var)
1181 {
1182 /* Map the IV by creating the same one in target loop. */
1183 tree var_before, var_after;
1184 tree base = unshare_expr (iv->init_expr);
1185 tree step = unshare_expr (iv->step);
1186 create_iv (base, step, SSA_NAME_VAR (iv->var),
1187 tgt.m_loop, &incr_pos, false, &var_before, &var_after);
1188 bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_before));
1189 bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
1190
1191 /* Replace uses of the original IV var with newly created IV var. */
1192 imm_use_iterator imm_iter;
1193 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, iv->var)
1194 {
1195 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1196 SET_USE (use_p, var_before);
1197
1198 update_stmt (use_stmt);
1199 }
1200 }
1201
1202 /* Mark all uses for DCE. */
1203 ssa_op_iter op_iter;
1204 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, op_iter, SSA_OP_USE)
1205 {
1206 tree use = USE_FROM_PTR (use_p);
1207 if (TREE_CODE (use) == SSA_NAME
1208 && ! SSA_NAME_IS_DEFAULT_DEF (use))
1209 bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (use));
1210 }
1211
1212 /* Delete definition of the original IV in the source loop. */
1213 gsi = gsi_for_stmt (stmt);
1214 remove_phi_node (&gsi, true);
1215 }
1216 }
1217
1218 /* Move stmts of outer loop to inner loop. */
1219
1220 void
move_code_to_inner_loop(class loop * outer,class loop * inner,basic_block * outer_bbs)1221 tree_loop_interchange::move_code_to_inner_loop (class loop *outer,
1222 class loop *inner,
1223 basic_block *outer_bbs)
1224 {
1225 basic_block oloop_exit_bb = single_exit (outer)->src;
1226 gimple_stmt_iterator gsi, to;
1227
1228 for (unsigned i = 0; i < outer->num_nodes; i++)
1229 {
1230 basic_block bb = outer_bbs[i];
1231
1232 /* Skip basic blocks of inner loop. */
1233 if (flow_bb_inside_loop_p (inner, bb))
1234 continue;
1235
1236 /* Move code from header/latch to header/latch. */
1237 if (bb == outer->header)
1238 to = gsi_after_labels (inner->header);
1239 else if (bb == outer->latch)
1240 to = gsi_after_labels (inner->latch);
1241 else
1242 /* Otherwise, simply move to exit->src. */
1243 to = gsi_last_bb (single_exit (inner)->src);
1244
1245 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
1246 {
1247 gimple *stmt = gsi_stmt (gsi);
1248
1249 if (oloop_exit_bb == bb
1250 && stmt == gsi_stmt (gsi_last_bb (oloop_exit_bb)))
1251 {
1252 gsi_next (&gsi);
1253 continue;
1254 }
1255
1256 if (gimple_vdef (stmt))
1257 {
1258 unlink_stmt_vdef (stmt);
1259 release_ssa_name (gimple_vdef (stmt));
1260 gimple_set_vdef (stmt, NULL_TREE);
1261 }
1262 if (gimple_vuse (stmt))
1263 {
1264 gimple_set_vuse (stmt, NULL_TREE);
1265 update_stmt (stmt);
1266 }
1267
1268 reset_debug_uses (stmt);
1269 gsi_move_before (&gsi, &to);
1270 }
1271 }
1272 }
1273
1274 /* Given data reference DR in LOOP_NEST, the function computes DR's access
1275 stride at each level of loop from innermost LOOP to outer. On success,
1276 it saves access stride at each level loop in a vector which is pointed
1277 by DR->aux. For example:
1278
1279 int arr[100][100][100];
1280 for (i = 0; i < 100; i++) ;(DR->aux)strides[0] = 40000
1281 for (j = 100; j > 0; j--) ;(DR->aux)strides[1] = 400
1282 for (k = 0; k < 100; k++) ;(DR->aux)strides[2] = 4
1283 arr[i][j - 1][k] = 0; */
1284
1285 static void
compute_access_stride(class loop * loop_nest,class loop * loop,data_reference_p dr)1286 compute_access_stride (class loop *loop_nest, class loop *loop,
1287 data_reference_p dr)
1288 {
1289 vec<tree> *strides = new vec<tree> ();
1290 basic_block bb = gimple_bb (DR_STMT (dr));
1291
1292 while (!flow_bb_inside_loop_p (loop, bb))
1293 {
1294 strides->safe_push (build_int_cst (sizetype, 0));
1295 loop = loop_outer (loop);
1296 }
1297 gcc_assert (loop == bb->loop_father);
1298
1299 tree ref = DR_REF (dr);
1300 if (TREE_CODE (ref) == COMPONENT_REF
1301 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
1302 {
1303 /* We can't take address of bitfields. If the bitfield is at constant
1304 offset from the start of the struct, just use address of the
1305 struct, for analysis of the strides that shouldn't matter. */
1306 if (!TREE_OPERAND (ref, 2)
1307 || TREE_CODE (TREE_OPERAND (ref, 2)) == INTEGER_CST)
1308 ref = TREE_OPERAND (ref, 0);
1309 /* Otherwise, if we have a bit field representative, use that. */
1310 else if (DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (ref, 1))
1311 != NULL_TREE)
1312 {
1313 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (ref, 1));
1314 ref = build3 (COMPONENT_REF, TREE_TYPE (repr), TREE_OPERAND (ref, 0),
1315 repr, TREE_OPERAND (ref, 2));
1316 }
1317 /* Otherwise punt. */
1318 else
1319 {
1320 dr->aux = strides;
1321 return;
1322 }
1323 }
1324 tree scev_base = build_fold_addr_expr (ref);
1325 tree scev = analyze_scalar_evolution (loop, scev_base);
1326 scev = instantiate_scev (loop_preheader_edge (loop_nest), loop, scev);
1327 if (! chrec_contains_undetermined (scev))
1328 {
1329 tree sl = scev;
1330 class loop *expected = loop;
1331 while (TREE_CODE (sl) == POLYNOMIAL_CHREC)
1332 {
1333 class loop *sl_loop = get_chrec_loop (sl);
1334 while (sl_loop != expected)
1335 {
1336 strides->safe_push (size_int (0));
1337 expected = loop_outer (expected);
1338 }
1339 strides->safe_push (CHREC_RIGHT (sl));
1340 sl = CHREC_LEFT (sl);
1341 expected = loop_outer (expected);
1342 }
1343 if (! tree_contains_chrecs (sl, NULL))
1344 while (expected != loop_outer (loop_nest))
1345 {
1346 strides->safe_push (size_int (0));
1347 expected = loop_outer (expected);
1348 }
1349 }
1350
1351 dr->aux = strides;
1352 }
1353
1354 /* Given loop nest LOOP_NEST with innermost LOOP, the function computes
1355 access strides with respect to each level loop for all data refs in
1356 DATAREFS from inner loop to outer loop. On success, it returns the
1357 outermost loop that access strides can be computed successfully for
1358 all data references. If access strides cannot be computed at least
1359 for two levels of loop for any data reference, it returns NULL. */
1360
1361 static class loop *
compute_access_strides(class loop * loop_nest,class loop * loop,vec<data_reference_p> datarefs)1362 compute_access_strides (class loop *loop_nest, class loop *loop,
1363 vec<data_reference_p> datarefs)
1364 {
1365 unsigned i, j, num_loops = (unsigned) -1;
1366 data_reference_p dr;
1367 vec<tree> *stride;
1368
1369 for (i = 0; datarefs.iterate (i, &dr); ++i)
1370 {
1371 compute_access_stride (loop_nest, loop, dr);
1372 stride = DR_ACCESS_STRIDE (dr);
1373 if (stride->length () < num_loops)
1374 {
1375 num_loops = stride->length ();
1376 if (num_loops < 2)
1377 return NULL;
1378 }
1379 }
1380
1381 for (i = 0; datarefs.iterate (i, &dr); ++i)
1382 {
1383 stride = DR_ACCESS_STRIDE (dr);
1384 if (stride->length () > num_loops)
1385 stride->truncate (num_loops);
1386
1387 for (j = 0; j < (num_loops >> 1); ++j)
1388 std::swap ((*stride)[j], (*stride)[num_loops - j - 1]);
1389 }
1390
1391 loop = superloop_at_depth (loop, loop_depth (loop) + 1 - num_loops);
1392 gcc_assert (loop_nest == loop || flow_loop_nested_p (loop_nest, loop));
1393 return loop;
1394 }
1395
1396 /* Prune access strides for data references in DATAREFS by removing strides
1397 of loops that isn't in current LOOP_NEST. */
1398
1399 static void
prune_access_strides_not_in_loop(class loop * loop_nest,class loop * innermost,vec<data_reference_p> datarefs)1400 prune_access_strides_not_in_loop (class loop *loop_nest,
1401 class loop *innermost,
1402 vec<data_reference_p> datarefs)
1403 {
1404 data_reference_p dr;
1405 unsigned num_loops = loop_depth (innermost) - loop_depth (loop_nest) + 1;
1406 gcc_assert (num_loops > 1);
1407
1408 /* Block remove strides of loops that is not in current loop nest. */
1409 for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
1410 {
1411 vec<tree> *stride = DR_ACCESS_STRIDE (dr);
1412 if (stride->length () > num_loops)
1413 stride->block_remove (0, stride->length () - num_loops);
1414 }
1415 }
1416
1417 /* Dump access strides for all DATAREFS. */
1418
1419 static void
dump_access_strides(vec<data_reference_p> datarefs)1420 dump_access_strides (vec<data_reference_p> datarefs)
1421 {
1422 data_reference_p dr;
1423 fprintf (dump_file, "Access Strides for DRs:\n");
1424 for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
1425 {
1426 fprintf (dump_file, " ");
1427 print_generic_expr (dump_file, DR_REF (dr), TDF_SLIM);
1428 fprintf (dump_file, ":\t\t<");
1429
1430 vec<tree> *stride = DR_ACCESS_STRIDE (dr);
1431 unsigned num_loops = stride->length ();
1432 for (unsigned j = 0; j < num_loops; ++j)
1433 {
1434 print_generic_expr (dump_file, (*stride)[j], TDF_SLIM);
1435 fprintf (dump_file, "%s", (j < num_loops - 1) ? ",\t" : ">\n");
1436 }
1437 }
1438 }
1439
1440 /* Return true if it's profitable to interchange two loops whose index
1441 in whole loop nest vector are I_IDX/O_IDX respectively. The function
1442 computes and compares three types information from all DATAREFS:
1443 1) Access stride for loop I_IDX and O_IDX.
1444 2) Number of invariant memory references with respect to I_IDX before
1445 and after loop interchange.
1446 3) Flags indicating if all memory references access sequential memory
1447 in ILOOP, before and after loop interchange.
1448 If INNMOST_LOOP_P is true, the two loops for interchanging are the two
1449 innermost loops in loop nest. This function also dumps information if
1450 DUMP_INFO_P is true. */
1451
1452 static bool
should_interchange_loops(unsigned i_idx,unsigned o_idx,vec<data_reference_p> datarefs,unsigned i_stmt_cost,unsigned o_stmt_cost,bool innermost_loops_p,bool dump_info_p=true)1453 should_interchange_loops (unsigned i_idx, unsigned o_idx,
1454 vec<data_reference_p> datarefs,
1455 unsigned i_stmt_cost, unsigned o_stmt_cost,
1456 bool innermost_loops_p, bool dump_info_p = true)
1457 {
1458 unsigned HOST_WIDE_INT ratio;
1459 unsigned i, j, num_old_inv_drs = 0, num_new_inv_drs = 0;
1460 struct data_reference *dr;
1461 bool all_seq_dr_before_p = true, all_seq_dr_after_p = true;
1462 widest_int iloop_strides = 0, oloop_strides = 0;
1463 unsigned num_unresolved_drs = 0;
1464 unsigned num_resolved_ok_drs = 0;
1465 unsigned num_resolved_not_ok_drs = 0;
1466
1467 if (dump_info_p && dump_file && (dump_flags & TDF_DETAILS))
1468 fprintf (dump_file, "\nData ref strides:\n\tmem_ref:\t\tiloop\toloop\n");
1469
1470 for (i = 0; datarefs.iterate (i, &dr); ++i)
1471 {
1472 vec<tree> *stride = DR_ACCESS_STRIDE (dr);
1473 tree iloop_stride = (*stride)[i_idx], oloop_stride = (*stride)[o_idx];
1474
1475 bool subloop_stride_p = false;
1476 /* Data ref can't be invariant or sequential access at current loop if
1477 its address changes with respect to any subloops. */
1478 for (j = i_idx + 1; j < stride->length (); ++j)
1479 if (!integer_zerop ((*stride)[j]))
1480 {
1481 subloop_stride_p = true;
1482 break;
1483 }
1484
1485 if (integer_zerop (iloop_stride))
1486 {
1487 if (!subloop_stride_p)
1488 num_old_inv_drs++;
1489 }
1490 if (integer_zerop (oloop_stride))
1491 {
1492 if (!subloop_stride_p)
1493 num_new_inv_drs++;
1494 }
1495
1496 if (TREE_CODE (iloop_stride) == INTEGER_CST
1497 && TREE_CODE (oloop_stride) == INTEGER_CST)
1498 {
1499 iloop_strides = wi::add (iloop_strides, wi::to_widest (iloop_stride));
1500 oloop_strides = wi::add (oloop_strides, wi::to_widest (oloop_stride));
1501 }
1502 else if (multiple_of_p (TREE_TYPE (iloop_stride),
1503 iloop_stride, oloop_stride))
1504 num_resolved_ok_drs++;
1505 else if (multiple_of_p (TREE_TYPE (iloop_stride),
1506 oloop_stride, iloop_stride))
1507 num_resolved_not_ok_drs++;
1508 else
1509 num_unresolved_drs++;
1510
1511 /* Data ref can't be sequential access if its address changes in sub
1512 loop. */
1513 if (subloop_stride_p)
1514 {
1515 all_seq_dr_before_p = false;
1516 all_seq_dr_after_p = false;
1517 continue;
1518 }
1519 /* Track if all data references are sequential accesses before/after loop
1520 interchange. Note invariant is considered sequential here. */
1521 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
1522 if (all_seq_dr_before_p
1523 && ! (integer_zerop (iloop_stride)
1524 || operand_equal_p (access_size, iloop_stride, 0)))
1525 all_seq_dr_before_p = false;
1526 if (all_seq_dr_after_p
1527 && ! (integer_zerop (oloop_stride)
1528 || operand_equal_p (access_size, oloop_stride, 0)))
1529 all_seq_dr_after_p = false;
1530 }
1531
1532 if (dump_info_p && dump_file && (dump_flags & TDF_DETAILS))
1533 {
1534 fprintf (dump_file, "\toverall:\t\t");
1535 print_decu (iloop_strides, dump_file);
1536 fprintf (dump_file, "\t");
1537 print_decu (oloop_strides, dump_file);
1538 fprintf (dump_file, "\n");
1539
1540 fprintf (dump_file, "Invariant data ref: before(%d), after(%d)\n",
1541 num_old_inv_drs, num_new_inv_drs);
1542 fprintf (dump_file, "All consecutive stride: before(%s), after(%s)\n",
1543 all_seq_dr_before_p ? "true" : "false",
1544 all_seq_dr_after_p ? "true" : "false");
1545 fprintf (dump_file, "OK to interchage with variable strides: %d\n",
1546 num_resolved_ok_drs);
1547 fprintf (dump_file, "Not OK to interchage with variable strides: %d\n",
1548 num_resolved_not_ok_drs);
1549 fprintf (dump_file, "Variable strides we cannot decide: %d\n",
1550 num_unresolved_drs);
1551 fprintf (dump_file, "Stmt cost of inner loop: %d\n", i_stmt_cost);
1552 fprintf (dump_file, "Stmt cost of outer loop: %d\n", o_stmt_cost);
1553 }
1554
1555 if (num_unresolved_drs != 0 || num_resolved_not_ok_drs != 0)
1556 return false;
1557
1558 /* Stmts of outer loop will be moved to inner loop. If there are two many
1559 such stmts, it could make inner loop costly. Here we compare stmt cost
1560 between outer and inner loops. */
1561 if (i_stmt_cost && o_stmt_cost
1562 && num_old_inv_drs + o_stmt_cost > num_new_inv_drs
1563 && o_stmt_cost * STMT_COST_RATIO > i_stmt_cost)
1564 return false;
1565
1566 /* We use different stride comparison ratio for interchanging innermost
1567 two loops or not. The idea is to be conservative in interchange for
1568 the innermost loops. */
1569 ratio = innermost_loops_p ? INNER_STRIDE_RATIO : OUTER_STRIDE_RATIO;
1570 /* Do interchange if it gives better data locality behavior. */
1571 if (wi::gtu_p (iloop_strides, wi::mul (oloop_strides, ratio)))
1572 return true;
1573 if (wi::gtu_p (iloop_strides, oloop_strides))
1574 {
1575 /* Or it creates more invariant memory references. */
1576 if ((!all_seq_dr_before_p || all_seq_dr_after_p)
1577 && num_new_inv_drs > num_old_inv_drs)
1578 return true;
1579 /* Or it makes all memory references sequential. */
1580 if (num_new_inv_drs >= num_old_inv_drs
1581 && !all_seq_dr_before_p && all_seq_dr_after_p)
1582 return true;
1583 }
1584
1585 return false;
1586 }
1587
1588 /* Try to interchange inner loop of a loop nest to outer level. */
1589
1590 bool
interchange(vec<data_reference_p> datarefs,vec<ddr_p> ddrs)1591 tree_loop_interchange::interchange (vec<data_reference_p> datarefs,
1592 vec<ddr_p> ddrs)
1593 {
1594 dump_user_location_t loc = find_loop_location (m_loop_nest[0]);
1595 bool changed_p = false;
1596 /* In each iteration we try to interchange I-th loop with (I+1)-th loop.
1597 The overall effect is to push inner loop to outermost level in whole
1598 loop nest. */
1599 for (unsigned i = m_loop_nest.length (); i > 1; --i)
1600 {
1601 unsigned i_idx = i - 1, o_idx = i - 2;
1602
1603 /* Check validity for loop interchange. */
1604 if (!valid_data_dependences (i_idx, o_idx, ddrs))
1605 break;
1606
1607 loop_cand iloop (m_loop_nest[i_idx], m_loop_nest[o_idx]);
1608 loop_cand oloop (m_loop_nest[o_idx], m_loop_nest[o_idx]);
1609
1610 /* Check if we can do transformation for loop interchange. */
1611 if (!iloop.analyze_carried_vars (NULL)
1612 || !iloop.analyze_lcssa_phis ()
1613 || !oloop.analyze_carried_vars (&iloop)
1614 || !oloop.analyze_lcssa_phis ()
1615 || !iloop.can_interchange_p (NULL)
1616 || !oloop.can_interchange_p (&iloop))
1617 break;
1618
1619 /* Outer loop's stmts will be moved to inner loop during interchange.
1620 If there are many of them, it may make inner loop very costly. We
1621 need to check number of outer loop's stmts in profit cost model of
1622 interchange. */
1623 int stmt_cost = oloop.m_num_stmts;
1624 /* Count out the exit checking stmt of outer loop. */
1625 stmt_cost --;
1626 /* Count out IV's increasing stmt, IVOPTs takes care if it. */
1627 stmt_cost -= oloop.m_inductions.length ();
1628 /* Count in the additional load and cond_expr stmts caused by inner
1629 loop's constant initialized reduction. */
1630 stmt_cost += iloop.m_const_init_reduc * 2;
1631 if (stmt_cost < 0)
1632 stmt_cost = 0;
1633
1634 /* Check profitability for loop interchange. */
1635 if (should_interchange_loops (i_idx, o_idx, datarefs,
1636 (unsigned) iloop.m_num_stmts,
1637 (unsigned) stmt_cost,
1638 iloop.m_loop->inner == NULL))
1639 {
1640 if (dump_file && (dump_flags & TDF_DETAILS))
1641 fprintf (dump_file,
1642 "Loop_pair<outer:%d, inner:%d> is interchanged\n\n",
1643 oloop.m_loop->num, iloop.m_loop->num);
1644
1645 changed_p = true;
1646 interchange_loops (iloop, oloop);
1647 /* No need to update if there is no further loop interchange. */
1648 if (o_idx > 0)
1649 update_data_info (i_idx, o_idx, datarefs, ddrs);
1650 }
1651 else
1652 {
1653 if (dump_file && (dump_flags & TDF_DETAILS))
1654 fprintf (dump_file,
1655 "Loop_pair<outer:%d, inner:%d> is not interchanged\n\n",
1656 oloop.m_loop->num, iloop.m_loop->num);
1657 }
1658 }
1659 simple_dce_from_worklist (m_dce_seeds);
1660
1661 if (changed_p && dump_enabled_p ())
1662 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
1663 "loops interchanged in loop nest\n");
1664
1665 return changed_p;
1666 }
1667
1668
1669 /* Loop interchange pass. */
1670
1671 namespace {
1672
1673 const pass_data pass_data_linterchange =
1674 {
1675 GIMPLE_PASS, /* type */
1676 "linterchange", /* name */
1677 OPTGROUP_LOOP, /* optinfo_flags */
1678 TV_LINTERCHANGE, /* tv_id */
1679 PROP_cfg, /* properties_required */
1680 0, /* properties_provided */
1681 0, /* properties_destroyed */
1682 0, /* todo_flags_start */
1683 0, /* todo_flags_finish */
1684 };
1685
1686 class pass_linterchange : public gimple_opt_pass
1687 {
1688 public:
pass_linterchange(gcc::context * ctxt)1689 pass_linterchange (gcc::context *ctxt)
1690 : gimple_opt_pass (pass_data_linterchange, ctxt)
1691 {}
1692
1693 /* opt_pass methods: */
clone()1694 opt_pass * clone () { return new pass_linterchange (m_ctxt); }
gate(function *)1695 virtual bool gate (function *) { return flag_loop_interchange; }
1696 virtual unsigned int execute (function *);
1697
1698 }; // class pass_linterchange
1699
1700
1701 /* Return true if LOOP has proper form for interchange. We check three
1702 conditions in the function:
1703 1) In general, a loop can be interchanged only if it doesn't have
1704 basic blocks other than header, exit and latch besides possible
1705 inner loop nest. This basically restricts loop interchange to
1706 below form loop nests:
1707
1708 header<---+
1709 | |
1710 v |
1711 INNER_LOOP |
1712 | |
1713 v |
1714 exit--->latch
1715
1716 2) Data reference in basic block that executes in different times
1717 than loop head/exit is not allowed.
1718 3) Record the innermost outer loop that doesn't form rectangle loop
1719 nest with LOOP. */
1720
1721 static bool
proper_loop_form_for_interchange(class loop * loop,class loop ** min_outer)1722 proper_loop_form_for_interchange (class loop *loop, class loop **min_outer)
1723 {
1724 edge e0, e1, exit;
1725
1726 /* Don't interchange if loop has unsupported information for the moment. */
1727 if (loop->safelen > 0
1728 || loop->constraints != 0
1729 || loop->can_be_parallel
1730 || loop->dont_vectorize
1731 || loop->force_vectorize
1732 || loop->in_oacc_kernels_region
1733 || loop->orig_loop_num != 0
1734 || loop->simduid != NULL_TREE)
1735 return false;
1736
1737 /* Don't interchange if outer loop has basic block other than header, exit
1738 and latch. */
1739 if (loop->inner != NULL
1740 && loop->num_nodes != loop->inner->num_nodes + 3)
1741 return false;
1742
1743 if ((exit = single_dom_exit (loop)) == NULL)
1744 return false;
1745
1746 /* Check control flow on loop header/exit blocks. */
1747 if (loop->header == exit->src
1748 && (EDGE_COUNT (loop->header->preds) != 2
1749 || EDGE_COUNT (loop->header->succs) != 2))
1750 return false;
1751 else if (loop->header != exit->src
1752 && (EDGE_COUNT (loop->header->preds) != 2
1753 || !single_succ_p (loop->header)
1754 || unsupported_edge (single_succ_edge (loop->header))
1755 || EDGE_COUNT (exit->src->succs) != 2
1756 || !single_pred_p (exit->src)
1757 || unsupported_edge (single_pred_edge (exit->src))))
1758 return false;
1759
1760 e0 = EDGE_PRED (loop->header, 0);
1761 e1 = EDGE_PRED (loop->header, 1);
1762 if (unsupported_edge (e0) || unsupported_edge (e1)
1763 || (e0->src != loop->latch && e1->src != loop->latch)
1764 || (e0->src->loop_father == loop && e1->src->loop_father == loop))
1765 return false;
1766
1767 e0 = EDGE_SUCC (exit->src, 0);
1768 e1 = EDGE_SUCC (exit->src, 1);
1769 if (unsupported_edge (e0) || unsupported_edge (e1)
1770 || (e0->dest != loop->latch && e1->dest != loop->latch)
1771 || (e0->dest->loop_father == loop && e1->dest->loop_father == loop))
1772 return false;
1773
1774 /* Don't interchange if any reference is in basic block that doesn't
1775 dominate exit block. */
1776 basic_block *bbs = get_loop_body (loop);
1777 for (unsigned i = 0; i < loop->num_nodes; i++)
1778 {
1779 basic_block bb = bbs[i];
1780
1781 if (bb->loop_father != loop
1782 || bb == loop->header || bb == exit->src
1783 || dominated_by_p (CDI_DOMINATORS, exit->src, bb))
1784 continue;
1785
1786 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
1787 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
1788 if (gimple_vuse (gsi_stmt (gsi)))
1789 {
1790 free (bbs);
1791 return false;
1792 }
1793 }
1794 free (bbs);
1795
1796 tree niters = number_of_latch_executions (loop);
1797 niters = analyze_scalar_evolution (loop_outer (loop), niters);
1798 if (!niters || chrec_contains_undetermined (niters))
1799 return false;
1800
1801 /* Record the innermost outer loop that doesn't form rectangle loop nest. */
1802 for (loop_p loop2 = loop_outer (loop);
1803 loop2 && flow_loop_nested_p (*min_outer, loop2);
1804 loop2 = loop_outer (loop2))
1805 {
1806 niters = instantiate_scev (loop_preheader_edge (loop2),
1807 loop_outer (loop), niters);
1808 if (!evolution_function_is_invariant_p (niters, loop2->num))
1809 {
1810 *min_outer = loop2;
1811 break;
1812 }
1813 }
1814 return true;
1815 }
1816
1817 /* Return true if any two adjacent loops in loop nest [INNERMOST, LOOP_NEST]
1818 should be interchanged by looking into all DATAREFS. */
1819
1820 static bool
should_interchange_loop_nest(class loop * loop_nest,class loop * innermost,vec<data_reference_p> datarefs)1821 should_interchange_loop_nest (class loop *loop_nest, class loop *innermost,
1822 vec<data_reference_p> datarefs)
1823 {
1824 unsigned idx = loop_depth (innermost) - loop_depth (loop_nest);
1825 gcc_assert (idx > 0);
1826
1827 /* Check if any two adjacent loops should be interchanged. */
1828 for (class loop *loop = innermost;
1829 loop != loop_nest; loop = loop_outer (loop), idx--)
1830 if (should_interchange_loops (idx, idx - 1, datarefs, 0, 0,
1831 loop == innermost, false))
1832 return true;
1833
1834 return false;
1835 }
1836
1837 /* Given loop nest LOOP_NEST and data references DATAREFS, compute data
1838 dependences for loop interchange and store it in DDRS. Note we compute
1839 dependences directly rather than call generic interface so that we can
1840 return on unknown dependence instantly. */
1841
1842 static bool
tree_loop_interchange_compute_ddrs(vec<loop_p> loop_nest,vec<data_reference_p> datarefs,vec<ddr_p> * ddrs)1843 tree_loop_interchange_compute_ddrs (vec<loop_p> loop_nest,
1844 vec<data_reference_p> datarefs,
1845 vec<ddr_p> *ddrs)
1846 {
1847 struct data_reference *a, *b;
1848 class loop *innermost = loop_nest.last ();
1849
1850 for (unsigned i = 0; datarefs.iterate (i, &a); ++i)
1851 {
1852 bool a_outer_p = gimple_bb (DR_STMT (a))->loop_father != innermost;
1853 for (unsigned j = i + 1; datarefs.iterate (j, &b); ++j)
1854 if (DR_IS_WRITE (a) || DR_IS_WRITE (b))
1855 {
1856 bool b_outer_p = gimple_bb (DR_STMT (b))->loop_father != innermost;
1857 /* Don't support multiple write references in outer loop. */
1858 if (a_outer_p && b_outer_p && DR_IS_WRITE (a) && DR_IS_WRITE (b))
1859 return false;
1860
1861 ddr_p ddr = initialize_data_dependence_relation (a, b, loop_nest);
1862 ddrs->safe_push (ddr);
1863 compute_affine_dependence (ddr, loop_nest[0]);
1864
1865 /* Give up if ddr is unknown dependence or classic direct vector
1866 is not available. */
1867 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1868 || (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
1869 && DDR_NUM_DIR_VECTS (ddr) == 0))
1870 return false;
1871
1872 /* If either data references is in outer loop of nest, we require
1873 no dependence here because the data reference need to be moved
1874 into inner loop during interchange. */
1875 if (a_outer_p && b_outer_p
1876 && operand_equal_p (DR_REF (a), DR_REF (b), 0))
1877 continue;
1878 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1879 && (a_outer_p || b_outer_p))
1880 return false;
1881 }
1882 }
1883
1884 return true;
1885 }
1886
1887 /* Prune DATAREFS by removing any data reference not inside of LOOP. */
1888
1889 static inline void
prune_datarefs_not_in_loop(class loop * loop,vec<data_reference_p> datarefs)1890 prune_datarefs_not_in_loop (class loop *loop, vec<data_reference_p> datarefs)
1891 {
1892 unsigned i, j;
1893 struct data_reference *dr;
1894
1895 for (i = 0, j = 0; datarefs.iterate (i, &dr); ++i)
1896 {
1897 if (flow_bb_inside_loop_p (loop, gimple_bb (DR_STMT (dr))))
1898 datarefs[j++] = dr;
1899 else
1900 {
1901 if (dr->aux)
1902 {
1903 DR_ACCESS_STRIDE (dr)->release ();
1904 delete (vec<tree> *) dr->aux;
1905 }
1906 free_data_ref (dr);
1907 }
1908 }
1909 datarefs.truncate (j);
1910 }
1911
1912 /* Find and store data references in DATAREFS for LOOP nest. If there's
1913 difficult data reference in a basic block, we shrink the loop nest to
1914 inner loop of that basic block's father loop. On success, return the
1915 outer loop of the result loop nest. */
1916
1917 static class loop *
prepare_data_references(class loop * loop,vec<data_reference_p> * datarefs)1918 prepare_data_references (class loop *loop, vec<data_reference_p> *datarefs)
1919 {
1920 class loop *loop_nest = loop;
1921 vec<data_reference_p> *bb_refs;
1922 basic_block bb, *bbs = get_loop_body_in_dom_order (loop);
1923
1924 for (unsigned i = 0; i < loop->num_nodes; i++)
1925 bbs[i]->aux = NULL;
1926
1927 /* Find data references for all basic blocks. Shrink loop nest on difficult
1928 data reference. */
1929 for (unsigned i = 0; loop_nest && i < loop->num_nodes; ++i)
1930 {
1931 bb = bbs[i];
1932 if (!flow_bb_inside_loop_p (loop_nest, bb))
1933 continue;
1934
1935 bb_refs = new vec<data_reference_p> ();
1936 if (find_data_references_in_bb (loop, bb, bb_refs) == chrec_dont_know)
1937 {
1938 loop_nest = bb->loop_father->inner;
1939 if (loop_nest && !loop_nest->inner)
1940 loop_nest = NULL;
1941
1942 free_data_refs (*bb_refs);
1943 delete bb_refs;
1944 }
1945 else if (bb_refs->is_empty ())
1946 delete bb_refs;
1947 else
1948 bb->aux = bb_refs;
1949 }
1950
1951 /* Collect all data references in loop nest. */
1952 for (unsigned i = 0; i < loop->num_nodes; i++)
1953 {
1954 bb = bbs[i];
1955 if (!bb->aux)
1956 continue;
1957
1958 bb_refs = (vec<data_reference_p> *) bb->aux;
1959 if (loop_nest && flow_bb_inside_loop_p (loop_nest, bb))
1960 datarefs->safe_splice (*bb_refs);
1961 else
1962 free_data_refs (*bb_refs);
1963
1964 delete bb_refs;
1965 bb->aux = NULL;
1966 }
1967 free (bbs);
1968
1969 return loop_nest;
1970 }
1971
1972 /* Given innermost LOOP, return true if perfect loop nest can be found and
1973 data dependences can be computed. If succeed, record the perfect loop
1974 nest in LOOP_NEST; record all data references in DATAREFS and record all
1975 data dependence relations in DDRS.
1976
1977 We do support a restricted form of imperfect loop nest, i.e, loop nest
1978 with load/store in outer loop initializing/finalizing simple reduction
1979 of the innermost loop. For such outer loop reference, we require that
1980 it has no dependence with others sinve it will be moved to inner loop
1981 in interchange. */
1982
1983 static bool
prepare_perfect_loop_nest(class loop * loop,vec<loop_p> * loop_nest,vec<data_reference_p> * datarefs,vec<ddr_p> * ddrs)1984 prepare_perfect_loop_nest (class loop *loop, vec<loop_p> *loop_nest,
1985 vec<data_reference_p> *datarefs, vec<ddr_p> *ddrs)
1986 {
1987 class loop *start_loop = NULL, *innermost = loop;
1988 class loop *outermost = loops_for_fn (cfun)->tree_root;
1989
1990 /* Find loop nest from the innermost loop. The outermost is the innermost
1991 outer*/
1992 while (loop->num != 0 && loop->inner == start_loop
1993 && flow_loop_nested_p (outermost, loop))
1994 {
1995 if (!proper_loop_form_for_interchange (loop, &outermost))
1996 break;
1997
1998 start_loop = loop;
1999 /* If this loop has sibling loop, the father loop won't be in perfect
2000 loop nest. */
2001 if (loop->next != NULL)
2002 break;
2003
2004 loop = loop_outer (loop);
2005 }
2006 if (!start_loop || !start_loop->inner)
2007 return false;
2008
2009 /* Prepare the data reference vector for the loop nest, pruning outer
2010 loops we cannot handle. */
2011 start_loop = prepare_data_references (start_loop, datarefs);
2012 if (!start_loop
2013 /* Check if there is no data reference. */
2014 || datarefs->is_empty ()
2015 /* Check if there are too many of data references. */
2016 || (int) datarefs->length () > MAX_DATAREFS)
2017 return false;
2018
2019 /* Compute access strides for all data references, pruning outer
2020 loops we cannot analyze refs in. */
2021 start_loop = compute_access_strides (start_loop, innermost, *datarefs);
2022 if (!start_loop)
2023 return false;
2024
2025 /* Check if any interchange is profitable in the loop nest. */
2026 if (!should_interchange_loop_nest (start_loop, innermost, *datarefs))
2027 return false;
2028
2029 /* Check if data dependences can be computed for loop nest starting from
2030 start_loop. */
2031 loop = start_loop;
2032 do {
2033 loop_nest->truncate (0);
2034
2035 if (loop != start_loop)
2036 prune_datarefs_not_in_loop (start_loop, *datarefs);
2037
2038 if (find_loop_nest (start_loop, loop_nest)
2039 && tree_loop_interchange_compute_ddrs (*loop_nest, *datarefs, ddrs))
2040 {
2041 if (dump_file && (dump_flags & TDF_DETAILS))
2042 fprintf (dump_file,
2043 "\nConsider loop interchange for loop_nest<%d - %d>\n",
2044 start_loop->num, innermost->num);
2045
2046 if (loop != start_loop)
2047 prune_access_strides_not_in_loop (start_loop, innermost, *datarefs);
2048
2049 if (dump_file && (dump_flags & TDF_DETAILS))
2050 dump_access_strides (*datarefs);
2051
2052 return true;
2053 }
2054
2055 free_dependence_relations (*ddrs);
2056 *ddrs = vNULL;
2057 /* Try to compute data dependences with the outermost loop stripped. */
2058 loop = start_loop;
2059 start_loop = start_loop->inner;
2060 } while (start_loop && start_loop->inner);
2061
2062 return false;
2063 }
2064
2065 /* Main entry for loop interchange pass. */
2066
2067 unsigned int
execute(function * fun)2068 pass_linterchange::execute (function *fun)
2069 {
2070 if (number_of_loops (fun) <= 2)
2071 return 0;
2072
2073 bool changed_p = false;
2074 class loop *loop;
2075 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
2076 {
2077 vec<loop_p> loop_nest = vNULL;
2078 vec<data_reference_p> datarefs = vNULL;
2079 vec<ddr_p> ddrs = vNULL;
2080 if (prepare_perfect_loop_nest (loop, &loop_nest, &datarefs, &ddrs))
2081 {
2082 tree_loop_interchange loop_interchange (loop_nest);
2083 changed_p |= loop_interchange.interchange (datarefs, ddrs);
2084 }
2085 free_dependence_relations (ddrs);
2086 free_data_refs_with_aux (datarefs);
2087 loop_nest.release ();
2088 }
2089
2090 return changed_p ? (TODO_update_ssa_only_virtuals) : 0;
2091 }
2092
2093 } // anon namespace
2094
2095 gimple_opt_pass *
make_pass_linterchange(gcc::context * ctxt)2096 make_pass_linterchange (gcc::context *ctxt)
2097 {
2098 return new pass_linterchange (ctxt);
2099 }
2100