xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/genpreds.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Generate from machine description:
2    - prototype declarations for operand predicates (tm-preds.h)
3    - function definitions of operand predicates, if defined new-style
4      (insn-preds.c)
5    Copyright (C) 2001-2020 Free Software Foundation, Inc.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "bconfig.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "errors.h"
29 #include "obstack.h"
30 #include "read-md.h"
31 #include "gensupport.h"
32 
33 static char general_mem[] = { TARGET_MEM_CONSTRAINT, 0 };
34 
35 /* Given a predicate expression EXP, from form NAME at location LOC,
36    verify that it does not contain any RTL constructs which are not
37    valid in predicate definitions.  Returns true if EXP is
38    INvalid; issues error messages, caller need not.  */
39 static bool
validate_exp(rtx exp,const char * name,file_location loc)40 validate_exp (rtx exp, const char *name, file_location loc)
41 {
42   if (exp == 0)
43     {
44       message_at (loc, "%s: must give a predicate expression", name);
45       return true;
46     }
47 
48   switch (GET_CODE (exp))
49     {
50       /* Ternary, binary, unary expressions: recurse into subexpressions.  */
51     case IF_THEN_ELSE:
52       if (validate_exp (XEXP (exp, 2), name, loc))
53 	return true;
54       /* fall through */
55     case AND:
56     case IOR:
57       if (validate_exp (XEXP (exp, 1), name, loc))
58 	return true;
59       /* fall through */
60     case NOT:
61       return validate_exp (XEXP (exp, 0), name, loc);
62 
63       /* MATCH_CODE might have a syntax error in its path expression.  */
64     case MATCH_CODE:
65       {
66 	const char *p;
67 	for (p = XSTR (exp, 1); *p; p++)
68 	  {
69 	    if (!ISDIGIT (*p) && !ISLOWER (*p))
70 	      {
71 		error_at (loc, "%s: invalid character in path "
72 			  "string '%s'", name, XSTR (exp, 1));
73 		return true;
74 	      }
75 	  }
76       }
77       gcc_fallthrough ();
78 
79       /* These need no special checking.  */
80     case MATCH_OPERAND:
81     case MATCH_TEST:
82       return false;
83 
84     default:
85       error_at (loc, "%s: cannot use '%s' in a predicate expression",
86 		name, GET_RTX_NAME (GET_CODE (exp)));
87       return true;
88     }
89 }
90 
91 /* Predicates are defined with (define_predicate) or
92    (define_special_predicate) expressions in the machine description.  */
93 static void
process_define_predicate(md_rtx_info * info)94 process_define_predicate (md_rtx_info *info)
95 {
96   validate_exp (XEXP (info->def, 1), XSTR (info->def, 0), info->loc);
97 }
98 
99 /* Given a predicate, if it has an embedded C block, write the block
100    out as a static inline subroutine, and augment the RTL test with a
101    match_test that calls that subroutine.  For instance,
102 
103        (define_predicate "basereg_operand"
104          (match_operand 0 "register_operand")
105        {
106          if (GET_CODE (op) == SUBREG)
107            op = SUBREG_REG (op);
108          return REG_POINTER (op);
109        })
110 
111    becomes
112 
113        static inline int basereg_operand_1(rtx op, machine_mode mode)
114        {
115          if (GET_CODE (op) == SUBREG)
116            op = SUBREG_REG (op);
117          return REG_POINTER (op);
118        }
119 
120        (define_predicate "basereg_operand"
121          (and (match_operand 0 "register_operand")
122 	      (match_test "basereg_operand_1 (op, mode)")))
123 
124    The only wart is that there's no way to insist on a { } string in
125    an RTL template, so we have to handle "" strings.  */
126 
127 
128 static void
write_predicate_subfunction(struct pred_data * p)129 write_predicate_subfunction (struct pred_data *p)
130 {
131   const char *match_test_str;
132   rtx match_test_exp, and_exp;
133 
134   if (p->c_block[0] == '\0')
135     return;
136 
137   /* Construct the function-call expression.  */
138   obstack_grow (rtl_obstack, p->name, strlen (p->name));
139   obstack_grow (rtl_obstack, "_1 (op, mode)",
140 		sizeof "_1 (op, mode)");
141   match_test_str = XOBFINISH (rtl_obstack, const char *);
142 
143   /* Add the function-call expression to the complete expression to be
144      evaluated.  */
145   match_test_exp = rtx_alloc (MATCH_TEST);
146   XSTR (match_test_exp, 0) = match_test_str;
147 
148   and_exp = rtx_alloc (AND);
149   XEXP (and_exp, 0) = p->exp;
150   XEXP (and_exp, 1) = match_test_exp;
151 
152   p->exp = and_exp;
153 
154   printf ("static inline int\n"
155 	  "%s_1 (rtx op ATTRIBUTE_UNUSED, machine_mode mode ATTRIBUTE_UNUSED)\n",
156 	  p->name);
157   rtx_reader_ptr->print_md_ptr_loc (p->c_block);
158   if (p->c_block[0] == '{')
159     fputs (p->c_block, stdout);
160   else
161     printf ("{\n  %s\n}", p->c_block);
162   fputs ("\n\n", stdout);
163 }
164 
165 /* Given a predicate expression EXP, from form NAME, determine whether
166    it refers to the variable given as VAR.  */
167 static bool
needs_variable(rtx exp,const char * var)168 needs_variable (rtx exp, const char *var)
169 {
170   switch (GET_CODE (exp))
171     {
172       /* Ternary, binary, unary expressions need a variable if
173 	 any of their subexpressions do.  */
174     case IF_THEN_ELSE:
175       if (needs_variable (XEXP (exp, 2), var))
176 	return true;
177       /* fall through */
178     case AND:
179     case IOR:
180       if (needs_variable (XEXP (exp, 1), var))
181 	return true;
182       /* fall through */
183     case NOT:
184       return needs_variable (XEXP (exp, 0), var);
185 
186       /* MATCH_CODE uses "op", but nothing else.  */
187     case MATCH_CODE:
188       return !strcmp (var, "op");
189 
190       /* MATCH_OPERAND uses "op" and may use "mode".  */
191     case MATCH_OPERAND:
192       if (!strcmp (var, "op"))
193 	return true;
194       if (!strcmp (var, "mode") && GET_MODE (exp) == VOIDmode)
195 	return true;
196       return false;
197 
198       /* MATCH_TEST uses var if XSTR (exp, 0) =~ /\b${var}\b/o; */
199     case MATCH_TEST:
200       {
201 	const char *p = XSTR (exp, 0);
202 	const char *q = strstr (p, var);
203 	if (!q)
204 	  return false;
205 	if (q != p && (ISALNUM (q[-1]) || q[-1] == '_'))
206 	  return false;
207 	q += strlen (var);
208 	if (ISALNUM (q[0]) || q[0] == '_')
209 	  return false;
210       }
211       return true;
212 
213     default:
214       gcc_unreachable ();
215     }
216 }
217 
218 /* Given an RTL expression EXP, find all subexpressions which we may
219    assume to perform mode tests.  Normal MATCH_OPERAND does;
220    MATCH_CODE doesn't as such (although certain codes always have
221    VOIDmode); and we have to assume that MATCH_TEST does not.
222    These combine in almost-boolean fashion - the only exception is
223    that (not X) must be assumed not to perform a mode test, whether
224    or not X does.
225 
226    The mark is the RTL /v flag, which is true for subexpressions which
227    do *not* perform mode tests.
228 */
229 #define NO_MODE_TEST(EXP) RTX_FLAG (EXP, volatil)
230 static void
mark_mode_tests(rtx exp)231 mark_mode_tests (rtx exp)
232 {
233   switch (GET_CODE (exp))
234     {
235     case MATCH_OPERAND:
236       {
237 	struct pred_data *p = lookup_predicate (XSTR (exp, 1));
238 	if (!p)
239 	  error ("reference to undefined predicate '%s'", XSTR (exp, 1));
240 	else if (p->special || GET_MODE (exp) != VOIDmode)
241 	  NO_MODE_TEST (exp) = 1;
242       }
243       break;
244 
245     case MATCH_CODE:
246       NO_MODE_TEST (exp) = 1;
247       break;
248 
249     case MATCH_TEST:
250     case NOT:
251       NO_MODE_TEST (exp) = 1;
252       break;
253 
254     case AND:
255       mark_mode_tests (XEXP (exp, 0));
256       mark_mode_tests (XEXP (exp, 1));
257 
258       NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
259 			    && NO_MODE_TEST (XEXP (exp, 1)));
260       break;
261 
262     case IOR:
263       mark_mode_tests (XEXP (exp, 0));
264       mark_mode_tests (XEXP (exp, 1));
265 
266       NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
267 			    || NO_MODE_TEST (XEXP (exp, 1)));
268       break;
269 
270     case IF_THEN_ELSE:
271       /* A ? B : C does a mode test if (one of A and B) does a mode
272 	 test, and C does too.  */
273       mark_mode_tests (XEXP (exp, 0));
274       mark_mode_tests (XEXP (exp, 1));
275       mark_mode_tests (XEXP (exp, 2));
276 
277       NO_MODE_TEST (exp) = ((NO_MODE_TEST (XEXP (exp, 0))
278 			     && NO_MODE_TEST (XEXP (exp, 1)))
279 			    || NO_MODE_TEST (XEXP (exp, 2)));
280       break;
281 
282     default:
283       gcc_unreachable ();
284     }
285 }
286 
287 /* Determine whether the expression EXP is a MATCH_CODE that should
288    be written as a switch statement.  */
289 static bool
generate_switch_p(rtx exp)290 generate_switch_p (rtx exp)
291 {
292   return GET_CODE (exp) == MATCH_CODE
293 	 && strchr (XSTR (exp, 0), ',');
294 }
295 
296 /* Given a predicate, work out where in its RTL expression to add
297    tests for proper modes.  Special predicates do not get any such
298    tests.  We try to avoid adding tests when we don't have to; in
299    particular, other normal predicates can be counted on to do it for
300    us.  */
301 
302 static void
add_mode_tests(struct pred_data * p)303 add_mode_tests (struct pred_data *p)
304 {
305   rtx match_test_exp, and_exp;
306   rtx *pos;
307 
308   /* Don't touch special predicates.  */
309   if (p->special)
310     return;
311 
312   /* Check whether the predicate accepts const scalar ints (which always
313      have a stored mode of VOIDmode, but logically have a real mode)
314      and whether it matches anything besides const scalar ints.  */
315   bool matches_const_scalar_int_p = false;
316   bool matches_other_p = false;
317   for (int i = 0; i < NUM_RTX_CODE; ++i)
318     if (p->codes[i])
319       switch (i)
320 	{
321 	case CONST_INT:
322 	case CONST_WIDE_INT:
323 	  /* Special handling for (VOIDmode) LABEL_REFs.  */
324 	case LABEL_REF:
325 	  matches_const_scalar_int_p = true;
326 	  break;
327 
328 	case CONST_DOUBLE:
329 	  if (!TARGET_SUPPORTS_WIDE_INT)
330 	    matches_const_scalar_int_p = true;
331 	  matches_other_p = true;
332 	  break;
333 
334 	default:
335 	  matches_other_p = true;
336 	  break;
337 	}
338 
339   /* There's no need for a mode check if the predicate only accepts
340      constant integers.  The code checks in the predicate are enough
341      to establish that the mode is VOIDmode.
342 
343      Note that the predicate itself should check whether a scalar
344      integer is in range of the given mode.  */
345   if (!matches_other_p)
346     return;
347 
348   mark_mode_tests (p->exp);
349 
350   /* If the whole expression already tests the mode, we're done.  */
351   if (!NO_MODE_TEST (p->exp))
352     return;
353 
354   match_test_exp = rtx_alloc (MATCH_TEST);
355   if (matches_const_scalar_int_p)
356     XSTR (match_test_exp, 0) = ("mode == VOIDmode || GET_MODE (op) == mode"
357 				" || GET_MODE (op) == VOIDmode");
358   else
359     XSTR (match_test_exp, 0) = "mode == VOIDmode || GET_MODE (op) == mode";
360   and_exp = rtx_alloc (AND);
361   XEXP (and_exp, 1) = match_test_exp;
362 
363   /* It is always correct to rewrite p->exp as
364 
365         (and (...) (match_test "mode == VOIDmode || GET_MODE (op) == mode"))
366 
367      but there are a couple forms where we can do better.  If the
368      top-level pattern is an IOR, and one of the two branches does test
369      the mode, we can wrap just the branch that doesn't.  Likewise, if
370      we have an IF_THEN_ELSE, and one side of it tests the mode, we can
371      wrap just the side that doesn't.  And, of course, we can repeat this
372      descent as many times as it works.  */
373 
374   pos = &p->exp;
375   for (;;)
376     {
377       rtx subexp = *pos;
378 
379       switch (GET_CODE (subexp))
380 	{
381 	case AND:
382 	  /* The switch code generation in write_predicate_stmts prefers
383 	     rtx code tests to be at the top of the expression tree.  So
384 	     push this AND down into the second operand of an existing
385 	     AND expression.  */
386 	  if (generate_switch_p (XEXP (subexp, 0)))
387 	    pos = &XEXP (subexp, 1);
388 	  goto break_loop;
389 
390 	case IOR:
391 	  {
392 	    int test0 = NO_MODE_TEST (XEXP (subexp, 0));
393 	    int test1 = NO_MODE_TEST (XEXP (subexp, 1));
394 
395 	    gcc_assert (test0 || test1);
396 
397 	    if (test0 && test1)
398 	      goto break_loop;
399 	    pos = test0 ? &XEXP (subexp, 0) : &XEXP (subexp, 1);
400 	  }
401 	  break;
402 
403 	case IF_THEN_ELSE:
404 	  {
405 	    int test0 = NO_MODE_TEST (XEXP (subexp, 0));
406 	    int test1 = NO_MODE_TEST (XEXP (subexp, 1));
407 	    int test2 = NO_MODE_TEST (XEXP (subexp, 2));
408 
409 	    gcc_assert ((test0 && test1) || test2);
410 
411 	    if (test0 && test1 && test2)
412 	      goto break_loop;
413 	    if (test0 && test1)
414 	      /* Must put it on the dependent clause, not the
415 	      	 controlling expression, or we change the meaning of
416 	      	 the test.  */
417 	      pos = &XEXP (subexp, 1);
418 	    else
419 	      pos = &XEXP (subexp, 2);
420 	  }
421 	  break;
422 
423 	default:
424 	  goto break_loop;
425 	}
426     }
427  break_loop:
428   XEXP (and_exp, 0) = *pos;
429   *pos = and_exp;
430 }
431 
432 /* PATH is a string describing a path from the root of an RTL
433    expression to an inner subexpression to be tested.  Output
434    code which computes the subexpression from the variable
435    holding the root of the expression.  */
436 static void
write_extract_subexp(const char * path)437 write_extract_subexp (const char *path)
438 {
439   int len = strlen (path);
440   int i;
441 
442   /* We first write out the operations (XEXP or XVECEXP) in reverse
443      order, then write "op", then the indices in forward order.  */
444   for (i = len - 1; i >= 0; i--)
445     {
446       if (ISLOWER (path[i]))
447 	fputs ("XVECEXP (", stdout);
448       else if (ISDIGIT (path[i]))
449 	fputs ("XEXP (", stdout);
450       else
451 	gcc_unreachable ();
452     }
453 
454   fputs ("op", stdout);
455 
456   for (i = 0; i < len; i++)
457     {
458       if (ISLOWER (path[i]))
459 	printf (", 0, %d)", path[i] - 'a');
460       else if (ISDIGIT (path[i]))
461 	printf (", %d)", path[i] - '0');
462       else
463 	gcc_unreachable ();
464     }
465 }
466 
467 /* CODES is a list of RTX codes.  Write out an expression which
468    determines whether the operand has one of those codes.  */
469 static void
write_match_code(const char * path,const char * codes)470 write_match_code (const char *path, const char *codes)
471 {
472   const char *code;
473 
474   while ((code = scan_comma_elt (&codes)) != 0)
475     {
476       fputs ("GET_CODE (", stdout);
477       write_extract_subexp (path);
478       fputs (") == ", stdout);
479       while (code < codes)
480 	{
481 	  putchar (TOUPPER (*code));
482 	  code++;
483 	}
484 
485       if (*codes == ',')
486 	fputs (" || ", stdout);
487     }
488 }
489 
490 /* EXP is an RTL (sub)expression for a predicate.  Recursively
491    descend the expression and write out an equivalent C expression.  */
492 static void
write_predicate_expr(rtx exp)493 write_predicate_expr (rtx exp)
494 {
495   switch (GET_CODE (exp))
496     {
497     case AND:
498       putchar ('(');
499       write_predicate_expr (XEXP (exp, 0));
500       fputs (") && (", stdout);
501       write_predicate_expr (XEXP (exp, 1));
502       putchar (')');
503       break;
504 
505     case IOR:
506       putchar ('(');
507       write_predicate_expr (XEXP (exp, 0));
508       fputs (") || (", stdout);
509       write_predicate_expr (XEXP (exp, 1));
510       putchar (')');
511       break;
512 
513     case NOT:
514       fputs ("!(", stdout);
515       write_predicate_expr (XEXP (exp, 0));
516       putchar (')');
517       break;
518 
519     case IF_THEN_ELSE:
520       putchar ('(');
521       write_predicate_expr (XEXP (exp, 0));
522       fputs (") ? (", stdout);
523       write_predicate_expr (XEXP (exp, 1));
524       fputs (") : (", stdout);
525       write_predicate_expr (XEXP (exp, 2));
526       putchar (')');
527       break;
528 
529     case MATCH_OPERAND:
530       if (GET_MODE (exp) == VOIDmode)
531         printf ("%s (op, mode)", XSTR (exp, 1));
532       else
533         printf ("%s (op, %smode)", XSTR (exp, 1), mode_name[GET_MODE (exp)]);
534       break;
535 
536     case MATCH_CODE:
537       write_match_code (XSTR (exp, 1), XSTR (exp, 0));
538       break;
539 
540     case MATCH_TEST:
541       rtx_reader_ptr->print_c_condition (XSTR (exp, 0));
542       break;
543 
544     default:
545       gcc_unreachable ();
546     }
547 }
548 
549 /* Write the MATCH_CODE expression EXP as a switch statement.  */
550 
551 static void
write_match_code_switch(rtx exp)552 write_match_code_switch (rtx exp)
553 {
554   const char *codes = XSTR (exp, 0);
555   const char *path = XSTR (exp, 1);
556   const char *code;
557 
558   fputs ("  switch (GET_CODE (", stdout);
559   write_extract_subexp (path);
560   fputs ("))\n    {\n", stdout);
561 
562   while ((code = scan_comma_elt (&codes)) != 0)
563     {
564       fputs ("    case ", stdout);
565       while (code < codes)
566 	{
567 	  putchar (TOUPPER (*code));
568 	  code++;
569 	}
570       fputs (":\n", stdout);
571     }
572 }
573 
574 /* Given a predicate expression EXP, write out a sequence of stmts
575    to evaluate it.  This is similar to write_predicate_expr but can
576    generate efficient switch statements.  */
577 
578 static void
write_predicate_stmts(rtx exp)579 write_predicate_stmts (rtx exp)
580 {
581   switch (GET_CODE (exp))
582     {
583     case MATCH_CODE:
584       if (generate_switch_p (exp))
585 	{
586 	  write_match_code_switch (exp);
587 	  puts ("      return true;\n"
588 		"    default:\n"
589 		"      break;\n"
590 		"    }\n"
591 		"  return false;");
592 	  return;
593 	}
594       break;
595 
596     case AND:
597       if (generate_switch_p (XEXP (exp, 0)))
598 	{
599 	  write_match_code_switch (XEXP (exp, 0));
600 	  puts ("      break;\n"
601 		"    default:\n"
602 		"      return false;\n"
603 		"    }");
604 	  exp = XEXP (exp, 1);
605 	}
606       break;
607 
608     case IOR:
609       if (generate_switch_p (XEXP (exp, 0)))
610 	{
611 	  write_match_code_switch (XEXP (exp, 0));
612 	  puts ("      return true;\n"
613 		"    default:\n"
614 		"      break;\n"
615 		"    }");
616 	  exp = XEXP (exp, 1);
617 	}
618       break;
619 
620     case NOT:
621       if (generate_switch_p (XEXP (exp, 0)))
622 	{
623 	  write_match_code_switch (XEXP (exp, 0));
624 	  puts ("      return false;\n"
625 		"    default:\n"
626 		"      break;\n"
627 		"    }\n"
628 		"  return true;");
629 	  return;
630 	}
631       break;
632 
633     default:
634       break;
635     }
636 
637   fputs ("  return ",stdout);
638   write_predicate_expr (exp);
639   fputs (";\n", stdout);
640 }
641 
642 /* Given a predicate, write out a complete C function to compute it.  */
643 static void
write_one_predicate_function(struct pred_data * p)644 write_one_predicate_function (struct pred_data *p)
645 {
646   if (!p->exp)
647     return;
648 
649   write_predicate_subfunction (p);
650   add_mode_tests (p);
651 
652   /* A normal predicate can legitimately not look at machine_mode
653      if it accepts only CONST_INTs and/or CONST_WIDE_INT and/or CONST_DOUBLEs.  */
654   printf ("int\n%s (rtx op, machine_mode mode ATTRIBUTE_UNUSED)\n{\n",
655 	  p->name);
656   write_predicate_stmts (p->exp);
657   fputs ("}\n\n", stdout);
658 }
659 
660 /* Constraints fall into two categories: register constraints
661    (define_register_constraint), and others (define_constraint,
662    define_memory_constraint, define_special_memory_constraint,
663    define_address_constraint).  We work out automatically which of the
664    various old-style macros they correspond to, and produce
665    appropriate code.  They all go in the same hash table so we can
666    verify that there are no duplicate names.  */
667 
668 /* All data from one constraint definition.  */
669 class constraint_data
670 {
671 public:
672   class constraint_data *next_this_letter;
673   class constraint_data *next_textual;
674   const char *name;
675   const char *c_name;    /* same as .name unless mangling is necessary */
676   file_location loc;     /* location of definition */
677   size_t namelen;
678   const char *regclass;  /* for register constraints */
679   rtx exp;               /* for other constraints */
680   unsigned int is_register	: 1;
681   unsigned int is_const_int	: 1;
682   unsigned int is_const_dbl	: 1;
683   unsigned int is_extra		: 1;
684   unsigned int is_memory	: 1;
685   unsigned int is_special_memory: 1;
686   unsigned int is_address	: 1;
687   unsigned int maybe_allows_reg : 1;
688   unsigned int maybe_allows_mem : 1;
689 };
690 
691 /* Overview of all constraints beginning with a given letter.  */
692 
693 static class constraint_data *
694 constraints_by_letter_table[1<<CHAR_BIT];
695 
696 /* For looking up all the constraints in the order that they appeared
697    in the machine description.  */
698 static class constraint_data *first_constraint;
699 static class constraint_data **last_constraint_ptr = &first_constraint;
700 
701 #define FOR_ALL_CONSTRAINTS(iter_) \
702   for (iter_ = first_constraint; iter_; iter_ = iter_->next_textual)
703 
704 /* Contraint letters that have a special meaning and that cannot be used
705    in define*_constraints.  */
706 static const char generic_constraint_letters[] = "g";
707 
708 /* Machine-independent code expects that constraints with these
709    (initial) letters will allow only (a subset of all) CONST_INTs.  */
710 
711 static const char const_int_constraints[] = "IJKLMNOP";
712 
713 /* Machine-independent code expects that constraints with these
714    (initial) letters will allow only (a subset of all) CONST_DOUBLEs.  */
715 
716 static const char const_dbl_constraints[] = "GH";
717 
718 /* Summary data used to decide whether to output various functions and
719    macro definitions.  */
720 static unsigned int constraint_max_namelen;
721 static bool have_register_constraints;
722 static bool have_memory_constraints;
723 static bool have_special_memory_constraints;
724 static bool have_address_constraints;
725 static bool have_extra_constraints;
726 static bool have_const_int_constraints;
727 static unsigned int num_constraints;
728 
729 static const constraint_data **enum_order;
730 static unsigned int register_start, register_end;
731 static unsigned int satisfied_start;
732 static unsigned int const_int_start, const_int_end;
733 static unsigned int memory_start, memory_end;
734 static unsigned int special_memory_start, special_memory_end;
735 static unsigned int address_start, address_end;
736 static unsigned int maybe_allows_none_start, maybe_allows_none_end;
737 static unsigned int maybe_allows_reg_start, maybe_allows_reg_end;
738 static unsigned int maybe_allows_mem_start, maybe_allows_mem_end;
739 
740 /* Convert NAME, which contains angle brackets and/or underscores, to
741    a string that can be used as part of a C identifier.  The string
742    comes from the rtl_obstack.  */
743 static const char *
mangle(const char * name)744 mangle (const char *name)
745 {
746   for (; *name; name++)
747     switch (*name)
748       {
749       case '_': obstack_grow (rtl_obstack, "__", 2); break;
750       case '<':	obstack_grow (rtl_obstack, "_l", 2); break;
751       case '>':	obstack_grow (rtl_obstack, "_g", 2); break;
752       default: obstack_1grow (rtl_obstack, *name); break;
753       }
754 
755   obstack_1grow (rtl_obstack, '\0');
756   return XOBFINISH (rtl_obstack, const char *);
757 }
758 
759 /* Add one constraint, of any sort, to the tables.  NAME is its name;
760    REGCLASS is the register class, if any; EXP is the expression to
761    test, if any; IS_MEMORY, IS_SPECIAL_MEMORY and IS_ADDRESS indicate
762    memory, special memory, and address constraints, respectively; LOC
763    is the .md file location.
764 
765    Not all combinations of arguments are valid; most importantly,
766    REGCLASS is mutually exclusive with EXP, and
767    IS_MEMORY/IS_SPECIAL_MEMORY/IS_ADDRESS are only meaningful for
768    constraints with EXP.
769 
770    This function enforces all syntactic and semantic rules about what
771    constraints can be defined.  */
772 
773 static void
add_constraint(const char * name,const char * regclass,rtx exp,bool is_memory,bool is_special_memory,bool is_address,file_location loc)774 add_constraint (const char *name, const char *regclass,
775 		rtx exp, bool is_memory, bool is_special_memory,
776 		bool is_address, file_location loc)
777 {
778   class constraint_data *c, **iter, **slot;
779   const char *p;
780   bool need_mangled_name = false;
781   bool is_const_int;
782   bool is_const_dbl;
783   size_t namelen;
784 
785   if (strcmp (name, "TARGET_MEM_CONSTRAINT") == 0)
786     name = general_mem;
787 
788   if (exp && validate_exp (exp, name, loc))
789     return;
790 
791   for (p = name; *p; p++)
792     if (!ISALNUM (*p))
793       {
794 	if (*p == '<' || *p == '>' || *p == '_')
795 	  need_mangled_name = true;
796 	else
797 	  {
798 	    error_at (loc, "constraint name '%s' must be composed of letters,"
799 		      " digits, underscores, and angle brackets", name);
800 	    return;
801 	  }
802       }
803 
804   if (strchr (generic_constraint_letters, name[0]))
805     {
806       if (name[1] == '\0')
807 	error_at (loc, "constraint letter '%s' cannot be "
808 		  "redefined by the machine description", name);
809       else
810 	error_at (loc, "constraint name '%s' cannot be defined by the machine"
811 		  " description, as it begins with '%c'", name, name[0]);
812       return;
813     }
814 
815 
816   namelen = strlen (name);
817   slot = &constraints_by_letter_table[(unsigned int)name[0]];
818   for (iter = slot; *iter; iter = &(*iter)->next_this_letter)
819     {
820       /* This causes slot to end up pointing to the
821 	 next_this_letter field of the last constraint with a name
822 	 of equal or greater length than the new constraint; hence
823 	 the new constraint will be inserted after all previous
824 	 constraints with names of the same length.  */
825       if ((*iter)->namelen >= namelen)
826 	slot = iter;
827 
828       if (!strcmp ((*iter)->name, name))
829 	{
830 	  error_at (loc, "redefinition of constraint '%s'", name);
831 	  message_at ((*iter)->loc, "previous definition is here");
832 	  return;
833 	}
834       else if (!strncmp ((*iter)->name, name, (*iter)->namelen))
835 	{
836 	  error_at (loc, "defining constraint '%s' here", name);
837 	  message_at ((*iter)->loc, "renders constraint '%s' "
838 		      "(defined here) a prefix", (*iter)->name);
839 	  return;
840 	}
841       else if (!strncmp ((*iter)->name, name, namelen))
842 	{
843 	  error_at (loc, "constraint '%s' is a prefix", name);
844 	  message_at ((*iter)->loc, "of constraint '%s' (defined here)",
845 		      (*iter)->name);
846 	  return;
847 	}
848     }
849 
850   is_const_int = strchr (const_int_constraints, name[0]) != 0;
851   is_const_dbl = strchr (const_dbl_constraints, name[0]) != 0;
852 
853   if (is_const_int || is_const_dbl)
854     {
855       enum rtx_code appropriate_code
856 	= is_const_int ? CONST_INT : CONST_DOUBLE;
857 
858       /* Consider relaxing this requirement in the future.  */
859       if (regclass
860 	  || GET_CODE (exp) != AND
861 	  || GET_CODE (XEXP (exp, 0)) != MATCH_CODE
862 	  || strcmp (XSTR (XEXP (exp, 0), 0),
863 		     GET_RTX_NAME (appropriate_code)))
864 	{
865 	  if (name[1] == '\0')
866 	    error_at (loc, "constraint letter '%c' is reserved "
867 		      "for %s constraints", name[0],
868 		      GET_RTX_NAME (appropriate_code));
869 	  else
870 	    error_at (loc, "constraint names beginning with '%c' "
871 		      "(%s) are reserved for %s constraints",
872 		      name[0], name, GET_RTX_NAME (appropriate_code));
873 	  return;
874 	}
875 
876       if (is_memory)
877 	{
878 	  if (name[1] == '\0')
879 	    error_at (loc, "constraint letter '%c' cannot be a "
880 		      "memory constraint", name[0]);
881 	  else
882 	    error_at (loc, "constraint name '%s' begins with '%c', "
883 		      "and therefore cannot be a memory constraint",
884 		      name, name[0]);
885 	  return;
886 	}
887       else if (is_special_memory)
888 	{
889 	  if (name[1] == '\0')
890 	    error_at (loc, "constraint letter '%c' cannot be a "
891 		      "special memory constraint", name[0]);
892 	  else
893 	    error_at (loc, "constraint name '%s' begins with '%c', "
894 		      "and therefore cannot be a special memory constraint",
895 		      name, name[0]);
896 	  return;
897 	}
898       else if (is_address)
899 	{
900 	  if (name[1] == '\0')
901 	    error_at (loc, "constraint letter '%c' cannot be an "
902 		      "address constraint", name[0]);
903 	  else
904 	    error_at (loc, "constraint name '%s' begins with '%c', "
905 		      "and therefore cannot be an address constraint",
906 		      name, name[0]);
907 	  return;
908 	}
909     }
910 
911 
912   c = XOBNEW (rtl_obstack, class constraint_data);
913   c->name = name;
914   c->c_name = need_mangled_name ? mangle (name) : name;
915   c->loc = loc;
916   c->namelen = namelen;
917   c->regclass = regclass;
918   c->exp = exp;
919   c->is_register = regclass != 0;
920   c->is_const_int = is_const_int;
921   c->is_const_dbl = is_const_dbl;
922   c->is_extra = !(regclass || is_const_int || is_const_dbl);
923   c->is_memory = is_memory;
924   c->is_special_memory = is_special_memory;
925   c->is_address = is_address;
926   c->maybe_allows_reg = true;
927   c->maybe_allows_mem = true;
928   if (exp)
929     {
930       char codes[NUM_RTX_CODE];
931       compute_test_codes (exp, loc, codes);
932       if (!codes[REG] && !codes[SUBREG])
933 	c->maybe_allows_reg = false;
934       if (!codes[MEM])
935 	c->maybe_allows_mem = false;
936     }
937   c->next_this_letter = *slot;
938   *slot = c;
939 
940   /* Insert this constraint in the list of all constraints in textual
941      order.  */
942   c->next_textual = 0;
943   *last_constraint_ptr = c;
944   last_constraint_ptr = &c->next_textual;
945 
946   constraint_max_namelen = MAX (constraint_max_namelen, strlen (name));
947   have_register_constraints |= c->is_register;
948   have_const_int_constraints |= c->is_const_int;
949   have_extra_constraints |= c->is_extra;
950   have_memory_constraints |= c->is_memory;
951   have_special_memory_constraints |= c->is_special_memory;
952   have_address_constraints |= c->is_address;
953   num_constraints += 1;
954 }
955 
956 /* Process a DEFINE_CONSTRAINT, DEFINE_MEMORY_CONSTRAINT,
957    DEFINE_SPECIAL_MEMORY_CONSTRAINT, or DEFINE_ADDRESS_CONSTRAINT
958    expression, C.  */
959 static void
process_define_constraint(md_rtx_info * info)960 process_define_constraint (md_rtx_info *info)
961 {
962   add_constraint (XSTR (info->def, 0), 0, XEXP (info->def, 2),
963 		  GET_CODE (info->def) == DEFINE_MEMORY_CONSTRAINT,
964 		  GET_CODE (info->def) == DEFINE_SPECIAL_MEMORY_CONSTRAINT,
965 		  GET_CODE (info->def) == DEFINE_ADDRESS_CONSTRAINT,
966 		  info->loc);
967 }
968 
969 /* Process a DEFINE_REGISTER_CONSTRAINT expression, C.  */
970 static void
process_define_register_constraint(md_rtx_info * info)971 process_define_register_constraint (md_rtx_info *info)
972 {
973   add_constraint (XSTR (info->def, 0), XSTR (info->def, 1),
974 		  0, false, false, false, info->loc);
975 }
976 
977 /* Put the constraints into enum order.  We want to keep constraints
978    of the same type together so that query functions can be simple
979    range checks.  */
980 static void
choose_enum_order(void)981 choose_enum_order (void)
982 {
983   class constraint_data *c;
984 
985   enum_order = XNEWVEC (const constraint_data *, num_constraints);
986   unsigned int next = 0;
987 
988   register_start = next;
989   FOR_ALL_CONSTRAINTS (c)
990     if (c->is_register)
991       enum_order[next++] = c;
992   register_end = next;
993 
994   satisfied_start = next;
995 
996   const_int_start = next;
997   FOR_ALL_CONSTRAINTS (c)
998     if (c->is_const_int)
999       enum_order[next++] = c;
1000   const_int_end = next;
1001 
1002   memory_start = next;
1003   FOR_ALL_CONSTRAINTS (c)
1004     if (c->is_memory)
1005       enum_order[next++] = c;
1006   memory_end = next;
1007 
1008   special_memory_start = next;
1009   FOR_ALL_CONSTRAINTS (c)
1010     if (c->is_special_memory)
1011       enum_order[next++] = c;
1012   special_memory_end = next;
1013 
1014   address_start = next;
1015   FOR_ALL_CONSTRAINTS (c)
1016     if (c->is_address)
1017       enum_order[next++] = c;
1018   address_end = next;
1019 
1020   maybe_allows_none_start = next;
1021   FOR_ALL_CONSTRAINTS (c)
1022     if (!c->is_register && !c->is_const_int && !c->is_memory
1023 	&& !c->is_special_memory && !c->is_address
1024 	&& !c->maybe_allows_reg && !c->maybe_allows_mem)
1025       enum_order[next++] = c;
1026   maybe_allows_none_end = next;
1027 
1028   maybe_allows_reg_start = next;
1029   FOR_ALL_CONSTRAINTS (c)
1030     if (!c->is_register && !c->is_const_int && !c->is_memory
1031 	&& !c->is_special_memory && !c->is_address
1032 	&& c->maybe_allows_reg && !c->maybe_allows_mem)
1033       enum_order[next++] = c;
1034   maybe_allows_reg_end = next;
1035 
1036   maybe_allows_mem_start = next;
1037   FOR_ALL_CONSTRAINTS (c)
1038     if (!c->is_register && !c->is_const_int && !c->is_memory
1039 	&& !c->is_special_memory && !c->is_address
1040 	&& !c->maybe_allows_reg && c->maybe_allows_mem)
1041       enum_order[next++] = c;
1042   maybe_allows_mem_end = next;
1043 
1044   FOR_ALL_CONSTRAINTS (c)
1045     if (!c->is_register && !c->is_const_int && !c->is_memory
1046 	&& !c->is_special_memory && !c->is_address
1047 	&& c->maybe_allows_reg && c->maybe_allows_mem)
1048       enum_order[next++] = c;
1049   gcc_assert (next == num_constraints);
1050 }
1051 
1052 /* Write out an enumeration with one entry per machine-specific
1053    constraint.  */
1054 static void
write_enum_constraint_num(void)1055 write_enum_constraint_num (void)
1056 {
1057   fputs ("#define CONSTRAINT_NUM_DEFINED_P 1\n", stdout);
1058   fputs ("enum constraint_num\n"
1059 	 "{\n"
1060 	 "  CONSTRAINT__UNKNOWN = 0", stdout);
1061   for (unsigned int i = 0; i < num_constraints; ++i)
1062     printf (",\n  CONSTRAINT_%s", enum_order[i]->c_name);
1063   puts (",\n  CONSTRAINT__LIMIT\n};\n");
1064 }
1065 
1066 /* Write out a function which looks at a string and determines what
1067    constraint name, if any, it begins with.  */
1068 static void
write_lookup_constraint_1(void)1069 write_lookup_constraint_1 (void)
1070 {
1071   unsigned int i;
1072   puts ("enum constraint_num\n"
1073 	"lookup_constraint_1 (const char *str)\n"
1074 	"{\n"
1075 	"  switch (str[0])\n"
1076 	"    {");
1077 
1078   for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++)
1079     {
1080       class constraint_data *c = constraints_by_letter_table[i];
1081       if (!c)
1082 	continue;
1083 
1084       printf ("    case '%c':\n", i);
1085       if (c->namelen == 1)
1086 	printf ("      return CONSTRAINT_%s;\n", c->c_name);
1087       else
1088 	{
1089 	  do
1090 	    {
1091 	      printf ("      if (!strncmp (str + 1, \"%s\", %lu))\n"
1092 		      "        return CONSTRAINT_%s;\n",
1093 		      c->name + 1, (unsigned long int) c->namelen - 1,
1094 		      c->c_name);
1095 	      c = c->next_this_letter;
1096 	    }
1097 	  while (c);
1098 	  puts ("      break;");
1099 	}
1100     }
1101 
1102   puts ("    default: break;\n"
1103 	"    }\n"
1104 	"  return CONSTRAINT__UNKNOWN;\n"
1105 	"}\n");
1106 }
1107 
1108 /* Write out an array that maps single-letter characters to their
1109    constraints (if that fits in a character) or 255 if lookup_constraint_1
1110    must be called.  */
1111 static void
write_lookup_constraint_array(void)1112 write_lookup_constraint_array (void)
1113 {
1114   unsigned int i;
1115   printf ("const unsigned char lookup_constraint_array[] = {\n  ");
1116   for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++)
1117     {
1118       if (i != 0)
1119 	printf (",\n  ");
1120       class constraint_data *c = constraints_by_letter_table[i];
1121       if (!c)
1122 	printf ("CONSTRAINT__UNKNOWN");
1123       else if (c->namelen == 1)
1124 	printf ("MIN ((int) CONSTRAINT_%s, (int) UCHAR_MAX)", c->c_name);
1125       else
1126 	printf ("UCHAR_MAX");
1127     }
1128   printf ("\n};\n\n");
1129 }
1130 
1131 /* Write out a function which looks at a string and determines what
1132    the constraint name length is.  */
1133 static void
write_insn_constraint_len(void)1134 write_insn_constraint_len (void)
1135 {
1136   unsigned int i;
1137 
1138   puts ("static inline size_t\n"
1139 	"insn_constraint_len (char fc, const char *str ATTRIBUTE_UNUSED)\n"
1140 	"{\n"
1141 	"  switch (fc)\n"
1142 	"    {");
1143 
1144   for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++)
1145     {
1146       class constraint_data *c = constraints_by_letter_table[i];
1147 
1148       if (!c
1149       	  || c->namelen == 1)
1150 	continue;
1151 
1152       /* Constraints with multiple characters should have the same
1153 	 length.  */
1154       {
1155 	class constraint_data *c2 = c->next_this_letter;
1156 	size_t len = c->namelen;
1157 	while (c2)
1158 	  {
1159 	    if (c2->namelen != len)
1160 	      error ("Multi-letter constraints with first letter '%c' "
1161 		     "should have same length", i);
1162 	    c2 = c2->next_this_letter;
1163 	  }
1164       }
1165 
1166       printf ("    case '%c': return %lu;\n",
1167 	      i, (unsigned long int) c->namelen);
1168     }
1169 
1170   puts ("    default: break;\n"
1171 	"    }\n"
1172 	"  return 1;\n"
1173 	"}\n");
1174 }
1175 
1176 /* Write out the function which computes the register class corresponding
1177    to a register constraint.  */
1178 static void
write_reg_class_for_constraint_1(void)1179 write_reg_class_for_constraint_1 (void)
1180 {
1181   class constraint_data *c;
1182 
1183   puts ("enum reg_class\n"
1184 	"reg_class_for_constraint_1 (enum constraint_num c)\n"
1185 	"{\n"
1186 	"  switch (c)\n"
1187 	"    {");
1188 
1189   FOR_ALL_CONSTRAINTS (c)
1190     if (c->is_register)
1191       printf ("    case CONSTRAINT_%s: return %s;\n", c->c_name, c->regclass);
1192 
1193   puts ("    default: break;\n"
1194 	"    }\n"
1195 	"  return NO_REGS;\n"
1196 	"}\n");
1197 }
1198 
1199 /* Write out the functions which compute whether a given value matches
1200    a given non-register constraint.  */
1201 static void
write_tm_constrs_h(void)1202 write_tm_constrs_h (void)
1203 {
1204   class constraint_data *c;
1205 
1206   printf ("\
1207 /* Generated automatically by the program '%s'\n\
1208    from the machine description file '%s'.  */\n\n", progname,
1209 	  md_reader_ptr->get_top_level_filename ());
1210 
1211   puts ("\
1212 #ifndef GCC_TM_CONSTRS_H\n\
1213 #define GCC_TM_CONSTRS_H\n");
1214 
1215   FOR_ALL_CONSTRAINTS (c)
1216     if (!c->is_register)
1217       {
1218 	bool needs_ival = needs_variable (c->exp, "ival");
1219 	bool needs_hval = needs_variable (c->exp, "hval");
1220 	bool needs_lval = needs_variable (c->exp, "lval");
1221 	bool needs_rval = needs_variable (c->exp, "rval");
1222 	bool needs_mode = (needs_variable (c->exp, "mode")
1223 			   || needs_hval || needs_lval || needs_rval);
1224 	bool needs_op = (needs_variable (c->exp, "op")
1225 			 || needs_ival || needs_mode);
1226 
1227 	printf ("static inline bool\n"
1228 		"satisfies_constraint_%s (rtx %s)\n"
1229 		"{\n", c->c_name,
1230 		needs_op ? "op" : "ARG_UNUSED (op)");
1231 	if (needs_mode)
1232 	  puts ("  machine_mode mode = GET_MODE (op);");
1233 	if (needs_ival)
1234 	  puts ("  HOST_WIDE_INT ival = 0;");
1235 	if (needs_hval)
1236 	  puts ("  HOST_WIDE_INT hval = 0;");
1237 	if (needs_lval)
1238 	  puts ("  unsigned HOST_WIDE_INT lval = 0;");
1239 	if (needs_rval)
1240 	  puts ("  const REAL_VALUE_TYPE *rval = 0;");
1241 
1242 	if (needs_ival)
1243 	  puts ("  if (CONST_INT_P (op))\n"
1244 		"    ival = INTVAL (op);");
1245 #if TARGET_SUPPORTS_WIDE_INT
1246 	if (needs_lval || needs_hval)
1247 	  error ("you can't use lval or hval");
1248 #else
1249 	if (needs_hval)
1250 	  puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
1251 		"    hval = CONST_DOUBLE_HIGH (op);");
1252 	if (needs_lval)
1253 	  puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
1254 		"    lval = CONST_DOUBLE_LOW (op);");
1255 #endif
1256 	if (needs_rval)
1257 	  puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode != VOIDmode)"
1258 		"    rval = CONST_DOUBLE_REAL_VALUE (op);");
1259 
1260 	write_predicate_stmts (c->exp);
1261 	fputs ("}\n", stdout);
1262       }
1263   puts ("#endif /* tm-constrs.h */");
1264 }
1265 
1266 /* Write out the wrapper function, constraint_satisfied_p, that maps
1267    a CONSTRAINT_xxx constant to one of the predicate functions generated
1268    above.  */
1269 static void
write_constraint_satisfied_p_array(void)1270 write_constraint_satisfied_p_array (void)
1271 {
1272   if (satisfied_start == num_constraints)
1273     return;
1274 
1275   printf ("bool (*constraint_satisfied_p_array[]) (rtx) = {\n  ");
1276   for (unsigned int i = satisfied_start; i < num_constraints; ++i)
1277     {
1278       if (i != satisfied_start)
1279 	printf (",\n  ");
1280       printf ("satisfies_constraint_%s", enum_order[i]->c_name);
1281     }
1282   printf ("\n};\n\n");
1283 }
1284 
1285 /* Write out the function which computes whether a given value matches
1286    a given CONST_INT constraint.  This doesn't just forward to
1287    constraint_satisfied_p because caller passes the INTVAL, not the RTX.  */
1288 static void
write_insn_const_int_ok_for_constraint(void)1289 write_insn_const_int_ok_for_constraint (void)
1290 {
1291   class constraint_data *c;
1292 
1293   puts ("bool\n"
1294 	"insn_const_int_ok_for_constraint (HOST_WIDE_INT ival, "
1295 	                                  "enum constraint_num c)\n"
1296 	"{\n"
1297 	"  switch (c)\n"
1298 	"    {");
1299 
1300   FOR_ALL_CONSTRAINTS (c)
1301     if (c->is_const_int)
1302       {
1303 	printf ("    case CONSTRAINT_%s:\n      return ", c->c_name);
1304 	/* c->exp is guaranteed to be (and (match_code "const_int") (...));
1305 	   we know at this point that we have a const_int, so we need not
1306 	   bother with that part of the test.  */
1307 	write_predicate_expr (XEXP (c->exp, 1));
1308 	fputs (";\n\n", stdout);
1309       }
1310 
1311   puts ("    default: break;\n"
1312 	"    }\n"
1313 	"  return false;\n"
1314 	"}\n");
1315 }
1316 
1317 /* Write a definition for a function NAME that returns true if a given
1318    constraint_num is in the range [START, END).  */
1319 static void
write_range_function(const char * name,unsigned int start,unsigned int end)1320 write_range_function (const char *name, unsigned int start, unsigned int end)
1321 {
1322   printf ("static inline bool\n");
1323   if (start != end)
1324     printf ("%s (enum constraint_num c)\n"
1325 	    "{\n"
1326 	    "  return c >= CONSTRAINT_%s && c <= CONSTRAINT_%s;\n"
1327 	    "}\n\n",
1328 	    name, enum_order[start]->c_name, enum_order[end - 1]->c_name);
1329   else
1330     printf ("%s (enum constraint_num)\n"
1331 	    "{\n"
1332 	    "  return false;\n"
1333 	    "}\n\n", name);
1334 }
1335 
1336 /* Write a definition for insn_extra_constraint_allows_reg_mem function.  */
1337 static void
write_allows_reg_mem_function(void)1338 write_allows_reg_mem_function (void)
1339 {
1340   printf ("static inline void\n"
1341 	  "insn_extra_constraint_allows_reg_mem (enum constraint_num c,\n"
1342 	  "\t\t\t\t      bool *allows_reg, bool *allows_mem)\n"
1343 	  "{\n");
1344   if (maybe_allows_none_start != maybe_allows_none_end)
1345     printf ("  if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n"
1346 	    "    return;\n",
1347 	    enum_order[maybe_allows_none_start]->c_name,
1348 	    enum_order[maybe_allows_none_end - 1]->c_name);
1349   if (maybe_allows_reg_start != maybe_allows_reg_end)
1350     printf ("  if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n"
1351 	    "    {\n"
1352 	    "      *allows_reg = true;\n"
1353 	    "      return;\n"
1354 	    "    }\n",
1355 	    enum_order[maybe_allows_reg_start]->c_name,
1356 	    enum_order[maybe_allows_reg_end - 1]->c_name);
1357   if (maybe_allows_mem_start != maybe_allows_mem_end)
1358     printf ("  if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n"
1359 	    "    {\n"
1360 	    "      *allows_mem = true;\n"
1361 	    "      return;\n"
1362 	    "    }\n",
1363 	    enum_order[maybe_allows_mem_start]->c_name,
1364 	    enum_order[maybe_allows_mem_end - 1]->c_name);
1365   printf ("  (void) c;\n"
1366 	  "  *allows_reg = true;\n"
1367 	  "  *allows_mem = true;\n"
1368 	  "}\n\n");
1369 }
1370 
1371 /* VEC is a list of key/value pairs, with the keys being lower bounds
1372    of a range.  Output a decision tree that handles the keys covered by
1373    [VEC[START], VEC[END]), returning FALLBACK for keys lower then VEC[START]'s.
1374    INDENT is the number of spaces to indent the code.  */
1375 static void
print_type_tree(const vec<std::pair<unsigned int,const char * >> & vec,unsigned int start,unsigned int end,const char * fallback,unsigned int indent)1376 print_type_tree (const vec <std::pair <unsigned int, const char *> > &vec,
1377 		 unsigned int start, unsigned int end, const char *fallback,
1378 		 unsigned int indent)
1379 {
1380   while (start < end)
1381     {
1382       unsigned int mid = (start + end) / 2;
1383       printf ("%*sif (c >= CONSTRAINT_%s)\n",
1384 	      indent, "", enum_order[vec[mid].first]->c_name);
1385       if (mid + 1 == end)
1386 	print_type_tree (vec, mid + 1, end, vec[mid].second, indent + 2);
1387       else
1388 	{
1389 	  printf ("%*s{\n", indent + 2, "");
1390 	  print_type_tree (vec, mid + 1, end, vec[mid].second, indent + 4);
1391 	  printf ("%*s}\n", indent + 2, "");
1392 	}
1393       end = mid;
1394     }
1395   printf ("%*sreturn %s;\n", indent, "", fallback);
1396 }
1397 
1398 /* Write tm-preds.h.  Unfortunately, it is impossible to forward-declare
1399    an enumeration in portable C, so we have to condition all these
1400    prototypes on HAVE_MACHINE_MODES.  */
1401 static void
write_tm_preds_h(void)1402 write_tm_preds_h (void)
1403 {
1404   struct pred_data *p;
1405 
1406   printf ("\
1407 /* Generated automatically by the program '%s'\n\
1408    from the machine description file '%s'.  */\n\n", progname,
1409 	  md_reader_ptr->get_top_level_filename ());
1410 
1411   puts ("\
1412 #ifndef GCC_TM_PREDS_H\n\
1413 #define GCC_TM_PREDS_H\n\
1414 \n\
1415 #ifdef HAVE_MACHINE_MODES");
1416 
1417   FOR_ALL_PREDICATES (p)
1418     printf ("extern int %s (rtx, machine_mode);\n", p->name);
1419 
1420   puts ("#endif /* HAVE_MACHINE_MODES */\n");
1421 
1422   if (constraint_max_namelen > 0)
1423     {
1424       write_enum_constraint_num ();
1425       puts ("extern enum constraint_num lookup_constraint_1 (const char *);\n"
1426 	    "extern const unsigned char lookup_constraint_array[];\n"
1427 	    "\n"
1428 	    "/* Return the constraint at the beginning of P, or"
1429 	    " CONSTRAINT__UNKNOWN if it\n"
1430 	    "   isn't recognized.  */\n"
1431 	    "\n"
1432 	    "static inline enum constraint_num\n"
1433 	    "lookup_constraint (const char *p)\n"
1434 	    "{\n"
1435 	    "  unsigned int index = lookup_constraint_array"
1436 	    "[(unsigned char) *p];\n"
1437 	    "  return (index == UCHAR_MAX\n"
1438 	    "          ? lookup_constraint_1 (p)\n"
1439 	    "          : (enum constraint_num) index);\n"
1440 	    "}\n");
1441       if (satisfied_start == num_constraints)
1442 	puts ("/* Return true if X satisfies constraint C.  */\n"
1443 	      "\n"
1444 	      "static inline bool\n"
1445 	      "constraint_satisfied_p (rtx, enum constraint_num)\n"
1446 	      "{\n"
1447 	      "  return false;\n"
1448 	      "}\n");
1449       else
1450 	printf ("extern bool (*constraint_satisfied_p_array[]) (rtx);\n"
1451 		"\n"
1452 		"/* Return true if X satisfies constraint C.  */\n"
1453 		"\n"
1454 		"static inline bool\n"
1455 		"constraint_satisfied_p (rtx x, enum constraint_num c)\n"
1456 		"{\n"
1457 		"  int i = (int) c - (int) CONSTRAINT_%s;\n"
1458 		"  return i >= 0 && constraint_satisfied_p_array[i] (x);\n"
1459 		"}\n"
1460 		"\n",
1461 		enum_order[satisfied_start]->name);
1462 
1463       write_range_function ("insn_extra_register_constraint",
1464 			    register_start, register_end);
1465       write_range_function ("insn_extra_memory_constraint",
1466 			    memory_start, memory_end);
1467       write_range_function ("insn_extra_special_memory_constraint",
1468 			    special_memory_start, special_memory_end);
1469       write_range_function ("insn_extra_address_constraint",
1470 			    address_start, address_end);
1471       write_allows_reg_mem_function ();
1472 
1473       if (constraint_max_namelen > 1)
1474         {
1475 	  write_insn_constraint_len ();
1476 	  puts ("#define CONSTRAINT_LEN(c_,s_) "
1477 		"insn_constraint_len (c_,s_)\n");
1478 	}
1479       else
1480 	puts ("#define CONSTRAINT_LEN(c_,s_) 1\n");
1481       if (have_register_constraints)
1482 	puts ("extern enum reg_class reg_class_for_constraint_1 "
1483 	      "(enum constraint_num);\n"
1484 	      "\n"
1485 	      "static inline enum reg_class\n"
1486 	      "reg_class_for_constraint (enum constraint_num c)\n"
1487 	      "{\n"
1488 	      "  if (insn_extra_register_constraint (c))\n"
1489 	      "    return reg_class_for_constraint_1 (c);\n"
1490 	      "  return NO_REGS;\n"
1491 	      "}\n");
1492       else
1493 	puts ("static inline enum reg_class\n"
1494 	      "reg_class_for_constraint (enum constraint_num)\n"
1495 	      "{\n"
1496 	      "  return NO_REGS;\n"
1497 	      "}\n");
1498       if (have_const_int_constraints)
1499 	puts ("extern bool insn_const_int_ok_for_constraint "
1500 	      "(HOST_WIDE_INT, enum constraint_num);\n"
1501 	      "#define CONST_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n"
1502 	      "    insn_const_int_ok_for_constraint (v_, "
1503 	      "lookup_constraint (s_))\n");
1504       else
1505 	puts ("static inline bool\n"
1506 	      "insn_const_int_ok_for_constraint (HOST_WIDE_INT,"
1507 	      " enum constraint_num)\n"
1508 	      "{\n"
1509 	      "  return false;\n"
1510 	      "}\n");
1511 
1512       puts ("enum constraint_type\n"
1513 	    "{\n"
1514 	    "  CT_REGISTER,\n"
1515 	    "  CT_CONST_INT,\n"
1516 	    "  CT_MEMORY,\n"
1517 	    "  CT_SPECIAL_MEMORY,\n"
1518 	    "  CT_ADDRESS,\n"
1519 	    "  CT_FIXED_FORM\n"
1520 	    "};\n"
1521 	    "\n"
1522 	    "static inline enum constraint_type\n"
1523 	    "get_constraint_type (enum constraint_num c)\n"
1524 	    "{");
1525       auto_vec <std::pair <unsigned int, const char *>, 4> values;
1526       if (const_int_start != const_int_end)
1527 	values.safe_push (std::make_pair (const_int_start, "CT_CONST_INT"));
1528       if (memory_start != memory_end)
1529 	values.safe_push (std::make_pair (memory_start, "CT_MEMORY"));
1530       if (special_memory_start != special_memory_end)
1531 	values.safe_push (std::make_pair (special_memory_start, "CT_SPECIAL_MEMORY"));
1532       if (address_start != address_end)
1533 	values.safe_push (std::make_pair (address_start, "CT_ADDRESS"));
1534       if (address_end != num_constraints)
1535 	values.safe_push (std::make_pair (address_end, "CT_FIXED_FORM"));
1536       print_type_tree (values, 0, values.length (), "CT_REGISTER", 2);
1537       puts ("}");
1538     }
1539 
1540   puts ("#endif /* tm-preds.h */");
1541 }
1542 
1543 /* Write insn-preds.c.
1544    N.B. the list of headers to include was copied from genrecog; it
1545    may not be ideal.
1546 
1547    FUTURE: Write #line markers referring back to the machine
1548    description.  (Can't practically do this now since we don't know
1549    the line number of the C block - just the line number of the enclosing
1550    expression.)  */
1551 static void
write_insn_preds_c(void)1552 write_insn_preds_c (void)
1553 {
1554   struct pred_data *p;
1555 
1556   printf ("\
1557 /* Generated automatically by the program '%s'\n\
1558    from the machine description file '%s'.  */\n\n", progname,
1559 	  md_reader_ptr->get_top_level_filename ());
1560 
1561   puts ("\
1562 #define IN_TARGET_CODE 1\n\
1563 #include \"config.h\"\n\
1564 #include \"system.h\"\n\
1565 #include \"coretypes.h\"\n\
1566 #include \"backend.h\"\n\
1567 #include \"predict.h\"\n\
1568 #include \"tree.h\"\n\
1569 #include \"rtl.h\"\n\
1570 #include \"alias.h\"\n\
1571 #include \"varasm.h\"\n\
1572 #include \"stor-layout.h\"\n\
1573 #include \"calls.h\"\n\
1574 #include \"memmodel.h\"\n\
1575 #include \"tm_p.h\"\n\
1576 #include \"insn-config.h\"\n\
1577 #include \"recog.h\"\n\
1578 #include \"output.h\"\n\
1579 #include \"flags.h\"\n\
1580 #include \"df.h\"\n\
1581 #include \"resource.h\"\n\
1582 #include \"diagnostic-core.h\"\n\
1583 #include \"reload.h\"\n\
1584 #include \"regs.h\"\n\
1585 #include \"emit-rtl.h\"\n\
1586 #include \"tm-constrs.h\"\n\
1587 #include \"target.h\"\n");
1588 
1589   FOR_ALL_PREDICATES (p)
1590     write_one_predicate_function (p);
1591 
1592   if (constraint_max_namelen > 0)
1593     {
1594       write_lookup_constraint_1 ();
1595       write_lookup_constraint_array ();
1596       if (have_register_constraints)
1597 	write_reg_class_for_constraint_1 ();
1598       write_constraint_satisfied_p_array ();
1599 
1600       if (have_const_int_constraints)
1601 	write_insn_const_int_ok_for_constraint ();
1602     }
1603 }
1604 
1605 /* Argument parsing.  */
1606 static bool gen_header;
1607 static bool gen_constrs;
1608 
1609 static bool
parse_option(const char * opt)1610 parse_option (const char *opt)
1611 {
1612   if (!strcmp (opt, "-h"))
1613     {
1614       gen_header = true;
1615       return 1;
1616     }
1617   else if (!strcmp (opt, "-c"))
1618     {
1619       gen_constrs = true;
1620       return 1;
1621     }
1622   else
1623     return 0;
1624 }
1625 
1626 /* Master control.  */
1627 int
main(int argc,const char ** argv)1628 main (int argc, const char **argv)
1629 {
1630   progname = argv[0];
1631   if (argc <= 1)
1632     fatal ("no input file name");
1633   if (!init_rtx_reader_args_cb (argc, argv, parse_option))
1634     return FATAL_EXIT_CODE;
1635 
1636   md_rtx_info info;
1637   while (read_md_rtx (&info))
1638     switch (GET_CODE (info.def))
1639       {
1640       case DEFINE_PREDICATE:
1641       case DEFINE_SPECIAL_PREDICATE:
1642 	process_define_predicate (&info);
1643 	break;
1644 
1645       case DEFINE_CONSTRAINT:
1646       case DEFINE_MEMORY_CONSTRAINT:
1647       case DEFINE_SPECIAL_MEMORY_CONSTRAINT:
1648       case DEFINE_ADDRESS_CONSTRAINT:
1649 	process_define_constraint (&info);
1650 	break;
1651 
1652       case DEFINE_REGISTER_CONSTRAINT:
1653 	process_define_register_constraint (&info);
1654 	break;
1655 
1656       default:
1657 	break;
1658       }
1659 
1660   choose_enum_order ();
1661 
1662   if (gen_header)
1663     write_tm_preds_h ();
1664   else if (gen_constrs)
1665     write_tm_constrs_h ();
1666   else
1667     write_insn_preds_c ();
1668 
1669   if (have_error || ferror (stdout) || fflush (stdout) || fclose (stdout))
1670     return FATAL_EXIT_CODE;
1671 
1672   return SUCCESS_EXIT_CODE;
1673 }
1674